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ABSTRACT

Training Reinforcement Learning (RL) agents online in high-stakes applications
is often prohibitive due to the risk associated with exploration. Thus, the agent
can only use data previously collected by safe policies. While previous work
considers optimizing the average performance using offline data, we focus on
optimizing a risk-averse criterion. In particular, we present the Offline Risk-
Averse Actor-Critic (O-RAAC), a model-free RL algorithm that is able to learn
risk-averse policies in a fully offline setting. We show that O-RAAC learns poli-
cies with higher risk-averse performance than risk-neutral approaches in different
robot control tasks. Furthermore, considering risk-averse criteria guarantees
distributional robustness of the average performance with respect to particular
distribution shifts. We demonstrate empirically that in the presence of natural
distribution-shifts, O-RAAC learns policies with good average performance.

1 INTRODUCTION

In high-stakes applications, the deployment of highly-performing Reinforcement Learning (RL)
agents is limited by prohibitively large costs at early exploration stages (Dulac-Arnold et al., 2019).
To address this issue, the offline (or batch) RL setting considers learning a policy from a limited
batch of pre-collected data. However, high-stakes decision-making is typically also risk-averse: we
assign more weight to adverse events than to positive ones (Pratt, 1978). Although several algo-
rithms for risk-sensitive RL exist (Howard & Matheson, 1972; Mihatsch & Neuneier, 2002), none
of them addresses the offline setting. On the other hand, existing offline RL algorithms consider the
average performance criterion and are risk-neutral (Ernst et al., 2005; Lange et al., 2012).

Main contributions We present the first approach towards learning a risk-averse RL policy for
high-stakes applications using only offline data: the Offline Risk-Averse Actor-Critic (O-RAAC).
The algorithm has three components: a distributional critic that learns the full value distribution
(Section 3.1), a risk-averse actor that optimizes a risk averse criteria (Section 3.2) and an imitation
learner implemented with a variational auto-encoder (VAE) that reduces the bootstrapping error due
to the offline nature of the algorithm (Section 3.3). In Figure 1, we show how these components in-
teract with each other. Finally, in Section 4 we demonstrate the empirical performance of O-RAAC.
Our implementation is freely available at Github: https://github.com/nuria95/O-RAAC.

1.1 RELATED WORK

Risk-Averse RL The most common risk-averse measure in the literature is the Conditional Value-
at-Risk (CVaR) (Rockafellar & Uryasev, 2002), which corresponds to the family of Coherent Risk-
Measures (Artzner et al., 1999), and we focus mainly on these risk-measures. Nevertheless, other
risk criteria such as Cumulative Prospect Theory (Tversky & Kahneman, 1992) or Exponential Util-
ity (Rabin, 2013) can also be used with the algorithm we propose. In the context of RL, Petrik &
Subramanian (2012); Chow & Ghavamzadeh (2014); Chow et al. (2015) propose dynamic program-
ming algorithms for solving the CVaR of the return distribution with known tabular Markov Decision
Processes (MDPs). For unknown models, Morimura et al. (2010) propose a SARSA algorithm for
(CVaR) optimization but it is limited to the on-policy setting and small action spaces. To scale to
larger systems, Tamar et al. (2012; 2015) propose on-policy Actor-Critic algorithms for Coherent
Risk-Measures. However, they are extremely sample inefficient due to sample discarding to compute
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Figure 1: Visualization of the algorithm components. Solid lines indicate the forward flow of data
whereas dashed lines indicate the backward flow of gradients. Data is stored in the fixed buffer.
The VAE, in blue, learns a generative model of the behavior policy. The actor, in green, perturbs
the VAE and outputs a policy. The critic, learns the Z-value distribution of the policy. The actor
optimizes a risk-averse distortion of the Z-value distribution, which we denote by DZ. On the
right, we show a typical probability density function of Z learned by the critic in red. In dashed
black we indicate the expected value of Z, which a risk-neutral actor intends to maximize. Instead,
a risk-averse actor intends to maximize a distortion DZ, shown in dashed green. In this particular
visualization, we show the ubiquitous Conditional Value at Risk (CVaR).

the risk-criteria and the high-variance of the gradient estimate. While Prashanth et al. (2016) address
sample efficiency by considering Cumulative Prospect Theory instead of Coherent Risk-Measures,
their algorithm is limited to tabular MDPs and is also on-policy. Instead, Tang et al. (2020) propose
an off-policy algorithm that approximates the return distribution with a Gaussian distribution and
learns its moments using the Bellman equation for the mean and the variance of the distribution.
Instead, we learn the full return distribution without making the Gaussianity assumption (Bellemare
et al., 2017). Perhaps most closely related is the work of Singh et al. (2020), who consider also a
distributional critic but their algorithm is limited to the CVaR and they do not address the offline RL
setting. Furthermore, they use a sample-based distributional critic, which makes the computation of
the CVaR inefficient. Instead, we modify Implicit Quantile Networks (Dabney et al., 2018) in order
to compute different risk criteria efficiently. Although (Dabney et al., 2018) already investigated
risk-related criteria, their scope is limited to discrete action spaces (e.g., the Atari domain) in an
off-policy setting whereas we consider continuous actions in an offline setting.

