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ABSTRACT

We introduce a novel approach to large language model (LLM) distillation by
formulating it as a constrained reinforcement learning problem. While recent
work has begun exploring the integration of task-specific rewards into distillation
processes, existing methods typically rely on ad-hoc reward weighting. We pro-
pose a principled optimization framework that maximizes task-specific rewards
while constraining the divergence from the teacher model to remain below a spec-
ified threshold. Our approach adapts constrained state augmented reinforcement
learning to the distillation setting, introducing a modified reward function that
maintains theoretical guarantees of constraint satisfaction without requiring state
augmentation or teacher model access during deployment and without the com-
putational overhead of the dual Lagrangian methods. Through extensive experi-
ments on mathematical reasoning tasks, we demonstrate that our method achieves
better constraint satisfaction rates and better reasoning compared to the soft La-
grangian relaxation baselines while maintaining competitive task performance.
Our framework provides a theoretically grounded and practically efficient solu-
tion for reward-aware distillation in resource-constrained settings.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in a wide range of natural lan-
guage processing tasks (Vaswani et al.l 2017} |Trinh et al., [2024; |Chervonyi et al., [2025}; |Guo et al.,
2025]), but their size and complexity make them impractical for deployment in resource-constrained
environments. Distillation (Hinton et al., 2015; |Czarnecki et al.,|2019), a technique where a smaller
student model learns from a larger teacher model, has been widely used to transfer knowledge while
reducing computational costs. Conventional distillation methods (Sanh et al., 2020; \Gu et al., [2024;
Ko et al.|[2024) typically focus on minimizing the divergence between the student and teacher mod-
els, often using metrics such as Kullback-Leibler (KL) divergence. However, these methods do not
fully leverage additional reward signals that can provide valuable guidance, particularly in tasks re-
quiring complex reasoning. Focusing solely on the KL divergence can lead to suboptimal learning,
as it may force students to mimic complex reasoning paths that exceed their capacity rather than dis-
covering simpler, equally effective reasoning paths. In contrast, a method that purely optimizes for
reward cannot guarantee that the reasoning leading to the solution is correct. When reward signals
are considered together with KL, Agarwal et al.|(2024)) propose to focus on a penalty method where
a hyperparameter \ is introduced to balance the preference between reward and KL.

In this paper, we propose a novel approach to LLM distillation by formulating it as a constrained
reinforcement learning (RL) problem. Specifically, we aim to maximize the task reward while en-
suring that the divergence between the student and teacher models stays below a predefined thresh-
old. Although choosing the threshold likewise balances the reward—teacher divergence trade-off as
does tuning the hyperparameter A, it is far simpler, since it is specified directly in terms of KL scale
rather than requiring a delicate balance between values that may vary greatly in scale across differ-
ent stages of training when adjusting A. Finally, when the student is deemed to be close enough
to the teacher, i.e. when the constraint is satisfied, the objective conveniently reduces to reward
maximization, as the KL term can be safely omitted.
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rQuestion:
Leilani saw a 300-foot whale with 4
45-inch remoras attached to it. What
percentage of the whale’s body length
\is the combined length of the remoras’!/
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Let’s break down the problem step
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whale’s body length that the com-
bined length of the remoras repre-
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First, we need to convert all units to | | oss Rate.

the same unit. Let’s use feet for this
calculation.
The length of each remora is given as
45 inches. Since there are 12 inches
in a foot, the length of each remora
in feet is: 45

— = 3.75 feet

12

To determine what percentage of the
whale’s body length the combined
length of the remoras is, we need to
follow these steps:
1. Convert the length of the remoras
from inches to feet:

1 foot

12 inches

So, each remora is 3.75 feet long.
2. Calculate the total length of the
remoras:

45 inches X = 3.75 feet

Since there are 4 remoras, the total
length of the remoras is:

4 % 3.75 = 15 feet
Next, we add the length of the whale
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4 remoras X 3.75 feet per remora = 15 Correctness

to the combined length of the re- —— Ours Reasoning === GKD A=0.01

3. Determine the total length of the moras to get the total length of the GRPO Win Rate GKD A=0.1
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whale’s body length that the com- age the combined length of the re-
bined length of the remoras repre- moras is of the whale’s body length. .
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Loss Rate Satisfaction
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300 :
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— 1 100
0.05 x 100% = 5% (7) % 100 = ~ 4.7619
21 21

Therefore, the combined length of the
remoras is percent of the whale’s
Kbody length.

Rounding to the nearest whole num-

ber, we get:
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Figure 1: Example illustrating that checking the Figure 2: Comparison of our method against
final answer alone is insufficient for evaluating baselines across with Qwen2.5-1.5B-Math
reasoning. GRPO (right) makes mistakes and (top) and Llama-3.2-3B (bottom) averaged
reaches a wrong answer (4.76) but takes an ex- across three evaluation datasets. To ensure big-
tra rounding step to the correct one (5), likely as a  ger surface means better results, the reasoning
learned strategy through training. loss rate and the KL divergence were inverted.

Final Answer
Correctness
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J

Solving our new constrained RL problem follows standard methods for constraint optimization in
which we write a dual Lagrangian optimization problem (Achiam et al., [2017; Boyd & Vanden-
berghel 2004} |Altman, [1999), but it would be impractical to solve with LLM because of the huge
computational cost of solving a max-min problem with large teacher models. Instead, we adopt a
state augmentation method known as Saute (Sootla et al.l 2022bga). It relaxes the constrained op-
timization problem by formulating a new state-augmented Markov Decision Process (MDP) with a
reformulated reward function. This approach not only changes the reward but also introduces a new
state space that helps in maintaining the theoretical guarantees of the original constraints without the
need for explicit Lagrangian multipliers. However, Saute assumes that it can compute the constraint
in every state. For distillation, it would result in the need to have access to the teacher model at
test time, which fundamentally defeats the purpose of distillation. To address this issue, we modify
the Saute method by removing the state augmentation step using the assumption that the policy is
history-conditioned, which is the case for LLM. This modification allows us to maintain the theo-
retical guarantees of Saute while ensuring that the student model can operate independently of the
teacher at test time. By reformulating the reward function alone, we achieve a more efficient and
practical solution for distillation.

Through extensive experiments, we demonstrate that our proposed method effectively minimizes the
KL divergence while achieving superior performance in terms of reasoning quality and comparable
final answer correctness (see Figure [2). We show that reward maximization alone, as proposed in
Guo et al.| (2025), cannot guarantee correct reasoning steps by itself and that the teacher signal is
useful for LLM to better reason (see Figure|T).
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Our contributions are summarized as follows:

* We formulate LLM distillation as a constrained RL problem, integrating task-specific reward
signals to guide the distillation process.

* We adapt the Saute method by removing the state augmentation step, ensuring the student model
operates independently of the teacher at test time while maintaining the theoretical guarantees
and enhancing exploration on constraint-violating trajectories.

* We conduct extensive experiments on mathematical reasoning tasks to demonstrate that our
method identifies a notable point on the Pareto front balancing divergence minimization, reward
maximization, and reasoning quality.

This work bridges the gap between distillation and constrained RL, offering a promising direction
for improving the efficiency and effectiveness of knowledge transfer in LLMs.

