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ABSTRACT

Adam has been widely successful in training deep neural networks (DNNs), yet
the factors contributing to both its practical effectiveness and ineffectiveness re-
main largely underexplored. In this study, we reveal that the effectiveness of Adam
in training complicated DNNs stems primarily from its similarity to SignSGD in
managing significant gradient variations, while we also theoretically and empiri-
cally uncover that Adam is susceptible to loss spikes due to potential excessively
large updates. Building on these insights, we propose a novel optimizer, SignSoft-
SGD (S3), which incorporates a generalized sign-like formulation with a flexible
p-th order (p ≥ 1) momentum in the denominator of the update, replacing the
fixed 2-order momentum. We also integrate the memory-efficient Nesterov’s ac-
celerated gradient technique into S3, enhancing convergence speed without addi-
tional memory overhead. To minimize the risk of loss spikes, we utilize the same
coefficient for the momentums in both the numerator and the denominator of the
update, which also practically streamlines the tuning overhead. We conduct a the-
oretical analysis of S3 on a general nonconvex stochastic problem, demonstrating
that S3 achieves the optimal convergence rate under weak assumptions. Exten-
sive experimentation across various vision and language tasks demonstrates that
S3 not only achieves rapid convergence and improved performance but also rarely
encounters loss spikes even at a 10× larger learning rate. Specifically, S3 delivers
performance comparable to or better than AdamW with 2× the training steps.

1 INTRODUCTION

Optimizers play a pivotal role in training DNNs.Currently, Adam (Kingma & Ba (2015)) stands
out as the dominant optimizer for training Transformers (Vaswani et al. (2017)), especially for the
recent phenomenal large language models (LLMs) (Brown et al. (2020); Chowdhery et al. (2023);
Touvron et al. (2023)), and large vision models (Radford et al. (2021); Kirillov et al. (2023)). Even
in the realm of training the modern convolutional neural networks (CNNs), such as ConvNeXt (Liu
et al. (2022); Woo et al. (2023)), Adam also has become the de facto optimizer, although stochastic
gradient descent (SGD) was traditionally deemed more suitable for training CNNs (Krizhevsky et al.
(2017); He et al. (2016)).

While the practical success of Adam is indisputable, the underlying reasons for its effectiveness
remain poorly understood. The original paper on Adam attributes its success to the effective
coordinate-wise adaptivity (Kingma & Ba (2015)). However, recent work (Chen et al. (2023b))
challenges this perspective by proposing an optimizer that achieves comparable, and sometimes
superior, performance to Adam in training various architectures without leveraging adaptivity.

We first revisit Adam to discern the reasons behind its practical effectiveness. Each coordinate of the
update of Adam (i.e., mt√

vt
) exhibits a sign-like characteristic. Empirical evidence from (Kunstner

et al. (2023)) demonstrates that the simple sign descent can substantially narrow the performance
gap between SGD and Adam in training complicated DNNs, such as Transformers. This suggests
that the sign-like property of Adam is a key factor in its effectiveness. However, (Kunstner et al.
(2023)) uncovered this phenomenon but did not explore why sign descent is effective in training
Transformers. This paper explains that wide difference in inter-layer and intra-layer gradients during
training is the behind reason, and the effectiveness of Adam is mainly attributed to its conservative
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Figure 1: The (a) trajectories, (b) loss convergence curves, and (c) mean update curves of SGD, SignSGD,
Adam and S3. The loss function is defined as f(x(1), x(2)) = 0.5(x(1) − 1/x(2))2 + 0.5(x(1) − 20x(2))2.
The initial point is set as [x

(1)
0 , x

(2)
0 ] = [1.0, 1.0]. Gaussian noise is added to the gradient at each iteration

to simulate random sampling, represented as gt = [∇f
x
(1)
t
,∇f

x
(2)
t

] + N (0, 0.1). Due to the significant gap

between∇f
x
(1)
t

and∇f
x
(2)
t

, we set a small learning rate for SGD to prevent divergence. However, this results

in slow convergence. The update of SignSGD, Sign(gt), causes the loss to oscillate and prevents it from
converging to the minimum. The sign-like property of Adam makes it perform much better than SGD. The
update of Adam, mt√

vt
, is generally smaller, aiding in achieving a lower loss, compared to SignSGD. However,

it has a non-trivial probability of encountering loss spikes. The update of S3 is constrained to [−1, 1] and
gradually diminishes as the loss approaches the minimum. This property enables S3 to achieve an extremely
small loss and seldom encounter loss spikes. The introduction of the NAG technique in S3 is helpful for
accelerating convergence. The use of a large p-th order momentum allows S3 to employ a large learning rate
without encountering training instability.

sign-like descent to address the problem of the great gradient discrepancy, when training complicated
DNNs. However, we demonstrate that Adam is also the main contributing factor to the risk of
training instability and loss spikes. This is because each coordinate of the update of Adam potentially
reach excessively values with non-trivial probability.

Drawing insights from the analyses of Adam, we propose a novel optimizer, called SignSoftSGD
(S3). First, S3 features a more generalized sign-like formulation with a flexible p-th order (p ≥ 1)
momentum in the denominator of the update, rather than being limited to a fixed 2-order momentum
like Adam. This modification enables S3 to utilize a larger p-order momentum, allowing for a larger
learning rate for faster convergence and improved performance without the risk of training instabil-
ity, as observed with Adam. Second, S3 employs the same exponential moving average coefficient
β for both the numerator and the denominator momentums in the update, strictly constraining the
update within the range of [−1, 1]1. Consequently, S3 seldom encounters loss spikes, thanks to
its strategy of minimizing the maximum update. Additionally, it offers practical advantages by e-
liminating the need for bias correction and gradient clipping, while reducing tuning efforts due to
one less hyperparameter. Third, we introduce the technique of an equivalent Nesterov’s accelerated
gradient (NAG) to S3, further enhancing training speed without incurring additional memory costs.
We provide an illustrative example visualizing the convergence behaviors of SGD, SignSGD, Adam,
and S3 in Figure 1. Furthermore, we offer theoretical convergence rate analysis for S3 on a general
nonconvex stochastic problem, aligning with the theoretical lower bound of the optimal convergence
rate O( 1

T 1/4 ), where T represents the number of iterations under weak assumptions.

Our primary contributions are summarized in the following:

• We theoretically and empirically demonstrate that Adam is the underlying factor
causing loss spikes in training large models (i.e., LLM) due to its potential to lead some
parameter updates to be excessively large. (Section 2)

• We introduce a novel optimizer, named S3, which offers four distinct advantages over
Adam: 1) elimination of bias correction as well as gradient clipping, reducing one hyper-
parameter, 2) a generalized formulation enabling the utilization of larger learning rates for
improved performance, 3) integration of an equivalent NAG technique to accelerate train-
ing convergence without additional memory overhead, and 4) minimized risk of training
instability and loss spikes. (Section 3)

1This is the reason why we named the new optimizer SoftSignSGD.
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• We conduct a theoretical analysis for S3 on a general nonconvex stochastic problem,
achieving the optimal convergence rate under a weak non-uniform smoothness as-
sumption. (Section 4)

• We conduct extensive experiments to evaluate S3 against Adam and other related optimiz-
ers. The experimental results demonstrate the faster training speed and superior inference
performance of S3. Specifically, Specifically, S3 achieves improvements comparable to
or exceeding those of AdamW with twice the training steps, while rarely experiencing
loss spikes even at significantly higher learning rates. (Section 5)

