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3Halıcıoğlu Data Science Institute, UC San Diego, USA

Abstract

In conventional regression analysis, predictions
are typically represented as point estimates derived
from covariates. The Gaussian Process (GP) offer
a kernel-based framework that predicts and quan-
tifies associated uncertainties. However, kernel-
based methods often underperform ensemble-
based decision tree approaches in regression tasks
involving tabular and categorical data. Recently,
Recursive Feature Machines (RFMs) were pro-
posed as a novel feature-learning kernel which
strengthens the capabilities of kernel machines. In
this study, we harness the power of these RFMs
in a probabilistic GP-based approach to enhance
uncertainty estimation through feature extraction
within kernel methods. We employ this learned
kernel for in-depth uncertainty analysis. On tab-
ular datasets, our RFM-based method surpasses
other leading uncertainty estimation techniques,
including NGBoost and CatBoost-ensemble. Ad-
ditionally, when assessing out-of-distribution per-
formance, we found that boosting-based methods
are surpassed by our RFM-based approach.

1 INTRODUCTION

Regression analysis traditionally predicts future outcomes
by providing definitive values based on empirical data. How-
ever, as the applications of predictive modelling expand into
critical areas like healthcare [Nicora et al., 2022, Tran et al.,
2021, Avati et al., 2018] and weather forecasting [Gneiting
and Katzfuss, 2014], there is an increasing need to under-
stand the confidence or uncertainty surrounding these predic-
tions, beyond just point estimates. As stated in Kompa et al.
[2021] “medical ML should have the ability to say “I don’t
know” and potentially abstain from providing a diagnosis
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or prediction when there is a large amount of uncertainty
for a given patient”. A rising number of publications under-
score the importance of uncertainty quantification, evident
in fields like radiology [Chua et al., 2023], digital patho-
logy [Linmans et al., 2023], cancer digital histopathology
[Dolezal et al., 2022], and radiation oncology [Barragán-
Montero et al., 2022], to name a few.

The Recursive Feature Machine (RFM) [Radhakrishnan
et al., 2024a] represents an innovative data-adaptive kernel-
based method, which provides a unique lens for data inter-
pretation. Our research explores the capabilities of RFMs,
focusing on their aptitude for uncertainty estimation in both
in-distribution and out-of-distribution contexts. We pit our
probabilistic RFMs against other prominent techniques, es-
pecially state-of-the-art probabilistic decision tree-based
methods like NGBoost [Duan et al., 2020] and CatBoost-
ensembles [Prokhorenkova et al., 2018], underscoring their
competitive edge.

The Gaussian process (GP) is often the method of choice
for estimating uncertainty in predictions [Rasmussen and
Williams, 2006], offering a sophisticated perspective bey-
ond point estimates. However, with the ongoing evolution
in machine learning, decision tree-based techniques such
as NGBoost and CatBoost-ensembles are gaining traction.
These methods not only challenge the GP in terms of pre-
diction accuracy but have also showcased superior results
in specific uncertainty metrics like Negative Log Likeli-
hood (NLL), coverage error (CE) and prediction interval
length (IL), especially for tabular or categorical data.

In our study, we demonstrate that by combining GPs with the
data-adaptive kernel derived from the RFM, we can bridge
this performance gap, achieving results that are on par with
or even surpass gradient-based boosting approaches. In sum-
mary, (i) we introduced the RFM to the GP community and
(ii) established that the performance of RFM is comparable
to, or even superior to, existing state-of-the-art methods.
More specifically, we have the following contributions:

• Our findings reveal that GP-RFM is a strong alternative
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to leading boosting-based techniques, particularly by
enhancing uncertainty estimation in tabular datasets
via features generated from the RFM. This capability
to match or in certain instances exceed the performance
of existing top-tier methods establishes the RFM as a
new benchmark for applications that demand accurate
uncertainty assessments.

• We bring RFMs to the GP community and illustrate
that features derived from the RFM notably improve
uncertainty performance on tabular datasets. Compar-
ing the RFM with traditional GP techniques, we further
show that the RFM can extract more general feature
representations due to its ability to capture correlation
between features. This can in turn significantly improve
the resulting uncertainty estimates.

• To highlight the robustness of the RFM we compare it
on out-of-distribution data for label and covariate shift
where the RFM surpasses other uncertainty quantifica-
tion methods.

2 PRIOR WORK

Numerous uncertainty quantification methods have been
proposed in the literature for utilization with tabular data.
Here, we focus on discussing flexible methods with state-of-
the-art predictive performance.

