2411.16602v1 [cs.CV] 25 Nov 2024

arxXiv

Chat2SVG: Vector Graphics Generation with Large Language Models and
Image Diffusion Models

Ronghuan Wu
City University of Hong Kong
rh.wul@my.cityu.edu.hk

m o — e

"A pig wearing a backpack and a
cowboy hat standing on a skateboard."

] s ©

) J
"A red apple with green leaves, a worm

"A salmon sushi with wooden
chopsticks and a dish of soy sauce." in a hole, and a juice box with a straw."

"A dog wearing a chef's hat."

Wanchao Su
Monash University

wanchao.su@monash.edu

Jing Liao
City University of Hong Kong
jingliao@cityu.edu.hk

% U >
D=

1
[R |

"A sandcastle with a bucket, shovel
and two seagulls flying above."

"A sunflower in bloom with grass
and a butterfly hovering above."

"A car with lights emitting from it,

" "An astronaut riding a horse."
on a road.

Figure 1. SVG examples generated by our Chat2SVG. We highlight some shapes to demonstrate semantic clarity and path quality.

Abstract

Scalable Vector Graphics (SVG) has become the de facto
standard for vector graphics in digital design, offering res-
olution independence and precise control over individual
elements. Despite their advantages, creating high-quality
SVG content remains challenging, as it demands techni-
cal expertise with professional editing software and a con-
siderable time investment to craft complex shapes. Recent
text-t0-SVG generation methods aim to make vector graph-
ics creation more accessible, but they still encounter limi-
tations in shape regularity, generalization ability, and ex-
pressiveness. To address these challenges, we introduce
Chat2SVG, a hybrid framework that combines the strengths
of Large Language Models (LLMs) and image diffusion
models for text-to-SVG generation. Our approach first uses
an LLM to generate semantically meaningful SVG tem-
plates from basic geometric primitives. Guided by image
diffusion models, a dual-stage optimization pipeline refines
paths in latent space and adjusts point coordinates to en-
hance geometric complexity. Extensive experiments show
that Chat2SVG outperforms existing methods in visual fi-

delity, path regularity, and semantic alignment. Addition-
ally, our system enables intuitive editing through natural
language instructions, making professional vector graph-
ics creation accessible to all users. The project page is
https://chat2svg.github. io.

1. Introduction

Scalable Vector Graphics (SVG), a vector image format
based on geometric shapes, has become the standard for
modern digital design, offering resolution independence
and precise control over individual elements. However,
creating high-quality SVG content remains challenging for
non-expert users, as it requires both expertise with profes-
sional design software and considerable time investment to
create complex shapes. To make vector graphics creation
more accessible, recent research has focused on developing
text-to-SVG systems that enable users to express their cre-
ative ideas through simple text prompts rather than complex
manual editing.

Existing approaches have explored image-based meth-
ods for text-to-SVG generation, iteratively optimizing a

https://chat2svg.github.io

large collection of shape elements (e.g., cubic Bézier
curves, typically 100 to 1000) by rendering them into im-
ages with differentiable rasterizers [20] and evaluating them
using text-image similarity metrics like CLIP loss [28] and
Score Distillation Sampling (SDS) loss [27]. While these
image-based methods [9, 16, 43, 44, 50] can generate vi-
sually impressive SVG through the combination of numer-
ous paths and powerful image models, they face a criti-
cal limitation in maintaining the regularity and semantics
of shapes. Specifically, semantic components that should
be represented as single elements often end up fragmented
across multiple overlapping paths. Although these frag-
mented paths, when viewed collectively, can yield visually
appealing outputs, they fundamentally conflict with profes-
sional design principles, where each semantic component is
intentionally crafted as a single, regularized path.

Given SVG is defined using Extensible Markup Lan-
guage (XML), another solution to text-to-SVG synthe-
sis involves language-based methods, which treat SVG
scripts as text input. Recent works [35, 41] have proposed
specialized tokenization strategies to embed SVG scripts
and trained Sequence-To-Sequence (seq2seq) models on
domain-specific datasets (e.g., icons and fonts). While these
approaches achieve good generation quality within their
training domains, they suffer from limited generalization
due to the absence of large-scale, general-purpose text-SVG
training data. Meanwhile, some works [26, 31] show that
while state-of-the-art Large Language Models (LLMs) can
generate basic geometric shapes (e.g., circles and rectan-
gles) with layouts matching text prompts, they struggle to
produce the complex geometric details required for profes-
sional SVG applications. Consequently, the limited gener-
alization and poor expressiveness of language-based meth-
ods hinder their adoption for text-to-SVG generation.

To address the aforementioned problems, we propose
a novel hybrid framework that leverages the complemen-
tary strengths of image-based and language-based meth-
ods. Our approach first utilizes an LLM to synthesize
SVG templates composed of basic primitives and then op-
timizes their geometric details guided by image diffusion
models. This hybrid framework addresses the key limi-
tations of both paradigms: The LLM-based template gen-
eration overcomes the domain-specific generalization con-
straints of traditional language models while ensuring shape
regularity, as each element naturally corresponds to a sin-
gle semantic component. The subsequent image-based op-
timization then enhances the expressiveness of these well-
structured templates by capturing complex geometric de-
tails that LLMs alone struggle to produce. Specifically, to
fully exploit LLMs’ ability to create reasonable and com-
plex layouts that match text prompts, we design an SVG-
oriented prompt with multiple stages, including prompt ex-
pansion, SVG script generation, and visual refinement. To

refine the generated SVG templates, we implement a dual-
stage optimization strategy: (1) We first use an image diffu-
sion model to synthesize detailed image-level targets, then
follow [50] to optimize path-level latent vectors with a pre-
trained SVG VAE, eliminating common issues such as self-
intersections and jagged curves; (2) We further refine geo-
metric details by directly optimizing the point coordinates
to capture fine-grained visual elements. Comprehensive ex-
periments show that Chat2SVG consistently outperforms
existing methods regarding overall visual quality, individ-
ual path regularity, and semantic coherence. Furthermore,
our system enables intuitive editing through iterative natu-
ral language instructions, making vector graphics creation
more accessible to non-expert users. Our contributions are
summarized as follows:

* Hybrid SVG Generation Framework. We introduce
a novel text-to-SVG generation paradigm that combines
Large Language Models with image diffusion models to
produce high-quality SVG outputs.

* SVG-Oriented Prompt Design. We develop a special-
ized prompt system that directs LLMs to generate SVG
templates using basic geometric primitives.

* Dual-Stage Optimization. We implement a two-phase
optimization process that preserves the semantic mean-
ing of each shape while eliminating artifacts such as self-
intersecting and jagged paths.

* Iterative Editing. We enable iterative refinement of SVG
through natural language instructions, making SVG cre-
ation more accessible.

2. Related Work
2.1. Large Language Models for Design

LLMs have emerged as powerful tools for graphics de-
sign tasks, demonstrating remarkable capabilities in un-
derstanding and reasoning about complex design specifica-
tions across diverse domains. Recent works have explored
their applications in (1) visual layout and composition, in-
cluding poster designs [5, 21, 34, 47], 3D scene arrange-
ments [2, 10, 14, 32, 33, 38, 51], and placement of basic
shapes for image generation [8, 46]; (2) content creation and
manipulation for shapes [11], materials [15], and anima-
tion [22, 36]; and (3) design understanding [18, 42]. While
these demonstrate LLMs’ versatility, their potential for vec-
tor graphics remains unexplored. Our work addresses this
gap by showing that LLMs can effectively generate struc-
tured SVG templates, extending their capabilities to the do-
main of vector graphics creation.