2 RETHINKING THE EFFECTIVENESS AND INEFFECTIVENESS OF ADAM

In a deep learning task, the optimizer aims to minimize the empirical risk loss of a model on a
dataset, i.e.,

min
x∈Rd

F (x) = Eζ∼D[f(x; ζ)] =
1

n

n∑
i=1

f(x;ωi), (1)

where x is the d-dimensional model parameter, and ζ is independently and identically sampled
from the dataset {ωi : ωi ∈ D, 1 ≤ i ≤ n}.
Nowadays, Adam has emerged as the dominant optimizer for training DNNs. It significantly out-
performs SGD in training the increasingly popular Transformers, demonstrating remarkable efficacy.
Even for CNN-based models like ConvNeXT, Adam is preferred for achieving superior performance,
despite the historical consideration that SGD is more suitable for training CNNs. While the prac-
tical success of Adam is indisputable, the factors contributing to its practical effectiveness remain
largely underexplored. There is a pressing need to delve into the effectivness of Adam to facilitate
significant advancements in DNN training.

Recalling the updating rule of Adam, we have
m̃t = β1m̃t−1 + (1− β1)gt,

mt =
m̃t

1− βt1
,

ṽt = β2ṽt−1 + (1− β2)g2
t ,

vt =
ṽt

1− βt2
,

xt+1 = xt − γt
mt√
vt
,

(2)

where xt denotes the model parameter, gt = ∇f(xt; ζt) is the stochastic gradient, γt is the learning
rate, and β1 and β2 represents the exponential moving average coefficients.

In essence, |mt| and
√
vt are of the same order of magnitude. Specifically, if gt ideally stays stable

over a period, Adam in Eq. (2) reduces to SignSGD, i.e.. xt+1 = xt − γt mt√
vt

= xt − γtSign(gt).
Therefore, Adam can be viewed as a sign-like optimizer.

The primary reason for Adam’s practical effectiveness over SGD in training complex DNNs remains
fragmented across prior studies and lacks consolidation. Kunstner et al. (2023) empirically shows
that sign descent with momentum yields comparable performance to Adam when training Trans-
formers, albeit lacking comprehensive analytical justification. More recently, Chen et al. (2023b)
employs an AutoML method to discover an effective optimizer, Lion, resembling SignSGD with
momentum, and showcases superior performance to Adam across diverse DNN models. Indeed,
the effectiveness of both Adam and Lion primarily stems from their shared sign-like property. For
deep networks, the gradients of the initial and final layers can differ significantly, as theoretically
verified in (Yang et al. (2019); Liu et al. (2020); Xiong et al. (2020); Kim et al. (2021); Qi et al.
(2023)) through the mean-field theory and from the perspective of Lipschitz continuity. Further-
more, even within the same layer of a Transformer, gradients can vary greatly due to the presence
of the attention component (Noci et al. (2022)). An illustrative example can be found in Section B.4
of the appendix. This substantial gradient discrepancy poses challenges for SGD, which, by directly
employing gradients as updates, necessitates a relatively small learning rate to prevent divergence,
resulting in noticeable training slowdown. Moreover, another drawback of using SGD is that pa-
rameters with large gradients undergo substantial changes, while those with small gradients tend
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to remain close to their initial values. This discrepancy weakens the overall representation ability
of networks, thereby degrading final performance. In contrast, Adam’s updates remain close to ±1
despite significant gradient gaps, thanks to its inherent sign-like property. This characteristic renders
Adam a conservative yet effective choice for training complex DNNs. In summary, Adam’s effi-
cacy in training complex DNNs stems from its conservative sign-like descent, which effectively
addresses significant gradient discrepancies.

While Adam effectively trains complex DNNs, it also escalates the risk of training instability and
loss spikes with non-trivial probability. This can be inferred from Theorem 1.
Theorem 1. The sequences {mt} and {vt} are generated by Adam in Eq. (2). If the moving
average coefficients satisfy β2

1 < β2, then it holds that

|m(j
t |√
v
(j)
t

≤
(1− β1)

√
1− βt2

√
1− (

β2
1

β2
)t

(1− βt1)
√
1− β2

√
1− β2

1

β2

' 1− β1
√
1− β2

√
1− β2

1

β2

, (3)

where |m(j
t |√

v
(j)
t

reach to the largest value if the signs of {g(j)
t , g

(j)
t−1, ...g

(j)
t−k...} are the same and

|g(j)
t | =

β2|g(j)
t−1|
β1

=
β2
2 |g

(j)
t−2|
β2
1

= ... =
βk2 |g

(j)
t−k|
βk1

...2.

Figure 2: Visualization of the mean update (i.e., Avg(|m(j)
t |/

√
v
(j)
t )), the maximum update (i.e.,

maxj∈[d](|m(j)
t |/

√
v
(j)
t )), and the training loss over 50,000 iterations during GPT-2 (345M) training on Open-

WebText using AdamW (β1 = 0.9, β2 = 0.999) with a cosine learning rate schedule. The figure illustrates
that all loss spikes are preceded by abrupt increases in the mean update, following a sharp rise in the maximum
update. This suggests that a sudden increase in the maximum update for any coordinate can lead to a significant
rise in the mean update, which then triggers loss spikes. Moreover, these spikes primarily occur during the
early training phase when the learning rate is relatively high. In later stages, as the learning rate decreases, loss
spikes become infrequent, even with large maximum updates, like around Iteration 40,000.

Theorem 1 indicates that when Adam is employed, there exists a probability that the update of
each element |m(j)

t |/
√

v
(j)
t can reach an excessively large value. For instance, with typical settings

of β1 = 0.9 and β2 = 0.999, the update |m(j)
t |/

√
v
(j)
t could approach its theoretical maximum of

1− β1/
√
1− β2

√
1− β21

β2
' 7.27, while the normal absolute value of the update is less than 1. While the

probability of any specific parameter’s update reaching this maximal value is low, the probability that
at least one parameter’s update reaches this value is high due to the large number of parameters in
large models (e.g., LLM). When a parameter’s update is excessively large and the learning rate is also
high, it is likely to deviate substantially from its intended trajectory. Such deviations may propagate
to neighboring parameters through interconnections, triggering a chain reaction that culminates in
loss spikes. Supporting examples are clearly illustrated in Figure 1 and Figure 2. This mechanism
explains the frequent occurrence of loss spikes during LLM training, particularly in the initial stages
when learning rates are higher. Specifically, the probability of loss spikes increases with the size of
the LLM. In conclusion, vanilla Adam poses a significant risk of loss spikes during large-scale

2The update m
(j)
t
/
√

v
(j)
t with respect to {g(j)

k }
t
k=1 is a continuous function. Thus, when most of the signs

of {g(j)
k }

t
k=1 are consistent and the secondary condition is nearly satisfied, m

(j)
t
/
√

v
(j)
t will be close to the

theoretical maximum.
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model training. Mitigating this problem requires strategies to constrain the maximum update
magnitude for each parameter coordinate.