2 BACKGROUND

2.1 DISTILLATION

Knowledge distillation has emerged as a critical technique for transferring knowledge from large,
complex teacher models to smaller, more efficient student models (Hinton et al.l 2015). Standard
distillation methods primarily focus on minimizing the divergence, often Kullback-Leibler (KL) di-
vergence, between the student and teacher models (Ba & Caruana, |2014;|Gou et al.| 2021]), treating
the distillation as a supervised imitation at the token or representation level. While effective for
general language understanding tasks, these methods struggle on complex reasoning tasks: min-
imizing solely the divergence while ignoring task-specific reward signals can fail to capture the
solution paths with better performance. For instance, in mathematical reasoning tasks, the teacher
model may rely on complex reasoning paths that are difficult for a smaller student model to repli-
cate due to its limited capacity, while alternative, simpler reasoning strategies that achieve the same
correct outcome might be more suitable for the student to learn and memorize (Zhang et al.l 2025).

Recent advances incorporate reward signals into distillation (Agarwal et al., 2024), recasting it as
a policy-optimization problem in which the student policy 7 is trained to maximize expected task
reward R while being regularized by a divergence D(, 11) to teacher policy p:

rn;f:mxl[*]7T [R— AD(m,un)], (1)

where A controls the trade-off between the task performance and teacher fidelity. However, the
optimal A is difficult to anticipate and requires extensive retraining on specific tasks, making this
approach unstable and computationally expensive for large sequential models. This challenge mo-
tivates viewing distillation instead as a constrained learning problem that can directly maximize
the task reward subject to a divergence budget. This perspective eliminates ad hoc hyperparameter
tuning while providing interpretable fidelity guarantees and a principled foundation for reasoning-
oriented distillation.

2.2 CONSTRAINED REINFORCEMENT LEARNING

Constrained reinforcement learning (CRL) addresses the problem of optimizing a primary objective
while satisfying constraint requirements (e.g., safety) (Achiam et al., [2017). In LLM distillation,
we can constrain the divergence between the teacher and student policy, following the constrained
MDP formulation M4 = (S, A, P, R, C,~, d), where s; is the current prompt with partial response,
the action a; is the next token generated by the student model, P is the transition kernel, R is the
task-specific reward (e.g., correctness in mathematical reasoning), Cr(s¢) := Dy (m(-|s¢)||pe(-|se))
is the per-state f-divergence between student 7 and teacher p, v € (0, 1) is the discount factor and
d is a predefined budget. The goal is to find a policy 7 that maximizes the task reward while keeping
the expected divergence lower than the threshold d:

[ee]
Z Y R(sy, at)] st. E,

t=0

<d. 2

max [E,
s

> Calsy)
t=0

This kind of constrained problem can be solved with a direct optimization: [Sootla et al.| (2022b)
introduced a state augmentation method that reformulates the constrained MDP as an augmented
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MDP M" = (S JAP R, d) by adding a auxiliary state variable z; that tracks the remaining
budget at every time step ¢, z¢11 = 2z — Cr(St), 20 = d, transforming the problem into:

o0
Z ’YtR'n,(Stv Zy, at)

t=0

3)

maxE,
s

N R ST, ar ifZT Z 07
, Rn(ST,ZTyaT) = {51 ) ifzpr <0

Here S = S x Z is the augmented state space, P : S x A x & — [0, 1] is the transition kernel,
and Rn is a constrained reward function with a large positive n > Ry, .« for penalization when
the budget d is exhausted. As n — oo, any optimal policy of the augmented MDP is feasible for
the constraint and attains the constrained optimum under standard assumptions. This method avoids
the computational overhead of Lagrange multipliers formulation (cf. equation [I)), which can be
written as max,; minx>o Ex [> .~ V' R(s, ar) — A (3,2 Cx(s¢) — d)] for the same formulation,
and typically requires tuning a dual variable and running dual ascent.

However, directly applying this formulation to distillation would require maintaining the augmented
state z7 online during distillation, which would necessitate access to the teacher model at test time
to compute C; at every timestep. This is impractical for distillation, where the goal is to create
a student model that operates independently of the teacher. In the following section, we address
this challenge by proposing a new formulation for LLM distillation to eliminate the need for state
augmentation while preserving the theoretical guarantees.

3 METHOD

3.1 CONSTRAINED RL FOR LLM DISTILLATION

We introduce a constrained MDP formulation for distillation that removes state augmentation while
retaining the hard-constraint semantics, therefore enabling constrained RL without accessing the
teacher policy at every single step. In LLM distillation, we model the state as the full interaction
history, so the induced control process is fully observable. Therefore, removing the augmented
state z7 in equation |3| from the state does not induce partial observability. At any time 7', we can
recompute the remaining budget from the full observed history encoded in s, hence the augmented

state zy is a deterministic function of the state with zp = d — ZtT;Ol Cr(st)-

We propose a constrained MDP formulation for LLM distillation without state augmentation Mn =

(S, AP, RA,L7 7, d), where ]A%n is the constrained reward that combines the task-specific reward with
a feasibility signal for constraint satisfaction. The goal is to find a policy 7 that maximizes the
task-specific reward while keeping the divergence lower than the threshold d:

max [E, [Z ’thmn (st,ay)
t=0

. {R(ST, ar) if d— 371 Cr(se) > 0,

R n\ST,ar == [ OtherW]SG
( ) (n @7 ( T ))
( )

The constrained reward without the augmented state z; preserves the feasibility signal for the
constraint satisfaction, such that the student model receives the positive task-specific reward only
when the constraint with budget d is satisfied, while any trajectory that violates the constraint incurs
a large hard penalty. This penalty is a fixed value in the previous setting equation [3|for all infeasible
trajectories, we refine this penalty by adding a policy-dependent discrepancy term ¢, (sr) to
differentiate the trajectories within the infeasible region: trajectories that deviate more from the
teacher policy receive a stronger penalty, whereas marginally deviating ones are penalized less.
We define ¢, (sr) as any f-divergence, including KL and Jensen—Shannon divergence, between
the student and teacher at st, which is nonnegative and equals zero iff 7(- | s7) = u(- | sr).
Therefore, the penalty —(n + ¢, (st)) is strictly negative, while in feasible region we maintain
the original task specific reward to guide exploration. This formulation preserves the augmented-
MDP penalty semantics and increases sample efficiency by delivering informative negative feedback
among violating trajectories, without altering feasibility decisions or the limiting optimum.
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3.2 PoLICY GRADIENT OPTIMIZATION

We detail policy gradient optimization for the unaugmented objective in equation ] and derive the
policy gradient decomposition with an explicit-dependence term. Our method directly maximizes
the expected discounted return with standard policy gradient, thereby avoiding the instabilities from
infeasible gradient vector fields in on-policy distillation observed by |Czarnecki et al.| (2019). We
parameterize the student policy as g and maximize the expected discounted return:

Tn(0) = Em{i’ytﬁﬁgm(st, a)]

t=0

Because J,,(0) depends on 6 both through the trajectory distribution induced by 7y and inside the
reward via the discrepancy ¢,, its gradient decomposes into (I) the likelihood-ratio term and (II)

the explicit dependence term of R, ,, on 0:

Vodu(0) = Exy| S Vologmo(ar | 50) (307" Reyn(suran))

t>0 u>t

+ ]EWQ[Z ’Yt aQRTrg,n(Stv at):|
t>0

(I) likelihood-ratio term (II) explicit-dependence term

(&)

We compute VyJ,,(0) following the policy gradient theorem Sutton et al. (1999) under the following
minimal assumptions:

Al. For each state st, ¢, (s7) is finite and differentiable in 6, and its gradient is measurable and
integrable along trajectories Er,[ >°,< V' [|0pdr, (s1)]|] < 00

A2, There exists an optimal policy 7 with a finite value such that ]P’(d - ZtT;()l Crs(st) > 0) =1.