2.2. Text-Guided Vector Graphics Generation

Text-to-SVG generation approaches can be roughly cat-
egorized into image-based and language-based methods.
Image-based methods [9, 16, 43, 44, 50] start with a large

collection of randomly initialized shapes, render vector
graphics with a differentiable renderer [20], and iteratively
optimize path parameters by minimizing text-image sim-
ilarity losses (e.g., CLIP [28] loss and Score Distillation
Sampling [27] loss). Despite their visually pleasant ap-
pearance, these methods often generate SVG results con-
taining multiple fragmented paths that lack individual se-
mantic correspondence, which is undesirable for real de-
sign scenarios. Language-based methods [3, 35, 41] design
specialized tokenization strategies to encode vector graph-
ics into discrete tokens, which are then concatenated with
text tokens, and train seq2seq models like autoregressive
transformers [37] on domain-specific datasets (e.g., icons
and fonts). While these approaches are conceptually ele-
gant, their generalization ability is limited by the scarcity of
large-scale, general-purpose vector graphics datasets. Some
works [26, 31] have explored LLMs’ vector graphics gen-
eration capabilities, showing that while LLMs can create
reasonable layouts matching text prompts, they struggle to
produce complex geometric shapes. Our Chat2SVG com-
bines image-based and language-based methods to address
the limitations of each paradigm, producing semantically
meaningful SVG where each path corresponds to a distinct
visual element and contains refined geometric details.

2.3. Vector Graphics Representation Learning

Vector graphics representation learning is essential for
sketch-based retrieval, reconstruction, and generation tasks.
A seminal study, SketchRNN [12], combines a Recurrent
Neural Network (RNN) and a VAE to learn vector represen-
tations. Lopes et al. [24] trained a VAE to represent image-
level font styles, then passed the latent embedding into a
decoder for vector font generation. To increase reconstruc-
tion quality, later approaches like Sketchformer [30] and
DeepSVG [4] adopted Transformer [37] architectures, fol-
lowed by dual-modality methods [23, 39, 40] that leveraged
both vector and image features. However, encoding the
entire complex SVG into a single latent embedding often
causes detail loss. To address this limitation, Zhang et al.
[50] proposed path-level representational learning, creating
a smooth latent space for individual paths. We leverage
these path-level latent embeddings in our optimization to
eliminate self-intersecting and jagged paths.

3. Method

Our Chat2SVG, as shown in Figure 2, begins with an SVG-
oriented prompting approach (Section 3.1) that guides an
LLM to create reasonable SVG templates. We then perform
a dual-stage optimization (Section 3.2) to enhance the geo-
metric details of SVG templates by optimizing SVG paths
in both latent and control point space, guided by image dif-
fusion models.

3.1. SVG Template Generation with LLMs

Prompt Expansion. Users often provide vague and brief
prompts to the LLM when describing their desired graphics.
Such unstructured input may lead to oversimplified SVG
(regarding both the number of elements and structures) that
fails to reflect the intended design. Consequently, we pro-
pose a three-layer prompt expansion strategy that systemat-
ically delineates the initial prompts: (1) Scene-level: Start-
ing with an initial prompt, we instruct the LLM to analyze it
holistically and identify essential objects that should appear.
The LLM then expands the prompt by suggesting comple-
mentary objects to enhance scene completeness. (2) Object-
level: For each object in the expanded prompt, we guide the
LLM to systematically break it down into its components.
For instance, when describing a lion, the LLM deconstructs
it into distinct parts such as the body, head, mane, legs,
eyes, ears, and tail. This decomposition ensures that no
critical components are missing during SVG script gener-
ation. (3) Layout-level: After object decomposition, we di-
rect the LLM to develop a comprehensive layout plan. This
includes determining the position and size of each element
on the canvas, selecting appropriate colors for visual har-
mony, and establishing clear spatial relationships to ensure
a cohesive overall composition.

SVG Script Generation. After prompt expansion, we ob-
tain a detailed scene description. We then convert this natu-
ral language specification into SVG scripts in XML format.
Since the LLM has limitations in synthesizing geometri-
cally complex paths, we constrain the shapes to a carefully
selected set of basic primitives: rectangles, ellipses, lines,
polylines, polygons, and short paths. We fix the canvas size
to 512 x 512. Each geometric element is assigned a unique
ID and includes semantic annotations in its comments.
Visual Rectification. Since prompt expansion is purely
text-based, even when the generated SVG script accurately
follows the detailed prompt, visual inconsistencies (e.g.,
misaligned components, disproportionate scaling, and in-
correct path ordering) can emerge during rendering. For ex-
ample, in Figure 2, the initial SVG template shows a lion
with a misshapen mane and missing facial features. We
thus adopt a visual rectification strategy in which we render
the SVG and provide the rendered image back to the LLM
(with vision capability) for inspection. The LLM analyzes
the visual output, identifies any inconsistencies or oddities,
and generates corrected SVG code. This visual refinement
loop can be performed iteratively. In our experiments, we
find that two iterations of refinement are typically sufficient
to generate well-structured SVG templates with appropriate
spatial layouts.

Furthermore, to enhance the quality of prompt expansion
and SVG script generation, we provide curated in-context
examples in the prompts. The complete set of prompts and
examples is available in the supplementary material.

{ Prompt Expansion] SVG Generatlon

Vlsual Rectification }

* Scene Description
* Object Description

"A lion" - &=
<. Component Layout

» Template Generation

¢ ¢

@ Q s h

= g g

| @1 S mmm [E
: =] . = : H : : (<]
\ 4 @ N, cm| su Tm
Paths Latents Points Attributes

» Latent Optimization

i i‘ l||l T
® OEe - ©®
Q Q

Paths Points Attributes Paths

Detail
» Enhancement Target Image

Final SVG

o

N

%

N
JIPUY

X (M (Sm

» Point Optimization

Figure 2. The system pipeline of Chat2SVG. Given a text prompt, our system first leverages an LLM to generate an SVG template
composed of basic geometric primitives. The rendered template is enhanced through SDEdit [25] with ControlNet [49] to add visual
details while preserving the overall composition, yielding a target image. The SVG then undergoes a dual-stage optimization process to
match the target image. (1) Primitives are converted to latent embeddings through latent inversion and optimized along with their visual
attributes (i.e., filling colors c;, stroke properties s;, and transformation matrices 7%). (2) Point-level optimization is performed to refine

the geometric details of SVG paths.

3.2. SVG Optimization Guided by Image Diffusion

Detail Enhancement. While the primitive shapes in the
SVG template have accurate semantic meaning, they lack
the sophisticated geometric details necessary for a profes-
sional design. To strengthen visual expressiveness, we first
render the SVG template into a raster image. We then use
an image editing method to generate a more detailed version
that serves as our optimization target. Specifically, we em-
ploy SDEdit [25], which enhances the input image by first
adding noise and then progressively denoising it with an im-
age diffusion model to produce outputs with richer details,
such as the contour of the lion’s mane illustrated in Figure 2.
To maintain structural similarity between the enhanced out-
put and the original image, we incorporate a ControlNet
(tile version) [49] into our pipeline. By using Gaussian-
blurred versions of the initial images as control signals,
the ControlNet effectively maintains the overall composi-
tion throughout the enhancement process. Apart from geo-
metric details, this image-to-image translation process also
introduces new semantic parts such as the lion’s beard. To
faithfully reproduce the target image, we propose using the
Segment Anything Model (SAM) [17] to identify and add
these new parts into the SVG template. In particular, we
denote the rendered images of the initial SVG template and
its diffusion-enhanced version as Iy, and Iy, respectively.
We apply SAM to both images to obtain their correspond-
ing mask sets: Maskp, = {mi}?zl for the template image
and Maskg, = {m;}}<, for the target image, where Q and
K represent the number of masks in each set. The major

idea of path addition is that the diffusion process primarily
introduces small decorative details (e.g., the beard and toes
of the lion in Figure 2) while maintaining the key compo-
nents (e.g., the tail and the body). Therefore, we implement
a mask-filtering strategy to identify these new elements: For
each mask m; in Maskqg¢, we compare it against all masks
in Maskep using Intersection over Union (IoU) loss [29]. If
m; overlaps with a template mask m; and their IoU is be-
low a threshold, we identify m; as a new decorative detail
that should be added to the SVG. Conversely, if their loU
exceeds the threshold, we interpret m; as a shape variation
of an existing component and exclude it from further pro-
cessing. Finally, for all filtered masks, we approximate their
boundaries with polygons and add them to the SVG script.