Remark 1 [Loss spikes during LLM Training]. Encountering loss spikes is a common phe-
nomenon during LLM training (Zeng et al. (2022); Chowdhery et al. (2023); Touvron et al. (2023);
Yang et al. (2023)). However, the underlying reasons for this problem were not well explored prior to
this. Practitioners had to resort to ad hoc engineering strategies such as skipping some data batches
before the spike occurs and restarting training from a nearby checkpoint (Chowdhery et al. (2023);
Molybog et al. (2023)), resulting in resource wastage due to frequent rollbacks and checkpointing
savings. Some previous works investigated the phenomenon of train instability (Liu et al. (2019))
and loss spikes (Zhu et al. (2023); Zhang & Xu (2023)). (Liu et al. (2019)) demonstrated that the
variance of the update 1/

√
v
(j)
t is significantly larger, often causing the update to become dispropor-

tionately large, but the analysis only works in the early stage. The analyses in (Zhu et al. (2023);
Zhang & Xu (2023)) were restricted to either linear models or shallow networks with mean squared
error (MSE) loss, using (S)GD as the optimizer. Consequently, it is questionable whether these find-
ings can be directly applied to the context of LLM training. More recently, (Molybog et al. (2023))
suggested that time-domain correlation between gradient estimates of earlier layers contributes to
loss spikes during LLM training. The suggested mitigation strategies include lowering the ε value in
Adam and reducing the batch size. However, the study itself that these methods are not silver bullets
for a fundamental solution. To the best of our knowledge, the analyses presented above provide
the first formal explanation for the frequent occurrence of loss spikes during LLM training.

3 S3 ALGORITHM

Analyzing Adam yields insights guiding the construction of a more effective optimizer for training
DNNs: 1) The update of the optimizer need only resemble the sign of the gradient, without strictly
adhering to the formulation involving the ratio of first-order gradient momentum to second-order
gradient momentum. 2) Minimizing the largest value of the update in the optimizer is crucial to
mitigate potential loss spikes.

Recently, several studies (Dozat (2016); Xie et al. (2024); Zhou et al. (2023)) introduced the NAG
technique to DNN optimizers, consistently demonstrating faster training convergence and improved
inference performance across a broad spectrum of DNNs compared to the standard Adam. Therefore,
integrating the NAG technique into optimizers is highly worthwhile.

Given the observations above, we propose a new optimizer, referred to as SoftSignSGD (S3). The
detailed implementation of S3 is illustrated in Algorithm 1.

Key characteristics of S3 are summarized below:

First, S3 features a more general sign-like formulation with a flexible p-order momentum, ex-
tending beyond the fixed 2-order momentum suggested by the original motivation of Adam.
According to Theorem 2, a large p-order momentum enables the use of a larger learning rate, pro-
moting faster convergence and better performance (Kong & Tao (2020)). Moreover, during training,
abrupt changes occasionally occur in some coordinates of the gradients, potentially leading to train-
ing instability and even divergence without a proper remedy. In such cases, the gradients become
more heterogeneous over time. As indicated in Theorem 2, the update |nt|bt(p)

of S3 becomes smaller
with a large p-order momentum, providing a counteractive effect to stabilize the training process.
Figure 1 illustrates this behavior. Additionally, the computational cost of optimization becomes non-
trivial when training LLMs. Setting p = 1 for S3 involves only a computationally light element-wise
absolute operation, reducing overall computational overhead.

Second, S3 shares the same exponential moving average coefficient β for both mt and rt,
offering the advantages of minimizing the risk of loss spikes and reducing tuning work. In
theory, as demonstrated in Theorem 2, the same β guarantees that the largest value of each coordinate
of the update |nt|bt(p)

is minimized to 1. As discussed in Section 2, this design helps mitigate the loss-
spike problem. In practice, this design reduces tuning effort by removing one hyperparameter and
lowers computational costs by eliminating the bias correction required by Adam.

Third, S3 introduces the NAG technique to further accelerate training without incurring extra
memory costs. While previous works such as NAdam and Adan have also utilized the NAG tech-
nique in their adaptive optimizers, there are significant differences. In S3, NAG is applied to both

5
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Algorithm 1. SoftSignSGD (S3)
1: Input: the momentum m0 = 0 , s0 = 0, the exponential moving average coefficient
β within [0, 1], the power factor p within [1,+∞), and the learning rate sequence {γt}.
2: for t = 1, ..., T do
3: Randomly sample data and compute the gradient: gt ← ∇F (xt; ζt)

4: Update the momentum mt: mt ← βmt−1 + (1− β)gt
5: Update the momentum st(p): st(p)← βst−1 + (1− β)|gt|p
6: Compute the Nesterov momentum nt: nt ← βmt + (1− β)gt
7: Compute the Nesterov momentum bt(p): bt(p)← (βst(p) + (1− β)|gt|p)1/p
8: Update the model parameter: xt+1 ← xt − γt nt

bt(p)

9: end for

the numerator and denominator of the update. The Nesterov momentum estimators in S3 follow
the NAG (II) formulation, shown to be equivalent to vanilla NAG (I) in Theorem 7. The key ad-
vantage of this formulation is that S3 avoids additional memory usage. Conversely, NAdam (Dozat
(2016)) only incorporates the Nesterov momentum in the numerator of the update and relies on
complex bias-correction operations to stabilize training. Adan (Xie et al. (2024)) also employs Nes-
terov momentum estimators in both the numerator and the denominator of the update. However, its
formulations, akin to NAG (III), demand more memory for storing the previous gradient gt−1 and
the new momentum rk compared to Adam. Consequently, Adan may not be ideal for training LLMs
due to its memory demands. Furthermore, it introduces a new momentum coefficient, increasing the
need for tuning.

Theorem 2. The sequences {nt} and bt(p) are generated S3 in Algorithm 1. If the moving average
coefficients for mt,nt and st, bt of arβ1 and β2 which satisfy β1 < β

1/p
2 and p ≥ 1, it holds that

(1). The upper bound of each element of the update n
(j)
t

b
(j)
t

is

|n(j)
t |

b
(j)
t (p)

≤ (1− β1)

(1− β2)1/p
(
1− βq1

β
q/p
2

)1/q
, (4)

where 1
p +

1
q = 1.

(2). When β1 = β2, the upper bound of each element of the update n
(j)
t

b
(j)
t

reaches to the smallest 1,

i.e., |n
(j)
t |

b
(j)
t (p)

≤ 1.

(3). Let 1 ≤ p1 ≤ p2, and then bt(p1) ≤ bt(p2).

Theorem 3. The three formulations of NAG are listed in the following. Let xt = x̃t−γβmt−1, the
three formulations are equivalent, i.e.,

NAG (I) :


gt = ∇f(x̃t − γβmt−1; ζt)

mt = βmt−1 + (1− β)gt
x̃t+1 = x̃t − γmt

, (5)

NAG (II) :


gt = ∇f(xt; ζt)
mt = βmt−1 + (1− β)gt
xt+1 = xt − γ(βmt + (1− β)gt)

, (6)

NAG (III) :


gt = ∇f(xt; ζt)
mt = βmt−1 + (1− β)gt
rt = βrt−1 + (1− β)(gt − gt−1)

xt+1 = xt − γ(mt + βrt)

. (7)

Moreover, if x̃t+1 → x̃t as mt → 0, xt will converge to x̃t.
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4 THEORETICAL CONVERGENCE ANALYSIS

To present the theoretical convergence guarantee for S3 (Algorithm 1) to optimize the nonconvex
problem in Eq. (1), we first introduce some necessary assumptions.

Assumption 1. [Bounded infimum] There exists a constant F ∗, the objective function follows
F (x) ≥ F ∗ for any x ∈ Rd.