Offline RL The biggest challenge in offline RL is the Bootstrapping Error: a Q-function is evalu-
ated at state-action pairs where there is little or no data and these get propagated through the Bellman
equation (Kumar et al., 2019). In turn, a policy optimized with offline data induces a state-action
distribution that is shifted from the original data (Ross et al., 2011). To address this, Fujimoto et al.
(2019) propose to express the actor as the sum between an imitation learning component and a per-
turbation model to control the deviation of the behavior policy. Other approaches to control the
difference between the data-collection policy and the optimized policy include regularizing the poli-
cies with the behavior policy using the MMD distance (Kumar et al., 2019) or f-divergences (Wu
et al., 2020; Jaques et al., 2019), or using the behavior policy as a prior (Siegel et al., 2020). An
alternative strategy in offline RL is to be pessimistic with respect to the epistemic uncertainty that
arises due to data scarcity. Yu et al. (2020) take a model-based approach and penalize the per-step
rewards with the epistemic uncertainty of their dynamical model. Using a model-free approach Ku-
mar et al. (2020); Buckman et al. (2020) propose to learn a lower bound of the Q-function using an
estimate of the uncertainty as penalty in the target of the equation. Our work uses ideas from both
strategies to address the offline risk-averse problem. First, we use an imitiation learner to control the
bootstrapping error. However, by considering a risk-averse criterion, we are also optimizing over a
pessimistic distribution compatible with the empirical distribution in the data set. The connections
between risk-aversion and distributional robustness are well studied in supervised learning (Shapiro
et al., 2014; Namkoong & Duchi, 2017; Curi et al., 2020; Levy et al., 2020) and in reinforcement
learning (Chow et al., 2015; Pan et al., 2019).

2 PROBLEM STATEMENT

We consider a Markov Decision Process (MDP) with possibly continuous s ∈ S and possibly con-
tinuous actions a ∈ A, transition kernel P (·|s, a), reward kernel R(·|s, a) and discount factor γ. We
denote by π a stationary policy, i.e., a mapping from states to distribution over actions. We have
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access to a fixed batch data set collected with an unknown behaviour policy πβ . We call dβ the joint
state, action, reward, next-state distribution induced by the behaviour policy and ρβ the marginal
state distribution. We access this distribution by sampling from the fixed data set. Similarly, for any
policy π, we call dπ the joint state, action, reward, next-state distribution induced by π on the MDP.

In risk-neutral RL, the goal is to find a policy that maximizes the expected discounted sum
of returns Edπ

[∑∞
t=1 γ

t−1R(·|St, At)
]
, where the expectation is taken with respect to the

stochasticity introduced by the reward kernel, the transition kernel, and the policy. We define as
Zπ(s, a) =D

∑∞
t=1 γ

t−1R(·|St, At) as the return distribution conditioned on (S1 = s,A1 = a)
and following π thereafter. Here =D denotes equality in distribution. The risk-neutral RL objective
is the expectation of the distribution of Zπ .

In risk-averse settings, we replace the expectation with a distortion operator D that is a mapping
from the distribution over the returns to the reals. Thus, the goal is to find a policy π that maximizes

max
π
D
[ ∞∑
t=1

γt−1R(·|St, At)
]
. (1)

With this framework, we address many different risk-averse distortions. For example, this includes
probability weighting functions (Gonzalez & Wu, 1999; Tversky & Kahneman, 1992), the CVaR
(Rockafellar & Uryasev, 2002), the mean-variance criteria (Namkoong & Duchi, 2017) or the Wang
criteria (Wang, 1996; Rabin, 2013).

3 OFFLINE RISK-AVERSE ACTOR-CRITIC (O-RAAC)

We now present our algorithm O-RAAC for offline-risk averse RL. One of the main technical chal-
lenges in going beyond expected rewards is to find an analogue of the Q-function for the particular
distortion operator we want to optimize. Unfortunately, the Bellman target of most risk-analogues
does not have a closed-form expression. Therefore, we instead learn the full distribution of returns
as proposed by Bellemare et al. (2017). In Section 3.1, we describe the training procedure for the
distributional critic. Next, in Section 3.2 we define the actor loss as the risk-distortion operator on
the learned return distribution and optimize it using a gradient-based approach. Up to this point, the
actor-critic template is enough to optimize a risk-averse criteria. However, as we focus on the offline
setting, we need to control the bootstrapping error. To this end, we use a variational auto-encoder
VAE to learn a generative model of the behavior policy in Section 3.3. Finally, in Section 3.4 we
bring all the pieces together and instantiate our algorithm for different risk distortions D.

3.1 DISTRIBUTIONAL CRITIC LEARNING

To learn the distributional critic, we exploit the distributional Bellman equation of returns
Zπ(s, a) =D R(s, a) + γZπ(S′, A′) for policy evaluation. The random variables S′, A′ are
distributed according to s′ ∼ P (·|s, a) and A′ ∼ π(·|s′). In particular, we represent the return
distribution implicitly through its quantile function as proposed by Dabney et al. (2018). We use this
representation because many risk distortion operators can be efficiently computed using the quantile
function of the underlying random variable. We parameterize the quantile function through a neural
network with learnable parameters w. We express such implicit quantile function as Zπw(s, a; τ),
where τ ∈ [0, 1] is the quantile level. Whereas the neural network architecture proposed by Dabney
et al. (2018) is for discrete actions only, we extend it to continuous actions by considering all s, a,
and τ as the inputs and only the quantile value as the output. To learn the parameters w, we use the
distributional variant of fitted value-iteration (Bellemare et al., 2017; Munos & Szepesvári, 2008)
using a quantile Huber-loss (Huber, 1964) as a surrogate of the Wasserstein-distance as proposed
by Dabney et al. (2018). To this end, we use a target network with parameters w′ and compute the
temporal difference (TD) error at a sample (s, a, r, s′) as