In practice, we take ¢ = KL with a small probability floor, ensuring finiteness and differentiability.
A2 ensures the existence of an optimal feasible policy, i.e., the budget is satisfied almost surely at the
optimum. Under Al and A2, we can characterize the explicit-dependence term (II) in a unified way
(see Appendix [A]for the full derivation across feasible, infeasible, and boundary cases) by including
the gradient and limiting sub-gradient of Rﬂe,n with a small tolerance € | 0 round the feasibility
boundary. Our final gradient for optimization is

ng log mg(ay | st) (Z'y“*t Rﬁg’n(su,au)ﬂ

VoJn(0) = Enr,

t>0 u>t
t—1
_ Ewlzvt 1{ d— Cry(su) <e } Doy (st)]
t>0 u=0

3.3 THEORETICAL GUARANTEE FOR CONSTRAINT SATISFACTION

In this section, we show that our reformulation of the constrained MDP preserves the constraint sat-
isfaction guarantee while enabling deployment without teacher access. In particular: (i) the optimal
policy and value functions are equivalent between our un-augmented objective in equation[dand the
augmented objective in equation [3} (ii) Bellman optimality holds under standard assumptions; and
(iii) as m — oo, every optimal policy with finite value satisfies the constraint almost surely.

In LLM distillation, the student policy 7 is frozen within each episode, so the induced control
process is time-homogeneous. We adopt this per-episode stationary view; all statements are uniform
over a fixed 7 on the reachable set. We further formalize an equivalent contextual MDP view, in
which each episode carries a fixed context ¢ (e.g., a policy checkpoint), and prove its optimality-
equivalence to the standard MDP in Appendix [C]

Theorem 3.1 (Optimal equivalence). For every feasible state s, the optimal value functions of the

unaugmented MDP M 7 in equation H and the augmented MDP M7 in equationare equivalent:

V*(ST) = ‘N/* (ST, ZT).
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This theorem justifies that removing the budget variable z; does not change the control problem
we are solving. This equivalence holds because the augmented state z is reconstructable from the
observed history under any fixed student 7 and teacher p via zp = d— ZtT:_Ol Cr(st), so augmented
states (s7, z) and un-augmented states s induce identical trajectories and stepwise rewards along
any feasible paths. We give the precise construction and full proof details in Appendix

We adopt the following standard assumptions Hernandez-Lerma & Munoz de Ozak| (1992); Sootla
et al.|(2022Db)) for the discrete token setting in distillation:

B1. The reward function R,L(ST, ar) is bounded, measurable, and upper semicontinuous on S x .A4;
B2. The transition kernel P is weakly continuous on S x A;  B3. The action space A is compact.

Theorem 3.2 (Bellman optimality and value convergence). Consider the unaugmented MDP M d
satisfying assumption BI1-B3 with the associated equation |4} then:

a) the Bellman equation is satisfied in M 4;

b) the optimal value function V; for M} converges monotonically to f/o*o Sfor M.

Theorem 3.3 (Almost surely constraint satisfaction). If there exists an optimal policy " solving

M with a finite value, then 7 is also an optimal policy for the original constrained MDP M
and satisfies the constraint almost surely.

These results show that our modified approach maintains the guarantees of the original constrained
problem while eliminating state augmentation (see Appendix [B|for proofs and discussion). At test
time, the student operates without teacher access: the cumulative reward is computed from the
student’s own output distribution and environment feedback. This makes our approach practical for
LLM distillation while retaining guarantees of feasibility.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on two distinct distillation settings to evaluate our proposed method. For
the first setting, we distill a Qwen2.5-1.5B-Math student model from a Qwen2.5-7B-Math-Instruct
teacher model using the GSMSK training dataset. For the second setting, we distilled a Llama-3.2-
3B student model from a Llama-3.2-11B-Instruct teacher model using the MATH training dataset.
In both setting, we evaluated the resulting checkpoints after 20 epochs on the Apple/GSM-Symbolic
(main) (Mirzadeh et al.| [2025)), the test set of GSM8K (Cobbe et al.| 2021) and the whole test set of
MATH (Hendrycks et al., 2021) (from which MATHS00 is selected).

Baselines. Our proposed constrained optimization method is built upon the GRPO policy gradient
algorithm (Shao et al., [2024). To assess its effectiveness, we benchmark against several strong
distillation baselines, each re-implemented under the same GRPO framework to ensure fairness and
consistency. More precisely, for every method, the batch size and its composition is the same (64
answers, 8 questions, 8 answers per question). The learning rate (1e~°) and the optimizer (AdamW)
are also the same. We consider the following baselines:

* GRPO: The base algorithm in our experiments. GRPO optimizes purely for the rask-specific
reward using a robust, value-function-free policy gradient with a group-average reward base-
line (Shao et al., 2024).

* GKD: A distillation-only baseline whose objective is to minimize the reverse KL divergence
Dy, (g || i), treating the negative per-step KL as an intrinsic reward. We use GRPO rather than
the REINFORCE-style update of |Agarwal et al.|(2024])) for consistency.

* GKD-GRPO: A baseline that jointly optimizes for both the task-specific reward and the GKD
objective. This corresponds to the standard Lagrangian relaxation of our constrained problem in
Eq. (I), with X as the balancing hyperparameter (Agarwal et al., 2024).

* Mini-LLM: On-policy reverse KL divergence minimization (Gu et al.,2024), accounting for the
long-term effects of actions on KL (Tang & Munos, 2025). As in GKD, task reward is ignored.
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For consistency, we sample trajectories exclusively with the student policy and substitute PPO
with a GRPO-based update.

Together, these baselines span the main approaches to RL-based distillation: optimizing task re-
wards, relying solely on KL supervision, and hybrid formulations that combine both. To ap-
proximate the Pareto frontier of the Lagrangian relaxation baseline (GKD-GRPO), we perform
a grid search over the multiplier A\ across several orders of magnitude, reporting results for
A € {0.001,0.01,0.1,1.0,10}. Note that when A = 0, it equals to the pure GRPO baseline. The
constraint threshold d = 0.35 was selected based on preliminary experiments that seek to minimize
only the KL (mini-LLM and GKD).

Metrics. We evaluate models using four key metrics:

* Final Answer Correctness (FAC): It verifies that the final answer inside \boxed{} is correct. It
is used to define the reward function R in our MDPs.