Notation. We define an SVG script G as a collection of M
paths (i.e., shapes), G = {P;}M,. Each path P; consists of
a sequence of N, commands, P; = {Cj } . A command
C? = (U7, V7) is defined by its type U7 {M, C} and its
associated control points Vij , where M represents Move and
C represents cubic Bézier curves. For consistency, we con-
vert all other primitive shapes (e.g., rectangles and ellipses)
in the SVG template into cubic Bézier curves.

Previous image-based methods [9, 16, 43, 44] optimize
SVG shapes by directly manipulating the control points V.
Despite convenient, this approach often leads to artifacts
such as self-intersecting curves and unnatural deformations.
To overcome these limitations, Zhang et al. [50] introduced
a path-level SVG VAE. This model’s latent space effec-
tively captures common shape patterns and geometric con-

straints, allowing for the optimization of path latent vectors
at a higher level to produce smooth outputs.
Latent Optimization. We leverage this pretrained SVG
VAE to conduct the latent optimization. However, their
SVG encoder expects a fixed number of commands (10 cu-
bic Bézier curves), while our SVG primitives contain vary-
ing, typically fewer commands. To resolve this mismatch,
we develop a latent inversion process that converts our
primitives into latent embeddings. We start with a randomly
sampled latent vector z and decode it into a command se-
quence. Then we evenly sample points X = {z;}}¥;
along its contour. Similarly, we sample an equal number of
points Y = {y;}, along the contour of our target prim-
itive shape. Using these point sets, we compute the Earth
Mover’s Distance (EMD) [1, 7, 48]:
fown (X Y) = min, 3 e = 0@l (O
x

where ¢ represents a bijective mapping between the point
sets. By minimizing this EMD loss, we gradually optimize
the latent embedding z to match the target primitive.

After obtaining latent vectors {z;}, for all paths, we
jointly optimize these vectors along with visual attribute pa-
rameters: filling colors {c; }£,, stroke properties (color and
width) {s;}},, and transformation matrices {7;}},. At
each optimization iteration ¢, we decode the latent vectors
into command sequences and apply transformation matri-
ces to the control points. We then combine color and stroke
attributes together, and use a differentiable rasterizer [20] to
render the complete SVG into an image ;. Our optimiza-
tion objective consists of three loss terms: (1) An MSE loss
fnvse between the rendered image J; and target image g
to ensure visual similarity; (2) A curvature loss that reduces
sharp bends and fluctuations along the contour by comput-
ing the discrete second derivative:

M N;—2 . i1 P19 2
J J J
Yoy vt v
i=1 j=1
gcurvature = M 5 (2)

g(N i —2)
(3) A path-level IoU loss that preserves the overall com-
position and prevents paths from drifting too far from their
initial positions:

KIOUMZ(

where m! and m? denote the binary masks of the i-th path
at the current iteration ¢ and its initial state, respectively.

The final loss function combines these three terms with
empirically determined weights:

|m! ﬂm) 3)

|mt Um?|

flatent = EMSE + Alecurvature +)\2€IOU7 (4)

where A\ = 5e — 4 and A\ = e — 6.

Point Optimization. While latent optimization effectively
aligns SVG shapes with their target positions and contours,
it has a notable limitation: the resulting shapes tend to be
overly smooth, lacking the intricate details that are often
essential in professional vector graphics. For example, in
Figure 2, the lion’s mane after latent optimization does not
capture the fine contour present in the target image. There-
fore, we add a second optimization stage that directly re-
fines the control points V; of the paths, similar to previous
image-based works [9, 16, 43, 44]. To achieve finer gran-
ularity in shape control, we split each cubic Bézier curve
at its midpoint, effectively doubling the number of control
points in the SVG. This increased control point density al-
lows for more precise shape adjustments. The point opti-
mization stage employs a loss function that combines the
MSE loss and the curvature loss:

gpoint = gMSE +)\3€curvature- (5)

The parameter A3 decreases linearly from le — 3 to 5e — 5
throughout the optimization process.

3.3. Iterative Editing

During SVG script generation (Section 3.1), we instruct the
LLM to annotate the semantic label of each path. This de-
sign enables users to refine the initial SVG template using
natural language, as the LLM can precisely locate and mod-
ify specific elements based on semantic understanding.

Our system supports iterative refinement through mul-
tiple rounds of natural language instructions. However,
across different iterations, when passing the SVG template
image through SDEdit, the enhanced images may contain
varying decorative details, potentially leading to inconsis-
tencies in the final optimized SVG. To maintain consis-
tency across editing iterations, we instruct the LLM to out-
put both the modified SVG script and a list of specifically
changed paths. This precise tracking enables selective opti-
mization of modified shapes while preserving unaltered el-
ements from previous iterations, maintaining visual coher-
ence throughout the entire refinement process.

4. Experiments

Implementation Details. In our experiments, we use
claude-3-5-sonnet as our backbone LLM model due
to its leading generation capabilities. To evaluate our ap-
proach, we create a prompt set by having the LLM generate
125 text prompts across five categories: animals, food, ob-
jects, scenes, and novel concept combinations. For each
prompt, we generate one SVG template and perform 2
rounds of visual rectification. This process repeats 5 times,
yielding (1 4+ 2) x 5 = 15 candidate SVG templates per
prompt. These templates are rendered as images, and we

Text Prompt CLIPDraw DiffSketcher

"A walking
flamingo."

"A cheeseburger
with lettuce
and tomato."

"A plane in the sky,
with clouds in
the background."

"An astronaut
on the moon."

VectorFusion

SVGDreamer T2V-NPR Chat2SVG

-

g4y

oFy

Figure 3. Qualitative Comparison. (1) Methods refining open-ended strokes, i.e., CLIPDraw [9] and DiffSketcher [43], often produce
distorted and disorganized strokes to approximate objects, presenting messy appearance and poor text alignment. (2) VectorFusion [16]
and SVGDreamer [44] produce elements that consist of multiple jagged, irregular, and fragmented shapes, such as the body of the flamingo
(first row) and the plane (third row). (3) T2V-NPR [50] attempts to resolve these issues by learning a latent representation of paths and
merging fragmented shapes. However, it still cannot guarantee the semantic meanings of the paths, leading to less-semantic paths such as
a plane body with surrounding clouds in the third row. In contrast, our method produces SVG with superior text alignment, higher visual
quality, and well-structured paths exhibiting geometric regularity and clear semantic definition.

follow a standard practice to select the highest quality SVG
using the ImageReward [45] metric. Detailed optimization
configurations are provided in the supplementary materials.

Baselines. We compare our approach against five state-
of-the-art image-based text-to-SVG generation methods:
CLIPDraw [9], DiffSketcher [43], VectorFusion [16], SVG-
Dreamer [44], and T2V-NPR [50]. Current language-based
methods [35, 41] are confined to specific categories, with
no support for general text-to-SVG generation, so we do
not include them in our comparison. For a fair comparison,
we set these baseline methods to use a similar number of
shapes as our optimized SVG.

