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ABSTRACT

We introduce a novel approach to large language model (LLM) distillation by
formulating it as a constrained reinforcement learning problem. While recent
work has begun exploring the integration of task-specific rewards into distillation
processes, existing methods typically rely on ad-hoc reward weighting. We pro-
pose a principled optimization framework that maximizes task-specific rewards
while constraining the divergence from the teacher model to remain below a spec-
ified threshold. Our approach adapts constrained state augmented reinforcement
learning to the distillation setting, introducing a modified reward function that
maintains theoretical guarantees of constraint satisfaction without requiring state
augmentation or teacher model access during deployment and without the com-
putational overhead of the dual Lagrangian methods. Through extensive experi-
ments on mathematical reasoning tasks, we demonstrate that our method achieves
better constraint satisfaction rates and better reasoning compared to the soft La-
grangian relaxation baselines while maintaining competitive task performance.
Our framework provides a theoretically grounded and practically efficient solu-
tion for reward-aware distillation in resource-constrained settings.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in a wide range of natural lan-
guage processing tasks (Vaswani et al., 2017; Trinh et al., 2024; Chervonyi et al., 2025; Guo et al.,
2025), but their size and complexity make them impractical for deployment in resource-constrained
environments. Distillation (Hinton et al., 2015; Czarnecki et al., 2019), a technique where a smaller
student model learns from a larger teacher model, has been widely used to transfer knowledge while
reducing computational costs. Conventional distillation methods (Sanh et al., 2020; Gu et al., 2024;
Ko et al., 2024) typically focus on minimizing the divergence between the student and teacher mod-
els, often using metrics such as Kullback-Leibler (KL) divergence. However, these methods do not
fully leverage additional reward signals that can provide valuable guidance, particularly in tasks re-
quiring complex reasoning. Focusing solely on the KL divergence can lead to suboptimal learning,
as it may force students to mimic complex reasoning paths that exceed their capacity rather than dis-
covering simpler, equally effective reasoning paths. In contrast, a method that purely optimizes for
reward cannot guarantee that the reasoning leading to the solution is correct. When reward signals
are considered together with KL, Agarwal et al. (2024) propose to focus on a penalty method where
a hyperparameter λ is introduced to balance the preference between reward and KL.

In this paper, we propose a novel approach to LLM distillation by formulating it as a constrained
reinforcement learning (RL) problem. Specifically, we aim to maximize the task reward while en-
suring that the divergence between the student and teacher models stays below a predefined thresh-
old. Although choosing the threshold likewise balances the reward–teacher divergence trade-off as
does tuning the hyperparameter λ, it is far simpler, since it is specified directly in terms of KL scale
rather than requiring a delicate balance between values that may vary greatly in scale across differ-
ent stages of training when adjusting λ. Finally, when the student is deemed to be close enough
to the teacher, i.e. when the constraint is satisfied, the objective conveniently reduces to reward
maximization, as the KL term can be safely omitted.
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Ours:

To determine what percentage of the
whale’s body length the combined
length of the remoras is, we need to
follow these steps:
1. Convert the length of the remoras
from inches to feet:

45 inches ×
1 foot

12 inches
= 3.75 feet

So, each remora is 3.75 feet long.
2. Calculate the total length of the
remoras:

4 remoras×3.75 feet per remora = 15

3. Determine the total length of the
whale:

300 feet

4. Calculate the percentage of the
whale’s body length that the com-
bined length of the remoras repre-
sents: (

15 feet

300 feet

)
× 100%

5. Simplify the fraction:
15

300
= 0.05

6. Convert the decimal to a percent-
age:

0.05 × 100% = 5%

Therefore, the combined length of the

remoras is 5 percent of the whale’s
body length.

GRPO λ = 0:

Let’s break down the problem step
by step to find the percentage of the
whale’s body length that the com-
bined length of the remoras repre-
sents.
First, we need to convert all units to
the same unit. Let’s use feet for this
calculation.
The length of each remora is given as
45 inches. Since there are 12 inches
in a foot, the length of each remora
in feet is: 45

12
= 3.75 feet

Since there are 4 remoras, the total
length of the remoras is:

4 × 3.75 = 15 feet

Next, we add the length of the whale
to the combined length of the re-
moras to get the total length of the
whale:

300 + 15 = 315 feet

Now, we need to find what percent-
age the combined length of the re-
moras is of the whale’s body length.
This can be calculated using the for-
mula for percentage:(

15

315

)
× 100

Simplifying the fraction inside the
percentage formula:

15

315
=

1

21(
1

21

)
× 100 =

100

21
≈ 4.7619

Rounding to the nearest whole num-

ber, we get: 5

Question:
Leilani saw a 300-foot whale with 4
45-inch remoras attached to it. What
percentage of the whale’s body length
is the combined length of the remoras?

Figure 1: Example illustrating that checking the
final answer alone is insufficient for evaluating
reasoning. GRPO (right) makes mistakes and
reaches a wrong answer (4.76) but takes an ex-
tra rounding step to the correct one (5), likely as a
learned strategy through training.

Reasoning
Win Rate

Reasoning
Loss Rate

Final Answer
Correctness KL

Constraints
Satisfaction

Reasoning
Win Rate

Reasoning
Loss Rate

Final Answer
Correctness KL

Constraints
Satisfaction

GKD =0.01
GKD =0.1
GKD
Mini-LLM

Ours
GRPO
GKD =0.001

Figure 2: Comparison of our method against
baselines across with Qwen2.5-1.5B-Math
(top) and Llama-3.2-3B (bottom) averaged
across three evaluation datasets. To ensure big-
ger surface means better results, the reasoning
loss rate and the KL divergence were inverted.

Solving our new constrained RL problem follows standard methods for constraint optimization in
which we write a dual Lagrangian optimization problem (Achiam et al., 2017; Boyd & Vanden-
berghe, 2004; Altman, 1999), but it would be impractical to solve with LLM because of the huge
computational cost of solving a max-min problem with large teacher models. Instead, we adopt a
state augmentation method known as Saute (Sootla et al., 2022b;a). It relaxes the constrained op-
timization problem by formulating a new state-augmented Markov Decision Process (MDP) with a
reformulated reward function. This approach not only changes the reward but also introduces a new
state space that helps in maintaining the theoretical guarantees of the original constraints without the
need for explicit Lagrangian multipliers. However, Saute assumes that it can compute the constraint
in every state. For distillation, it would result in the need to have access to the teacher model at
test time, which fundamentally defeats the purpose of distillation. To address this issue, we modify
the Saute method by removing the state augmentation step using the assumption that the policy is
history-conditioned, which is the case for LLM. This modification allows us to maintain the theo-
retical guarantees of Saute while ensuring that the student model can operate independently of the
teacher at test time. By reformulating the reward function alone, we achieve a more efficient and
practical solution for distillation.

Through extensive experiments, we demonstrate that our proposed method effectively minimizes the
KL divergence while achieving superior performance in terms of reasoning quality and comparable
final answer correctness (see Figure 2). We show that reward maximization alone, as proposed in
Guo et al. (2025), cannot guarantee correct reasoning steps by itself and that the teacher signal is
useful for LLM to better reason (see Figure 1).
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Our contributions are summarized as follows:
• We formulate LLM distillation as a constrained RL problem, integrating task-specific reward

signals to guide the distillation process.
• We adapt the Saute method by removing the state augmentation step, ensuring the student model

operates independently of the teacher at test time while maintaining the theoretical guarantees
and enhancing exploration on constraint-violating trajectories.

• We conduct extensive experiments on mathematical reasoning tasks to demonstrate that our
method identifies a notable point on the Pareto front balancing divergence minimization, reward
maximization, and reasoning quality.