» Reasoning Quality: To assess the logical validity of the reasoning path beyond the final answer,
we use an LLM-as-a-Judge setting (Zheng et all [2023). Specifically, we use DeepSeek-RI-
Distill-Qwen-32B (DeepSeek-All [2025) to perform pairwise comparisons between generated
solutions. The judge is provided with the correct final answer to isolate its evaluation to the
reasoning process itself. This yields the Reasoning Win Rate (RWR) and Reasoning Loss Rate
(RLR), reported as percentages (Zhou et al., 2025)).

* Constraint Satisfaction: The percentage of test samples where the KL divergence between the
student and teacher policies is below a predefined threshold d.

* KL Divergence: The average student-teacher policy divergence cross the entire test set.

4.2 EXPERIMENT RESULTS

We organize our set of experiments to answer the following questions:

A. What is the best method in general?

B. Is our method able to achieve higher constraints satisfaction?
C. Can external reward help achieve better distillation?

D. Does the distillation signal help to better reason?

A. What is the best method in general? Figure [2| presents a comprehensive comparison of our
constrained RL approach against baseline methods across five key metrics. The results demonstrate
that our method achieves the most balanced performance profile, excelling particularly in reasoning
quality and constraint satisfaction while maintaining competitive final answer correctness. The radar
plot reveals that pure reward optimization (GRPO A=0.0) achieves the highest final answer correct-
ness but at the cost of poor reasoning quality and severe constraint violations. Conversely, methods
that focus solely on KL minimization (GKD, Mini-LLM) maintain good constraint satisfaction but
suffer from lower final answer correctness. Our constrained RL formulation successfully navigates
this trade-off, achieving strong performance across all dimensions.

_____ Apple/GSM-Symbolic GSM8K ) MATH
GRPO \ 81 | GKD A=0.001 GRPO
76 l—J GKD A=0.001 GRPO| 29.0 E }
@ 80 CC GKDA=000%51
£ 28.5 S
t74 79
] S I
£ 78 28.0 GKD A=0.1)
Y72 275
- 77 . vTen \
7] Mini-LLM
H 76 27.0 (GKD A=1.0
<70 (GkD A=0.01] [GKD A=01] GKD A=10
- 75 (o} g . )
g Minj-LLM j)|
i 68 74 [GkD 7 26.0
GKD A=1.0 255
40 60 80 100 40 60 80 100 80 85 90 95
Constraint Satisfaction Constraint Satisfaction Constraint Satisfaction

Figure 3: Pareto frontier analysis showing the trade-off between final answer correctness and con-
straint satisfaction across different methods and hyperparameter settings for Qwen2.5-1.5B-Math.
Each point represents a different method configuration. The points in red belong to the Pareto front.
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B. Is our method able to achieve higher constraints satisfaction? Figure[3illustrates the Pareto
frontier between final answer correctness and constraint satisfaction across different methods and
hyperparameter settings. Our approach consistently achieves superior constraint satisfaction rates
while maintaining competitive final answer correctness, occupying a unique region of the Pareto
front. This demonstrates the effectiveness of our constrained formulation in achieving the desired
balance between task performance and teacher fidelity. Note that without introducing ¢, our method
would have a great difficulty satisfying a strict constraint due to the lack of signal: all trajectories
would receive the same penalty n and the training would divergence.

C. Can external reward help achieve better distillation? Comparing reward-based methods
(GRPO, GKD-GRPO variants, and ours) against purely KL-based methods (GKD, Mini-LLM) re-
veals the crucial role of external rewards in distillation. Pure KL minimization methods always
achieve lower final answer correctness rates in every dataset for each model (Figure 2] and Ap-
pendix [E). Beyond the improvement over final answer correctness, we also observe that our method
achieves higher reasoning win rates which can also be attributed to the use of the reward function.
This substantial improvement demonstrates that incorporating task-specific rewards enables the stu-
dent model to learn more effective reasoning strategies rather than merely mimicking the teacher’s
surface-level outputs.

D. Does the distillation signal help to bet-
ter reason? Figure [4] presents a compre- m_xqwi"
hensive pairwise comparison matrix averaged e
across all three evaluation datasets with Qwen. GRPO7 4.8 il " [l B
The comparison between pure reward Optimiza- GDK-GRPO A=0.0011 5.2 23.2 11.5 19.9 10.3 9.2 9.5 10.7
tion (GRPO A=0.0) and our constrained ap-
proach provides strong evidence for the value
of teacher guidance in reasoning tasks. While
GRPO achieves the highest raw final answer GDK-GRPOA=10113.8
correctness (75-80%), it exhibits poor reason- coxcrrore 100
ing quality with win rates of only 12-19% and

GDK-GRPO A =0.01 40.2 26.5 26.4 26.1 28.2

GDK-GRPO A =0.1 14.8 15.4 15.1 16.0

Method

26.4 34.1 12.6 12.6 15.7

correspondingly high loss rates of 39-55%. Our e T
constrained formulation dramatically improves MiniLLi 13.0 B °: °° 1@ Y
reasoning quality while maintaining competi- o P (I o od 28 o ot (o

tive success rates. It demonstrates that con- SO SES

straining the student to stay close to the teacher e Oppanent Method

distribution helps preserve and transfer the o ) )
teacher’s reasoning capabilities. The equivalent Figure 4: Pairwise comparison heatmap showing

figure for Llama3.2-3B is provided in the Ap- the relative performance of our method against
pendix [F baselines, averaged across all three evaluation

datasets (Apple/GSM-Symbolic, GSMS8K, and
Qualitative Analysis: In Figure[l] we presenta  MATH) with Qwen2.5-3B-Math. Darker colors
test set example in which both our method and  jndicate superior performance in row-to-column
the GRPO baseline yield the correct final an-  comparisons. Averaging over columns gives the

swer. However, only our method produces log- reasoning win rate (RWR) and over rows the rea-
ically valid reasoning steps, while GRPO’s rea-  soning loss rate (RLR).

soning is flawed. More examples are provided
in the Appendix

These results collectively demonstrate that our constrained RL approach successfully addresses the
core challenges of reward-aware distillation: it maintains high constraint satisfaction rates, leverages
external rewards for improved task performance, and preserves the teacher’s reasoning capabilities
in the student model. The method achieves a superior balance across all evaluation dimensions
compared to existing approaches that typically excel in only one aspect of the distillation objective.
We provide more detailed results in the Appendix [E]

5 RELATED WORKS

Task-specific Distillation. The prevailing paradigm in LLM distillation is to pass knowledge from
a powerful teacher to a compact student by aligning their output distributions, typically through the
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reverse KL divergence (Hinton et al.| 20155 Sanh et al.,|2020; |Gu et al., [2024; |Agarwal et al.| [2024).
However, this objective does not explicitly guarantee the preservation of the teacher’s underlying
reasoning abilities on complex tasks (Gudibande et al.| 2024), motivating a shift towards more so-
phisticated, task-aware techniques. The problem is now increasingly framed through the lens of RL,
where adherence to the teacher is elegantly re-conceptualized as a dense, token-level reward derived
from the KL divergence. This forms the basis of general-purpose distillation methods (Agarwal
et al., |2024; [Ko et al.l 2024} 2025)), which uses a REINFORCE-style update, and Mini-LLM (Gu
et al., [2024])), which decomposes the policy gradient to separate the high-variance, long-term reward
from a more stable, single-step objective. This RL framework can then be extended by composing
the KL-based reward with an external task reward, Ry, (Agarwal et al.,[2024).