Assumption 2. [Generalized Smoothness] There exist constants L0, L1, R ≥ 0, for any x,y ∈ Rd
with ‖x− y‖2 ≤ R , the objective function follows,

‖∇F (y)−∇F (x)‖2 ≤ (L0 + L1‖∇F (x)‖2)‖x− y‖2. (8)

Assumption 3. [Unbias noisy gradient and bounded variance] There exists a constant σ. For xt ∈
Rd at any time, the noisy gradient of the objective function obeys follows

E[gt] = E[∇f(xt; ζt)] = ∇F (xt), E[‖gt −∇F (xt)‖22] ≤ σ2. (9)

Under the assumptions above, we then present the theoretical convergence for S3 in Theorem 4.

Theorem 4. {xt}Tt=1 is generated by Algorithm 1 under Assumption 1-4. Let the hyperparameters

be set as β = 1− 1√
T

and γ = 1
L0T 3/4 . If ut =

|n(j)
t |

b
(j)
t

≥ 1
Umax

, then

1

T

T∑
t=1

E[‖∇F (xt)‖1] ≤
2L0Umax(F (x1)− F (x∗))

T 1/4
+

4βUmax

√
dE [‖∇F (x1)‖2]
T 1/2

+
4Umax

√
dσ

T 1/4
+

4β2Umaxd

T 1/4
+
Umaxd

T 3/4
.

(10)

Remark 2 [Adopting Weaker Assumption]. The theoretical convergence analysis for S3 in The-
orem 4 requires only a general non-uniform smoothness condition (Assumption 2). In contrast,
previous works that developed convergence analyses for Adam required stronger assumptions or
achieved weaker conclusions. (Chen et al. (2018); Défossez et al. (2020)) proved convergence for
non-convex objectives under the assumption that gradients are bounded. (De et al. (2018)) required
that the signs of gradients remain the same along the trajectory, despite considering Nesterov accel-
eration. (Zhang et al. (2022)) assumed uniform L-smoothness but only proved convergence to some
neighborhood of stationary points with a constant radius. Very recently, (Li et al. (2023); Hong
& Lin (2024)) offered convergence bounds for Adam under the general non-uniform smoothness
assumption, but the convergence is in probability.

Remark 3 [Achieving Optimal Convergence Rate]. As illustrated in Theorem 4, the convergence
order of S3 is O( 1

T 1/4 ), consistent with the established lower bound for optimal convergence in
non-convex stochastic optimization (Arjevani et al. (2023)).

5 EXPERIMENT

We compare S3 with representative optimizers, including SGDM(Robbins & Monro (1951)),
AdamW (Loshchilov & Hutter (2017)), NAdam(Dozat (2016)), Adan (Xie et al. (2024)), and Lion
(Chen et al. (2023b)), for both vision and language tasks. For vision tasks, we evaluate the classi-
fication accuracy by training the CNN-type ResNet-50 (He et al. (2016)) and the Transformer-type
ViT-Base (Dosovitskiy et al. (2020)) on ImageNet. In language tasks, we assess the pre-training
performance by training GPT-2 (345M) and GPT-2 (7B) (Radford et al. (2019)) on OpenWebText
and the refined CommonCrawl. Results on downstream tasks for the pre-trained GPT-2 (345M) and
GPT-2 (7B) are provided in the Appendix.

5.1 EXPERIMENTS FOR VISION TASKS

Compared with the baseline AdamW, Figure 3(a) and Figure 3 (c) illustrate that S3 exhibits obvious
faster convergence and achieves a significantly smaller final training loss. As shown in Figure 3(b),
Figure 3(d), and Table 1, S3 achieves test accuracies that are 1.47% and 1.36% higher for training
ResNet-50 and ViT-B, respectively. This represents a significant improvement in training speed and
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(c) ViT-B/16, Train Loss
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Figure 3: Comparison of train loss and test accuracy on ImageNet for training ReNet-50 and ViT-B/16 with
AdamW, SGDM, NAadm, Adan, Lion and S3.

inferencing accuracy. Even when we increase the training epochs by 2× for AdamW, S3 remains
comparable and even slightly better. Moreover, AdamW experiences loss spikes during the training
of ViT-B, while S3 maintains training stability even with a large learning rate.

In addition, other competitive optimizers, including SGDM, Adan, and Lion, are also evaluated and
presented in Figure 3 and Table 1. While SGDM performs comparably to AdamW on the CNN-
type ResNet-50, it exhibits poor performance on the Transformer-type ViT-B, consistent with the
analyses in Section 2. Due to the introduction of the NAG technique, Adan and Lion outperform
AdamW in terms of training speed and test accuracy, yet they still fall short compared to S3. It is
noteworthy that Adan and Lion also encounter issues of instability during training.

Table 1: Test accuracy (%) on ImageNet for training ResNet-50 and ViT-B/16 with AdamW, SGDM, Adan,
Lion and S3.

Network 150 epochs 300 epochs
AdamW SGDM NAdam Adan Lion S3 AdamW

ResNet-50 77.29 77.50 77.36 78.23 77.14 78.76 78.46
ViT-B/16 79.52 60.99 80.31 80.11 80.32 80.93 80.13

5.2 EXPERIMENTS FOR LANGUAGE TASKS

As illustrated in Figure 4 and Table 2, S3 consistently achieves faster train convergence and lower
validation perplexity, compared to AdamW. The superiority becomes more obvious as the model size
increases. Importantly, the improvement on the 345M model brought by S3 is comparable to that
achieved by AdamW with twice the number of steps. This can translate into a significant reduction in
the number of steps and total computation needed to reach the same loss level, providing substantial
time and cost savings for LLM pre-training. Moreover, while AdamW frequently experiences loss
spikes, S3 rarely encounters this issue, even with a learning rate that is 10× larger. Additionally, a
large p-order momentum for S3 allows a large learning rate, leading to further training acceleration
and performance improvement.

Moreover, Lion and Adan are also investigated on the GPT-2 (345M) model. Although Lion con-
verges faster than AdamW at the beginning, it does not showcase superiority in the final validation
perplexity. Adan slightly outperforms AdamW in train speed and validation performance, but as ana-
lyzed in Section 3, Adan requires more memory and hyperparameters to tune, which is not appealing
for pre-training LLMs. Additionally, Adan is also prone to experiencing loss spikes.
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Figure 4: Comparison of train loss and validation loss for pre-training GPT-2 (345M) and GPT-2 (7B) with
AdamW, NAdam,Adan, Lion and S3.

Table 2: Validation perplexity (the lower, the better) for training GPT-2 (345M) and GPT-2 (7B).

Network Dataset
50k steps 100k steps

AdamW NAdam Adan Lion S3 AdamW
(lr=3e-4) (lr=3e-4) (lr=1e-3) (lr=6e-5) (p=3,lr=3e-3) (lr=3e-4)

GPT-2 (345M) OpenWebText 4.78 4.71 4.69 4.76 4.59 4.57
GPT-2 (7B) CommonCrawl 21.13 - - - 19.69 -

5.3 ABLATION STUDY

We implement ablation experiments for training ViT-B/16 to clarify the contributions of each mod-
ification of S3 over Adam. Figure 5 and Table 3 showcase that employing a large learning rate and
sharing the same β alone have little or even a negative impact on performance (e.g., Exp. ¬ vs. Exp.
­, Exp. ¬ vs. Exp. ®), while their combination results in a notable improvement (e.g., Exp. ­,
Exp. ® vs. Exp. ±, Exp. ³ vs. Exp. ´). In contrast, harnessing a larger p can have an individually
beneficial effect on performance (e.g., Exp. ¬ vs. Exp. °, Exp. ­ vs. Exp. ³), and the performance
gain from the benefits of NAG is more pronounced than other modification (e.g., Exp. ¬ vs. Exp.
¯, Exp. ± vs. Exp. ², Exp. ´ vs. Exp. µ).