This work bridges the gap between distillation and constrained RL, offering a promising direction
for improving the efficiency and effectiveness of knowledge transfer in LLMs.

2 BACKGROUND

2.1 DISTILLATION

Knowledge distillation has emerged as a critical technique for transferring knowledge from large,
complex teacher models to smaller, more efficient student models (Hinton et al., 2015). Standard
distillation methods primarily focus on minimizing the divergence, often Kullback-Leibler (KL) di-
vergence, between the student and teacher models (Ba & Caruana, 2014; Gou et al., 2021), treating
the distillation as a supervised imitation at the token or representation level. While effective for
general language understanding tasks, these methods struggle on complex reasoning tasks: min-
imizing solely the divergence while ignoring task-specific reward signals can fail to capture the
solution paths with better performance. For instance, in mathematical reasoning tasks, the teacher
model may rely on complex reasoning paths that are difficult for a smaller student model to repli-
cate due to its limited capacity, while alternative, simpler reasoning strategies that achieve the same
correct outcome might be more suitable for the student to learn and memorize (Zhang et al., 2025).

Recent advances incorporate reward signals into distillation (Agarwal et al., 2024), recasting it as
a policy-optimization problem in which the student policy π is trained to maximize expected task
reward R while being regularized by a divergence D(π, µ) to teacher policy µ:

max
π

Eπ [R− λD(π, µ)] , (1)

where λ controls the trade-off between the task performance and teacher fidelity. However, the
optimal λ is difficult to anticipate and requires extensive retraining on specific tasks, making this
approach unstable and computationally expensive for large sequential models. This challenge mo-
tivates viewing distillation instead as a constrained learning problem that can directly maximize
the task reward subject to a divergence budget. This perspective eliminates ad hoc hyperparameter
tuning while providing interpretable fidelity guarantees and a principled foundation for reasoning-
oriented distillation.

2.2 CONSTRAINED REINFORCEMENT LEARNING

Constrained reinforcement learning (CRL) addresses the problem of optimizing a primary objective
while satisfying constraint requirements (e.g., safety) (Achiam et al., 2017). In LLM distillation,
we can constrain the divergence between the teacher and student policy, following the constrained
MDP formulation Md = ⟨S,A,P, R, C, γ, d⟩, where st is the current prompt with partial response,
the action at is the next token generated by the student model, P is the transition kernel, R is the
task-specific reward (e.g., correctness in mathematical reasoning), Cπ(st) := Df (π(·|st)||µ(·|st))
is the per-state f -divergence between student π and teacher µ, γ ∈ (0, 1) is the discount factor and
d is a predefined budget. The goal is to find a policy π that maximizes the task reward while keeping
the expected divergence lower than the threshold d:

max
π

Eπ

[ ∞∑
t=0

γtR(st,at)

]
s.t. Eπ

[ ∞∑
t=0

Cπ(st)

]
≤ d. (2)

This kind of constrained problem can be solved with a direct optimization: Sootla et al. (2022b)
introduced a state augmentation method that reformulates the constrained MDP as an augmented
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MDP M̃n
d = ⟨S̃,A, P̃, R̃n, γ, d⟩ by adding a auxiliary state variable zt that tracks the remaining

budget at every time step t, zt+1 = zt − Cπ(st), z0 = d, transforming the problem into:

max
π

Eπ

[ ∞∑
t=0

γtR̃n(st, zt,at)

]
, R̃n(sT , zT ,aT ) =

{
R(sT ,aT ) if zT ≥ 0,

−n if zT < 0,
(3)

Here S̃ = S × Z is the augmented state space, P̃ : S̃ × A × S̃ → [0, 1] is the transition kernel,
and R̃n is a constrained reward function with a large positive n ≫ Rmax for penalization when
the budget d is exhausted. As n → ∞, any optimal policy of the augmented MDP is feasible for
the constraint and attains the constrained optimum under standard assumptions. This method avoids
the computational overhead of Lagrange multipliers formulation (cf. equation 1), which can be
written as maxπ minλ≥0 Eπ [

∑∞
t=0 γ

tR(st,at)− λ (
∑∞

t=0 Cπ(st)− d)] for the same formulation,
and typically requires tuning a dual variable and running dual ascent.

However, directly applying this formulation to distillation would require maintaining the augmented
state zT online during distillation, which would necessitate access to the teacher model at test time
to compute Cπ at every timestep. This is impractical for distillation, where the goal is to create
a student model that operates independently of the teacher. In the following section, we address
this challenge by proposing a new formulation for LLM distillation to eliminate the need for state
augmentation while preserving the theoretical guarantees.

3 METHOD

3.1 CONSTRAINED RL FOR LLM DISTILLATION

We introduce a constrained MDP formulation for distillation that removes state augmentation while
retaining the hard-constraint semantics, therefore enabling constrained RL without accessing the
teacher policy at every single step. In LLM distillation, we model the state as the full interaction
history, so the induced control process is fully observable. Therefore, removing the augmented
state zT in equation 3 from the state does not induce partial observability. At any time T , we can
recompute the remaining budget from the full observed history encoded in sT , hence the augmented
state zT is a deterministic function of the state with zT = d−

∑T−1
t=0 Cπ(st).

We propose a constrained MDP formulation for LLM distillation without state augmentation M̂n
d =

⟨S,A,P, R̂n, γ, d⟩, where R̂n is the constrained reward that combines the task-specific reward with
a feasibility signal for constraint satisfaction. The goal is to find a policy π that maximizes the
task-specific reward while keeping the divergence lower than the threshold d:

max
π

Eπ

[ ∞∑
t=0

γtR̂π,n(st,at)

]
, R̂π,n(sT ,aT ) =

{
R(sT ,aT ) if d−

∑T−1
t=0 Cπ(st) ≥ 0,

−(n+ϕπ(sT)) otherwise.
(4)

The constrained reward without the augmented state zT preserves the feasibility signal for the
constraint satisfaction, such that the student model receives the positive task-specific reward only
when the constraint with budget d is satisfied, while any trajectory that violates the constraint incurs
a large hard penalty. This penalty is a fixed value in the previous setting equation 3 for all infeasible
trajectories, we refine this penalty by adding a policy-dependent discrepancy term ϕπ(sT ) to
differentiate the trajectories within the infeasible region: trajectories that deviate more from the
teacher policy receive a stronger penalty, whereas marginally deviating ones are penalized less.
We define ϕπ(sT ) as any f -divergence, including KL and Jensen–Shannon divergence, between
the student and teacher at sT , which is nonnegative and equals zero iff π(· | sT ) = µ(· | sT ).
Therefore, the penalty −(n + ϕπ(sT )) is strictly negative, while in feasible region we maintain
the original task specific reward to guide exploration. This formulation preserves the augmented-
MDP penalty semantics and increases sample efficiency by delivering informative negative feedback
among violating trajectories, without altering feasibility decisions or the limiting optimum.
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3.2 POLICY GRADIENT OPTIMIZATION

We detail policy gradient optimization for the unaugmented objective in equation 4, and derive the
policy gradient decomposition with an explicit-dependence term. Our method directly maximizes
the expected discounted return with standard policy gradient, thereby avoiding the instabilities from
infeasible gradient vector fields in on-policy distillation observed by Czarnecki et al. (2019). We
parameterize the student policy as πθ and maximize the expected discounted return:

Jn(θ) = Eπθ

[ ∞∑
t=0

γtR̂πθ,n(st,at)
]

Because Jn(θ) depends on θ both through the trajectory distribution induced by πθ and inside the
reward via the discrepancy ϕπθ

, its gradient decomposes into (I) the likelihood-ratio term and (II)
the explicit dependence term of R̂πθ,n on θ:

∇θJn(θ) = Eπθ

[∑
t≥0

∇θ log πθ(at | st)
(∑

u≥t

γu−t R̂πθ,n(su,au)
)]

︸ ︷︷ ︸
(I) likelihood-ratio term

+ Eπθ

[∑
t≥0

γt ∂θR̂πθ,n(st,at)
]

︸ ︷︷ ︸
(II) explicit-dependence term

(5)

We compute ∇θJn(θ) following the policy gradient theorem Sutton et al. (1999) under the following
minimal assumptions:

A1. For each state sT , ϕπθ
(sT ) is finite and differentiable in θ, and its gradient is measurable and

integrable along trajectories Eπθ

[∑
t≥0 γ

t∥∂θϕπθ
(st)∥

]
< ∞;

A2. There exists an optimal policy π∗
θ with a finite value such that P

(
d−

∑T−1
t=0 Cπ∗

θ
(st) > 0

)
= 1.