Evaluation Metrics. We evaluate the quality of our gen-

erated SVG across three dimensions: visual fidelity, path

regularity, and semantic alignment.

» Image-level Fidelity. We evaluate visual fidelity using
a ground-truth dataset of well-designed vector graphics,
specifically 52,805 colored SVG files downloaded from
SVGRepo'. We compute the Fréchet Inception Distance
(FID) [13] between the rendered images of our generated
SVG and this professional design collection, using fea-
tures extracted by the CLIP image encoder [28].

e Path-level Regularity. We assess path quality using a
transformer-based Auto-Encoder trained on the FIGR-8-
SVG [6] dataset, following the DeepSVG [4] architecture.

lhttps://www.qurepo.com

https://www.svgrepo.com

Text

Image Path
Method Fb L Fp L Alignment |
CLIPDraw [9] 46.77 70.13 0.3048
DiffSketcher [43] 44.89 66.48 0.2623
VectorFusion [16] 39.52 56.79 0.2982
SVGDreamer [44] 35.48 47.95 0.2919
T2V-NPR [50] 39.86 42.03 0.3078
Chat2SVG (ours) 33.31 39.07 0.3090

Table 1. Quantitative comparison of text-to-SVG generation meth-
ods across image fidelity, vector regularity, and text alignment.

Unlike previous methods [50] that need a fixed number of
commands, our model encodes each drawing command
into a latent vector, accommodating varying command
lengths. After training, we compute the mean of com-
mand latent embeddings for each path and calculate the
FID between these and the ground truth paths from FIGR-
8-SVG. This quantifies how well our paths align with pro-
fessional SVG design patterns.

o Text-level Alignment. We assess semantic alignment by
computing the CLIP score [28] between the text prompt
and the rendered SVG image.

4.1. Comparison with Existing Methods

Quantitative Comparison. Table | shows the evaluation
metrics for all baseline methods. Our method achieves the
best image FID score, indicating that our generated SVG
closely aligns with professional design patterns. Regard-
ing path regularity, our method yields paths that are closest
to the professionally designed SVG, as evidenced by the
lowest path FID. Furthermore, our Chat2SVG achieves the
highest score in text-SVG alignment, validating the signifi-
cance of LLM-generated SVG templates.

Qualitative Comparison. In Figure 3, we present a side-
by-side comparison between our Chat2SVG and the base-
lines. Methods that optimize open-ended strokes based on
CLIP or Diffusion models (i.e., CLIPDraw [9] and DiffS-
ketcher [43]) produce results with messy visual appearances
and poor text alignment. These methods sometimes fail
to synthesize complete objects, such as the flamingo (first
row) and the plane (third row) in Figure 3. In contrast,
our method generates SVG results with clear layouts and
greater fidelity to the prompts.

Methods that optimize closed shapes via score distil-
lation of diffusion models (i.e., VectorFusion [16], SVG-
Dreamer [44], and T2V-NPR [50]) can better align with
the input text, but still produce fragmented paths with lim-
ited semantic meaning. For instance, in the plane exam-
ple (third row of Figure 3), VectorFusion and SVGDreamer
create planes and clouds composed of multiple jagged, ir-
regular, and fragmented shapes, which only appear mean-
ingful when viewed as a whole. This hinders convenient
editing by graphic designers. T2V-NPR [50] addresses the

1.00

@ Chat2SVG
@T2V-NPR

i SVGDreamer
@ VectorFusion
|| @@ DiffSketcher
OCLIPDraw

0251~

0.00

Visual Path Text

Quality Quality Alignment

Figure 4. User Study. Our Chat2SVG achieves the highest user
selection ratio across all three evaluation criteria.

issue of jagged paths using a path VAE (although it can be
overly smooth at times) and reduces fragmented shapes by
merging shapes with similar colors. However, its merging
operation ignores the semantic meaning of shapes, result-
ing in the body of the plane being merged with the sur-
rounding clouds. Additionally, the semantic meaning of the
path is sometimes unclear, as exemplified by the cloud in
the bottom-right corner, whose contour is actually approxi-
mated by the blue background instead of a true cloud shape.
In contrast, our Chat2SVG adopts a unique approach by us-
ing LLMs to generate paths representing semantic compo-
nents and performing dual-stage optimization based on im-
age diffusion to enhance path expressiveness, thus ensuring
both path regularity and visual fidelity of generated SVG.
User Study. To further compare Chat2SVG with baseline
methods, we conducted a user study examining the same
key aspects: (1) overall visual aesthetics, (2) path regular-
ity, and (3) text-SVG alignment. We randomly sampled 20
prompts and generated SVG outputs using our approach and
five baseline methods. For each prompt, participants were
shown all generated SVG results along with the correspond-
ing text prompt and highlighted paths. They were then
asked to select the highest quality result regarding the three
evaluation criteria. We recruited 31 participants (18 male,
13 female) through university mailing lists, with a mean age
of 26 years. Among them, 17 participants reported prior ex-
perience in graphic design, providing a balanced mix of ex-
pert and novice perspectives. Analyzing the average selec-
tion ratio across all three metrics (Figure 4), we found that
Chat2SVG-generated results were consistently preferred by
participants over baseline methods.

4.2. Ablation Study

We conduct ablation experiments to evaluate the effective-
ness of key components in our pipeline (Section 3.1). First,
we remove the SVG template generation and use randomly
initialized shapes to approximate target images. As shown

Image Path Text
Setup FD ¢ FD) Alignment |
Full 33.31 39.07 0.3090
No SVG Template 47.21 70.13 0.2968
No SVG Optimization 33.45 36.12 0.3044

Table 2. Qualitative results of the ablation study.

Prompt: "A dog wearing a chef's hat."

° o (-O oo

Full No SVG Template No SVG Optimization

Figure 5. Qualitative results of ablation study.

in the second row of Table 2, both image FID and path FID
values increase substantially. This performance degradation
can be attributed to the substantial gap between randomly
initialized shapes and target shapes, making optimization
more challenging. Meanwhile, in the second column of
Figure 5, the dog’s legs and ears lack semantic-clear com-
ponents, highlighting the importance of SVG template gen-
eration. Second, we eliminate the dual-stage optimization.
As shown in the third row of Table 2, this results in the
lowest path FID, as primitives generated by LLMs naturally
align with the path regularity presented in the ground-truth
dataset. However, the visual outcome in Figure 5 lacks the
necessary details, indicating that the overall visual quality
suffers without dual-stage optimization. A more detailed
ablation study is provided in the supplementary material.

4.3. Iterative Editing Results

In this section, we present the iterative editing results. As
demonstrated in Figure 6, users can progressively refine the
SVG through multiple rounds of natural language instruc-
tions. During editing, we preserve the optimized shapes
from previous iterations while only modifying the speci-
fied shapes. The results showcase how Chat2SVG can ac-
curately interpret and execute user editing requests, main-
taining both semantic coherence and visual quality through-
out the modifications. Additional editing examples are pro-
vided in the supplementary material.

5. Conclusion

In this paper, we present Chat2SVG, a novel paradigm for
text-to-SVG generation that combines LLMs and image dif-
fusion models. Through our carefully designed SVG tem-
plate generation and dual-stage SVG optimization pipeline,
our method generates high-quality SVG outputs that exhibit
strong visual fidelity, path regularity, and text alignment.
Despite our method’s superior results, there are several

e

"increase the .
elephant's trunk curvature" add a birthday hat

"add cherry blossom

"add two bushes" LU .
petals floating in the air"

"add curved wifi signals

"remove clouds" .
on top of the station"

Figure 6. Iterative Editing. We perform two rounds of refinement
on each SVG template and show the optimized output. This figure
shows editing types including deletion, modification, and addition.