δτ,τ ′ = r + γZπw′(s′, a′; τ ′)− Zπw(s, a; τ), (2)
for τ, τ ′ independently sampled from the uniform distribution, i.e., τ, τ ′ ∼ U(0, 1) and a′ ∼ π(·|s′).
The τ -quantile Huber-loss is

Lκ(δ; τ) =
∣∣∣τ − 1{δ<0}

∣∣∣︸ ︷︷ ︸
Quantile loss

·
{

1
2κδ

2 if |δ| ≤ κ,
|δ| − 1

2κ otherwise.︸ ︷︷ ︸
Huber loss

(3)
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We prefer the Huber loss over the L2 or L1 loss as it is better behaved due to smooth gradient-
clipping (Mnih et al., 2015). Finally, we approximate the quantile loss for all levels τ by sampling
N independent quantiles τ and N ′ independent target quantiles τ ′. The critic loss is

Lcritic(w) = E(s,a,r,s′)∼dβ(·)
a′∼π(·|s′)

[ 1

N ·N ′
N∑
i=1

N ′∑
j=1

Lκ(δτi,τ ′
j
; τi)

]
. (4)

3.2 LEARNING A RISK-AVERSE ACTOR

In risk-averse applications, we generally prefer deterministic policies over stochastic ones because
introducing extra randomness is against a risk-averse behavior (Pratt, 1978) and there is no benefit
of exploration often associated with stochastic policies in the offline setting. Hence, we consider
parameterized deterministic policies πθ(s) : S → A. Given a learned distributional critic, we define
the actor loss as

Lactor(θ) = −Es∼ρβ(·) [D (Zπθw (s, πθ(s); τ))] , (5)

where D is the operator that models risk aversion. We consider Markovian policies because
these contain the optimal policy for many common risk distortions in the discounted infinite
horizon setting (Ruszczyński, 2010, Theorem 4). To minimize the actor loss (5), we use pathwise
derivatives of the objective (Mohamed et al., 2020), computed by backpropagating the actor through
the learned critic at states sampled from the offline data set. Minimizing the actor loss is equivalent
to maximizing the risk-averse performance.

We leverage the quantile representation of the critic (c.f. Section 3.1) to compute the risk distortion
operator inside the actor loss (5), Given a quantile representation of a distribution, common risk
distortions D can be efficiently approximated using a sampling-based scheme. In particular, there
exists a quantile sampling distribution PD associated to D such that

D (Zπθw (s, πθ(s); τ)) =

∫
Zπθw (s, πθ(s); τ)PD(τ) dτ ≈ 1

K

K∑
k=1

Zπθw (s, πθ(s); τk), τk ∼ PD. (6)

For cumulative prospect theory (Tversky & Kahneman, 1992) and coherent risk measures (Artzner
et al., 1999), the associated quantile sampling distributions are well-known. In the particular case of
the CVaR, this is known as the Acerbi’s formula (Acerbi & Tasche, 2002)

CVaRα(Zπθw (s, a; τ)) =
1

α

∫ α

0

Zπθw (s, a; τ) dτ. (7)

When other representations are used for the critic, computing the risk-distortion D becomes
computationally expensive. In some particular cases, there are variational formulas to compute the
risk-distortion D that require to solve an inner optimization problem. For example, Singh et al.
(2020) use the common Rockafellar truncated optimization procedure (Rockafellar & Uryasev,
2002) to compute the CVaR, which is sample inefficient and has high variance (Curi et al., 2020).

3.3 OFF-POLICY TO OFFLINE: CONTROLLING THE BOOTSTRAPING ERROR.

Up to this point, the actor-critic procedure we describe in Sections 3.1 and 3.2 is theoretically suffi-
cient to learn a risk-averse RL agent. However, in the offline setting the bootstrapping error appears:
when evaluating the TD-error (2), the Z-value target will be evaluated at actions where there is
no data (Kumar et al., 2019) and propagated through the Bellman equation. To address this issue,
(Kumar et al., 2019; Wu et al., 2020; Siegel et al., 2020) propose stochastic policies and penalize
deviations from the behaviour policy while optimizing the actor.

As discussed in Section 3.2, on one hand we prefer deterministic policies over stochastic ones for
risk-averse optimization and on the other hand, we prefer stochastic policies to avoid overfitting to
the fixed batch of data. To this end, we use a similar parameterization to Fujimoto et al. (2019) and
decompose the actor in two components: an imitation learning component πIL and a perturbation
model ξθ such that the policy is expressed as:

πθ(s) = b+ λξθ(·|s, b), s.t., b ∼ πIL(·|s). (8)
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That is, b is an action sampled from the imitation learning component, ξθ is a conditionally
deterministic perturbation model that is optimized maximizing the actor loss (5) and λ is a hyper-
parameter that scales the perturbation magnitude. Thus, all the randomness in our policy arises from
the behaviour policy and not from the subsequent optimization. Furthermore, if we would have
access to the behaviour policy πβ we could directly replace the imitation learning module by πβ .

To learn a generative model of the πIL from state-action pairs from the behaviour distribution dβ
we use a conditional variational autoencoder (VAE) (Kingma & Welling, 2014), which is also done
in Fujimoto et al. (2019). The main advantage of the VAE compared to behavioral cloning (Bain &
Sammut, 1995) is that it does not suffer from mode-collapse which hinders the actor optimization,
and compared to inverse imitation learning (Ziebart et al., 2008; Abbeel & Ng, 2004) it does not
assume that the policy is optimal. We chose the VAE over Generative Adversarial Networks (Ho &
Ermon, 2016) due to easiness of training (Arjovsky & Bottou, 2017).