In practice, we take ϕ = KL with a small probability floor, ensuring finiteness and differentiability.
A2 ensures the existence of an optimal feasible policy, i.e., the budget is satisfied almost surely at the
optimum. Under A1 and A2, we can characterize the explicit-dependence term (II) in a unified way
(see Appendix A for the full derivation across feasible, infeasible, and boundary cases) by including
the gradient and limiting sub-gradient of R̂πθ,n with a small tolerance ε ↓ 0 round the feasibility
boundary. Our final gradient for optimization is

∇θJn(θ) = Eπθ

[∑
t≥0

∇θ log πθ(at | st)
(∑

u≥t

γu−t R̂πθ,n(su,au)
)]

− Eπθ

[∑
t≥0

γt
1

{
d−

t−1∑
u=0

Cπθ
(su) ≤ ε

}
∂θϕπθ

(st)

]

3.3 THEORETICAL GUARANTEE FOR CONSTRAINT SATISFACTION

In this section, we show that our reformulation of the constrained MDP preserves the constraint sat-
isfaction guarantee while enabling deployment without teacher access. In particular: (i) the optimal
policy and value functions are equivalent between our un-augmented objective in equation 4 and the
augmented objective in equation 3; (ii) Bellman optimality holds under standard assumptions; and
(iii) as n → ∞, every optimal policy with finite value satisfies the constraint almost surely.

In LLM distillation, the student policy π is frozen within each episode, so the induced control
process is time-homogeneous. We adopt this per-episode stationary view; all statements are uniform
over a fixed π on the reachable set. We further formalize an equivalent contextual MDP view, in
which each episode carries a fixed context c (e.g., a policy checkpoint), and prove its optimality-
equivalence to the standard MDP in Appendix C.
Theorem 3.1 (Optimal equivalence). For every feasible state sT , the optimal value functions of the
unaugmented MDP M̂n

d in equation 4 and the augmented MDP M̃n
d in equation 3 are equivalent:

V̂ ∗(sT ) = Ṽ ∗(sT , zT ).

5
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This theorem justifies that removing the budget variable zt does not change the control problem
we are solving. This equivalence holds because the augmented state zT is reconstructable from the
observed history under any fixed student π and teacher µ via zT = d−

∑T−1
t=0 Cπ(st), so augmented

states (sT , zT ) and un-augmented states sT induce identical trajectories and stepwise rewards along
any feasible paths. We give the precise construction and full proof details in Appendix B.

We adopt the following standard assumptions Hernández-Lerma & Muñoz de Ozak (1992); Sootla
et al. (2022b) for the discrete token setting in distillation:

B1. The reward function R̂n(sT ,aT ) is bounded, measurable, and upper semicontinuous on S ×A;

B2. The transition kernel P is weakly continuous on S ×A; B3. The action space A is compact.

Theorem 3.2 (Bellman optimality and value convergence). Consider the unaugmented MDP M̂d,
satisfying assumption B1-B3 with the associated equation 4, then:

a) the Bellman equation is satisfied in M̂d;

b) the optimal value function V̂ ∗
n for M̂n

d converges monotonically to V̂ ∗
∞ for M̂∞

d .

Theorem 3.3 (Almost surely constraint satisfaction). If there exists an optimal policy π∗ solving
M̂∞

d with a finite value, then π∗ is also an optimal policy for the original constrained MDP Md

and satisfies the constraint almost surely.

These results show that our modified approach maintains the guarantees of the original constrained
problem while eliminating state augmentation (see Appendix B for proofs and discussion). At test
time, the student operates without teacher access: the cumulative reward is computed from the
student’s own output distribution and environment feedback. This makes our approach practical for
LLM distillation while retaining guarantees of feasibility.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on two distinct distillation settings to evaluate our proposed method. For
the first setting, we distill a Qwen2.5-1.5B-Math student model from a Qwen2.5-7B-Math-Instruct
teacher model using the GSM8K training dataset. For the second setting, we distilled a Llama-3.2-
3B student model from a Llama-3.2-11B-Instruct teacher model using the MATH training dataset.
In both setting, we evaluated the resulting checkpoints after 20 epochs on the Apple/GSM-Symbolic
(main) (Mirzadeh et al., 2025), the test set of GSM8K (Cobbe et al., 2021) and the whole test set of
MATH (Hendrycks et al., 2021) (from which MATH500 is selected).

Baselines. Our proposed constrained optimization method is built upon the GRPO policy gradient
algorithm (Shao et al., 2024). To assess its effectiveness, we benchmark against several strong
distillation baselines, each re-implemented under the same GRPO framework to ensure fairness and
consistency. More precisely, for every method, the batch size and its composition is the same (64
answers, 8 questions, 8 answers per question). The learning rate (1e−5) and the optimizer (AdamW)
are also the same. We consider the following baselines:

• GRPO: The base algorithm in our experiments. GRPO optimizes purely for the task-specific
reward using a robust, value-function-free policy gradient with a group-average reward base-
line (Shao et al., 2024).

• GKD: A distillation-only baseline whose objective is to minimize the reverse KL divergence
DKL(πθ ∥µ), treating the negative per-step KL as an intrinsic reward. We use GRPO rather than
the REINFORCE-style update of Agarwal et al. (2024) for consistency.

• GKD-GRPO: A baseline that jointly optimizes for both the task-specific reward and the GKD
objective. This corresponds to the standard Lagrangian relaxation of our constrained problem in
Eq. (1), with λ as the balancing hyperparameter (Agarwal et al., 2024).

• Mini-LLM: On-policy reverse KL divergence minimization (Gu et al., 2024), accounting for the
long-term effects of actions on KL (Tang & Munos, 2025). As in GKD, task reward is ignored.

6
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For consistency, we sample trajectories exclusively with the student policy and substitute PPO
with a GRPO-based update.

Together, these baselines span the main approaches to RL-based distillation: optimizing task re-
wards, relying solely on KL supervision, and hybrid formulations that combine both. To ap-
proximate the Pareto frontier of the Lagrangian relaxation baseline (GKD-GRPO), we perform
a grid search over the multiplier λ across several orders of magnitude, reporting results for
λ ∈ {0.001, 0.01, 0.1, 1.0, 10}. Note that when λ = 0, it equals to the pure GRPO baseline. The
constraint threshold d = 0.35 was selected based on preliminary experiments that seek to minimize
only the KL (mini-LLM and GKD).

Metrics. We evaluate models using four key metrics:

• Final Answer Correctness (FAC): It verifies that the final answer inside \boxed{} is correct. It
is used to define the reward function R in our MDPs.