Task-aware Extensions. Beyond these RL formulations, a significant body of work integrates
richer, task-specific signals into the distillation process to provide denser supervision. One promi-
nent strategy, process-aware distillation, supervises the student to replicate the teacher’s interme-
diate reasoning steps, thereby transferring the underlying causal logic rather than just the final out-
put (Hsieh et al.L[2023;|Adarsh et al.|, 2024} |Chen et al.L|2025). Other approaches include logit-aware
distillation, which intelligently modifies the KL divergence loss to emphasize pivotal, task-relevant
tokens identified via attention or Bayesian principles (Li et al., 2025} 2024; [Saadi & Wang, |2025)),
and knowledge-augmented methods that use retrieval to transfer a teacher’s ability to synthesize
external information (Kang et al.,|2023; Tian et al, [2025)). While these sophisticated strategies sig-
nificantly improve signal density, they often introduce new complexities, such as the need for fine-
grained annotations, complex weighting heuristics, or the overhead of external knowledge bases.

Constrained RL for LLM Distillation. The application of RL to task-specific LLM distilla-
tion remains relatively under-explored (Zhang et al) |2025). In standard alignment settings like
RLHF (Ouyang et al.l 2022)), the KL penalty against a reference model is primarily a regularization
tool to prevent catastrophic forgetting and maintain stylistic diversity (Yang et al., 2024} Stiennon
et al.,[2022)). However, in the distillation setting, this KL term takes on the dual role of a constraint,
intended to preserve the teacher’s reasoning capabilities. Most methods still use a fixed penalty,
which is simple but can be brittle, as a static weight may not prevent the student from exploiting
task rewards via shallow or degenerate reasoning (Gudibande et al., [2024). To our knowledge, the
principled distillation of task-specific, constrained RL policies from LLM:s is still scarce, with most
related work only examining it briefly (Agarwal et al., [2024).

A more robust alternative is to treat the KL divergence as an explicit trust-region constraint and solve
the resulting constrained-RL problem; classic trust-region and constrained-RL methods provide a
standard toolkit for this (Schulman et al., 2015} |Achiam et al.,2017). Dual Lagrangian solvers can
then adapt the KL penalty to restore an interpretable fidelity—performance point, but at LLM scale,
this is practically challenging: teacher forward passes, cached-logit strategies, and inner-loop/dual
updates add significant compute, memory, and variance costs (Dasgupta et al.| 2023} |/Achiam et al.,
2017). In this work, we address these challenges by reformulating the dual Lagrange problem within
a state-augmented MDP framework (Calvo-Fullana et al.l 2024} [Sootla et al., [2022a3b), for which
we provide a principled and efficient optimization solution that remains practical at the LLM scale.

6 CONCLUSION

In this work, we moved beyond the conventional paradigm of regularized distillation and introduced
a principled framework based on constrained reinforcement learning. By adapting principles from
the safe RL literature, we developed a solution that maintains theoretical guarantees of constraint
satisfaction without requiring the impractical state augmentation typical of classic methods. This ap-
proach successfully navigates the trade-off between task-specific performance and teacher fidelity,
eliminating the need for brittle, ad-hoc reward weighting and the prohibitive costs of traditional dual
max-min optimization. Our experiments on mathematical reasoning demonstrate that it is possible
to enforce a strict KL divergence constraint with high fidelity while maintaining competitive task re-
wards. This method provides a theoretically grounded and practically efficient pathway for creating
smaller, reliable, and specialized models that operate reliably within a defined trust region of their
teacher—a crucial step towards more controllable and deployable LLMs.
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A DERIVATION OF POLICY GRADIENT

We compute the gradient of J,,(6) w.r.t 6 following the policy gradient theorem Sutton et al.| (1999)
under the following minimal assumptions:

Al. For each state s, ¢, (s) is finite and differentiable in 6, and its gradient is measurable and
integrable along trajectories: Eq,[ >=,5 0 7 (|09 dx, (s0)[|] < 00;

A2. There exists an optimal policy 7 with a finite value such that ]P’(d - ZZ:Ol Crs(8t) > O) =1.

Assumption Al ensures that the discrepancy function ¢, and its gradient are well-behaved so that
the explicit-dependence term (II) in equation [3]is finite and integrable to guarantee that the policy-
gradient estimator has bounded variance. This assumption can be satisfied by many discrepancy
functions, in our implementation, we choose ¢ as the KL divergence ¢, (s) = KL(m(- | s)||u(- |

s)), whose gradient admits the standard score-function Jyor,(s) = an(.‘s){vg log mgp(a |

s) (1 + logmg(a | s) — logpu(a | s))} By enforcing overlapping support between 7y and p in

implementation (e.g., using a probability floor), we guarantee that ¢, remains finite and that Jp¢ .,
is bounded across all states, thereby satisfying assumption Al.

Assumption A2 requires that the optimal policy 7} exists inside the feasible set, which implies that
the budget constraint is almost surely satisfied and no probability mass is concentrated on the bound-
ary. This assumption is mild in practice, since by choosing a sufficiently large penalty parameter
n we can always discourage boundary-violating policies and guarantee the existence of a feasible
optimum.

Under assumptions A1-A2, we can characterize the explicit-dependence term (II) in a unified way:

1) On strictly feasible trajectories, i.e., when d — ZZ_:IU Cr,(sy) > 0, the feasibility indicator

is locally constant in a neighborhood of 7, so 89Rﬂ9,n(st, a;) = 0 at every step and term (II)
vanishes.

2) When a trajectory has already violated the budget, the reward switches to the penalized branch,
therefore in the infeasible region term (II) reduces to Jg R, 1 (St, &) = — Opdx, (St)-

3) At the boundary, where the cumulative constraint exactly equals d, the reward becomes non-
differentiable. We replace the derivative with a generalized subgradient, following prior RL works
with non-smooth objectives [Zhang et al.| (2020); Wang & Zou| (2022)); Kumar et al.| (2023). We
adopt the Mordukhovich subgradient following the definition from Mordukhovich| (2018)), and the
term (II) reduces to — ll{d — ZZ_:lo Crp(sy) < e} Opdr, (st) by taking the limiting subgradient
from the infeasible side with a small tolerance ¢ | 0 during training.

We note that in practice, the probability of hitting the boundary exactly is small in the continuous
setting of the constraint value, and term (II), through its explicit single-step decomposition, also
contributes to variance reduction during training, as observed in prior works (Czarnecki et al.|(2019);
Gu et al.|(2024). As a result, term (II) disappears on feasible trajectories near the optimum, while
continuing to provide informative signals both for trajectories that violate the constraint and for
those approaching the boundary.

Therefore, our final gradient for optimization is

Vo Jn(0) = Eg,

ZV@ log 7o (ay | st) (Zwu_t Rﬂg,n(su,au))]

t>0 u>t

_ ]EM[Z’yt ]l{ d— i Cr,(sy) <€ } 0o P, (st)l
u=0

t>0
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B PROOFS OF CONSTRAINT SATISFACTION GUARANTEE

Theorem B.1 (Optlmal equwalence) For every feasible state st, th the optimal value functions of the
unaugmented MDP M7 in equatlonand the augmented MDP M7 in equatlonare equivalent:

V*(ST) =V (ST, ZT).