The conditional variational autoencoder is a probabilistic model that samples an action b ∼
VAEφ(s, a) according to the generative model

µ,Σ = Eφ1(s, a); z ∼ N (µ,Σ); b = Dφ2(s, z), (9)
where Eφ1

is the neural network encoder, Dφ2
is the neural network decoder, and we sample the

code z using the re-parameterization trick (Kingma & Welling, 2014). To learn the φ = {φ1, φ2}
parameters we place a prior N (0, I) on the code z and minimize the variational lower-bound

LVAE(φ) = Es,a∼β(·)

(a−Dφ2(s, z))2︸ ︷︷ ︸
reconstruction loss

+
1

2
KL(N (µ,Σ),N (0, I))︸ ︷︷ ︸

regularization

 . (10)

Upon a new state s, the generative model of the VAEφ(s) is z ∼ N (0, I), b = Dφ2(s, z).

3.4 FINAL ALGORITHM

Algorithm 1: Offline Risk-Averse Actor Critic (O-RAAC).
input Data set, Critic Zw and critic-target Zw′ , VAEφ = {Eφ1

, Dφ2
}, Perturbation model ξθ and

target ξθ′ , modulation parameter λ, Distortion operator D or distortion sampling distribution PD,
critic-loss parameters N,N ′, κ, mini-batch size B, learning rate η, soft update parameter µ.
for t = 1, . . . do

Sample B transitions (s, a, r, s′) from data set.
Sample N quantiles τ and N ′ target quantiles τ ′ from U(0, 1) and compute δτ,τ ′ in (2).
Compute policy πθ = b+ λξθ(s, b), s.t. b ∼ VAEφ(s, a) as in (9).
Compute critic loss Lcritic(w) in (4); actor loss Lactor(θ) in (5); VAE loss LVAE(φ) in (10).
Gradient step w ← w − η∇Lcritic(w); θ ← θ − η∇Lactor(θ); φ← φ− η∇LVAE(φ).
Perform soft-update on w′ ← µw + (1− µ)w′; θ′ ← µθ + (1− µ)θ′.

end for

We now combine the critic in Section 3.1, the actor in Section 3.2 and the VAE in Section 3.3 and
show the pseudo-code of O-RAAC in Algorithm 1. We replace the expectations in the critic loss
(4), actor loss (5) and VAE loss (10) with empirical averages of samples from the data set. As an
ablation, we also propose the RAAC algorithm, in which the actor is parameterized with a neural
network and there is no imitation learning component.

The critic’s goal is to learn the reward distribution, the VAE goal is to learn a baseline action for
the actor and the goal of the perturbation model is to be risk-averse. Although Santara et al. (2018)
and Lacotte et al. (2019) propose risk-averse imitation learning algorithms, these interact with the
environment in an on-policy way. Furthermore, the goal of the imitation learning component in
O-RAAC is not to be risk-averse, but to provide a baseline to the risk-averse perturbation.

O-RAAC requires a distortion metric D as an input. For different D, it generalizes existing distribu-
tional RL algorithms and extends them to the offline setting. For example, whenD is the expectation
operator, then the agent is risk neutral and O-RAAC is an offline version of D4PG (Barth-Maron
et al., 2018). Likewise, when D is the Rockafellar-truncation operator (Rockafellar & Uryasev,
2002) we recover the algorithm by Singh et al. (2020) for optimizing the CVaR.
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Table 1: Results of RAAC, WCPG, and D4PG in the car example. RAAC learns a policy that sat-
urates the velocity before the risky region. WCPG and D4PG learn to accelerate as fast as possible,
reaching the goal first with highest average returns but suffer from events with large penalty. We
report mean (standard deviation) of each quantity.

Algorithm CVaR0.1 Mean Risky Steps Total Steps

RAAC 48.0 (8.3) 48.0 (8.3) 0 (0) 33 (1)
WCPG 15.8 (3.3) 79.8 (1.3) 13 (0) 24 (0)
D4PG 15.6 (4.4) 79.8 (2.0) 13 (0) 24 (0)

4 EXPERIMENTAL EVALUATION

In this section, we test the performance of O-RAAC using D = CVaRα=0.1 as risk distortion. We
use Acerbi’s formula (7) to compute the risk distortion. In particular, we ask:

1. How does RAAC perform as a risk-averse agent in the off-policy setting? (Section 4.1)

2. How does O-RAAC perform as a risk-averse agent in the offline setting? (Section 4.2)

3. How does O-RAAC perform as a risk-neutral agent in the offline setting? (Section 4.3)

For further details such as hyperparameter selection and extended results please refer to Appendix A.

4.1 OFF-POLICY SETTING: RISK-AVERSE PERFORMANCE

In this experiment, we intend to demonstrate the effectiveness of our algorithm as a risk-averse
learner without introducing the extra layer of complexity of the offline setting.

4.1.1 EXPERIMENTAL SETUP

As a toy example, we chose a 1-D car with state s = (x, v), for position and velocity. The agent
controls the car with an acceleration a ∈ [−1, 1]. The car dynamics with a time step ∆t = 0.1 is

xt+1 = xt + vt∆t+ 0.5at(∆t)
2, vt+1 = vt + at∆t.