• Reasoning Quality: To assess the logical validity of the reasoning path beyond the final answer,
we use an LLM-as-a-Judge setting (Zheng et al., 2023). Specifically, we use DeepSeek-R1-
Distill-Qwen-32B (DeepSeek-AI, 2025) to perform pairwise comparisons between generated
solutions. The judge is provided with the correct final answer to isolate its evaluation to the
reasoning process itself. This yields the Reasoning Win Rate (RWR) and Reasoning Loss Rate
(RLR), reported as percentages (Zhou et al., 2025).

• Constraint Satisfaction: The percentage of test samples where the KL divergence between the
student and teacher policies is below a predefined threshold d.

• KL Divergence: The average student-teacher policy divergence cross the entire test set.

4.2 EXPERIMENT RESULTS

We organize our set of experiments to answer the following questions:

A. What is the best method in general?
B. Is our method able to achieve higher constraints satisfaction?
C. Can external reward help achieve better distillation?
D. Does the distillation signal help to better reason?

A. What is the best method in general? Figure 2 presents a comprehensive comparison of our
constrained RL approach against baseline methods across five key metrics. The results demonstrate
that our method achieves the most balanced performance profile, excelling particularly in reasoning
quality and constraint satisfaction while maintaining competitive final answer correctness. The radar
plot reveals that pure reward optimization (GRPO λ=0.0) achieves the highest final answer correct-
ness but at the cost of poor reasoning quality and severe constraint violations. Conversely, methods
that focus solely on KL minimization (GKD, Mini-LLM) maintain good constraint satisfaction but
suffer from lower final answer correctness. Our constrained RL formulation successfully navigates
this trade-off, achieving strong performance across all dimensions.
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Figure 3: Pareto frontier analysis showing the trade-off between final answer correctness and con-
straint satisfaction across different methods and hyperparameter settings for Qwen2.5-1.5B-Math.
Each point represents a different method configuration. The points in red belong to the Pareto front.
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B. Is our method able to achieve higher constraints satisfaction? Figure 3 illustrates the Pareto
frontier between final answer correctness and constraint satisfaction across different methods and
hyperparameter settings. Our approach consistently achieves superior constraint satisfaction rates
while maintaining competitive final answer correctness, occupying a unique region of the Pareto
front. This demonstrates the effectiveness of our constrained formulation in achieving the desired
balance between task performance and teacher fidelity. Note that without introducing ϕ, our method
would have a great difficulty satisfying a strict constraint due to the lack of signal: all trajectories
would receive the same penalty n and the training would divergence.

C. Can external reward help achieve better distillation? Comparing reward-based methods
(GRPO, GKD-GRPO variants, and ours) against purely KL-based methods (GKD, Mini-LLM) re-
veals the crucial role of external rewards in distillation. Pure KL minimization methods always
achieve lower final answer correctness rates in every dataset for each model (Figure 2 and Ap-
pendix E). Beyond the improvement over final answer correctness, we also observe that our method
achieves higher reasoning win rates which can also be attributed to the use of the reward function.
This substantial improvement demonstrates that incorporating task-specific rewards enables the stu-
dent model to learn more effective reasoning strategies rather than merely mimicking the teacher’s
surface-level outputs.

Ours
GRPO

GDK-GRPO = 0.001

GDK-GRPO = 0.01

GDK-GRPO = 0.1

GDK-GRPO = 1.0

GDK-GRPO = 10.0 GDK
MiniLLM

Opponent Method

Ours

GRPO

GDK-GRPO = 0.001

GDK-GRPO = 0.01

GDK-GRPO = 0.1

GDK-GRPO = 1.0

GDK-GRPO = 10.0

GDK

MiniLLM

M
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5.2 23.2 11.5 19.9 10.3 9.2 9.5 10.7

12.4 51.2 52.5 40.2 26.5 26.4 26.1 28.2

10.2 41.3 42.9 18.3 14.8 15.4 15.1 16.0

13.8 53.6 54.8 26.4 34.1 12.6 12.6 15.7

14.1 54.6 56.1 27.2 35.4 9.6 14.0 16.9

13.8 54.4 55.2 26.9 34.9 9.3 8.5 11.4

13.0 53.5 54.1 25.3 32.5 9.2 8.5 12.8

X win
rate

Y

X loss
rate

Y

Figure 4: Pairwise comparison heatmap showing
the relative performance of our method against
baselines, averaged across all three evaluation
datasets (Apple/GSM-Symbolic, GSM8K, and
MATH) with Qwen2.5-3B-Math. Darker colors
indicate superior performance in row-to-column
comparisons. Averaging over columns gives the
reasoning win rate (RWR) and over rows the rea-
soning loss rate (RLR).

D. Does the distillation signal help to bet-
ter reason? Figure 4 presents a compre-
hensive pairwise comparison matrix averaged
across all three evaluation datasets with Qwen.
The comparison between pure reward optimiza-
tion (GRPO λ=0.0) and our constrained ap-
proach provides strong evidence for the value
of teacher guidance in reasoning tasks. While
GRPO achieves the highest raw final answer
correctness (75-80%), it exhibits poor reason-
ing quality with win rates of only 12-19% and
correspondingly high loss rates of 39-55%. Our
constrained formulation dramatically improves
reasoning quality while maintaining competi-
tive success rates. It demonstrates that con-
straining the student to stay close to the teacher
distribution helps preserve and transfer the
teacher’s reasoning capabilities. The equivalent
figure for Llama3.2-3B is provided in the Ap-
pendix F.

Qualitative Analysis: In Figure 1, we present a
test set example in which both our method and
the GRPO baseline yield the correct final an-
swer. However, only our method produces log-
ically valid reasoning steps, while GRPO’s rea-
soning is flawed. More examples are provided
in the Appendix F.

These results collectively demonstrate that our constrained RL approach successfully addresses the
core challenges of reward-aware distillation: it maintains high constraint satisfaction rates, leverages
external rewards for improved task performance, and preserves the teacher’s reasoning capabilities
in the student model. The method achieves a superior balance across all evaluation dimensions
compared to existing approaches that typically excel in only one aspect of the distillation objective.
We provide more detailed results in the Appendix E.

5 RELATED WORKS

Task-specific Distillation. The prevailing paradigm in LLM distillation is to pass knowledge from
a powerful teacher to a compact student by aligning their output distributions, typically through the
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reverse KL divergence (Hinton et al., 2015; Sanh et al., 2020; Gu et al., 2024; Agarwal et al., 2024).
However, this objective does not explicitly guarantee the preservation of the teacher’s underlying
reasoning abilities on complex tasks (Gudibande et al., 2024), motivating a shift towards more so-
phisticated, task-aware techniques. The problem is now increasingly framed through the lens of RL,
where adherence to the teacher is elegantly re-conceptualized as a dense, token-level reward derived
from the KL divergence. This forms the basis of general-purpose distillation methods (Agarwal
et al., 2024; Ko et al., 2024; 2025), which uses a REINFORCE-style update, and Mini-LLM (Gu
et al., 2024), which decomposes the policy gradient to separate the high-variance, long-term reward
from a more stable, single-step objective. This RL framework can then be extended by composing
the KL-based reward with an external task reward, Rtask (Agarwal et al., 2024).

Task-aware Extensions. Beyond these RL formulations, a significant body of work integrates
richer, task-specific signals into the distillation process to provide denser supervision. One promi-
nent strategy, process-aware distillation, supervises the student to replicate the teacher’s interme-
diate reasoning steps, thereby transferring the underlying causal logic rather than just the final out-
put (Hsieh et al., 2023; Adarsh et al., 2024; Chen et al., 2025). Other approaches include logit-aware
distillation, which intelligently modifies the KL divergence loss to emphasize pivotal, task-relevant
tokens identified via attention or Bayesian principles (Li et al., 2025; 2024; Saadi & Wang, 2025),
and knowledge-augmented methods that use retrieval to transfer a teacher’s ability to synthesize
external information (Kang et al., 2023; Tian et al., 2025). While these sophisticated strategies sig-
nificantly improve signal density, they often introduce new complexities, such as the need for fine-
grained annotations, complex weighting heuristics, or the overhead of external knowledge bases.