(1) Layout Precision (2) Path Addition (3) Shape Complexity
SVG Target SVG Target 1 SVG Target

Template Image ; Template Image Template Image
Optimized SVG | Optimized SVG ! Optimized SVG

Figure 7. Limitations of our method include imprecise layout
generation, missing important visual elements, and insufficient
shape complexity.

aspects that could be further improved: (1) LLMs may
produce imprecise visual layouts, such as the burger in
Figure 7. This can be alleviated by collecting an SVG
dataset and extracting the corresponding layouts to fine-
tune LLMs. (2) Our approach uses SAM to identify new
parts. However, SAM may overlook important regions, like
the pink frosting on the donut in Figure 7. Incorporating
semantic-aware SAM [19] could potentially produce more
accurate results. (3) The pretrained SVG VAE from [50]
has a fixed number of commands. This makes it hard to
represent intricate shapes. For example, the lion’s mane
in Figure 7 lacks sufficient detail. Training a new SVG
VAE with varying-length commands would help solve this
problem. Our work can be extended to generate other types
of vectorized data, such as icons and fonts. Additionally,
through consistent editing of SVG across multiple frames,
coupled with shape interpolation, our Chat2SVG has
the potential to facilitate keyframe animation generation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In International Conference on
Machine Learning, pages 40-49, 2018. 5

Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stewart
Morris, Seung-Jean Yoo, Aditya Ganeshan, R. Kenny Jones,
Qiuhong Anna Wei, Kailiang Fu, and Daniel Ritchie. Open-
universe indoor scene generation using LLM program syn-
thesis and uncurated object databases. In arXiv preprint
arXiv:2403.09675, 2024. 2

Jonas Belouadi, Anne Lauscher, and Steffen Eger. Au-
tomaTikZ: Text-guided synthesis of scientific vector graph-
ics with TikZ. In arXiv preprint arXiv:2310.00367, 2023.
3

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and
Radu Timofte. DeepSVG: A hierarchical generative network
for vector graphics animation. In Advances in Neural Infor-
mation Processing Systems, pages 16351-16361, 2020. 3,
6

Yutao Cheng, Zhao Zhang, Maoke Yang, Hui Nie, Chunyuan
Li, Xinglong Wu, and Jie Shao. Graphic design with large
multimodal model. In arXiv preprint arXiv:2404.14368,
2024. 2

Louis Clouatre and Marc Demers. FIGR: Few-shot image
generation with reptile. In arXiv preprint arXiv:1901.02199,
2019. 6

Haogiang Fan, Hao Su, and Leonidas Guibas. A point set
generation network for 3D object reconstruction from a sin-
gle image. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 605-613, 2017. 5

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Wang, and William
Wang. LayoutGPT: Compositional visual planning and gen-
eration with large language models. In Advances in Neural

Information Processing Systems, pages 18225-18250, 2024.
2

Kevin Frans, Lisa B. Soros, and Olaf Witkowski. CLIPDraw:
Exploring text-to-drawing synthesis through language-image
encoders. In Advances in Neural Information Processing
Systems, pages 5207-5218, 2021. 2,4, 5, 6,7

Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Any-
Home: Open-vocabulary generation of structured and tex-
tured 3D homes. In European Conference on Computer Vi-
sion, pages 52-70, 2025. 2

Aditya Ganeshan, Ryan Y. Huang, Xianghao Xu, R. Kenny
Jones, and Daniel Ritchie. ParSEL: Parameterized shape
editing with language. In arXiv preprint arXiv:2405.20319,
2024. 2

David Ha and Douglas Eck. A neural representation of
sketch drawings. In arXiv preprint arXiv:1704.03477, 2017.
3

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local Nash equi-
librium. In Advances in Neural Information Processing Sys-
tems, pages 6629-6640, 2017. 6

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong
Yue, David A. Ross, Cordelia Schmid, and Alireza Fathi.
SceneCraft: An LLM agent for synthesizing 3D scenes as
Blender code. In International Conference on Machine
Learning, pages 19252-19282, 2024. 2

Ian Huang, Guandao Yang, and Leonidas Guibas. Blender-
Alchemy: Editing 3D graphics with vision-language models.
In arXiv preprint arXiv:2404.17672, 2024. 2

Ajay Jain, Amber Xie, and Pieter Abbeel. VectorFusion:
Text-to-SVG by abstracting pixel-based diffusion models. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1911-1920, 2022. 2,4, 5,6, 7

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dolldr, and
Ross Girshick. Segment anything. In IEEE International
Conference on Computer Vision, pages 4015-4026, 2023. 4
Peter Kulits, Haiwen Feng, Weiyang Liu, Victoria Abrevaya,
and Michael J. Black. Re-thinking inverse graphics with
large language models. In arXiv preprint arXiv:2404.15228,
2024. 2

Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong
Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, and Jianfeng
Gao. Semantic-SAM: Segment and recognize anything at
any granularity. In arXiv preprint arXiv:2307.04767, 2023.
8

Tzu-Mao Li, Michal Luka¢, Michaél Gharbi, and Ragan-
Kelley Jonathan. Differentiable vector graphics rasterization
for editing and learning. ACM Transactions on Graphics, 39
(6):1-15, 2020. 2, 3,5

Jiawei Lin, Jiaqi Guo, Shizhao Sun, Zijiang Yang, JianGuang
Lou, and Dongmei Zhang. LayoutPrompter: Awaken the de-
sign ability of large language models. In Advances in Neural
Information Processing Systems, pages 43852-43879, 2024.
2

Vivian Liu, Rubaiat H. Kazi, Li-Yi Wei, Matthew Fisher,
Timothy Langlois, Seth Walker, and Lydia Chilton. Lo-
goMotion: Visually grounded code generation for content-
aware animation. In arXiv preprint arXiv:2405.07065, 2024.
2

YingTian Liu, Zhifei Zhang, YuanChen Guo, Matthew
Fisher, Zhaowen Wang, and SongHai Zhang. DualVector:
Unsupervised vector font synthesis with dual-part represen-
tation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 14193-14202, 2023. 3

Raphael G. Lopes, David Ha, Douglas Eck, and Jonathon
Shlens. A learned representation for scalable vector graph-
ics. In IEEE International Conference on Computer Vision,
pages 7930-7939, 2019. 3

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, JunYan Zhu, and Stefano Ermon. SDEdit: Guided
image synthesis and editing with stochastic differential equa-
tions. In arXiv preprint arXiv:2108.01073, 2021. 4
OpenAl. GPT-4 technical report. In arXiv preprint
arXiv:2303.08774,2023. 2,3

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. DreamFusion: Text-to-3D using 2D diffusion. In arXiv
preprint arXiv:2209.14988, 2022. 2, 3

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

(40]

Alec Radford, Jong-Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In International
Conference on Machine Learning, pages 8748-8763, 2021.
2,3,6,7

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 658-666, 2019. 4

Leo S. F. Ribeiro, Tu Bui, John Collomosse, and Moacir
Ponti. Sketchformer: Transformer-based representation for
sketched structure. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 14153-14162, 2020. 3
Pratyusha Sharma, Tamar Rott Shaham, Manel Baradad,
Stephanie Fu, Adrian Rodriguez-Munoz, Shivam Duggal,
Phillip Isola, and Antonio Torralba. A vision check-up for
language models. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 14410-14419, 2024. 2, 3
Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang,
Zishan Qin, and Stephen Gould. 3D-GPT: Procedural 3D
modeling with large language models. In arXiv preprint
arXiv:2310.12945,2023. 2