Gaussian processes. As a non-parametric, flexible
Bayesian regression model, the Gaussian process is a well-
studied and natural choice for uncertainty quantification
[Rasmussen and Williams, 2006]. The GP is characterized
by a mean function and a kernel function as covariance.
The crucial challenge is to choose the right kernel as it en-
codes high-level assumptions about the data. Commonly, the
Radial Basis Function (RBF) or Laplace kernel is chosen,
which has a limited number of parameters to optimize. For
more flexibility, kernels with Automatic Relevance Determ-
ination (ARD) introduce covariate weighting through learn-
able parameters [MacKay, 1992, Neal, 1996]. Vivarelli and
Williams [1998] generalizes the diagonal ARD weighting
to general positive-definite weighting matrices or low-rank
factorisations. Garnett et al. [2014] and Letham et al. [2020]
use a factorized weighting matrix and approximate the pos-
terior with Laplace approximation for active learning and
Bayesian optimization. For the latter, sparse axis-aligned
Subspace GPs leverage structural sparsity in the kernel
[Eriksson and Jankowiak, 2021]. Instead of utilizing ad-
vanced kernels, we can equivalently transform the input and
use standard kernels [MacKay et al., 1998]. Neural networks
have been studied as feature extractors [Calandra et al., 2016,
Wilson et al., 2016], or where the last layer approximates
a GP [Huang et al., 2015, Liu et al., 2020]. Our approach
combines both strategies, leveraging the recently proposed
Recursive Feature Machine [Radhakrishnan et al., 2024a],

which introduces a novel feature-extracting kernel with the
probabilistic expressivity of GPs.

Probabilistic boosting. Boosting-based approaches [Fre-
und and Schapire, 1995, Friedman, 2001] allow for flexible
models, which have found widespread application on tabular
datasets [Shwartz-Ziv and Armon, 2022, Grinsztajn et al.,
2022, McElfresh et al., 2023]. Such methods include among
others AdaBoost, XGBoost, LightGBM or CatBoost [Chen
and Guestrin, 2016, Ke et al., 2017, Prokhorenkova et al.,
2018]. For classification problems, most methods have a
natural probabilistic interpretation through estimated class
probabilities. However, for regression problems, there is no
such straightforward concept. Therefore, probabilistic exten-
sions of boosting such as NGBoost, CatBoost-Ensembles
[Duan et al., 2020, Malinin et al., 2021] or extensions to Ran-
dom Forests [Schlosser et al., 2019, Shaker and Hüllermeier,
2020] have been proposed. Notably, when comparing the
performance of probabilistic boosting approaches against
our GP-RFM, our approach performs on par or even outper-
forms them across a range of evaluation metrics and tabular
regression datasets.

Neural networks. The ability to learn features from data
is a key advantage of the predictive power of neural net-
works (NN). For uncertainty quantification, Bayesian NNs
[MacKay, 1992, Neal, 1996] are a natural choice. However,
the need for approximate inference methods such as vari-
ational inference [Graves, 2011, Blundell et al., 2015] or
Markov Chain Monte Carlo [Welling and Teh, 2011] makes
them computationally expensive. Conversely, the use of
Monte Carlo dropout [Gal and Ghahramani, 2016] provides
less reliable uncertainty estimates [Ovadia et al., 2019, Gust-
afsson et al., 2020] than ensembles of NNs [Lakshminaray-
anan et al., 2017]. Although deep ensembles set the gold
standard for NNs, they necessitate training multiple NNs
resulting in high computational and memory burden. We
leverage the idea of feature learning in NN through the use
of RFMs since the learnt features in the latter are intricately
linked to features learnt in feedforward NNs [Radhakrishnan
et al., 2024a].

3 BACKGROUND

Most machine learning algorithms focus on estimating the
predictive model f(x) = E[y|x] from a training dataset
D = (X,y) = {xi ∈ Rd, yi ∈ R}ni=1. However, in many
applications, this is not sufficient. We are therefore inter-
ested in augmenting point estimates with reliable uncer-
tainty quantification to obtain the predictive distribution
p(f(x∗)|x∗,D) for a new test data point x∗. In our ap-
proach, we leverage GPs in conjunction with feature learn-
ing kernels through RFMs.