Constrained RL for LLM Distillation. The application of RL to task-specific LLM distilla-
tion remains relatively under-explored (Zhang et al., 2025). In standard alignment settings like
RLHF (Ouyang et al., 2022), the KL penalty against a reference model is primarily a regularization
tool to prevent catastrophic forgetting and maintain stylistic diversity (Yang et al., 2024; Stiennon
et al., 2022). However, in the distillation setting, this KL term takes on the dual role of a constraint,
intended to preserve the teacher’s reasoning capabilities. Most methods still use a fixed penalty,
which is simple but can be brittle, as a static weight may not prevent the student from exploiting
task rewards via shallow or degenerate reasoning (Gudibande et al., 2024). To our knowledge, the
principled distillation of task-specific, constrained RL policies from LLMs is still scarce, with most
related work only examining it briefly (Agarwal et al., 2024).

A more robust alternative is to treat the KL divergence as an explicit trust-region constraint and solve
the resulting constrained-RL problem; classic trust-region and constrained-RL methods provide a
standard toolkit for this (Schulman et al., 2015; Achiam et al., 2017). Dual Lagrangian solvers can
then adapt the KL penalty to restore an interpretable fidelity–performance point, but at LLM scale,
this is practically challenging: teacher forward passes, cached-logit strategies, and inner-loop/dual
updates add significant compute, memory, and variance costs (Dasgupta et al., 2023; Achiam et al.,
2017). In this work, we address these challenges by reformulating the dual Lagrange problem within
a state-augmented MDP framework (Calvo-Fullana et al., 2024; Sootla et al., 2022a;b), for which
we provide a principled and efficient optimization solution that remains practical at the LLM scale.

6 CONCLUSION

In this work, we moved beyond the conventional paradigm of regularized distillation and introduced
a principled framework based on constrained reinforcement learning. By adapting principles from
the safe RL literature, we developed a solution that maintains theoretical guarantees of constraint
satisfaction without requiring the impractical state augmentation typical of classic methods. This ap-
proach successfully navigates the trade-off between task-specific performance and teacher fidelity,
eliminating the need for brittle, ad-hoc reward weighting and the prohibitive costs of traditional dual
max-min optimization. Our experiments on mathematical reasoning demonstrate that it is possible
to enforce a strict KL divergence constraint with high fidelity while maintaining competitive task re-
wards. This method provides a theoretically grounded and practically efficient pathway for creating
smaller, reliable, and specialized models that operate reliably within a defined trust region of their
teacher—a crucial step towards more controllable and deployable LLMs.
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Ethics Statement We adhere to the ICLR Code of Ethics, and this work does not involve any
potential ethical concerns or violations.

Reproducibility statement We provide full training details and hyperparameter settings, complete
proofs, along with citations for the open-source base model and dataset, in the main text and ap-
pendix. We will release our source code upon acceptance.

The Use of Large Language Models LLMs were employed as auxiliary tools during the manuscript
preparation process to enhance the clarity and conciseness of written content. Specifically, LLMs
were utilized for linguistic refinement tasks, including sentence restructuring, word choice optimiza-
tion, and text compression to improve overall readability while maintaining the original meaning and
scientific accuracy of the content.

It is important to note that all LLM-suggested modifications were carefully reviewed and validated
by the authors before incorporation into the final text. The authors assume full responsibility for the
accuracy and validity of all content presented in this work.
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A DERIVATION OF POLICY GRADIENT

We compute the gradient of Jn(θ) w.r.t θ following the policy gradient theorem Sutton et al. (1999)
under the following minimal assumptions:

A1. For each state s, ϕπθ
(s) is finite and differentiable in θ, and its gradient is measurable and

integrable along trajectories: Eπθ

[∑
t≥0 γ

t∥∂θϕπθ
(st)∥

]
< ∞;

A2. There exists an optimal policy π∗
θ with a finite value such that P

(
d−

∑T−1
t=0 Cπ∗

θ
(st) > 0

)
= 1.

Assumption A1 ensures that the discrepancy function ϕπθ
and its gradient are well-behaved so that

the explicit-dependence term (II) in equation 5 is finite and integrable to guarantee that the policy-
gradient estimator has bounded variance. This assumption can be satisfied by many discrepancy
functions, in our implementation, we choose ϕ as the KL divergence ϕπθ

(s) = KL(πθ(· | s)∥µ(· |
s)), whose gradient admits the standard score-function ∂θϕπθ

(s) = Ea∼πθ(·|s)

[
∇θ log πθ(a |

s)
(
1 + log πθ(a | s) − logµ(a | s)

)]
. By enforcing overlapping support between πθ and µ in

implementation (e.g., using a probability floor), we guarantee that ϕπθ
remains finite and that ∂θϕπθ

is bounded across all states, thereby satisfying assumption A1.

Assumption A2 requires that the optimal policy π∗
θ exists inside the feasible set, which implies that

the budget constraint is almost surely satisfied and no probability mass is concentrated on the bound-
ary. This assumption is mild in practice, since by choosing a sufficiently large penalty parameter
n we can always discourage boundary-violating policies and guarantee the existence of a feasible
optimum.

Under assumptions A1–A2, we can characterize the explicit-dependence term (II) in a unified way:

1) On strictly feasible trajectories, i.e., when d −
∑t−1

u=0 Cπθ
(su) > 0, the feasibility indicator

is locally constant in a neighborhood of π∗
θ , so ∂θR̂πθ,n(st,at) = 0 at every step and term (II)

vanishes.

2) When a trajectory has already violated the budget, the reward switches to the penalized branch,
therefore in the infeasible region term (II) reduces to ∂θR̂πθ,n(st,at) = − ∂θϕπθ

(st).

3) At the boundary, where the cumulative constraint exactly equals d, the reward becomes non-
differentiable. We replace the derivative with a generalized subgradient, following prior RL works
with non-smooth objectives Zhang et al. (2020); Wang & Zou (2022); Kumar et al. (2023). We
adopt the Mordukhovich subgradient following the definition from Mordukhovich (2018), and the
term (II) reduces to −1

{
d −

∑t−1
u=0 Cπθ

(su) ≤ ε
}
∂θϕπθ

(st) by taking the limiting subgradient
from the infeasible side with a small tolerance ε ↓ 0 during training.

We note that in practice, the probability of hitting the boundary exactly is small in the continuous
setting of the constraint value, and term (II), through its explicit single-step decomposition, also
contributes to variance reduction during training, as observed in prior works Czarnecki et al. (2019);
Gu et al. (2024). As a result, term (II) disappears on feasible trajectories near the optimum, while
continuing to provide informative signals both for trajectories that violate the constraint and for
those approaching the boundary.

Therefore, our final gradient for optimization is

∇θJn(θ) = Eπθ

[∑
t≥0

∇θ log πθ(at | st)
(∑

u≥t

γu−t R̂πθ,n(su,au)
)]

− Eπθ

[∑
t≥0

γt
1

{
d−

t−1∑
u=0

Cπθ
(su) ≤ ε

}
∂θϕπθ

(st)

]
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B PROOFS OF CONSTRAINT SATISFACTION GUARANTEE

Theorem B.1 (Optimal equivalence). For every feasible state sT , the optimal value functions of the
unaugmented MDP M̂n

d in equation 4 and the augmented MDP M̃n
d in equation 3 are equivalent:

V̂ ∗(sT ) = Ṽ ∗(sT , zT ).