Hou In Ivan Tam, Hou In Derek Pun, Austin T. Wang,
Angel X. Chang, and Manolis Savva. SceneMotifCoder:
Example-driven visual program learning for generating 3D
object arrangements. In arXiv preprint arXiv:2408.02211,
2024. 2

Zecheng Tang, Chenfei Wu, Juntao Li, and Nan Duan. Lay-
outNUWA: Revealing the hidden layout expertise of large
language models. In arXiv preprint arXiv:2309.09506, 2023.
2

Zecheng Tang, Chenfei Wu, Zekai Zhang, Mingheng Ni,
Shengming Yin, Yu Liu, Zhengyuan Yang, Lijuan Wang,
Zicheng Liu, Juntao Li, and Nan Duan. StrokeNUWA:
Tokenizing strokes for vector graphic synthesis. In arXiv
preprint arXiv:2401.17093, 2024. 2, 3, 6

Tiffany Tseng, Ruijia Cheng, and Jeffrey Nichols.
Keyframer: Empowering animation design using large lan-
guage models. In arXiv preprint arXiv:2402.06071, 2024.
2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, F.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 6000-6010, 2017. 3
Can Wang, Hongliang Zhong, Menglei Chai, Mingming He,
Dongdong Chen, and Jing Liao. Chat2Layout: Interac-
tive 3D furniture layout with a multimodal LLM. In arXiv
preprint arXiv:2407.21333,2024. 2

Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing
high-quality vector fonts via dual-modality learning. ACM
Transactions on Graphics, 40(6):1-15, 2021. 3

Yuqing Wang, Yizhi Wang, Longhui Yu, Yuesheng Zhu, and
Zhouhui Lian. DeepVecFont-v2: Exploiting Transformers to
synthesize vector fonts with higher quality. In IEEE Con-

10

(41]

[42]

(43]

[44]

(45]

[46]

[47]

(48]

[49]

(50]

(51]

ference on Computer Vision and Pattern Recognition, pages
18320-18328, 2023. 3

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Icon-
Shop: Text-guided vector icon synthesis with autoregressive
Transformers. ACM Transactions on Graphics, 42(6):1-14,
2023.2,3,6

Tong Wu, Guandao Yang, Zhibing Li, Kai Zhang, Ziwei Liu,
Leonidas Guibas, Dahua Lin, and Gordon Wetzstein. GPT-
4V (ision) is a human-aligned evaluator for text-to-3D gener-
ation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 22227-22238, 2024. 2

Ximing Xing, Chuang Wang, Haitao Zhou, Jing Zhang, Qian
Yu, and Dong Xu. DiffSketcher: Text guided vector sketch
synthesis through latent diffusion models. In Advances
in Neural Information Processing Systems, pages 15869—
15889, 2023. 2,4,5,6,7

Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang,
Dong Xu, and Qian Yu. SVGDreamer: Text guided SVG
generation with diffusion model. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 4546—
4555,2024. 2,4,5,6,7

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai
Li, Ming Ding, Jie Tang, and Yuxiao Dong. ImageRe-
ward: Learning and evaluating human preferences for text-
to-image generation. In Advances in Neural Information
Processing Systems, pages 15903-15935, 2024. 6

Yutaro Yamada, Khyathi Chandu, Yuchen Lin, Jack Hessel,
Ilker Yildirim, and Yejin Choi. L3GO: Language agents with
chain-of-3D-thoughts for generating unconventional objects.
In arXiv preprint arXiv:2402.09052, 2024. 2

Tao Yang, Yingmin Luo, Zhongang Qi, Yang Wu, Ying Shan,
and Chang Wen Chen. PosterLLaVa: Constructing a unified
multi-modal layout generator with LLM. In arXiv preprint
arXiv:2406.02884, 2024. 2

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. PU-Net: Point cloud upsampling network.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2790-2799, 2018. 5

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
IEEFE International Conference on Computer Vision, pages
3836-3847, 2023. 4

Peiying Zhang, Nanxuan Zhao, and Jing Liao. Text-to-vector
generation with neural path representation. ACM Transac-
tions on Graphics, 43(4):1-13,2024. 2,3,4,6,7, 8

Qihang Zhang, Chaoyang Wang, Aliaksandr Siarohin, Peiye
Zhuang, Yinghao Xu, Ceyuan Yang, Dahua Lin, Bolei Zhou,
Sergey Tulyakov, and Hsin-Ying Lee. SceneWiz3D: To-
wards text-guided 3D scene composition. In arXiv preprint
arXiv:2312.08885, 2023. 2

Chat2SVG: Vector Graphics Generation with Large Language Models and
Image Diffusion Models

Supplementary Material

A. Overview

This supplementary material provides additional implemen-

tation details and experimental results, including:

* More details about the optimization procedure (Sec-
tion B);

e Additional ablation studies evaluating the effects of
prompt design strategies, SAM-guided path additions,
and various optimization stages (Section C);

e Complete LLM prompts used in SVG generation and
editing (Section D);

* More generated and edited SVG examples (Section E) are
available on the project website.

B. Optimization Details

Our SVG optimization consists of three sequential stages:
latent inversion, latent optimization, and point optimization.
Each stage runs for 500 iterations. During the latent opti-
mization stage, we initialize the stroke color to black with a
width of 0.8. We also set the gradient of the RGBA color’s
alpha channel to zero to forbid transparency optimization.
Upon completing latent optimization, we apply transforma-
tion matrices to the points, which allows us to bypass the
need for optimizing transformation matrices in the subse-
quent point optimization stage. Optimizing an SVG con-
taining approximately 30 shapes requires around 10 min-
utes when executed on a single NVIDIA RTX 4090 GPU,
consuming roughly 5GB of GPU memory.

C. Additional Ablation Study

SVG Template. We demonstrate the critical role of each
component in SVG template generation, with results shown
in Figure 8. (1) The prompt expansion phase is crucial for
synthesizing complete SVG templates by enriching the ini-
tial brief description with essential details and components.
Without it, key visual elements are missing, such as the
dog’s chef hat and the police car’s flashing lights, leading to
incomplete and semantically deficient outputs. This demon-
strates how prompt expansion helps capture essential visual
elements needed for a coherent design. (2) Without visual
rectification, the generated SVG contains significant visual
inconsistencies that impact both local and global coherence.
At the local level, we observe misalignments between con-
nected components (like the dog’s ear and head), while at
the global level, certain elements become unrecognizable
(such as the police car’s body) due to improper spatial re-
lationships and proportions. These issues highlight how vi-

sual rectification serves as a crucial quality control step in
ensuring the generated SVG maintains proper visual struc-
ture and semantic clarity.

Detail Enhancement. The SAM-guided path addition en-
hances the visual richness of the optimized SVG by in-
corporating decorative elements and fine details. Without
this step, the generated SVG appears simpler. As shown in
the fourth column of Figure 8, compared to the complete
method in the first column, decorative elements such as the
intricate patterns on the dog’s chef hat and the detailed win-
dows of the police car are absent, resulting in reduced visual
sophistication and artistic appeal.

SVG Optimization. Our experiments validate the impor-
tance of each optimization stage: (1) Without latent op-
timization, relying solely on point optimization produces
shapes with undesirable artifacts like self-intersections in
the dog’s hat and distorted corners in the car’s window; (2)
Conversely, omitting point optimization yields excessively
smooth contours in elements like the hat and window, re-
sulting in a lack of geometric precision. We further analyze
the impact of individual loss terms. The curvature loss plays
a vital role in maintaining smooth and natural path contours
- when excluded, the optimization generates shapes with no-
ticeably irregular boundaries. Similarly, the path IoU loss is
crucial for spatial consistency, anchoring elements in their
designated positions. Without this constraint, components
like the dog’s ear and window frame drift from their in-
tended locations, compromising the overall compositional
integrity.