3.1 KERNEL MACHINES

Kernel machines [Schölkopf and Smola, 2002] are non-
parametric predictive models. Given training data D a kernel
machine is a model of the form

f(x) =

n∑
i=1

αik(x,xi). (1)

Here, k : Rd × Rd → R is a positive semi-definite symmet-
ric kernel function [Aronszajn, 1950]. According to the rep-
resenter theorem [Kimeldorf and Wahba, 1970], the unique
solution to the infinite-dimensional optimization problem

argmin
f∈H

n∑
i=1

(f(xi)− yi)
2 + λ ∥f∥2H (2)

has the form given in (1). Here H is the (unique) reproducing
kernel Hilbert space corresponding to k, and λ is the ridge
regularizer. It can be seen that α = (α1, . . . , αn) in (1) is
the unique solution to the linear system,

(k(X,X) + λIn)α = y. (3)

3.2 GAUSSIAN PROCESSES

To extend kernel machines into a probabilistic setting, we
can define a distribution over the predictive function which
yields a GP f ∼ GP(m, k) specified by its mean function
m and its covariance function k. Because of its properties,
we utilize the kernel function k as the covariance function
in the GP. The posterior predictive distribution of the GP is
then given by

p(f(x∗)|x∗,D) = N (f(x∗),Σ(x∗)]) , (4)

with the mean as in (1) and the covariance Σ(x∗) =
V[f(x∗)] = k(x∗,x∗)−k⊤

∗ (K+σ2I)−1k∗. We denote the
kernel matrix as K with Ki,j = k(xi,xj), k∗ = k(X,x∗)
and the measurement noise variance as σ2.

For the mean function, we choose the constant function m =
0. The choice of kernel encodes high-level assumptions
about the resulting function. We consider an exponential
kernel of the form

k(x, z) = exp (g(x, z)) . (5)

When we define g(x, z) = − 1
2ℓ2 ∥x − z∥2, we arrive at

the widely adopted Radial Basis Function (RBF) kernel.
Conversely, g(x, z) = − 1

ℓ ∥x − z∥ leads to the Laplace
kernel.

The parameters θ of the kernel include the noise variance
σ and the length scale ℓ. These parameters are often found
by solving an optimization problem dictated by Maximum
Likelihood Estimation (MLE). Specifically, we can estim-
ate these parameters in a Bayesian framework by min-
imizing the Negative Log Likelihood (NLL), defined as
− log p(y|X,θ).

3.3 RECURSIVE FEATURE MACHINES

A fundamental limitation of kernel machines is their reli-
ance on kernel functions that are not adaptive to data. As a
result, for certain tasks, kernel machines can significantly
underperform compared to neural networks. The recently
introduced RFM constitute a type of kernel machine capable
of learning features, making them data-adaptive.

To develop kernel machines that can learn features, RFM
adds a positive semi-definite, symmetric matrix, M , as a
learnable parameter into the kernel function. Specifically,
this is suited for kernel functions that depend on the distance
between points, such as k(x, z) = ϕ(∥x − z∥2) where
ϕ : R → R and x, z ∈ Rd. We incorporate the learnable
matrix M by using the Mahalanobis distance

∥x− z∥M :=
√

(x− z)TM(x− z). (6)

Therefore, the matrix M re-weights the individual covari-
ates and can incorporate correlation between covariates, for
which we call M the feature matrix. While any kernel func-
tion can be used for ϕ, we utilize the Laplace kernel based
on the Mahalanobis distance

kM (x, z) := exp

(
− 1

γ
∥x− z∥M

)
. (7)

The prediction function corresponding to this kernel is

fM (x) = kM (x,X)α, (8)

with α = kM (X,X)−1y. To learn the feature matrix M
we make use of the proposed idea of the Average Gradient
Outer Product (AGOP) from Radhakrishnan et al. [2024a]:
We start by initializing M (0) = Id. At each iteration
step t, we first solve for the kernel weights α from (8) with
fixed M . Second, we update M using the AGOP defined
as

M (t+1) =
1

n

n∑
i=1

(∇xfM(t)(xi)) (∇xfM(t)(xi))
T
. (9)

Essentially the AGOP and the resulting matrix M is the co-
variance matrix of the function gradients. Intuitively, RFM
prioritises the covariates that have the most impact on the
prediction function. Thus, RFMs learn the presentation most
relevant to the underlying task.

A special case of RFMs is when we restrict the feature
matrix M to be diagonal. This is equivalent to learning a
separate length scale for each covariate. In contrast to the
RFM without this restriction, we refer to the diagonally
restricted model as RFM-diag.

Remark. Another way of covariate weighting specifically
in GPs is through the extension with Automatic Relevance
Determination (ARD) [Neal, 1996]. The RBF kernel is ex-
tended by using g(x, z) = − 1

ℓ2 ∥x− z∥2M with M−1 =



diag([ℓ21, . . . , ℓ
2
d]). While barely utilised in practice, a sim-

ilar construction can be generated for the Laplace kernel
with ARD. This effectively increases the parameter vector θ
learnt through MLE optimization in the GP framework.

4 METHOD: GP-RFM

While GPs are powerful non-parametric models which offer
uncertainty quantification, they are limited by their reliance
on kernel functions that are not adaptive to data. RFMs are a
type of kernel machine capable of learning features, making
them data-adaptive. We propose to incorporate RFMs into
GPs by replacing the kernel function k(x, z) with the RFM-
based kernel kM (x, z). Since we are using the Laplace
kernel within the RFM, we refer to the resulting construction
as GP-RFM-Laplace.