Proof. Given the budget recursion zT = d−
∑T−1

t=0 Cπ(st) and the fact that sT encodes the whole
past and Cπ is deterministic in s given a fixed teacher policy µ and a student policy π, zT is a
deterministic function of any reachable sT for any predefined budget d. Therefore, the step-wise
rewards in the feasible set are equivalent in M̃n

d and M̂n
d , R̃n(sT , zT ,aT ) = R̂π,n(sT ,aT ) for

every reachable time T along any feasible trajectories by the definitions in equation 3 and equation 4.

The s-marginal transition kernel is identical in both formulations sT+1 ∼ PS(· | sT ,aT ), and
the budget update is deterministic zT+1 = zT − Cπ(sT ) in the augmented model M̃n

d . Define
the projected policy on the reachable set by π̄(a | s) := π(a | s, z(s)), where z(s) denotes the
reconstructed budget associated with s. Then the action distribution under π̄ at s equals that under π
at (s, z(s)). Therefore, the induced (s,a)-trajectory laws coincide, and together with the step-wise
reward equality we obtain the policy-wise identity V̂ π̄

n (sT ) = Ṽ π
n (sT , zT ).

Conversely, for any un-augmented policy π̄(a | s) define the lifted policy π↑(a | s, z) := π̄(a | s).
This yields Ṽ π↑

n (s, z) = V̂ π̄
n (s) on the reachable set, so the suprema over the two policy classes

agree there; hence V̂ ∗
n (sT ) = V ∗

n (sT , zT ).

We adopt the following standard assumptions Hernández-Lerma & Muñoz de Ozak (1992); Sootla
et al. (2022b) for the discrete token setting in distillation:

B1. The reward function R̂n(sT ,aT ) is bounded, measurable, and upper semicontinuous on S ×A;

B2. The transition kernel P is weakly continuous on S ×A; B3. The action space A is compact.

Theorem B.2 (Bellman optimality and value convergence). Consider the unaugmented MDP M̂d,
satisfying assumption B1-B3 with the associated equation 4, then:

a) the Bellman equation is satisfied in M̂d;

b) the optimal value function V̂ ∗
n for M̂n

d converges monotonically to V̂ ∗
∞ for M̂∞

d .

Proof. For B1, the task reward in our setting is bounded and measurable on feasible steps,
0 ≤ R(s,a) ≤ Rmax, and the discrepancy on infeasible steps is also bounded and measurable,
0 ≤ ϕπ(s) ≤ Φmax. On the discrete token state–action space (S × A), every real-valued func-
tion is continuous and hence also upper semicontinuous. Since each point is isolated, any sequence
(sk,ak) → (s,a) is eventually constant, so lim sup(s′,a′)→(s,a) R̂n(s

′,a′) = R̂n(s,a), which es-
tablishes B1.

For B2, note that for any bounded function g : S → R, the map (s,a) 7→
∑

s′ P(s′ | s,a) g(s′) is
continuous since the domain is discrete, which implies the usual weak continuity condition holds in
this setting.

For B3, the action set A is a finite token space, hence compact.

a) Under B1–B3, standard dynamic programming results ensure the existence of an optimal value
function satisfying the Bellman equation for M̂n

d by using Theorem 4.2 in Hernández-Lerma &
Muñoz de Ozak (1992), applied here to the discrete setting.

b) The penalty on infeasible steps becomes harsher with n while using the same discrepancy function
ϕπ . Let m > n, then on infeasible steps R̂m ≤ R̂n. Hence V̂ π

m(s) ≤ V̂ π
n (s) for any policy π

and state s, and taking supπ yields V̂ ∗
m(s) ≤ V̂ ∗

n (s). Therefore, the optimal values V̂ ∗
n converge

monotonically to V̂ ∗
∞ as n → ∞.
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Theorem B.3 (Almost surely constraint satisfaction). If there exists an optimal policy π∗ solving
M̂∞

d with a finite value, then π∗ is also an optimal policy for the original constrained MDP Md

and satisfies the constraint almost surely.

Proof. In M̂∞
d , any trajectory that ever violates the budget receives −∞ return; therefore a finite

value under π∗ implies Pπ∗(
∑∞

t=0 Cπ∗(st) ≤ d) = 1, i.e., the constraint holds almost surely. On
the feasible set, where the budget is never violated, the step-wise rewards in M̂∞

d and Md coincide,
so the objectives coincide. Since π∗ maximizes the objective in M̂∞

d and is feasible almost surely,
it also maximizes the objective in Md and satisfies the constraint almost surely.

C A PERSPECTIVE OF LLM DISTILLATION AS CONTEXTUAL MDPS

We formalized LLM distillation as a standard MDP in this work, given that the student πθ is frozen
within each episode and the teacher µ is fixed during distillation, so the induced control process is
time-homogeneous. This is the standard formulation used in prior RL for LLM distillation works Gu
et al. (2024); Czarnecki et al. (2019) and supports standard convergence/optimality analysis. Here
we note an equivalent viewpoint that treats each episode under a fixed context c (e.g., a policy check-
point), giving a Contextual MDP that is optimality equivalent to the standard MDP formulation.

Definition C.1 (Contextual MDP for LLM Distillation). The contextual MDP Mctx
d is a tuple

(C, S, A, P, Rctx
n , γ), where C is the context space, with c ∈ C fixed during an episode, the

contextual reward Rctx
n : S ×A× C → R is

Rctx
n (s, a; c) =

R(s, a), if d−
T−1∑
t=0

C(st, c) ≥ 0,

−
(
n+ ϕ(s, c)

)
, otherwise.

with C(·, c) the per-step constraint at context c and ϕ(s, c) any f-divergence (e.g., ϕ(s, c) =
KL

(
πc(· | s)∥µ(· | s)

)
). A contextual policy is a Markov kernel π(· | s, c) on A.

For any fixed c, the slice of Mctx
d at that context induces the per-episode stationary problem used in

M̂d, with per-context reward R̂πc,n(s, a) := Rctx
n (s, a; c) and per-context policy πc(· | s) := π(· |

s, c).

Proposition C.2. For every contextual policy π(· | s, c), there is a corresponding per-context policy
πc(· | s) = π(· | s, c) such that

V π(s, c) = V̂ πc(s).

Conversely, for every per-context policy πc(· | s) there is a contextual policy π(· | s, c) = πc(· | s)
with the same return. Consequently,

sup
π

V π(s, c) = sup
πc

V̂ πc(s),

and optimal contextual policies and optimal per-context policies coincide on the reachable set.

Proof sketch. This contextualization with fixed c is an annotated MDP in the sense of (Bacchus et al.,
1996, Def. 4.1), with extended states (s, c) and stepwise rewards Rctx

n (s, a; c). For any π(· | s, c),
the (s, a)-trajectory law under Mctx

d coincides with that under the per-context policy πc(· | s) in
M̂d; moreover the stepwise rewards agree by construction Rctx

n (s, a; c) = R̂πc,n(s, a) at the fixed
context. Hence V π(s, c) = V̂ πc(s) on the reachable set. The projection/lifting correspondence
for annotated expansions (cf. (Bacchus et al., 1996, Prop. 4.3 and Cor. 4.4)) then yields equality of
suprema and optimal policies on the reachable set.

This formulation keeps c as an explicit input to the reward while remaining per-episode stationary
because c is fixed within an episode. It is thus a notationally different but also equivalent way to
present the same optimization problem as in the standard MDP.
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D ALGORITHM AND IMPLEMENTATION

D.1 SOURCE CODE

We will open-source our code upon acceptance.