The control objective is to move the car to xg = 2.5 as fast as possible, starting from rest. To model
the risk of crashing or of getting a speed fine, we introduce a penalization when the car exceeds a
speed limit (v > 1). Hence, we use a random reward function given by

Rt(s, a) = −10 + 370Ixt=xg − 25Ivt>1 · B0.2,

where I is an indicator function and B0.2 is a Bernoulli Random Variable with probability p = 0.2.
The episode terminates after 400 steps or when the agent reaches the goal.

Benchmarks We compare RAAC with a risk-neutral algorithm (D4PG algorithm by Barth-Maron
et al. (2018) with IQN and 1-step returns) and WCPG by Tang et al. (2020), a competing risk-averse
algorithm. Both RAAC and WCPG optimize the 0.1-CVaR of the returns.

4.1.2 RESULT DISCUSSION

In Table 1, we show the results of the experiment. As expected, D4PG ignores the low probability
penalties and learns to accelerate the car with maximum power. Thus it has the largest expected
return but the lowest CVaR. WCPG also fails to maximize the CVaR as it assumes that the return
distribution is Gaussian. In turn, it under-estimates the variance of the return distribution of the
maximum acceleration policy. Consequently, it over-estimates the CVaR of the returns and prefers
the latter policy over the maximum-CVaR policy. In contrast, RAAC learns the full value distribution
Z and computes the CVaR reliably. Thus, it learns to saturate the velocity below the v = 1 threshold
and finds the highest CVaR policy. See Appendix A.1 for more experiments in this setting.

Qualitative Evaluation In Figure 3 in Appendix A.1 we show the different trajectories as an
illustration of the resulting risk-averse behavior.
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4.2 OFFLINE SETTING: RISK-AVERSE PERFORMANCE

In this experiment, we intend to demonstrate the effectiveness of our algorithm as a risk-averse
learner in the offline setting and in high-dimensional environments.

4.2.1 EXPERIMENTAL SETUP

We test the algorithm on a variety of continuous control benchmark tasks on the data provided in
the D4RL dataset (Fu et al., 2020). We use three MuJoCo tasks: HalfCheetah, Walker and Hopper
(Todorov et al., 2012). In particular, we chose the medium (M) and expert (E) variants of these
datasets. Since the tasks are deterministic, we incorporate stochasticity into the original rewards to
have a meaningful assessment of risk and to showcase a practical example of when the risk-averse
optimization makes sense. As a risk-averse performance metric, we chose the 0.1-CVaR of the
episode returns. We use the following reward functions:

Half-Cheetah: Rt(s, a) = r̄t(s, a) − 70Iv>v̄ · B0.1, where r̄t(s, a) is the original environment
reward, v the forward velocity, and v̄ is a threshold velocity (v̄ = 4 for the (M) variant and v̄ = 10
for the (E) variant). As with the car example, this high-velocity penalization models a penalty to the
rare but catastrophic event of the robot breaking – we want to be risk-averse to it. We evaluate the
Half-Cheetah for 200 time steps.

Walker2D/Hopper: Rt(s, a) = r̄t(s, a)− pI|θ|>θ̄ · B0.1, where r̄t(s, a) is the original environment
reward, θ is the pitch angle, θ̄ is a threshold angle (θ̄ = 0.5 for the Walker2d-M/E and θ̄ = 0.1
for the Hopper-M/E) and p = 30 for the Walker2d-M/E and p = 50 for the Hopper-M/E. When
|θ| > 2θ̄ the robot falls, the episode terminates, and we stop collecting such rewards. To avoid such
situation, we shape the rewards with the stochastic event at θ > θ̄. The maximum duration of the
Walker2D and the Hopper is 500 time steps.

Benchmarks We optimize O-RAAC for the 0.1-CVaR. To demonstrate its effectiveness opti-
mizing other risk distortions, we optimize O-RAAC using the 0.25-CVaR and the CPW distortion
proposed by Tversky & Kahneman (1992); Gonzalez & Wu (1999). As a competing risk-averse
algorithm, we augment WCPG with a VAE to yield the O-WCPG algorithm. As state-of-the-art
risk-neutral agents, we use BEAR (Kumar et al., 2019) and O-D4PG, which is equivalent to BCQ
(Fujimoto et al., 2019) with a distributional critic. As ablations, we compare RAAC (i.e. O-RAAC
without the VAE) and the performance of the VAE as a pure imitation learning algorithm. Finally,
we estimate the returns of the behavior policy by evaluating the stochastic reward functions on the
data set and estimate its variance by bootstrapping batches of transitions.

4.2.2 RESULT DISCUSSION

In Table 2, we show the results of the experiments. In all environments, O-RAAC has a higher
0.1-CVaR than the benchmarks. In environments that terminate, it also has longer duration than
competitors. When optimizing for other risk-averse criteria, O-RAAC still has good 0.1-CVaR per-
formance. The behavior policy has poor risk-averse performance and the VAE ablation imitates such
policy, hence performs poorly too. On the other side of the spectrum, RAAC performs poorly in all
categories. This indicates that the offline version enhancement of RAAC is crucial for offline prob-
lems. O-WCPG performs poorly in terms of the CVaR. This might be due to the return distribution
not being Gaussian. Finally, BEAR and O-D4PG usually have good risk-neutral performance, par-
ticularly in the medium version of these datasets, but poor risk-averse performance. This is expected
as these algorithms are designed to optimize the risk-neutral performance.