Specifically, we consider a combination of a scale kernel
with the RFM-based kernel to obtain σ2

fkM (x, z). Since we
are interested in the predictive distribution, we can set the
mean function m of the GP to zero. The resulting predictive
distribution is then given by (4) where f(x) is given by (8).
The parameters of the GP are the feature matrix M and the
kernel parameters θ consisting of noise variance σ, length
scale ℓ as well as scale σf .

The pseudo-code of GP-RFM can be found in Algorithm 1.
It is important to highlight that the RFM algorithm, which
identifies the matrix M through the AGOP iteration, see
(9), shares the same time and memory complexity as the
GP regression algorithm, see Radhakrishnan et al. [2024a].
Consequently, incorporating this additional step does not
complicate the overall complexity. For a comparison of the
actual running times between our algorithm and other meth-
ods, please see Appendix C. In that section, we illustrate
the time efficiency advantages of our method compared
to boosting-based approaches like NGBoost and CatBoost
ensembles.

Training. We disentangle the training of the GP-RFM-
Laplace into two steps. First, we learn the feature matrix M
using the recursive iteration between solving for the kernel
weights α for (8) and updating M using the AGOP defined
in (9). To learn the kernel weights, we solve the linear sys-
tem in (3) with a Ridge regularization term for stability to
obtain α = (K + λαIn)

−1y. For the AGOP we need to
compute the gradient of the prediction function w.r.t. the
covariates xi. For the Laplace kernel, there exist closed-
form solutions which we make use of [Radhakrishnan et al.,
2024a]. Second, we learn the GP-specific kernel paramet-
ers θ by MLE optimization, specifically by minimizing the
NLL with fixed M .

Eliminating spurious correlation. In many datasets,
there exist spurious correlations between covariates. To
avoid overfitting to spurious covariate correlation, we add a

Algorithm 1 Training of the GP-RFM model

First Stage: Learning data-adaptive kernel kM
1: Input: X,y, kM , T, λM

2: Output: M
3: Initialize M = Id×d ▷ Identity matrix
4: for t in T do
5: Compute ktrain = kM (X,X)
6: Calculate α = k−1

trainy ▷ f(x) = kM (x,X)α
7: Update M : ▷ Outer product of gradients

M = 1
n

∑n
i=1(∇f(xi))(∇f(xi))

⊤ + λMId

Second Stage: Train the GP with fixed M

8: Input: X,y,M , possible composite kernel k
9: Output: fM ,ΣM

10: Define kernel with hyperparameters kgp = k(kM ,θ)
11: Optimize kernel hyperparameters θ through MLE
12: Compute predictive quantities fM (x), ΣM (x)

Ridge regularization term to the AGOP in (9) to obtain

M (t+1) =
1

n

n∑
i=1

(∇xfM(t)(xi)) (∇xfM(t)(xi))
T

+ λMId.

(10)

The Ridge regularization acts in this case as a noise fil-
ter by shrinking off-diagonal elements of M towards zero.
Therefore, the learnt feature correlation in the off-diagonal
elements of M is only kept if it is supported by the data,
making the model more robust to random variations in the
data.

Uncertainty quantification. During inference, we can
quantify the uncertainty of the GP-RFM-Laplace by comput-
ing the predictive variance V[f(x∗)] from (4). In traditional
GPs, we have to choose the kernel function carefully to en-
code assumptions about the resulting function. In contrast,
the GP-RFM-Laplace is able to learn features from the data
and therefore it is more flexible in its assumptions about
the resulting function. While Radhakrishnan et al. [2024a]
showed the predictive power of RFMs, we show that the
learnt features provide additional insight into the variability
or ambiguity of the data which is crucial for uncertainty
quantification.

Implementation details. We implement the GP-RFM-
Laplace in PyTorch [Paszke et al., 2019]. For the compu-
tation of the feature matrix in the first step of the train-
ing procedure, we rely on the official implementation by
Radhakrishnan et al. [2024a]. For the GP implementation,
we use GPyTorch [Gardner et al., 2018] which provides a
modular implementation of GPs in PyTorch. To optimize
the GP parameters, we use the Adam optimizer [Kingma
and Ba, 2014] with a cosine annealing learning rate sched-
uler [Loshchilov and Hutter, 2016]. The hyperparamet-



ers we have to select are the learning rate, the Ridge
regularization parameters λα and λM for the solver and
the AGOP, respectively. Code is openly available at ht-
tps://github.com/dgedon/rfm_uncertainty.