Table 3: Ablation study on test accuracies (%) of S3 for training ViT-B/16.
Exp. large lr same β NAG flexible p Test Accuracy

À - - - - 79.52 (AdamW,lr=3e-3)
Á " - - - 79.45 (AdamW, lr=6e-3)
Â - " - - 79.48 (S3, lr=3e-3, same β, w/o NAG, p = 2)
Ã - - " - 80.17 (S3, lr=3e-3, diff. β, w/ NAG, p = 2)
Ä - - - " 79.74 (S3, lr=3e-3, diff. β, w/o NAG, p = 3)
Å " " - - 80.25 (S3, lr=6e-3, same β, w/o NAG, p = 2)
Æ " " " - 80.82 (S3, lr=6e-3, same β, w/ NAG, p = 2)
Ç " - - " 79.98 (S3, lr=6e-3, diff. β, w/o NAG, p = 3)
È " " - " 80.31 (S3, lr=6e-3, same β, w/o NAG, p = 3)
É " " " " 80.93 (S3, lr=6e-3, same β, w/ NAG, p = 3)

5.4 SENSITIVITY ANALYSIS FOR HYPERPARAMETERS

We perform a grid search to verify the sensitivity to the momentum order p and the momentum
coefficient β of S3 on ViT-B/16 with 150 training epoches. As shown in Figure 6, all combinations
achieve an accuracy of 80.20%+, surpassing the 80.13% accuracy achieved by Adam with 300
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Figure 5: Ablation study on train loss of S3 for
training ViT-B/16 on ImageNet.
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Figure 6: Impact of the momentum order (p) and
the momentum coefficient (β) on the Accuracy of S3
training ViT-B/16 on ImageNet.

training epochs. The performance of S3 is not sensitive when p > 1, and p = 1 achieves a slightly
lower accuracy. However, as pointed out in Section 3, the computation cost becomes lower when
p = 1. Another interesting phenomenon is that setting β to 0.95 obtains the highest accuracies
across different p, and p = 3 performs well in most cases.

5.5 VERIFYING THE REASON FOR LOSS SPIKES FROM ADAM

In this subsection, we further experimentally verify that the claim that the potential overlarge update
of Adam with relative large learning rate is underlying reason for loss spikes, as discussed in Section
2. Figure 7 visually illustrates that convergence of vanilla Adam is attained at the baseline learning
rate of 3 × 10−4 despite sporadic spikes, and more frequent spikes and higher loss are observed
at a learning rate of 1 × 10−3, with the same iteration count. Moreover, employing a 10× higher
learning rate of 3× 10−3 results in premature divergence with pronounced spikes. Noted that all of
the phenomenons are aligned with analysis in Section 2. As showcased in Figure 7, naively clipping
the Adam update to [-1,1] the range reduces the frequency of loss spikes, but they still occur. This
indicates that fine-tuning the clipped value is necessary to balance performance, which complicates
the use of clipped updates with tuning a more hyperparameter. In contrast, as we proved in in
Theorem 2 in Section 3, when we minimize the maximal update of Adam via β1 = β2, loss spikes
are completely disappears, which are further verify the correctness of our analyses in Section 2 and
Section 3.
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Figure 7: The Loss spikes phenomenons during Training GPT-2 (345M) on OpenWebText using AdamW.

6 CONCLUSION AND DISCUSSION

In this paper, we thoroughly examine the strengths and weaknesses of the widely-used optimizer
Adam. Building on our analysis, we propose S3, an innovative optimizer that integrates three piv-
otal improvements over Adam. Comprehensive experiments spanning vision and language tasks
showcase S3’s accelerated training efficiency and superior inference capabilities. Furthermore, we
challenge the conventional belief that Adam’s effectiveness stems from simplifying second-order
descent, showing instead that its success relies on sign-like descent. This insight paves the way for
developing more advanced optimizers. Additionally, We also provide the first theoretical proof of
adaptive optimizer convergence from the perspective of sign descent. Most notably, we identify the
root cause of loss spikes during LLM training and propose a solution, offering significant benefits
for the community in the LLM era.
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Appendix

A RELATED WORK

Optimizers in Deep Learning. Nowadays, Adam has become the dominant optimizer in deep
learning. The adaptivity strategy in Adam traces its roots back to earlier optimizers such as Ada-
grad (Duchi et al. (2011)), RMSprop (Hinton et al. (2012)), and Adadelta (Zeiler (2012)). Beyond
Adam, a wide range of variants are proposed (Dozat (2016); Reddi et al. (2018); Loshchilov & Hut-
ter (2017); Zhuang et al. (2020); Shazeer & Stern (2018)). SignSGD, the first sign descent method,
was proposed to reduce communication costs in distributed learning (Seide et al. (2014)). Subse-
quently, (Bernstein et al. (2018); Sun et al. (2023)) provided theoretical convergence for SignSGD
and introduced an enhanced version. Chen et al. (2023b) applied an auto ML method to discover
the sign descent optimizer Lion. This optimizer demonstrated improved performance with a faster
convergence rate on various tasks compared to Adam. Recently, (Liu et al. (2023)) introduced an
effective second-order optimizer for LLM pre-training.

Nesterov’s Accelerated Gradient (NAG). Theoretical demonstrations by (Nesterov (1983; 2013))
indicate that NAG can achieve faster convergence on convex optimization problems compared to
vanilla gradient descent, leveraging gradient information at an extrapolation point to anticipate fu-
ture trends. NAdam by (Dozat (2016)) was the first to incorporate NAG into adaptive optimizers,
modifying the first-order momentum of Adam with NAG. Adan by Xie et al. (2024) integrated a e-
quivalence of NAG into both the first and second momentum of Adam, and Win (Zhou et al. (2023))
applied Nesterov acceleration to the update rather than the first and second momentum. Adan and
Win outperformed Adam on various tasks, but they require tuning additional hyperparameters and
consume more memory, compared to vanilla Adam. Lion (Chen et al. (2023b)), despite being a
sign descent method, exhibits a momentum construction similar to NAG (Chen et al. (2023a)). This
resemblance could be a contributing factor to its superior speed and performance over Adam.