Proof. Given the budget recursion zg = d — Z;T:_Ol C(s¢) and the fact that s encodes the whole
past and C; is deterministic in s given a fixed teacher policy ;1 and a student policy 7, zp is a
deterministic function of any reachable sy for any predeﬁned budget d. Therefore, the step-wise

rewards in the feasible set are equivalent in M” and M " Ry(sr,zr,ar) = R7T n(sp,ar) for
every reachable time 7" along any feasible trajectories by the definitions in equation[3] and equation[d]
The s-marginal transition kernel is identical in both formulations s711 ~ Ps(- | sr,ar), and

the budget update is deterministic z71 = z7 — Cr(s7) in the augmented model M. Define
the projected policy on the reachable set by 7(a | s) := w(a | s,z(s)), where z(s) denotes the
reconstructed budget associated with s. Then the action distribution under 7 at s equals that under 7
at (s, z(s)). Therefore, the induced (s, a)-trajectory laws coincide, and together with the step-wise

reward equality we obtain the policy-wise identity V.7 (sp) = V.7 (sr, z7).

Conversely, for any un-augmented policy 7(a | s) define the lifted policy 7' (a | s,2) := 7(a | s).
This yields VT ! (s,2z) = V/7(s) on the reachable set, so the suprema over the two policy classes
agree there; hence V,*(sp) = V.*(sp, z7). O

We adopt the following standard assumptions |Hernandez-Lerma & Mufioz de Ozak] (1992); Sootla
et al.| (2022b)) for the discrete token setting in distillation:

B1. The reward function Rn(sT, ar) is bounded, measurable, and upper semicontinuous on S x A4;
B2. The transition kernel P is weakly continuous on S x A;  B3. The action space A is compact.

Theorem B.2 (Bellman optimality and value convergence). Consider the unaugmented MDP M ds
satisfying assumption B1-B3 with the associated equationd} then:

a) the Bellman equation is satisfied in M 4;

b) the optimal value function ‘A/; for M} converges monotonically to VO*O Sfor M.

Proof. For B1, the task reward in our setting is bounded and measurable on feasible steps,
0 < R(s,a) < Rpax, and the discrepancy on infeasible steps is also bounded and measurable,
0 < ¢r(8) < Dpax- On the discrete token state—action space (S x A), every real-valued func-
tion is continuous and hence also upper semicontinuous. Since each point is isolated, any sequence
(sk,ax) — (s,a) is eventually constant, s0 im sup g/ a1y (s a) R, (s',a') = R,(s,a), which es-
tablishes B1.

For B2, note that for any bounded function g : S — R, the map (s,a) — > _, P(s’ | s,a) g(s') is
continuous since the domain is discrete, which implies the usual weak continuity condition holds in
this setting.

For B3, the action set A is a finite token space, hence compact.

a) Under B1-B3, standard dynamic programming results ensure the existence of an optimal value
function satisfying the Bellman equation for M\g by using Theorem 4.2 in Herndndez-Lerma &
Munoz de Ozak| (1992)), applied here to the discrete setting.

b) The penalty on infeasible steps becomes harsher with n while using the same discrepancy function
¢x. Let m > n, then on infeasible steps R, < R,. Hence V,7(s) < V7 (s) for any policy 7
and state s, and taking sup, yields V*(s) < V*(s). Therefore, the optimal values V,* converge
monotonically to VO"; as m — oo. 0
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Theorem B.3 (Almost surely constraint satisfaction). If there exists an optimal policy m* solving

MS® with a finite value, then ©* is also an optimal policy for the original constrained MDP M,
and satisfies the constraint almost surely.

Proof. In M, any trajectory that ever violates the budget receives —oo return; therefore a finite
value under 7* implies Pr- (3°;°, Cr-(s¢) < d) = 1, i.e., the constraint holds almost surely. On

the feasible set, where the budget is never violated, the step-wise rewards in M3 and M coincide,

so the objectives coincide. Since 7* maximizes the objective in M$° and is feasible almost surely,
it also maximizes the objective in M and satisfies the constraint almost surely. O

C A PERSPECTIVE OF LLM DISTILLATION AS CONTEXTUAL MDPs

We formalized LLM distillation as a standard MDP in this work, given that the student 7y is frozen
within each episode and the teacher y is fixed during distillation, so the induced control process is
time-homogeneous. This is the standard formulation used in prior RL for LLM distillation works|Gu
et al.| (2024); (Czarnecki et al.| (2019) and supports standard convergence/optimality analysis. Here
we note an equivalent viewpoint that treats each episode under a fixed context c (e.g., a policy check-
point), giving a Contextual MDP that is optimality equivalent to the standard MDP formulation.

Definition C.1 (Contextual MDP for LLM Distillation). The contextual MDP MS™ is a tuple
(C, 8, A, P, RS*™ ~), where C is the context space, with ¢ € C fixed during an episode, the
contextual reward RS™ : § x A x C — R is

T-1
R(s,a), ifd— > C(si,c) >0,
t=0

Ry (s,a3¢) =

—(n+¢(s,c)), otherwise.

with C(-,¢) the per-step constraint at context ¢ and ¢(s,c) any f-divergence (e.g., ¢(s,c) =
KL(7e(- | s)||l(- | 8))). A contextual policy is a Markov kernel 7 (- | s, ¢) on A.

For any fixed c, the slice of M at that context induces the per-episode stationary problem used in
M, with per-context reward R, (s,a) := RS (s, a; ¢) and per-context policy 7. (- | s) := (- |
8,C).

Proposition C.2. For every contextual policy 7 (- | s,c), there is a corresponding per-context policy
7me(- | 8) =7(- | s,¢) such that

V™(s,¢) = V™ (s).

Conversely, for every per-context policy T.(- | s) there is a contextual policy w(- | s,¢) = mc(- | )
with the same return. Consequently,

sup V7 (s, ¢) = sup V™ (s),

Te

and optimal contextual policies and optimal per-context policies coincide on the reachable set.

Proof sketch. This contextualization with fixed c is an annotated MDP in the sense of (Bacchus et al.|
1996, Def. 4.1), with extended states (s, ¢) and stepwise rewards RS™ (s, a; ¢). For any 7 (- | s,¢),
the (s, a)-trajectory law under MS™ coincides with that under the per-context policy 7.(- | s) in

My; moreover the stepwise rewards agree by construction R$™(s,a;c) = Ry, (s, a) at the fixed
context. Hence V™ (s,¢) = V™(s) on the reachable set. The projection/lifting correspondence
for annotated expansions (cf. (Bacchus et al.| [1996| Prop. 4.3 and Cor. 4.4)) then yields equality of
suprema and optimal policies on the reachable set. O

This formulation keeps ¢ as an explicit input to the reward while remaining per-episode stationary
because c is fixed within an episode. It is thus a notationally different but also equivalent way to
present the same optimization problem as in the standard MDP.
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D ALGORITHM AND IMPLEMENTATION

D.1 SoURCE CODE

We will open-source our code upon acceptance.