5 EXPERIMENTS

Datasets. We evaluate our GP-RFM-Laplace on a variety
of regression tasks. Specifically, we use two tabular regres-
sion benchmarks with datasets from UCI [Asuncion and
Newman, 2007] and OpenML [Vanschoren et al., 2014],
respectively. For the UCI benchmark we use 7 datasets
inspired by Duan et al. [2020] and for the OpenML bench-
mark, we utilize the collection of 16 numerical regression
datasets by Grinsztajn et al. [2022].

Hyperparameter tuning We follow the protocol pro-
posed in Hernández-Lobato and Adams [2015] for data
splitting and hyperparameter tuning. For the UCI bench-
mark, we follow Duan et al. [2020] to hold out 10% of the
data as a test set. For the OpenML benchmark, we follow
Grinsztajn et al. [2022] to hold out 30% of the data as a test
set. The remaining data is split into a 70% training set and
a 30% validation set to tune the hyperparameters. We use
grid-search over all combinations of hyperparameters and
select the best hyperparameters based on the validation set
NLL. Details on the hyperparameter search space can be
found in the appendix. Finally, we train the model on the
full training set and evaluate it on the test set. The process
is repeated for 20 random seeds and we report the mean and
standard deviation of the results.

Baselines. We compare our GP-RFM-Laplace and its di-
agonal version GP-RFM-Laplace-diag to a variety of prob-
abilistic baseline methods. The details are described in Ap-
pendix A. For GPs, we consider the standard RBF and
Laplace kernel. As a neural networks-based GP, we regard
deep kernel learning [Wilson et al., 2016]. Additionally,
we compare our method to kernels with ARD, specifically
the ARD-RBF [Neal, 1996] which is used in many settings
and to the ARD-Laplace kernel. The latter is a rarely used
kernel in GPs but is a natural extension of the Laplace ker-
nel to incorporate covariate weighting, learnt through MLE
optimization. Finally, we use ARD-Laplace-full as a direct
counterpart to the RFM-Laplace with full weighting matrix
but learnt through MLE here instead of AGOP [Vivarelli
and Williams, 1998].

Furthermore, we consider probabilistic extensions of boost-
ing approaches, which are known to be powerful for predict-
ive tasks. Firstly, we use NGBoost [Duan et al., 2020] which
learns the parameters of a Gaussian distribution through
boosting enhanced with a natural gradient update. Secondly,
we use CatBoost-Ensemble [Malinin et al., 2021] for which
we use an ensemble of 10 gradient boosting-based models.

From the ensemble, the predictive distribution is obtained by
computing statistics of the individual predictions. Following
Duan et al. [2020], we standardize covariates and labels to
have zero mean and unit variance for all GP-based methods
but not for the boosting-based methods.

Evaluation metrics. We are interested in the predictive
performance of the models as well as their uncertainty quan-
tification. Therefore, we evaluate the models on their root
mean squared error (RMSE) as well as their NLL on the test
set. We also require the model uncertainty to be calibrated,
i.e. the predictive distribution should reflect the likelihood
of prediction errors. To evaluate calibration, we compute the
95% coverage error (CE) which refers to the proportion of
data points for which the 95% prediction interval does not
contain the true value. For the model to be well-calibrated,
the coverage should be 95% and the corresponding CE
should be zero. Finally, we evaluate the interval length (IL)
of the 95% confidence interval. This measure is important
for models with similar CE since a smaller IL indicates a
more precise uncertainty quantification.

5.1 MAIN RESULTS

Here we present the main results of our experiments. We
compare our GP-RFM-Laplace to all baseline methods on
the UCI and OpenML benchmark datasets. Due to varying
scales, we normalize metrics for comparison across datasets.
We achieve this by calculating the minimum and maximum
values for each dataset across all methods and seeds, fol-
lowed by normalizing results to the range [0, 1]. The results
for each dataset of the OpenML benchmark in terms of NLL
and RMSE are in Tables 1 and 2, respectively. Summary
figures for NLL, RMSE and CE are shown in Figure 1 using
violin plots to indicate the distribution of the results includ-
ing a boxplot for the median and quartiles. The results for
the UCI benchmark are shown in Appendix B, Figure 6.
Note that the results for IL are omitted from the summary
figure as comparing IL across datasets is not meaningful.
Detailed performance results for each method on all datasets
individually can be found in the Appendix C.

We observe that both GP-RFM-Laplace variants are only
outperformed by the CatBoost-Ensemble in terms of NLL.
However, the GP-RFM-Laplace is the best method in terms
of RMSE, closely followed by the GP-ARD-Laplace. Re-
garding calibration in terms of CE, we observe that the
boosting methods are dominant, followed by the GP-RFM-
Laplace. Overall, both the GP-RFM-Laplace and the GP-
ARD-Laplace perform similarly well across all metrics,
demonstrating a competitive approach to boosting-based
approaches for probabilistic regression.