Qualitative Evaluation We visualize the risk-averse performance by looking at the support of
the risk-event in Figure 2. Most of the support of the data set induced by the behavior policy lies in
the risky region. O-RAAC learns to shift the distribution towards the risk-free region (green shaded
area). On the other hand, O-D4PG (risk-neutral) struggles to shift the distribution as it ignores the
rare penalties in the risky region. Only in the Half Cheetah-E experiment O-D4PG manages to shift
the distribution towards the safe region. This is because most of the behavior policy is on the risky
region and the average performance of the behavior policy under the new stochastic rewards is low.
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Figure 2: Empirical distribution of the risk-event of O-RAAC, O-D4PG, and the behavior policies.
O-RAAC shifts the support towards the risk-free region (green area). On the other hand, O-D4PG
ignores the risk-related rewards and imitates the behavior distribution.

4.3 OFFLINE SETTING: RISK-NEUTRAL PERFORMANCE

It is well-known that coherent risk-related criteria have a dual distributional robust criterion formu-
lation (Shapiro et al., 2014; Iyengar, 2005; Osogami, 2012). In particular, the following holds:

max
π
D [Zπ(x, a)] = max

π
min
d∈Dπ

Ed [Zπ(x, a)] , (11)

whereDπ is a dual set of distribution that is induced by the distortion measureD and the distribution
dπ . When the distortion set is the expectation, the dual set collapses to a singleton Dπ = {dπ}. For
the CVaR, Chow & Ghavamzadeh (2014) expresses the dual set for MDPs in Proposition 1. Given
this dual result, it is straightforward to show that Edπ [Zπ(x, a)] ≥ D[Zπ(x, a)] by definition of the
minimum. In this sense, optimizing D[Zπ(x, a)] is equivalent to optimizing a pessimistic estimate
of the risk-neutral performance, in a similarly way to Buckman et al. (2020) and Kumar et al. (2020).

4.3.1 EXPERIMENTAL SETUP

Despite the goal being to maximize a risk-neutral objective, we evaluate whether it is beneficial to
optimize a risk-averse criterion in the offline setting. We test this hypothesis using the same setup as
in Section 4.2. Namely, we train O-RAAC using a risk-averse metric, but we evaluate on the average
value, a risk-neutral metric.

Benchmarks We use the same benchmarks as in Section 4.2.

4.3.2 RESULT DISCUSSION

We show the risk-neutral performance in the “Mean” columns in Table 2. In all data sets, O-RAAC
performs better or similar to the benchmarks. A reason for this is that the episodes of risk-averse
agents last longer and thus collect rewards for more time steps. However, this is not the only reason.
For example, BEAR in the Walker-expert environment has longer episodes and still lower mean
returns than O-RAAC. In the Hopper-expert, RAAC and VAE have similar duration to O-RAAC.
Yet, O-RAAC has a higher average return than each of the ablations. This indicates that optimizing
a risk-averse performance is beneficial when comparing the risk-neutral performance, specially in
data sets where the data is not very diverse (e.g., in the “expert” data sets).
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Qualitative Evaluation In Figure 2, we see that in most cases there is a distribution shift between
the behaviour distribution and both O-RAAC and O-D4PG. As the shift increases, we see the benefits
of learning using distributionally robust objectives. As a particular example we take the Hopper-E
distribution. The behavior policy is safe as it does not terminate before the 500 time steps but much
of the data is on the risky region. O-RAAC learns to center the distribution in the safe region and yet
hops forward efficiently. On the other hand, O-D4PG also learns to shift away of the risky region.
However, it is not risk averse and it overshoots towards the other end of the risky region, where there
is not sufficient data to have good critic estimates.

Table 2: Performance metrics on offline MuJoCo data sets with medium (first column block) and
expert (second column block) datasets. We compare the 0.1-CVaR and mean of the episode returns,
and the average episode duration. We report the mean (standard deviation) of metric. In all environ-
ments, O-RAAC has a higher CVaR than benchmarks. In environments that terminate, O-RAAC has
a longer duration too. Finally, O-RAAC has comparable risk-neutral performance to benchmarks.

Algorithm Medium Expert
CVaR0.1 Mean Duration CVaR0.1 Mean Duration

H
al

f-
C

he
et

ah

O-RAAC0.1 214 (36) 331 (30) 200 (0) 595 (191) 1180 (78) 200 (0)
O-RAAC0.25 252 (14) 317 (5) 200 (0) 695 (34) 1185 (7) 200 (0)
O-RAACCPW 253 (9) 318 (3) 200 (0) 358 (67) 974 (21) 200 (0)
O-WCPG 76 (14) 316 (23) 200 (0) 248 (232) 905 (107) 200 (0)
O-D4PG 66 (34) 341 (20) 200 (0) 556 (263) 1010 (153) 200 (0)
BEAR 15 (30) 312 (20) 200 (0) 44 (20) 557 (15) 200 (0)
RAAC -55 (1) -52 (0) 200 (0) 3 (13) 30 (3) 200 (0)
VAE 10 (23) 354 (9) 200 (0) 260 (84) 754 (18) 200 (0)
Behavior 9 (6) 344 (2) 200 (0) 100 (8) 727 (4) 200 (0)