D.2 REWARD FUNCTION DESIGN
For mathematical reasoning tasks, we use binary rewards based on final answer correctness:

1.0 if final answer is correct
0.0 if final answer is incorrect

R(st,ar) = { (6)

The reward is only assigned at the final step of each trajectory when the complete solution is gen-
erated. This sparse reward structure is typical for mathematical reasoning tasks where intermediate
steps cannot be easily evaluated without domain expertise.

D.3 KL DIVERGENCE COMPUTATION

The KL divergence between student and teacher policies is computed at each time step as:

KL(W9('|5t)||/L("3t)) = ;}7‘1’9(&|5t) logm )

where V is the LLM vocabulary.

D.4 HYPERPARAMETER SETTINGS
We used the following hyperparameters for all the method:

* Batch size: 64 responses (8 questions X 8§ responses per question)
* Learning rate: 1¢7°

* Optimizer: AdamW

* Discount factor y = 1

* Constraint threshold d = 0.35. The constraint threshold was selected based on preliminary
experiments that seek to minimize only the KL (mini-LLM and GKD).

* Number of training epochs: 20
 Penalty n: 20
The training of Llama3.2-3B with GRPO was unstable due to its very poor initial performance;

therefore, to bootstrap all methods, we apply KL distillation alone for the first 3 epochs (even with
GRPO X = 0).

D.5 TRAINING TIME

The training takes less than 2 days on a single accelerator for each method. Overall, all the methods
need the same amount of training time. GRPO is only a bit faster because the teacher is not used,
but backward phases and generation time dominate the overall training time.

E MORE EXPERIMENTS RESULTS
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Table 1: Distillation results of Qwen2.5-1B on GSMS8K. Higher final answer correctness (FAC),
reasoning win rate (RWR) and constraint satisfaction (CS) are better, while lower KL divergence
and lower reasoning loose rate (RLR) are better.

Method Apple/GSM-Symbolic GSMSK MATH

FACT RWR 1 RLR | KL | CS 1 FACT RWR 1 RLR | KL | CS 1t FACT RWR T RLR | KL | CS 1t
Ours 70.80 60.55 10.58 0.16 (£ 0.17) 96.1 76.11 5872 7.86 0.15(£0.19) 94.99 2578 41.65 14.44 0.15(£0.17) 96.2
GRPO A = 0.0 75.94 14.89 53.58 0.41(+0.28) 41.74 80.06 12.15 54.67 0.41(4+0.29) 42.83 29.04 1949 39.62 0.27(+0.19) 78.68
GKD-GRPO X = 0.001 75.50 10.64 57.88 0.29 (£0.23) 76.6 80.51 10.94 5571 0.28 (£0.17) 78.01 28.60 185 38.73 0.23(£0.17) 87.40
GKD-GRPO X = 0.01 7252 3487 2527 0.18(40.25) 94.2 7589 3452 2376 0.18 (£0.23) 92.11 29.04 2655 2423 0.15(£0.14) 94.94
GKD-GRPO X = 0.1 69.88 22.34 36.04 0.16(£0.23) 94.92 75.13  20.82 35.36 0.14 (£ 0.20) 94.61 27.68 20.86 30.23 0.14 (£0.15) 95.46
GKD-GRPO \ = 1.0 67.47 29.12 1774 0.17(£0.29) 94.34 73.69 29.01 1637 0.16 (+0.32) 94.08 27.16 24.04 1737 0.15(£0.21) 95.02
GKD-GRPO \ = 10 67.8 3001 17.59 0.16 (£0.25) 94.66 74.07 28.94 16.73 0.15(£0.23) 93.1 26.6 2401 17.82 0.15(£0.18) 95.12
GKD 6834 281 1924 0.16(+0.25) 94.88 7437 27.03 18.18 0.15(40.23) 94.08 2642 2312 18.07 0.15(£0.17) 94.98
Mini-LLM 68.02 27.65 2024 0.16(+£0.28) 94.2 7422 2620 19.68 0.15 (4 0.26) 93.78 27.06 22.01 19.71 0.15(£0.21) 95.56
Student model 0 2.08 (£1.89) 0.14 0.22 1.96 (£1.82) 045 0.54 247 (£2.09) 34
Teacher model 88.12 92.27 34.46

Table 2: Distillation results of Llama3.2-3B on MATH. Higher success rates (SR) and constraint
satisfaction (CS) are better, while lower KL divergence is better.

Method Apple/GSM-Symbolic GSMSK MATH

FACT RWRT RLR| KL | cs FACT RWRT RLR| KL | cst FACT RWR? RLR| KL cst
Ours 36.78 42.33 2144 0.22(+0.07) 94.64 3836 51.76 19.78 0.21 (+0.07) 99.60 17.10  34.40 23.58 0.15(+0.06) 99.48
GRPO A = 0.0 4248 3382 39.12 0.71 (£0.15) 0.16 49.73 2130 57.14 0.73(£0.15) 0.3 18.90 2544 4796 0.64(+0.2) 8.08
GKD-GRPO A =0.001 4020 3842 32.37 0.49(£0.12) 14.56 5344 37.18 3436 0.5(+0.13) 12.81 18.52 3387 34.65 0.39(£0.14) 38.98
GKD-GRPO \ = 0.01 40.22 2381 33.77 0.29 (£0.09) 72.86 5253 43.60 28.22 0.28 (+0.09) 80.89 17.62  29.21 29.32 0.21 (£0.08) 93.52
GKD-GRPO A = 0.1 4228 2721 27.65 0.23 (£0.08) 90.56 5337 3274 35.67 0.23 (£0.08) 92.57 17.48 30.07 25.38 0.16 (£0.07) 98.20
GKD-GRPO A = 1.0 38.02 2431 30.63 0.21(+0.08) 94.18 4245 3199 3524 0.21(£0.07) 95.98 17.80 27.38  29.90 0.14 (+£0.06) 99.22
GKD-GRPO A = 10 37.92 26.16 28.10 0.21(4+0.08) 94.5 38.66 30.08 36.90 0.20 (+0.07) 95.60 18.42 30.17 28.18 0.14 (£0.06) 99.46
GKD 36.88 26.87 27.71 0.21(+0.08) 94.7 3836 4174 2842 0.20 (£0.07) 95.98 17.80 29.80 25.66 0.14 (+0.06) 99.24
Mini-LLM 3734 2646 28.66 0.21 (£0.08) 94.38 39.25 26.12 40.73 0.21(%0.07) 95.52 15.88 3027 26.22 0.14 (£0.06) 99.20
Student model 0 0.73 (+0.88) 2.75 1.45 (£1.57) 0.08 1.02 (£0.9)
Teacher model 51.86 54.58 32.08

GRPO 31.8 30.1 28.2 33.1 28.0 312 29.1 Y
GPICGRROA=0.001 _ 44
GDK-GRPO A =0.01 29.9 23.9 28.9 288 24.2 29.3
3
£ GDK-GRPOA=0.1 32.1 28.6 27.8 27.3 23.1 27.5
H
GDK-GRPO A = 1.0 29.0 26.5 24.0 23.7 219 24.2
GDK-GRPO A =10.0 32.4 311 25.9 23.3 25.1 217
MiniLLM 32.3 30.8 29.0 30.6 26.4 30.1 |x - loss
t
GDK 32.9 28.9 24.4 24.2 22.8 204 Y
N N
R \’B} o %»Q,V‘\\“\&l\ ot
iNg 0 0
«° ,(,ix"o (f"\? \L,o‘*? ‘(,\x‘?o
S O IO ¥

Opponent Method

Figure 5: Pairwise comparison heatmap showing the relative performance of our method against
baselines, averaged across all three evaluation datasets (Apple/GSM-Symbolic, GSM8K, and
MATH) on Llama3.2-3B. Averaging over columns gives the reasoning win rate (RWR) and over
rows the reasoning loss rate (RLR).
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F GENERATED ANSWERS

-
Question:

Leilani saw a 300-foot whale with 4 45-inch remoras attached to it. What percentage of the whale’s body length is the combined
length of the remoras?