Notably, the ARD-Laplace-full, serving as a complement to
the RFM-Laplace, exhibits a significantly poorer perform-
ance while both methods utilize full feature matrices M .
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Table 1: Probabilistic performance measured by NLL (↓) on the OpenML benchmark. The best method for each dataset by
the mean value is bolded; the second best is underlined. Detailed results for all metrics are in Appendix C.1.

Gaussian Process Boosting
ARD Ours

Dataset RBF Laplace deep KL RBF Lap. Lap.-full RFM RFM-diag NGBoost CatBoost

cpu-act 2.80 ±0.07 2.55 ±0.02 2.67 ±0.03 2.67 ±0.04 2.30 ±0.02 3.71 ±0.10 2.21 ±0.01 2.17 ±0.01 2.33 ±0.14 2.17 ±0.03

pol 3.73 ±0.01 3.43 ±0.01 3.40 ±0.01 3.07 ±0.01 2.84 ±0.01 4.41 ±0.02 2.73 ±0.01 3.10 ±0.01 3.55 ±0.01 2.09 ±0.03

elevators -4.46 ±0.03 -4.67 ±0.01 -4.85 ±0.01 -4.53 ±0.02 -4.75 ±0.01 -4.31 ±0.16 -4.86 ±0.01 -4.79 ±0.01 -4.48 ±0.02 -4.73 ±0.02

isolet 3.43 ±0.01 3.43 ±0.01 2.62 ±0.09 3.43 ±0.01 3.43 ±0.01 3.43 ±0.01 2.34 ±0.04 2.57 ±0.02 2.71 ±0.02 2.52 ±0.02

wine 1.04 ±0.02 0.95 ±0.02 1.01 ±0.02 1.04 ±0.03 0.95 ±0.02 0.95 ±0.02 0.95 ±0.02 0.95 ±0.02 1.04 ±0.03 1.03 ±0.03

Ailerons -7.18 ±0.03 -7.31 ±0.01 -7.31 ±0.02 -7.19 ±0.01 -7.33 ±0.01 -6.72 ±0.00 -7.37 ±0.01 -7.36 ±0.01 -7.42 ±0.01 -7.41 ±0.01

houses 0.16 ±0.01 0.07 ±0.01 0.09 ±0.02 0.16 ±0.01 -0.10 ±0.01 0.17 ±0.00 -0.07 ±0.01 -0.04 ±0.01 0.07 ±0.01 -0.12 ±0.02

houses-16H 0.84 ±0.03 0.72 ±0.02 0.95 ±0.05 0.84 ±0.02 0.72 ±0.02 0.90 ±0.03 0.69 ±0.02 0.71 ±0.03 0.57 ±0.05 0.51 ±0.6

Bra-houses -0.99 ±0.67 -1.49 ±0.07 -0.64 ±0.04 -2.19 ±0.03 -1.82 ±0.13 0.27 ±0.04 -2.11 ±0.06 -2.07 ±0.07 -2.18 ±0.15 -2.66 ±0.23

bike 6.17 ±0.01 6.15 ±0.01 6.08 ±0.05 6.05 ±0.01 6.03 ±0.01 6.07 ±0.01 6.04 ±0.01 6.03 ±0.01 5.62 ±0.01 5.58 ±0.01

house-sales 0.04 ±0.02 -0.19 ±0.01 -0.22 ±0.02 0.00 ±0.01 -0.30 ±0.01 -0.06 ±0.16 -0.32 ±0.01 -0.32 ±0.01 -0.27 ±0.01 -0.31 ±0.01

sulfur -2.42 ±0.02 -2.83 ±0.03 -2.44 ±0.24 -2.42 ±0.02 -2.83 ±0.04 -2.63 ±0.15 -2.80 ±0.05 -2.74 ±0.06 -2.59 ±0.41 -2.88 ±0.08

Miami2016 0.01 ±0.00 -0.36 ±0.01 -0.35 ±0.02 0.00 ±0.00 -0.46 ±0.01 -0.17 ±0.18 -0.47 ±0.01 -0.50 ±0.01 -0.38 ±0.01 -0.53 ±0.01

superconduct 4.21 ±0.00 4.01 ±0.01 4.10 ±0.03 4.20 ±0.00 3.96 ±0.01 4.34 ±0.18 4.05 ±0.11 4.03 ±0.01 3.65 ±0.02 3.46 ±0.11

california -0.31 ±0.01 -0.40 ±0.01 -0.34 ±0.09 -0.32 ±0.01 -0.64 ±0.01 -0.40 ±0.03 -0.60 ±0.01 -0.61 ±0.01 -0.45 ±0.01 -0.59 ±0.02

fifa 1.27 ±0.01 1.24 ±0.01 1.19 ±0.01 1.23 ±0.01 1.22 ±0.01 1.19 ±0.01 1.21 ±0.02 1.19 ±0.01 1.09 ±0.01 1.10 ±0.02

Table 2: Predictive performance measured by RMSE (↓) on the OpenML benchmark. The best method for each dataset by
the mean value is bolded; the second best is underlined. Detailed results for all metrics are in Appendix C.1.