W
al

ke
r-

2D

O-RAAC0.1 751 (154) 1282 (20) 397 (18) 1172 (71) 2006 (56) 432 (11)
O-RAAC0.25 497 (71) 1257 (27) 479 (6) 670 (133) 1758 (48) 436 (7)
O-RAACCPW 500 (71) 1304 (16) 477 (3) 819 (89) 1874 (34) 454 (8)
O-WCPG -15 (41) 283 (37) 185 (12) 362 (33) 1372 (160) 301 (31)
O-D4PG 31 (29) 308 (20) 249 (9) 773 (55) 1870 (63) 405 (12)
BEAR 517 (66) 1318 (31) 468 (8) 1017 (49) 1783 (32) 463 (4)
RAAC 55 (2) 92 (9) 200 (7) 54 (2) 83 (6) 196 (6)
VAE -84 (21) 425 (37) 246 (9) 345 (302) 1217 (180) 350 (130)
Behavior -56 (9) 727 (16) 500 (0) 1028 (34) 1894 (7) 500 (0)

H
op

pe
r

O-RAAC0.1 1416 (28) 1482 (4) 499 (1) 980 (28) 1385 (33) 494 (6)
O-RAAC0.25 1108 (14) 1337 (21) 419 (6) 730 (129) 1304 (21) 434 (6)
O-RAACCPW 969 (9) 1188 (6) 373 (2) 488 (1) 496 (0) 160 (0)
O-WCPG -87 (25) 69 (8) 100 (0) 720 (34) 898 (12) 301 (1)
O-D4PG 1008 (28) 1098 (11) 359 (3) 606 (31) 783 (18) 268 (3)
BEAR 1252 (47) 1575 (8) 481 (2) 852 (30) 1180 (12) 431 (4)
RAAC 71 (23) 113 (5) 146 (4) 474 (0) 475 (0) 500 (0)
VAE 727 (39) 1081 (17) 462 (4) 774 (36) 1116 (13) 498 (1)
Behavior 674 (5) 1068 (4) 500 (0) 827 (12) 1211 (3) 500 (0)

5 CONCLUSION

In high-stakes applications, decision-making is usually risk-averse and no interactions with the en-
vironment are allowed. For this practical setting, we introduce O-RAAC, the first fully offline risk-
averse algorithm. O-RAAC is compatible with many common risk-averse criteria such as coherent-
risk measures or cumulative prospect theory. Due to the distributional-robust properties of risk-
sensitive criteria, it also optimizes risk-neutral criteria under natural distribution shift that occur
in the offline setting. Empirically, O-RAAC outperforms other algorithms in terms of risk-averse
performance and is competitive with risk-neutral algorithms in terms of risk-neutral performance.
Particularly, in cases where there is not much data diversity, such as in expert data sets, optimizing
risk-averse metrics is beneficial due to inherent robustness properties.

9



Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

This project has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation program grant agreement No 815943.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Carlo Acerbi and Dirk Tasche. On the coherence of expected shortfall. Journal of Banking and
Finance, 2002. ISSN 03784266. doi: 10.1016/S0378-4266(02)00283-2.
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ming: modeling and theory. SIAM, 2014.

Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what
worked: Behavioral modelling priors for offline reinforcement learning, 2020.

Rahul Singh, Qinsheng Zhang, and Yongxin Chen. Improving robustness via risk averse distribu-
tional reinforcement learning. arXiv preprint arXiv:2005.00585, 2020.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria.
In Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2012.
ISBN 9781450312851.

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the CVaR via sampling. Proceedings
of the National Conference on Artificial Intelligence, 4:2993–2999, 2015.

Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst Cases Policy Gradients. In
Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.), Proceedings of the Conference
on Robot Learning, volume 100 of Proceedings of Machine Learning Research, pp. 1078–1093.
PMLR, 2020. URL http://proceedings.mlr.press/v100/tang20a.html.

Empel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In
IEEE International Conference on Intelligent Robots and Systems, 2012. ISBN 9781467317375.
doi: 10.1109/IROS.2012.6386109.

Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and uncertainty, 5(4):297–323, 1992.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Shaun Wang. Premium calculation by transforming the layer premium density. ASTIN Bulletin: The
Journal of the IAA, 26(1):71–92, 1996.

12

http://proceedings.mlr.press/v100/tang20a.html


Published as a conference paper at ICLR 2021

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2020. URL https://openreview.net/forum?id=BJg9hTNKPH.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

13

https://openreview.net/forum?id=BJg9hTNKPH


Published as a conference paper at ICLR 2021

A EXTENDED EXPERIMENTAL RESULTS

A.1 CAR

We ran the Car environment for RAAC, D4PG and WCPG using 5 independent random seeds.
We evaluate final policies for 1000 interactions and report the averaged results with corresponding
standard deviation in Table 1. In Figure 3, we show the trajectories when following aforementioned
policies.

Reward function design We use the reward function given by

Rt(s, a) = −10 + 370Ixt=xg − 25Ivt>1 · B0.2,

where I is an indicator function and B0.2 is a Bernoulli Random Variable with probability p = 0.2.
That is, rf = 370 is a sparse reward that the agent gets at the goal and rd = −10 is a negative
reward that penalizes delays on reaching the goal. Finally, the agent receives a negative reward of
rv = −25 with probability 0.2 when it exceeds the v > 1 threshold. As the returns is a sum of
bernoulli R.V. we know that it will be a Binomial distribution. For this particular case, we expect
that if the number of steps is large enough, the Gaussianity assumption that WCPG does is good
as Binomial distributions are asymptotically Gaussian (Vershynin, 2018). However, the episode
terminates after at most thirteen risky steps and the approximation is not good.