Training instability and Loss Spikes in LLM Training. Training instability and loss spikes are
frequently encountered (Zeng et al. (2022); Chowdhery et al. (2023); Touvron et al. (2023); Yang
et al. (2023)) during LLM training, posing challenges to further scaling AI systems. To address
this issue, practitioners have employed an ad hoc engineering approach, skipping data batches be-
fore spikes and restarting training from a nearby checkpoint (Chowdhery et al. (2023)). However,
this method requires manual monitoring and intervention, leading to resource wastage. Previous
attempts to mitigate instability include embedding norm with BF16, but this comes at a significant
performance tax (Scao et al. (2022)). Some researchers found that gradient shrink on the embedding
layer reduces loss spikes (Zeng et al. (2022)). Others suggest normalizing the output embedding to
lower spike risks (Yang et al. (2023)). (Molybog et al. (2023)) argues that the time-domain corre-
lation between gradient estimates of earlier layers contributes to training loss instability. Mitigation
strategies proposed include tuning down the ε value of Adam and reducing batch size. However, it
is acknowledged that these methods are not silver bullets for a fundamental solution.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 TRAINING SETTING

We use the PyTorch vision reference codes 3 to implement vision tasks. For data augmentation, we
adhere to the recommended settings in the codes, incorporating RepeatedAugment, AutoAugment
Policy (magnitude=9), and Mixup(0.2)/CutMix(1.0) with a probability of 0.5. Additionally, label-
smoothing with a value of 0.11 is applied. The batch size is set to 1024 for ResNet-50 and 4096
for ViT-B/16. Regarding the learning rate scheme, we linearly increase it to its peak in the initial 30
epochs and then apply a cosine decay, decreasing it to 0 in the subsequent epochs. Other customized
hyperparameters for SGD and AdamW are well-established in the codes, and the settings for Adan
and lion are followed the recommendations to train ResNet-50 and ViT-B/16 in their respective
official papers (Xie et al. (2024); Chen et al. (2023b)). Since NAdam is similar to AdamW, so all its
hyperparameters are also the same as AdamW. Specifically, we list the hyperparameters of all the
optimizers as follows:

3https://github.com/pytorch/vision/tree/main/references/classification
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Figure 8: Search the optimal peak learning rates for AdamW, Adan, Lion and S3 pre-training GPT-2 (345M)
on OpenWebText.

• For SGD, we use lrmax = 0.3,mom = 0.9 , as is default value in the official codes.
• For AdamW, we utilize lrmax = 0.003, β1 = 0.9, β2 = 0.999 to train ResNet-50 and ViT-

B/16, as is default value in the official codes and also widely used in other papers (Zhuang
et al. (2020); Xie et al. (2024); Chen et al. (2023b)).

• For Adan, we employe lrmax = 0.015, β1 = 0.98, β2 = 0.92, β3 = 0.99, per official
recommendations (Xie et al. (2024)).

• For Lion, we adopt lrmax = 0.001, β1 = 0.9, β2 = 0.99, per official recommendations
(iteLion2023).

• For S3, we set lrmax = 0.006, β = 0.95, p = 3. We conducted a coarse hyperparameters
search on ViT-B/16 (Subsection 5.4) and extended the hypermeters to ResNet-50 without
further tuning.

We utilize Megatron-LM 4 to implement the language tasks. We use Megatron-LM to implement
language tasks. Following the standard GPT-2 protocol, we construct a 345M Transformer decode-
only model with the number of layers set to 12, sequence length to 1024, hidden size to 512, and the
number of attention heads to 8. To testify the effectiveness of S3 in training a productive LLM mod-
el, we additionally construct a large 7B model with the number of layers set to 32, sequence length
to 4096, hidden size to 4096, and the number of attention heads to 32. GPT-2 (345M) is trained on
OpenWebText with a batch size of 512, and GPT-2 (7B) is trained on the refined CommonCrawl with
a batch size of 1024. For S3, we set p to 3 and do not employ the gradient clipping technique. For
other optimizers, the gradient clipping threshold is set to 1.0. Regarding the learning rate scheme,
we linearly increase it to the peak in the initial 5k steps and then decrease to 0.1× of the peak with
a cosine decay in the subsequent steps. The peak learning rates of all the optimizers are from coarse
search for training GPT-2 (345M)(please refer to Figure 8). Other customized hyperparameters are
listed below:

• For AdamW, we utilize β1 = 0.9, β2 = 0.95, which are widely used in train LLMs (Zeng
et al. (2022); Chowdhery et al. (2023); Touvron et al. (2023); Yang et al. (2023)). Zhuang
et al. (2020); Xie et al. (2024); Chen et al. (2023b)).

• For Adan, we employe β1 = 0.98, β2 = 0.92, β3 = 0.99, per official recommendations
(Xie et al. (2024)) for train LLMs.

• For Lion, we adopt β1 = 0.95, β2 = 0.98, per official recommendations (Chen et al.
(2023b)) for train LLMs.

4https://github.com/NVIDIA/Megatron-LM
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• For S3, we set β = 0.95, p = 3. We conducted a coarse hyperparameters search on ViT-
B/16 (Subsection 5.4) and extended the hypermeters to train LLMs without further tuning.

Notably, we followed the weight decay adjustment strategy outlined in the paper (Chen et al.
(2023b)). Specifically, we used the product of the peak learning rate (lrAdam) and the weight decay
(λAdam) from AdamW as a constant. For other optimizers, we just determine the peak leaning rate,
and the weight decay was derived directly using the formula λ = lrAdamλAdam

lr . Importantly, the the
baseline peak learning rates and weight decays of Adam for training our ResNet-50 and ViT-B-16
are also the same with those reported in (Chen et al. (2023b)), while that for GPT-2 are the same
with the paper on Llama (Touvron et al. (2023)).

Table 4: Ablation study on validation perplexity of S3 for training GPT-2(345M).
Exp. large lr same β NAG flexible p Validation perplexity

À - - - - 4.78 (AdamW,lr=3e-4)
Á " - - - 4.97 (AdamW, lr=1e-3)
Â - " - - 4.77 (S3, lr=3e-4, same β, w/o NAG, p = 2)
Ã " " - - 4.67 (S3, lr=1e-3, same β, w/o NAG, p = 2)
Ä " " " - 4.64 (S3, lr=1e-3, same β, w/ NAG, p = 2)
Å " " " " 4.60 (S3, lr=3e-3, same β, w/ NAG, p = 3)

B.2 ADDITIONAL ABLATION STUDY

We also implement ablation experiments for training GPT-2(345M). Figure 10 and Table 4 showcase
that employing a large learning rate and sharing the same β alone have little or even a negative impact
on performance (e.g., Exp. ¬ vs. Exp. ­, Exp. ¬ vs. Exp. ®), while their combination results in a
notable improvement (e.g., Exp. ­, Exp. ® vs. Exp. ¯). In contrast, the performance gain from the
benefits of NAG is more pronounced (e.g., Exp. ¯ vs. Exp. °), and harnessing a larger p can also
have an individually beneficial effect on performance (e.g., Exp. ° vs. Exp. ±),
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S3,lr=3e-3, same , w/ NAG, p=3

Figure 9: Ablation study on train loss of S3 for training GPT-2(345M) on OpenWebText.

B.3 DOWNSTREAM EVALUATION FOR LANGUAGE TASKS

To further validate the effectiveness of the proposed optimizers, we conducted evaluation experi-
ments on pre-trained GPT-2 models, specifically GPT-2 (345M) and GPT-2 (7B), using downstream
reasoning benchmarks from OpenCompass 5. As depicted in Figure 10, the results demonstrate that
S3 consistently outperforms Adam across the majority of benchmarks. This superiority is eviden-
t in the improved downstream accuracy, indicating that the lower validation loss achieved by S3
translates into enhanced performance on these reasoning tasks.

An interesting observation is that the superiority of S3 becomes more pronounced as the model size
becomes large. This suggests that the benefits of S3 extend beyond its effectiveness with smaller
models, showcasing its scalability and adaptability to larger and more complex architectures.