D. LLM Prompts

In this section, we present the detailed prompts used in our
Chat2SVG. First, we introduce the system prompt (Table 3),
which provides global guidance to the LLM. We then list
three prompts used to create an SVG template: prompt ex-
pansion (Table 4), SVG script generation (Table 5), and vi-
sual rectification (Table 6). Additionally, we include the
prompt that guides the LLM to perform accurate editing
based on natural language descriptions (Table 7).

E. More Results

To provide a more user-friendly visualization, we have put
all generated SVG, including text-guided generation and
editing results, on the project page.

) ' Y
)

a @l O Eir? OCZU O DQ

— o v s
-

o6 5, "¢ o—e -o—e o—e e—e
D kS e [T) e AR,

Full No Prompt No Visual No SAM- No Latent No Point No Curvature No Path
u Expansion Rectification Added Path Optimization Optimization Loss ToU Loss

Figure 8. Qualitative results of ablation study.

System Prompt

You are a vector graphics designer tasked with creating Scalable Vector Graphics (SVG) from a given text

prompt.

Your tasks:

e Task 1: **Expand Text Prompt**. The provided prompt is simple, concise and abstract. The first task is

imagining what will appear in the image, making it more detailed.
e Task 2: **Write SVG Code**. Using the expanded prompt as a guide, translate it into SVG code.
e Task 3: **Code Improvement**. Although the SVG code may align with the text prompt, the rendered image
could reveal oddities from human perception. Adjust the SVG code to correct these visual oddities.

Constraints:

1. SVG Elements: Use only the specified elements: rect, circle, ellipse, line, polyline,
polygon, and short path (up to 5 commands).

2. Canvas Details: The SVG canvas is defined by a 512x512 unit viewBox. Coordinates start at (0, 0) in the
top-left and extend to (512, 512) at the bottom-right.

3. Element Stacking Order: The sequencing of SVG elements matters; elements defined later in the code will
overlap earlier ones.

4. Colors: Use hexadecimal color values (e.g., #FF0000). For layers fully enclosed by others, differentiate
with distinct colors.

5. Simplicity: Keep the SVG code simple and clear.

6. Realism: While using simple shapes, strive to create recognizable and proportionate representations of
objects.

Note: The SVG you create will serve as an initial draft using simple shapes rather than a fully polished fi-

nal product with complex paths. Focus on creating a recognizable representation of the prompt using basic

geometric forms.

Table 3. System Prompt for SVG Template Generation

Prompt Expansion

Expand the given text prompt to detail the abstract concept. Follow these steps in your response:

1.

2.

3.

Expand the Short Text Prompt. Start by expanding the short text prompt into a more detailed description
of the scene. Focus on talking about what objects appear in the scene, rather than merely talking the abstract
idea. For example, for the short prompt “A spaceship flying in the sky”, expand it to “A silver spaceship
soars through the galaxy, with distant planets and shimmering stars forming a vivid backdrop”.

Object Breakdown and Component Analysis.

(a) For every object in the expanded prompt, add more details to describe the object. You can include
color, size, shape, motion, status, or any other relevant details. For example, “A silver spaceship” can
be expanded into “A silver spaceship with two large wings, ejecting flames from its thrusters”.

(b) Then, break down each object into its individual components. For instance, the spaceship’s components
could be “a body (rectangle), two triangular wings (polygon), a window (circle), and flames (polyline)
emitting from the rear thrusters (rectangle)”. You need to list **ALL** parts of each object. If you
ignore any part, the system will assume it’s not present in the scene. When listing components, explain
how each component can be depicted using the specified SVG elements.

Scene Layout and Composition. Propose a logical and visually appealing layout for the final scene.
For each object and each component, describe their positions on the canvas, relative/absolute sizes, colors,
and relative spatial arrangement (e.g., the hand is connected to the arm, the moon is behind the mountain).

When expanding the prompt, follow these guidelines:

1.

When expanding the short text prompt, avoid adding excessive new objects to the scene. Introduce additional
objects only if they enhance the completeness of the scene. If the prompt mentions just a single object, you
can choose to not introduce new objects and focus instead on enriching the description with more details
about that object.

When add details to describe objects, the description can be detailed and vivid, but the language should be
clear and concise. Avoid overly complex or ambiguous descriptions.

. When breaking down objects into individual components, ensure you list all essential parts typically com-

prising that object, even if they are not explicitly mentioned in the initial object description.

A Unicorn Example:
HHHHHE
Input Text Prompt: “A unicorn is eating a carrot.”

Expanded Prompt:

1.

2.

Scene Description: “The pink unicorn is standing in side view. The unicorn’s mouth is open, bitting an

orange carrot.”

Object Detail:

* Unicorn: The unicorn, standing in side view, has a pink body and a yellow horn. Its brown tail swings,
while its four legs stand still. It has a pink head and a small black eye.

 Carrot: The carrot is orange with two green leaves at the top.

Component Breakdown:

» Unicorn: horizontal pink body (ellipse), pink head (ellipse), thin neck (rectangle), four vertical legs (rect-
angles), brown curved tail (polyline), yello triangle horn atop the head (polygon), round eye (circle),
mouth on the head (path)

 Carrot: elongated orange triangle body (triangle), two small green triangular leaves (triangle)

Key Components Layout:
1. Unicorn
(a) Body: An ellipse centered around (256, 256) with rx=90 and ry=60. The body is pink.
(b) Head: An ellipse centered at (342, 166), 30 units wide and 25 units high, oriented to suggest the
unicorn’s gaze forward.
(c) Neck: A rectangle, 50 units long and 10 units wide, positioned at (312, 168) connecting the head and
the body.
(d) Legs: Four rectangles, each 10 units wide and 80 units tall, positioned at (185, 296), (220, 311), (293,
307), and (316, 296) to suggest stability.
(e) Tail: A polyline starting from the back of the body ellipse at (168, 258) and curving to points (122,
298) and (142, 252) to suggest a flowing tail.
(f) Horn: A polygon with points at (331, 140), (336, 110), and (341, 140) to represent the unicorn’s
triangular horn. The horn is yellow.
(g) Eye: A small circle with a radius of 5 units, placed at (352, 164) on the head.
(h) Mouth: A small curved line positioned at (342, 178) on the head
2. Carrot
(a) Body: An elongated triangle with points at (369, 180), (348, 200), and (356, 172). The carrot body is
orange (#FFAS500).
(b) Leaves: Two small triangles positioned at the top of the carrot body, centered around (363, 174). The
leaves are green (#00OFF00).
HiHHH
Refer to the Unicorn example for response guidance and formatting. Avoiding any unnecessary dialogue in

your response.
Here is the text prompt: TEXT_PROMPT

Table 4. Detailed Guidance for the Prompt Expansion Stage

SVG Script Generation

Write the SVG code following the expanded prompt and layout of key components, adhering to these rules:

1. SVG Elements: Use only the specified elements: rect, circle, ellipse, line, polyline,
polygon, and short path (up to 5 commands). Other elements like text, Gradient, clipPath,
etc., are not allowed. If there is path, the final command should be Z. If a path only contains a single
command, you need to increase the st roke-width to make it visible.

2. Viewbox: The viewbox should be 512 by 512.

3. Stacking Order: Elements defined later will overlap earlier ones. So if there is a background, it should be
defined first.

4. Colors: Use hexadecimal color values (e.g., #FF0000). For layers fully enclosed by others, differentiate
with distinct colors.