D.2 REWARD FUNCTION DESIGN

For mathematical reasoning tasks, we use binary rewards based on final answer correctness:

R(sT , aT ) =

{
1.0 if final answer is correct
0.0 if final answer is incorrect

(6)

The reward is only assigned at the final step of each trajectory when the complete solution is gen-
erated. This sparse reward structure is typical for mathematical reasoning tasks where intermediate
steps cannot be easily evaluated without domain expertise.

D.3 KL DIVERGENCE COMPUTATION

The KL divergence between student and teacher policies is computed at each time step as:

KL(πθ(·|st)||µ(·|st)) =
∑
a∈V

πθ(a|st) log
πθ(a|st)
µ(a|st)

(7)

where V is the LLM vocabulary.

D.4 HYPERPARAMETER SETTINGS

We used the following hyperparameters for all the method:

• Batch size: 64 responses (8 questions × 8 responses per question)
• Learning rate: 1e−5

• Optimizer: AdamW
• Discount factor γ = 1

• Constraint threshold d = 0.35. The constraint threshold was selected based on preliminary
experiments that seek to minimize only the KL (mini-LLM and GKD).

• Number of training epochs: 20
• Penalty n: 20

The training of Llama3.2-3B with GRPO was unstable due to its very poor initial performance;
therefore, to bootstrap all methods, we apply KL distillation alone for the first 3 epochs (even with
GRPO λ = 0).

D.5 TRAINING TIME

The training takes less than 2 days on a single accelerator for each method. Overall, all the methods
need the same amount of training time. GRPO is only a bit faster because the teacher is not used,
but backward phases and generation time dominate the overall training time.

E MORE EXPERIMENTS RESULTS
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Table 1: Distillation results of Qwen2.5-1B on GSM8K. Higher final answer correctness (FAC),
reasoning win rate (RWR) and constraint satisfaction (CS) are better, while lower KL divergence
and lower reasoning loose rate (RLR) are better.

Method Apple/GSM-Symbolic GSM8K MATH
FAC ↑ RWR ↑ RLR ↓ KL ↓ CS ↑ FAC ↑ RWR ↑ RLR ↓ KL ↓ CS ↑ FAC ↑ RWR ↑ RLR ↓ KL ↓ CS ↑

Ours 70.80 60.55 10.58 0.16 (± 0.17) 96.1 76.11 58.72 7.86 0.15 (±0.19) 94.99 25.78 41.65 14.44 0.15 (± 0.17) 96.2
GRPO λ = 0.0 75.94 14.89 53.58 0.41 (± 0.28) 41.74 80.06 12.15 54.67 0.41 (± 0.29) 42.83 29.04 19.49 39.62 0.27 (±0.19) 78.68
GKD-GRPO λ = 0.001 75.50 10.64 57.88 0.29 (±0.23) 76.6 80.51 10.94 55.71 0.28 (±0.17) 78.01 28.60 18.5 38.73 0.23 (±0.17) 87.40
GKD-GRPO λ = 0.01 72.52 34.87 25.27 0.18 (±0.25) 94.2 75.89 34.52 23.76 0.18 (± 0.23) 92.11 29.04 26.55 24.23 0.15 (±0.14) 94.94
GKD-GRPO λ = 0.1 69.88 22.34 36.04 0.16 (±0.23) 94.92 75.13 20.82 35.36 0.14 (± 0.20) 94.61 27.68 20.86 30.23 0.14 (±0.15) 95.46
GKD-GRPO λ = 1.0 67.47 29.12 17.74 0.17 (±0.29) 94.34 73.69 29.01 16.37 0.16 (± 0.32) 94.08 27.16 24.04 17.37 0.15 (±0.21) 95.02
GKD-GRPO λ = 10 67.8 30.01 17.59 0.16 (±0.25) 94.66 74.07 28.94 16.73 0.15 (± 0.23) 93.1 26.6 24.01 17.82 0.15 (±0.18) 95.12
GKD 68.34 28.1 19.24 0.16 (±0.25) 94.88 74.37 27.03 18.18 0.15 (± 0.23) 94.08 26.42 23.12 18.07 0.15 (±0.17) 94.98
Mini-LLM 68.02 27.65 20.24 0.16 (±0.28) 94.2 74.22 26.20 19.68 0.15 (± 0.26) 93.78 27.06 22.01 19.71 0.15 (±0.21) 95.56

Student model 0 2.08 (±1.89) 0.14 0.22 1.96 (±1.82) 0.45 0.54 2.47 (±2.09) 3.4
Teacher model 88.12 92.27 34.46

Table 2: Distillation results of Llama3.2-3B on MATH. Higher success rates (SR) and constraint
satisfaction (CS) are better, while lower KL divergence is better.

Method Apple/GSM-Symbolic GSM8K MATH
FAC ↑ RWR ↑ RLR ↓ KL ↓ CS ↑ FAC ↑ RWR ↑ RLR ↓ KL ↓ CS ↑ FAC ↑ RWR ↑ RLR ↓ KL ↓ CS ↑

Ours 36.78 42.33 21.44 0.22 (±0.07) 94.64 38.36 51.76 19.78 0.21 (±0.07) 99.60 17.10 34.40 23.58 0.15 (±0.06) 99.48

GRPO λ = 0.0 42.48 33.82 39.12 0.71 (±0.15) 0.16 49.73 21.30 57.14 0.73 (±0.15) 0.3 18.90 25.44 47.96 0.64 (±0.2) 8.08
GKD-GRPO λ = 0.001 40.20 38.42 32.37 0.49 (±0.12) 14.56 53.44 37.18 34.36 0.5 (±0.13) 12.81 18.52 33.87 34.65 0.39 (±0.14) 38.98
GKD-GRPO λ = 0.01 40.22 23.81 33.77 0.29 (±0.09) 72.86 52.53 43.60 28.22 0.28 (±0.09) 80.89 17.62 29.21 29.32 0.21 (±0.08) 93.52
GKD-GRPO λ = 0.1 42.28 27.21 27.65 0.23 (±0.08) 90.56 53.37 32.74 35.67 0.23 (±0.08) 92.57 17.48 30.07 25.38 0.16 (±0.07) 98.20
GKD-GRPO λ = 1.0 38.02 24.31 30.63 0.21 (±0.08) 94.18 42.45 31.99 35.24 0.21 (±0.07) 95.98 17.80 27.38 29.90 0.14 (±0.06) 99.22
GKD-GRPO λ = 10 37.92 26.16 28.10 0.21 (±0.08) 94.5 38.66 30.08 36.90 0.20 (±0.07) 95.60 18.42 30.17 28.18 0.14 (±0.06) 99.46
GKD 36.88 26.87 27.71 0.21 (±0.08) 94.7 38.36 41.74 28.42 0.20 (±0.07) 95.98 17.80 29.80 25.66 0.14 (±0.06) 99.24
Mini-LLM 37.34 26.46 28.66 0.21 (±0.08) 94.38 39.25 26.12 40.73 0.21 (±0.07) 95.52 15.88 30.27 26.22 0.14 (±0.06) 99.20

Student model 0 0.73 (±0.88) 2.75 1.45 (±1.57) 0.08 1.02 (±0.9)
Teacher model 51.86 54.58 32.08
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GDK-GRPO = 0.001