5https://github.com/open-compass/opencompass
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Figure 10: Zero-shot evaluation of the pre-trained GPT-2 (345M) and GPT-2 (7B) with AdamW, Adan,
aLion, and S3 on downstream reasoning tasks.

It is essential to acknowledge that the GPT-2 (345M) model, along with its training dataset, is rel-
atively small. Consequently, the pre-trained models may lack the inherent capabilities needed to
perform well on downstream benchmarks, regardless of the optimizer used. Consequently, the ac-
curacies achieved by GPT-2 (345M) with these optimizers may exhibit a degree of randomness due
to the model’s inherent limitations in handling more complex tasks with a smaller scale.

B.4 VISUALIZATION OF GRADIENT NORMS

As shown in Figure 11, the gradient norms can differ by several orders of magnitude across different
layers, and within the same layer, the gradient norms can vary by more than 30 times. This sig-
nificant variation highlights the challenge of maintaining consistent update magnitudes during the
training process.
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Figure 11: Visualization of gradient norms within different layers in ViT-B/16 at initialization.

C THEORETICAL PROOFS

C.1 PROOF OF THEOREM 1

Proof. Recalling Eq. (2), we know

m
(j)
t =

1− β1
1− βt1

t∑
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βt−k1 g
(j)
k

v
(j)
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1− β2
1− βt2

t∑
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βt−k2 (g
(j)
k )2.

(11)
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Then,
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where (i) holds due to the fact |a(j) + b(j)| ≤ |a(j)| + |b(j)|; (ii) holds due to Cauchy-Schiwaz
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C.2 PROOF OF THEOREM 2

Proof. (1). According to S3 in Algorithm 1, we have
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Then, assuming q satisfies 1
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q = 1, we obtain
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(3). Following S3 in Algorithm 1, we have
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(
t∑

k=1

βt−k+1|g(j)
k |

p1 + |g(j)
t |p1

))r

≤(1− β)

(
t∑

k=1

βt−k+1|g(j)
k |

rp1 + |g(j)
t |rp1

)

=(1− β)

(
t∑

k=1

βt−k+1|g(j)
k |

p2 + |g(j)
t |p2

)
=(b

(j)
t (p2))

p2 ,

(18)

where the inequality holds due to Jensen’s inequality and the fact (1− β)(
∑t
k=1 β

t−k+1 + 1) < 1.

C.3 PROOF OF THEOREM 3

Proof. We first deduce from ASGD(I) to ASGD(II). According to (I), we have

x̃t+1 =x̃t − γmt

=x̃t − γ(βmt−1 + (1− β)∇f(x̃t − γβmt−1; ζt))
(19)

Subtracting γβmt on both sides, we obtain

x̃t+1 − γβmt = x̃t − γβmt−1 − γ(βmt − (1− β)∇f(x̃t − γβmt−1; ζt)) (20)

Setting xt = x̃t − γβmt−1, we further have

xt+1 = xt − γ(βmt + (1− β)∇f(xt; ζt)) (21)

Thus, ASGD(I) becomes ASGD(II).

Then, we deduce from ASGD(III). Denoting nt = βmt + (1− β)gt, we have

nt − βnt−1 =βmt + (1− β)gt − βnt−1
=(1− β)gt + β(βmt−1 + (1− β)gt)− βnt−1
=(1− β)gt + β(βmt−1 + (1− β)gt)− β(βmt−t + (1− β)gt−1)
=(1− β)gt + β(1− β)(gt − gt−1)

=(1− β)(gt + β(gt − gt−1)).

(22)

It indicates nt = mt+βrt where mt = βmt−1+(1−β)gt and rt = βrt−1+(1−β)(gt−gt−1).
Therefore, ASGD (II) is equivalent to ASGD (III).

C.4 AUXILIARY LEMMA

Lemma 5. Under Assumption 2, for any x,y ∈ Rd with ‖x− y‖2 ≤ R, the function obeys

F (y) ≤ F (x) + 〈∇F (x),y − x〉+ L0 + L1‖∇F (x)‖2
2

‖y − x‖22. (23)
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Proof. For any x,y ∈ Rd with ‖x− y‖2 ≤ R, we have

F (y) =F (x) +

∫ 1

0

〈∇F (x+ t(y − x)),y − x〉dt

=F (x) + 〈∇F (x),y − x〉+
∫ 1

0

〈∇F (x+ t(y − x))−∇F (x),y − x〉dt

(i)

≤F (x) + 〈∇F (x),y − x〉+
∫ 1

0

‖∇F (x+ t(y − x))−∇F (x)‖2‖y − x‖2dt

(ii)

≤ F (x) + 〈∇F (x),y − x〉+ (L0 + L1∇F (x))‖y − x‖22
∫ 1

0

tdt

=F (x) + 〈∇F (x),y − x〉+ L0 + L1‖∇F (x)‖
2

‖y − x‖22,

(24)

where(i) holds due to Cauchy-Schwarz inequality, and (ii) holds due to Assumption 2.

C.5 PROOF OF THEOREM 4

Proof. Following Lemma 5 with xt+1 → y and xt → x, we have

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L0 + L1‖∇F (xt)‖2

2
‖xt+1 − xt‖22. (25)

Recalling the update rule xt+1 = xt− γ nt
bt

= xt− γ |nt|bt
◦ nt
|nt| = xt− γut ◦Sign(nt), we further

obtain

F (xt+1) ≤F (xt)− 〈∇F (xt), γut ◦ Sign(nt)〉+
(L0 + L1‖∇F (xt)‖2)γ2

2
‖ut‖22

=F (xt)− 〈∇F (xt), γut ◦ Sign(∇F (xt))〉+ 〈∇F (xt), γut ◦ (Sign(∇F (xt))− Sign(nt))〉︸ ︷︷ ︸
T1

+
(L0 + L1‖∇F (xt)‖)γ2

2
‖ut‖22.

(26)

There are two cases for each element of T1. If Sign(∇F (xt)(j)) = Sign(n
(j)
t ), ∇F (xt)(j) · u(j)

t ·(
Sign(∇F (xt))(j) − Sign(n

(j)
t )
)

= 0. If Sign(∇F (xt)(j)) 6= Sign(n
(j)
t ), ∇F (xt)(j) · u(j)

t ·(
Sign(∇F (xt))(j) − Sign(n

(j)
t )
)
= 2u

(j)
t |∇F (xt)(j)| ≤ 2u

(j)
t |∇F (xt)(j) − n

(j)
t |, hence T1 =

2
∑d
j=1 u

(j)
t |∇F (xt)(j) − n

(j)
t |.

Rearranging Eq. (26), we have

F (xt+1) ≤F (xt)− 〈∇F (xt), γut ◦ Sign(∇F (xt))〉+ 2γ

d∑
j=1

u
(j)
t |∇F (xt)(j) − n

(j)
t |

+
(L0 + L1‖∇F (xt)‖2)γ2

2
‖ut‖22

≤F (xt)− γumin‖∇F (xt)‖1 + 2γ‖nt −∇F (xt)‖1 +
γ2d(L0 + L1‖∇F (xt)‖2)

2

≤F (xt)− γumin‖∇F (xt)‖1 + 2γ
√
d‖nt −∇F (xt)‖2 +

γ2d(L0 + L1‖∇F (xt)‖1)
2

(27)

where the second inequality holds due to 0 < umin ≤ u
(j)
t ≤ 1, and the third inequality holds owing

to the fact ‖a‖2 ≤ ‖a‖1 ≤
√
d‖a‖2 for any a ∈ Rd.
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Summing over 1 to T and taking expectation on it, we have

(umin − γdL1

2 )

T

T∑
t=1

E[‖∇F (xt)‖1] ≤
F (x1)− F (x∗)

γT
+

2
√
d

T

T∑
t=1

E[‖nt −∇F (xt)‖2] +
γdL0

2

(28)

Recalling mt = βmt−1 + (1− β)gt, we obtain

mt −∇F (xt) = (βmt−1 + (1− β)gt)−∇F (xt)
=β(mt−1 −∇F (xt−1)) + (1− β)(gt −∇F (xt))− β(∇F (xt)−∇F (xt−1)).