N

(Ours: 1 (GRPO A = 0:
To determine what percentage of the whale’s body length the Let’s break down the problem step by step to find the percentage
combined length of the remoras is, we need to follow these steps: || of the whale’s body length that the combined length of the re-
1. Convert the length of the remoras from inches to feet: moras represents.
First, we need to convert all units to the same unit. Let’s use feet
. 1 foot . for this calculation
4 hes X ———— = 3.75 fi )
5 inches x 12 inches 3.75 feet The length of each remora is given as 45 inches. Since there are
. 12 inches in a foot, the length of each remora in feet is:
So, each remora is 3.75 feet long.
2. Calculate the total length of the remoras: 45

— = 3.75 feet
12

4 remoras X 3.75 feet per remora = 15 feet . i
Since there are 4 remoras, the total length of the remoras is:

3. Determine the total length of the whale:
4 x 3.75 = 15 feet
300 feet Next, we add the length of the whale to the combined length of

4. Calculate the percentage of the whale’s body length that (heperoradlofeedibefictalllen el baic:

the combined length of the remoras represents: 300 + 15 = 315 feet
15 feet % 100% Now, we need to find what percentage the combined length of
300 feet the remoras is of the whale’s body length. This can be calculated

using the formula for percentage:

( 15 ) X 100
E = 0.05 315
300

5. Simplify the fraction:

Simplifying the fraction inside the percentage formula:
6. Convert the decimal to a percentage:

15 _ 1
0.05 x 100% = 5% 315 21

Therefore, the combined length of the remoras is percent of (i) x 100 = @ ~ 4.7619
21 21

the whale’s body length.
Rounding to the nearest whole number, we get:

. AN

(Judge:
Response A correctly calculates the percentage by comparing the remoras’ total length to the whale’s length without adding them, en-
suring accuracy. Response B incorrectly adds the remoras’ length to the whale’s, leading to a flawed calculation.

\Verdict: A wins

Figure 6: Example of generated answer with Qwen2.5-1.5B-Math after distillation.
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(Question: )
Wei saw a 200-foot whale with 2 12-inch remoras attached to it. What percentage of the whale’s body length is the combined length
of the remoras?
. J
(Ours: \(GRPO A = 1: )
To determine what percentage of the whale’s body length the To determine what percentage of the whale’s body length the
combined length of the remoras is, we need to follow these steps: || combined length of the remoras is, we need to follow these steps:
1. Convert the length of the remoras from inches to feet: 1. Convert the length of the remoras from inches to feet.
- Each remora is 12 inches long. 2. Add the length of the remoras to the length of the whale.
- There are 12 inches in a foot. 3. Calculate the percentage of the whale’s body length that the
- Therefore, the length of each remora in feet is: combined length of the remoras represents.
. First, we convert the length of the remoras from inches to feet.
12 inches — 1 foot Since there are 12 inches in a foot, we divide 12 by 12 to get 1
12 inches per foot foot per inch. Therefore, the length of each remora is:

- Since there are 2 remoras, the total length of the remoras in feet
is:

12 inches < 12 = 1 foot

2 remoras X 1 foot per remora = 2 feet Since there are 2 remoras, the total length of the remoras is:

2. Calculate the percentage of the whale’s body length:
- The whale’s body length is 200 feet. 2 remoras X 1 foot/remora = 2 feet
- The combined length of the remoras is 2 feet.

- To find the percentage, we use the formula: Next, we add the length of the remoras to the length of the

whale:
Length of remoras ) 200 feet + 2 feet = 202 feet
100

Whale’s body length

- Substituting the values, we get:

Percentage = (
Now, we calculate the percentage of the whale’s body length that

the combined length of the remoras represents. We do this by
dividing the total length of the remoras by the length of the whale

2 feet and then multiplying by 100:
Percentage = (7> 100
200 feet 2 feet
<7> x 100 = 1%
- Simplify the fraction: 200 feet
2 Therefore, the combined length of the remoras is % of the
200 0.01 whale’s body length.
- Multiply by 100 to convert to a percentage:
0.01 x 100 = 1%
Therefore, the combined length of the remoras is % of the
whale’s body length.
- AN J
( R
Judge:
Response A is more clear and logically structured, breaking down each step with proper mathematical notation and avoiding unneces-
sary complexity. Response B incorrectly adds the remoras’ length to the whale’s length, which is irrelevant to the problem and intro-
duces confusion.
Verdict: A wins
N J

Figure 7: Example of generated answer with Qwen2.5-1.5B-Math after distillation.
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s N

Question:

There are 154 fourth-graders at Maple Grove School. 80 of them are girls. On Thursday, 3 fourth-grade girls and 6 fourth-grade boys
kwere absent. How many fourth grade boys were at Maple Grove School on Thursday? )
(Ours: )\ (GDK: 2

To determine how many fourth-grade boys were at Maple Grove To determine how many fourth-grade boys were at Maple Grove

School on Thursday, we need to follow these steps: School on Thursday, we need to follow these steps:

1. Calculate the number of fourth-grade boys: 1. Calculate the number of fourth-grade girls present:

- The total number of fourth-graders is 154. - Total number of fourth-graders: 154

- The number of fourth-grade girls is 80. - Number of fourth-grade girls: 80

- Therefore, the number of fourth-grade boys is: - Number of fourth-grade girls present: 154 — 3 = 151

2. Calculate the number of fourth-grade boys present:
154 — 80 =74 - Total number of fourth-graders: 154
- Number of fourth-grade boys: 154 — 80 = 74

2. Determine the number of fourth-grade boys absent: - Number of fourth-grade boys present: 74 — 6 = 68

- On Thursday, 6 fourth-grade boys were absent. Thus, the number of fourth-grade boys present on Thursday is

3. Calculate the number of fourth-grade boys present:

- The total number of fourth-grade boys is 74. I

- The number of fourth-grade boys absent is 6.

- Therefore, the number of fourth-grade boys present is:

74 —6 =68

Thus, the number of fourth-grade boys at Maple Grove School on

Thursday is X
= AN J
( N

Judge:

Response A provides a clearer and more accurate approach by first determining the total number of boys and then subtracting the ab-

sent ones. Response B incorrectly calculates the number of girls present, which could lead to confusion.

\Verdict: A wins )

Figure 8: Example of generated answer with Qwen2.5-1.5B-Math after distillation.
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