GDK-GRPO = 0.01

GDK-GRPO = 0.1

GDK-GRPO = 1.0

GDK-GRPO = 10.0
MiniLLM GDK

Opponent Method

GRPO

GDK-GRPO = 0.001

GDK-GRPO = 0.01

GDK-GRPO = 0.1

GDK-GRPO = 1.0

GDK-GRPO = 10.0

MiniLLM

GDK

M
et

ho
d

52.4 45.9 39.2 38.1 40.9 40.4 38.9 39.8

25.3 31.8 30.1 28.2 33.1 28.0 31.2 29.1

25.6 43.8 37.6 36.0 41.6 39.5 34.1 38.7

22.2 43.4 29.9 23.9 28.9 28.8 24.2 29.3

18.7 45.7 32.1 28.6 27.8 27.3 23.1 27.5

20.7 40.8 29.0 26.5 24.0 23.7 21.9 24.2

19.8 43.2 32.4 31.1 25.9 23.3 25.1 21.7

17.7 44.1 32.3 30.8 29.0 30.6 26.4 30.1

23.2 42.1 32.9 28.9 24.4 24.2 22.8 20.4
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Y
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Figure 5: Pairwise comparison heatmap showing the relative performance of our method against
baselines, averaged across all three evaluation datasets (Apple/GSM-Symbolic, GSM8K, and
MATH) on Llama3.2-3B. Averaging over columns gives the reasoning win rate (RWR) and over
rows the reasoning loss rate (RLR).
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F GENERATED ANSWERS

Ours:

To determine what percentage of the whale’s body length the
combined length of the remoras is, we need to follow these steps:
1. Convert the length of the remoras from inches to feet:

45 inches ×
1 foot

12 inches
= 3.75 feet

So, each remora is 3.75 feet long.
2. Calculate the total length of the remoras:

4 remoras × 3.75 feet per remora = 15 feet

3. Determine the total length of the whale:

300 feet

4. Calculate the percentage of the whale’s body length that
the combined length of the remoras represents:(

15 feet
300 feet

)
× 100%

5. Simplify the fraction:

15

300
= 0.05

6. Convert the decimal to a percentage:

0.05 × 100% = 5%

Therefore, the combined length of the remoras is 5 percent of
the whale’s body length.

GRPO λ = 0:

Let’s break down the problem step by step to find the percentage
of the whale’s body length that the combined length of the re-
moras represents.
First, we need to convert all units to the same unit. Let’s use feet
for this calculation.
The length of each remora is given as 45 inches. Since there are
12 inches in a foot, the length of each remora in feet is:

45

12
= 3.75 feet

Since there are 4 remoras, the total length of the remoras is:

4 × 3.75 = 15 feet

Next, we add the length of the whale to the combined length of
the remoras to get the total length of the whale:

300 + 15 = 315 feet

Now, we need to find what percentage the combined length of
the remoras is of the whale’s body length. This can be calculated
using the formula for percentage:(

15

315

)
× 100

Simplifying the fraction inside the percentage formula:

15

315
=

1

21(
1

21

)
× 100 =

100

21
≈ 4.7619

Rounding to the nearest whole number, we get:

5

Question:
Leilani saw a 300-foot whale with 4 45-inch remoras attached to it. What percentage of the whale’s body length is the combined
length of the remoras?

Judge:
Response A correctly calculates the percentage by comparing the remoras’ total length to the whale’s length without adding them, en-
suring accuracy. Response B incorrectly adds the remoras’ length to the whale’s, leading to a flawed calculation.
Verdict: A wins

Figure 6: Example of generated answer with Qwen2.5-1.5B-Math after distillation.
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Ours:

To determine what percentage of the whale’s body length the
combined length of the remoras is, we need to follow these steps:
1. Convert the length of the remoras from inches to feet:
- Each remora is 12 inches long.
- There are 12 inches in a foot.
- Therefore, the length of each remora in feet is:

12 inches
12 inches per foot

= 1 foot

- Since there are 2 remoras, the total length of the remoras in feet
is:

2 remoras × 1 foot per remora = 2 feet

2. Calculate the percentage of the whale’s body length:
- The whale’s body length is 200 feet.
- The combined length of the remoras is 2 feet.
- To find the percentage, we use the formula:

Percentage =

(
Length of remoras

Whale’s body length

)
× 100

- Substituting the values, we get:

Percentage =

(
2 feet

200 feet

)
× 100

- Simplify the fraction:

2

200
= 0.01

- Multiply by 100 to convert to a percentage:

0.01 × 100 = 1%

Therefore, the combined length of the remoras is 1 % of the
whale’s body length.

GRPO λ = 1:

To determine what percentage of the whale’s body length the
combined length of the remoras is, we need to follow these steps:
1. Convert the length of the remoras from inches to feet.
2. Add the length of the remoras to the length of the whale.
3. Calculate the percentage of the whale’s body length that the
combined length of the remoras represents.
First, we convert the length of the remoras from inches to feet.
Since there are 12 inches in a foot, we divide 12 by 12 to get 1
foot per inch. Therefore, the length of each remora is:

12 inches ÷ 12 = 1 foot

Since there are 2 remoras, the total length of the remoras is:

2 remoras × 1 foot/remora = 2 feet

Next, we add the length of the remoras to the length of the
whale:

200 feet + 2 feet = 202 feet

Now, we calculate the percentage of the whale’s body length that
the combined length of the remoras represents. We do this by
dividing the total length of the remoras by the length of the whale
and then multiplying by 100:(

2 feet
200 feet

)
× 100 = 1%

Therefore, the combined length of the remoras is 1 % of the
whale’s body length.

Question:
Wei saw a 200-foot whale with 2 12-inch remoras attached to it. What percentage of the whale’s body length is the combined length
of the remoras?

Judge:
Response A is more clear and logically structured, breaking down each step with proper mathematical notation and avoiding unneces-
sary complexity. Response B incorrectly adds the remoras’ length to the whale’s length, which is irrelevant to the problem and intro-
duces confusion.
Verdict: A wins

Figure 7: Example of generated answer with Qwen2.5-1.5B-Math after distillation.
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Ours:

To determine how many fourth-grade boys were at Maple Grove
School on Thursday, we need to follow these steps:
1. Calculate the number of fourth-grade boys:
- The total number of fourth-graders is 154.
- The number of fourth-grade girls is 80.
- Therefore, the number of fourth-grade boys is:

154 − 80 = 74

2. Determine the number of fourth-grade boys absent:
- On Thursday, 6 fourth-grade boys were absent.
3. Calculate the number of fourth-grade boys present:
- The total number of fourth-grade boys is 74.
- The number of fourth-grade boys absent is 6.
- Therefore, the number of fourth-grade boys present is:

74 − 6 = 68

Thus, the number of fourth-grade boys at Maple Grove School on
Thursday is 68 .

GDK:

To determine how many fourth-grade boys were at Maple Grove
School on Thursday, we need to follow these steps:
1. Calculate the number of fourth-grade girls present:
- Total number of fourth-graders: 154
- Number of fourth-grade girls: 80
- Number of fourth-grade girls present: 154 − 3 = 151
2. Calculate the number of fourth-grade boys present:
- Total number of fourth-graders: 154
- Number of fourth-grade boys: 154 − 80 = 74
- Number of fourth-grade boys present: 74 − 6 = 68
Thus, the number of fourth-grade boys present on Thursday is
68 .

Question:
There are 154 fourth-graders at Maple Grove School. 80 of them are girls. On Thursday, 3 fourth-grade girls and 6 fourth-grade boys
were absent. How many fourth grade boys were at Maple Grove School on Thursday?

Judge:
Response A provides a clearer and more accurate approach by first determining the total number of boys and then subtracting the ab-
sent ones. Response B incorrectly calculates the number of girls present, which could lead to confusion.
Verdict: A wins

Figure 8: Example of generated answer with Qwen2.5-1.5B-Math after distillation.
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