We show in Figure 3 the trajectories for RAAC, D4PG and WCPG.
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Figure 3: Evolution of car states and input control when following learned policies for RAAC,
WCPG and D4PG. We use policies from 5 independent seeds for each algorithm. RAAC learns to
saturate the velocity below the speed limit.
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A.2 MUJOCO ENVIRONMENTS

We ran 5 independent random seeds and evaluate for 20 episodes the policy every 100 gradient steps
for HalfCheetah and 500 gradient steps for Hopper and Walker2d. We plot the learning curves of the
medium variants in Figure 4 and expert variant in Figure 5. To report the tests in Table 2, we early-
stop the policy that outputs the best CVaR and evaluate on 100 episodes with 5 different random
seeds.

Behavior policies For sake of reference, we evaluate the stochastic reward function on the state-
action pairs in the behavior data set. Unfortunately, the data sets do not distinguish between episodes.
Hence, to estimate the returns, we use the state-action distribution in the data set and split it into
chunks of 200 time steps for the Half-Cheetah and 500 time steps for the Walker2D and the Hopper.
We then compute the return of every chunk by sampling a realization from its stochastic reward
function. Finally, we bootstrap the resulting chunks into 10 datasets by sampling uniformly at
random with replacement and estimate the mean and CVaR0.1 of the returns in each batch. We
report the average of the bootstrap splits together with the standard deviation in Table 2.
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Figure 4: Experimental results across several Mujoco tasks for the Medium variant of each dataset.

A.3 ADDITIONAL EXPERIMENTAL DETAILS

A.3.1 ARCHITECTURES

We use neural networks as function approximators for all the elements in the architecture.

Critic architecture: For the critic architecture, we build on the IQN network Dabney et al. (2018)
but we extend it to the continuous action setting by adding an additional action input to the critic
network, resulting in the function:

Z(s, a; τ) = f(msaτ (
[
msa([ψs(s), ψa(a)]), ψτ (τ)

]
), (12)

where ψs : X → Rd, ψa : A → Rd, msa : Rd×d → Rn, msaτ : Rn → Rn, ψτ : R → Rn and
f : Rn → R
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Figure 5: Experimental results across several Mujoco tasks for the Expert variant of each dataset.

For the embedding ψτ we use a linear function of n cosine basis functions of the form cos(πiτ)
i = 1.., n, with n = 16 as proposed in Dabney et al. (2018). For ψs, ψa we use a multi-layer
perceptron (MLP) with a single hidden layer with d = 64 units for the Car experiment and with
d = 256 units for all MuJoCo experiments. For the merging function msa, which takes as an input
the concatenation of ψs(s) and ψa(a), we use a single hidden layer with n = 16 units. For the
merging function msaτ , we force interaction between its two inputs via a multiplicative function
msaτ (u1, u2) = u1 � u2, where u1 = msa(ψs(s), ψa(a)) and u2 = ψτ (τ) and � denotes the
element-wise product of two vectors. For f we use a MLP with a single hidden layer with 32 units
We used ReLU non-linearities for all the layers.

Actor architecture: The architecture of the actor model is

π(a|s) = b+ λξθ(s, b) (13)

where ξ : A → R‖A‖ and b is the output of the imitation learning component. For the RAAC
algorithm we remove b and set λ = 1.

For the Car experiments, we used a MLP with 2 hidden layers of size 64. For the MuJoCo exper-
iments, based on Fujimoto et al. (2019), we used a MLP embedding with 3 hidden layers of sizes
400, 300 and 300. We used ReLU non-linearities for all the hidden layers and we saturate the output
with a Tanh non-linearity.

VAE architecture: The architecture of the conditional VAEφ is also based on Fujimoto et al.
(2019). It is defined by two networks, an encoder Eφ1

(s, a) and decoder Dφ2
(s, z). Each network

has two hidden layers of size 750 and it uses ReLU non-linearities.

A.3.2 HYPERPARAMETERS

All the network parameters are updated using Adam (Kingma & Ba, 2015) with learning rates η =
0.001 for the critic and the VAE, and η = 0.0001 for the actor model, as in Fujimoto et al. (2019).
The target networks for the critic and the perturbation models are updated softly with µ = 0.005.
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For the critic loss (4) we use N = N ′ = 32 quantile samples, whereas to approximate the CVaR to
compute the actor loss (5) (7) we use 8 samples from the uniform distribution between [0, 0.1].

In Figure 6, we show an ablation on the effect of the hyper-parameter lambda. As we can see, a
correct selection of lambda is of crucial performance as it trades-off pure imitation learning with
pure reinforcement learning. As λ→ 0, the policy imitates the behavior policy has poor risk-averse
performance. As λ → 1, the policy suffers from the bootstrapping error and the performance is
also low. We find values of λ ∈ [0.05, 0.5] to be the best, although the specific λ is environment
dependent. This observation coincides with those in Fujimoto et al. (2019, Appendix D.1).

For all MuJoCo experiments, the λ parameter which modulates the action perturbation level was
experimentally set to 0.25, except for the HalfCheetah-medium experiment for which it was set to
0.5. As we can see from Figure 6, this is not the best value of λ, but rather a value that performs
well across most environments.
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Figure 6: Effect of the hyperparameter λ on the CVaR of the returns for each of the MuJoCo envi-
ronments. As λ → 0, the policy imitates the behavior policy has poor risk-averse performance. As
λ → 1, the policy suffers from the bootstrapping error and the performance is also low. The best λ
is environment dependent.
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