Gaussian Process Boosting
ARD Ours

Dataset RBF Laplace deep KL RBF Lap. Lap.-full RFM RFM-diag NGBoost CatBoost

cpu-act 8.17 ±0.22 6.41 ±0.10 3.39 ±0.30 3.28 ±0.09 3.51 ±0.11 6.35 ±0.23 3.37 ±0.15 4.75 ±0.15 12.02 ±0.23 4.91 ±0.14

pol 4.20 ±0.37 3.89 ±0.29 2.50 ±0.08 3.38 ±0.29 2.74 ±0.15 7.12 ±1.08 2.33 ±0.11 2.16 ±0.04 2.48 ±0.09 2.50 ±0.13

elevators (10−2) 0.22 ±0.00 0.22 ±0.00 0.19 ±0.00 0.22 ±0.01 0.21 ±0.00 0.26 ±0.02 0.19 ±0.00 0.20 ±0.00 0.36 ±0.01 0.23 ±0.00

isolet 7.50 ±0.05 7.50 ±0.05 3.15 ±0.24 7.50 ±0.05 7.50 ±0.05 7.50 ±0.05 2.57 ±0.10 3.18 ±0.08 4.13 ±0.07 3.49 ±0.07

wine 0.67 ±0.02 0.61 ±0.02 0.70 ±0.01 0.67 ±0.02 0.61 ±0.02 0.61 ±0.02 0.61 ±0.02 0.61 ±0.02 0.70 ±0.02 0.69 ±0.02

Ailerons (10−2) 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00

houses 0.26 ±0.00 0.25 ±0.00 0.26 ±0.01 0.24 ±0.00 0.21 ±0.00 0.25 ±0.00 0.22 ±0.00 0.22 ±0.00 0.28 ±0.00 0.23 ±0.00

houses-16H 0.63 ±0.03 0.61 ±0.03 0.66 ±0.06 0.64 ±0.03 0.61 ±0.03 0.62 ±0.03 0.61 ±0.03 0.62 ±0.03 0.60 ±0.03 0.60 ±0.03

Bra-houses 0.10 ±0.04 0.06 ±0.03 0.05 ±0.02 0.06 ±0.03 0.05 ±0.03 0.10 ±0.02 0.04 ±0.02 0.04 ±0.02 0.05 ±0.02 0.05 ±0.03

bike 110.02 ±1.58 108.51 ±1.76 103.82 ±2.72 99.55 ±1.18 100.25 ±1.17 102.68 ±1.42 100.48 ±1.25 100.48 ±1.16 104.19 ±1.29 100.31 ±1.19

house-sales 0.22 ±0.01 0.20 ±0.00 0.19 ±0.00 0.20 ±0.00 0.18 ±0.00 0.20 ±0.01 0.18 ±0.00 0.17 ±0.00 0.20 ±0.00 0.20 ±0.00

sulfur (10−2) 1.83 ±0.27 1.59 ±0.31 2.59 ±0.38 1.82 ±0.28 1.69 ±0.41 1.82 ±0.47 1.71 ±0.44 1.81 ±0.43 2.56 ±0.42 2.44 ±0.46

Miami2016 0.18 ±0.00 0.17 ±0.00 0.17 ±0.00 0.18 ±0.00 0.15 ±0.00 0.17 ±0.01 0.15 ±0.00 0.15 ±0.00 0.20 ±0.00 0.18 ±0.00

superconduct 11.93 ±0.26 9.50 ±0.22 14.57 ±0.44 11.88 ±0.26 9.59 ±0.20 11.28 ±0.90 13.21 ±7.04 10.32 ±0.22 13.20 ±0.17 10.94 ±1.08

california 0.16 ±0.00 0.16 ±0.00 0.16 ±0.00 0.15 ±0.00 0.12 ±0.00 0.15 ±0.00 0.13 ±0.00 0.13 ±0.00 0.17 ±0.00 0.14 ±0.00

fifa 0.84 ±0.01 0.84 ±0.01 0.79 ±0.01 0.82 ±0.01 0.82 ±0.01 0.81 ±0.01 0.81 ±0.01 0.80 ±0.01 0.77 ±0.01 0.78 ±0.01

Directly optimising M through MLE in the ARD-Laplace-
full is challenging due to the increased complexity asso-
ciated with often high-dimensional feature spaces. Hence,
while the parameterization of both methods is equal, the
RFM-based learning method of alternately solving convex
problems seems to be simpler to optimise.