5. Comments: Include concise phrase to explain the semantic meaning of each element.

6. Shape IDs: **Every** shape element should have a unique “id” starting with “path_num”.

The translation from the Unicorn’s expanded prompt to SVG code is provided below:
HitHHHE

<svg viewBox="0 0 512 512" xmlns="http://www.w3.0rg/2000/svg">

<!-- Body -->
<ellipse id="path_1" cx="256" cy="256" rx="90" ry="60" fill="#ffcOcb"/>
<!-- Legs ——>

<rect id="path_2" x="185" y="296" width="10" height="80"
— £i11="4#d3d3d3"/>

<rect id="path_3" x="220" y="311" width="10" height="80"
— £i11="#d3d3d3"/>

<rect id="path_4" x="293" y="307" width="10" height="80"
— £i11="4#d3d3d3"/>

<rect id="path_5" x="316" y="296" width="10" height="80"
— £i11="4#d3d3d3"/>

<!-— Neck -—>

<rect id="path_6" x="312" y="168" width="10" height="50"
— fill="#ffcOcb"/>

<!-— Head --—>

<ellipse id="path_7" cx="342" cy="166" rx="30" ry="25" fill="#ffcOcb"/>
<!-— Eye ——>

<circle id="path_8" cx="352" cy="164" r="5" fill="4#000000"/>

<!-— Tail -->

<polyline id="path_9" points="168,258 122,298 142,252" fill="none"
—» stroke="#a52a2a" stroke-width="8"/>

<!-— Horn -->
<polygon id="path_10" points="331,140 336,110 341,140" fill="#ffffo0"/>
<!—— Unicorn mouth -->

<path id="path_11" d="M 337 178 Q 342 183 347 178" fill="none"
— stroke="#000000" stroke-width="2"/>
<!-- Carrot body --—>
<polygon id="path_12" points="369 180 348 200 356 172 369 180"
— fill="#ffa500"/>
<!-- Carrot leaves ——>
<polygon id="path_13" points="363 174 364 163 373 168 363 174"
— £i11="4#00ff00"/>
<polygon id="path_14" points="363 174 356 166 375 173 363 174"
— fill="#00££00"/>

</svg>

HHEH

In your answer, avoid any unnecessary dialogue, and include the SVG code in the following format:

AURNRY

svg
svg_code

AURNRY

Table 5. Detailed Prompt for the SVG Script Generation Stage

Visual Rectification

The SVG code you provide might have a critical issue: while it adheres to the text prompt, the rendered image
could reveal real-world inconsistencies or visual oddities. For example:

1.
2.

Misalignments: The unicorn’s legs may appear detached from the body.

Hidden elements: The snowman’s arms could be hidden if they blend with the body due to identical colors
and overlapping elements, making them indistinguishable.

Unrecognizable object: The SVG code includes a tiger, but the rendered image is unrecognizable due to a
disorganized arrangement of shapes.

Disproportionate scaling: The squirrel’s tail might appear overly small compared to its body.

Color: If a shape is purely white and placed on a white background, it may seem invisible in the final image.
If there is no background, try to avoid using white for the shape.

Incorrect path order: Incorrect path order can cause unintended overlaps, such as the face being completely
covered by the hair or hat.

These issues may not be evident in the SVG code but become apparent in the rendered image.

The provided image is rendered from your SVG code. You need to do the following:

1.

2.

First, carefully examine the image and SVG code to detect visual problems. Please list ALL the visual
problems you find. If the image is severely flawed/unrecognizable, consider rewriting the entire SVG code.
Second, adjust the SVG code to correct these visual oddities, ensuring the final image appears more realistic
and matches the expanded prompt.

When adding/deleting/modifying elements, ensure the IDs are unique and continuous, starting from
“path_1”, “path_2”, etc. For example, if you delete “path_3”, rename “path_4” to “path_3” and “path_5”
to “path_4” to maintain continuity.

Your task is NOT to modify the SVG code to better match the image content, but to identify visual oddities in
the image and suggest adjustments to the SVG code to correct them. You are not permitted to delete any SVG
elements unless rewriting is involved.

In your answer, include the SVG code in the following format:

AURTRY

sSVg

svg_code

AURNRY

Table 6. Detailed Prompt for the Visual Rectification Stage

Editing

Analyze the given editing prompt to understand the user’s intention. Classify the editing instruction into one of
(or a combination of) the following categories:

1. **QObject Addition**: Adding a new object to the scene.

2. **QObject Removal**: Removing an existing object from the scene.

3. **Object Modification**: Changing an existing object in the scene (e.g., color, size, position, pose, layout).

Follow these steps based on the type of editing instruction:
e **QObject Addition**:

1. Detailed Description: For each new object, add more details to describe the object. You can include
color, size, shape, motion, status, or any other relevant details. For example, “A silver spaceship” can be
expanded into “A silver spaceship with two large wings, ejecting flames from its thrusters”.

2. Component Breakdown: Break down each object into its individual components. For instance, the space-
ship’s components could be “a body (rectangle), two triangular wings (polygon), a window (circle), and
flames (polyline) emitting from the rear thrusters (rectangle)”. You need to list ¥** ALL** parts of each ob-
ject. If you ignore any part, the system will assume it’s not present in the scene. When listing components,
explain how each component can be depicted using the specified SVG elements.

3. Global Layout: Propose a global layout for each new object, i.e., describing its spatial relationship to
existing elements.

4. Local Components Layout: Propose a local components layout, describing arrangement of its compo-
nents, including their relative sizes and positions.

5. Stacking Order: Specify the layering order of new elements, especially for overlapping objects, to ensure
the correct visual effect.

e **QObject Removal**:

1. Identify the object(s) to be removed with precise descriptions.

2. Specify any adjustments needed for remaining elements to maintain scene coherence.
» **Qbject Modification**:

1. Identify the specific part(s) of the object that need to be changed.

2. Describe modifications in detail, including exact size, colors (in hexadecimal), and positions where appli-
cable.

3. For complex modifications, consider treating them as a combination of object removal and addition.

Guidelines for expanding the prompt:

1. When add details to describe objects, the description can be detailed and vivid, but the language should be
clear and concise. Avoid overly complex or ambiguous descriptions.

2. When breaking down objects into individual components, ensure you list all essential parts typically com-
prising that object, even if they are not explicitly mentioned in the initial object description.

3. For object modifications, provide exact specifications (e.g., “Increase the unicorn’s horn length by 20 units”).

4. Consider the overall composition and balance of the scene when adding or modifying elements.

Operation Summary:

In the original SVG code, each shape has an id attribute. After generating the edited SVG code, summarize the

operations performed in the following format:

1. Element Modification: [id_1, id_2, ...] (for elements that were modified but kept the same stacking order)

2. Element Removal: [id_1, id_2, ...] (for elements that were removed)

3. Element Addition: start_path_id, [id_1, id_2, ...] (for newly added elements; start_path_id is the id of the
path in the original SVG code, indicating that new elements should be inserted after the element with id
start_path_id. If inserting at the beginning, set start_path_id to an empty string “”’.)

Note: The ids in the lists refer to the ids from the original SVG code, not the edited SVG code.

Table 7. Detailed Prompt for the Editing Stage

	Introduction
	Related Work
	Large Language Models for Design
	Text-Guided Vector Graphics Generation
	Vector Graphics Representation Learning

	Method
	SVG Template Generation with LLMs
	SVG Optimization Guided by Image Diffusion
	Iterative Editing

	Experiments
	Comparison with Existing Methods
	Ablation Study
	Iterative Editing Results

	Conclusion
	Overview
	Optimization Details
	Additional Ablation Study
	LLM Prompts
	More Results