(29)

Utilizing recursion, we further have

mt −∇F (xt) =− βt∇F (x1) + (1− β)
t∑

k=1

βt−k(gk −∇F (xk))−
t∑

k=1

βt−k+1(∇F (xk)−∇F (xk−1)),

(30)
where m1 −∇F (x1) = −β1∇F (x1) + (1− β1)(g1 −∇F (x1)) due to m0 = 0.

Hence,

nt −∇F (xt) =β(mt −∇F (xt)) + (1− β)(gt −∇F (xt))

=− βt+1∇F (x1) + (1− β)

(
t∑

k=1

βt−k+1(gk −∇F (xk) + (gt −∇F (xt))

)

− β2
t∑

k=1

βt−k(∇F (xk)−∇F (xk−1)),

(31)

Then, we obtain

1

T

T∑
t=1

E [‖nt −∇F (xt)‖2] ≤
β

T

T∑
t=1

βt ‖∇F (x1)‖2︸ ︷︷ ︸
T2

+
1− β
T

T∑
t=1

E

[∥∥∥∥∥
t∑

k=1

βt−k+1(gk −∇F (xk))

∥∥∥∥∥
2

+ ‖gt −∇F (xt)‖2

]
︸ ︷︷ ︸

T3

+
β2

T

T∑
t=1

E

[∥∥∥∥∥
t∑

k=1

βt−k(∇F (xk)−∇F (xk−1))

∥∥∥∥∥
2

]
︸ ︷︷ ︸

T4

(32)

In terms of T2, we obtain

T2 =
β

T

T∑
t=1

βt ‖∇F (x1)‖2 ≤
β

(1− β)T
‖∇F (x1)‖2 (33)
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As for T3, we have

T3 =
1− β
T

T∑
t=1

E

[∥∥∥∥∥
t∑

k=1

βt−k+1(gk −∇F (xk))

∥∥∥∥∥
2

+ ‖gt −∇F (xt)‖2

]

(i)

≤ 1− β
T

T∑
t=1

√√√√√E

∥∥∥∥∥
t∑

k=1

βt−k+1(gk −∇F (xk))

∥∥∥∥∥
2

2

+ ‖gt −∇F (xt)‖22


(ii)
=

1− β
T

T∑
t=1

√√√√ t∑
k=1

β2(t−k+1)E
[
‖gk −∇F (xk)‖22 + ‖gt −∇F (xt)‖2

]
(iii)

≤ 1− β
T

T∑
t=1

√√√√t+1∑
k=1

β2(t−k+1)σ2

≤ 1− β√
1− β2

σ

≤
√

1− βσ,

(34)

where (i) holds due to the fact (E[Z])2 ≤ E[Z2]; (ii) holds owing to E[gk − ∇F (xk)] = 0

according to Assumption 3; (iii) holds resulting from E
[
‖gk −∇F (xk)‖22

]
≤ σ2 according to

Assumption 3.

Now we turn attention to T4, i.e.,

T4 =
β2

T

T∑
t=1

E
[∥∥βt−k(∇F (xk)−∇F (xk−1))∥∥2]

(i)

≤ β
2

T

T∑
t=1

t∑
k=1

βt−kE [‖∇F (xk)−∇F (xk−1)‖2]

(ii)

≤ β2

T

T∑
t=1

t∑
k=1

βt−kE [(L0 + L1‖∇F (xk)‖2)‖xk − xk−1‖2]

(iii)
=
β2

T

T∑
t=1

t∑
k=1

βt−kE [γ(L0 + L1‖∇F (xk)‖2)‖ut−1‖2])

(iv)

≤ β2

T

T∑
t=1

L0γ
√
d

t∑
k=1

βt−k + β2L1γ
√
d

t∑
k=1

βt−k∇F (xk)

≤β
2L0γ

√
d

1− β
+ β2L1γ

√
d

T∑
t=1

t∑
k=1

βt−kE[‖∇F (xk)‖2]

(v)
=
β2L0γ

√
d

1− β
+
β2L1γ

√
d

T

T∑
k=1

E[‖∇F (xk)‖2]
T∑
t=k

βt−k

≤β
2L0γ

√
d

1− β
+
β2L1γ

√
d

(1− β)T

T∑
t=1

E[‖∇F (xt)‖2]

(vi)

≤ β2L0γ
√
d

1− β
+
β2L1γ

√
d

(1− β)T

T∑
t=1

E[‖∇F (xt)‖1]

(35)

where (i) holds due to the fact ‖a + b‖2 ≤ ‖a‖2 + ‖b‖2; (ii) holds owing to Assumption 2;
(iii) holds due to the update rule; (iv) holds depends on u(j) ≤ 1 according to Theorem 2; (v)
holds resulting from the fact that

∑n
i=1

∑i
j=1 ai,j =

∑n
j=1

∑n
i=j ai,j ; (vi) holds due to the fact

‖a‖2 ≤ ‖a‖1.
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Combining Eq.(32) - Eq.(35), we have

1

T

T∑
t=1

E [‖nt −∇F (xt)‖2] ≤
β

(1− β)T
‖∇F (x1)‖2 +

√
1− βσ

+
β2L0γ

√
d

1− β
+
β2L1γ

√
d

(1− β)T

T∑
t=1

E[‖∇F (xt)‖1]

≤ β

(1− β)T
‖∇F (x1)‖2 +

√
1− βσ

+
β2L0γ

√
d

1− β
+
β2L1γ

√
d

(1− β)T

T∑
t=1

E[‖∇F (xt)‖1]

(36)

Combining Eq.(28) and Eq.(36), we obtain

umin − γdL1

2 − 2β2L1γ
√
d

1−β

T

T∑
t=1

E[‖∇F (xt)‖1] ≤
F (x1)− F (x∗)

γT
+

2β
√
d

(1− β)T
E [‖∇F (x1)‖2]

+ 2
√

(1− β)dσ +
2γβ2L0d

1− β
+
γdL0

2
.

(37)

Let γ = 1
L0T 3/4 , 1− β = 1

T 1/2 . When T ≥ max{( 2dL1

L0umin
)
4/3, ( 8β2

√
dL1

(1−β)L0umin
)4}, we can guarantee

umin −
γdL1

2
− 2γ

√
dL1

1− β
≥ umin

2
. (38)

Then, setting Umax = 1
umin

, we reformulate Eq. (37) as

1

T

T∑
t=1

E[‖∇F (xt)‖1] ≤
2L0Umax(F (x1)− F (x∗))

T 1/4
+

4βUmax

√
dE [‖∇F (x1)‖2]
T 1/2

+
4Umax

√
dσ

T 1/4
+

4β2Umaxd

T 1/4
+
Umaxd

T 3/4
.

(39)
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