5.2 TOY DATA SET

Given the qualitatively similar performance of the GP-RFM-
Laplace and its diagonal version, we investigate the differ-
ences between the two methods in more detail. Mathem-

atically, in the RFM-Laplace-diag we restrict the feature
matrix M to be diagonal. Therefore, the RFM-Laplace-diag
is a special case of the RFM-Laplace where the latter can
additionally capture covariate correlations that are relevant
for the predictive task.

To highlight the advantage of the RFM-Laplace, we create a
toy dataset. The covariates x are independent and the labels
y are nonlinearly transformed using the first 10 covariates

x ∼ U(0d, 1d); y = (

10∑
j=1

x[j])
2. (11)
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Figure 1: Violin plot results on the OpenML benchmark in-
cluding boxplots with median and quartiles for each method.

This dataset is crafted to challenge methods that struggle to
determine the direction in which covariates are combined,
i.e. off-diagonal correlation of covariates. We compare the
performance in terms of NLL for a range of feature sizes in
Figure 2. The results for the performance in terms of RMSE
on all methods can be found in Figure 5.

We observe that the GP-RFM-Laplace outperforms all meth-
ods for all covariate dimensions. This demonstrates that a
non-diagonal metric in the RFM-Laplace in contrast to di-
agonal metrics used in kernels with ARD can benefit the
performance considerably and has been underexplored in
the community. Furthermore, the results in Table 1 and
Figure 1 show that no GP-based method outperforms the
GP-RFM-Laplace. However, the diagonal kernel with ARD
(GP-ARD-Laplace) performs similarly well to our GP-RFM-
Laplace for many datasets. Therefore, we conjecture that
in many real-world datasets, there is either little covariate
correlation or the covariate correlation is not relevant for the
predictive task. For datasets where the GP-RFM-Laplace
considerably outperforms the GP-ARD-Laplace, such as
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Figure 2: Toy dataset with covariate correlation for predic-
tion. We scale the number of train samples with n = 20d.

the ‘isolet’ (Isolated Letter Speech Recognition) dataset
from OpenML, we observe that there is indeed considerable
covariate correlation.

5.3 VISUALIZING FEATURE MATRICES

To get a better understanding of the learnt feature matrix M ,
we visualize the normalized feature matrices for the RFM-
Laplace and its diagonal version RFM-Laplace-diag in Fig-
ure 3. On the top row, we compare both methods for the
toy dataset, where we generated the labels with correlat-
ing covariates according to (11). For this dataset, we can
compute the true feature matrix through the Jacobian of the
labels with respect to the covariates to obtain the true feature
matrix M . The true feature matrix is a block matrix with a
10× 10 block of 1

n

∑n
i=1(

∑10
j=1 xi[j])

2 and the remaining
entries are zero, where xi[j] denotes the jth dimension of
the ith sample. It is necessary to learn this non-zero block
to capture the relevant covariate correlation. Experimentally,
as we expected, in Figure 3 the RFM-Laplace learns relevant
covariate correlation as indicated by nonzero off-diagonal
values of the feature matrix while the diagonal methods are
unable to capture this relation.

On the bottom row, we compare both methods on the
Kin8nm dataset from the UCI benchmark. In this real-world
dataset, the RFM-Laplace captures the non-zero covariate
correlation and focuses on a low-dimensional set of co-
variates. This ability of RFMs to learn low-dimensional
features has been proven for linear RFMs in Radhakrish-
nan et al. [2024b]. Additionally, we can qualitatively see
that the RFM-Laplace learns the same diagonal covariate
re-weighing as the RFM-Laplace-diag. Therefore, the RFM-
Laplace is a direct generalisation of the RFM-Laplace-diag
and can learn more complex features, which allows for both
of these datasets to be predicted more accurately.
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Figure 3: Normalized feature matrices for toy data (top) and
Kin8nm dataset from UCI benchmark (bottom).

5.4 OUT-OF-DISTRIBUTION DATA

Having established that the GP-RFM-Laplace is a competit-
ive method for probabilistic regression, we now investigate
its performance on out-of-distribution (OOD) data. Distri-
bution shift depicts a common scenario in real-world applic-
ations where for example the test data distribution changes
over time. One hope of utilising a probabilistic model is
to obtain more reliable predictions by indicating when the
model is uncertain about its predictions. Understanding how
well the GP-RFM-Laplace performs in such scenarios is
essential for assessing its robustness and applicability in
real-world settings.

In our setting, we concentrate on real-world data shifts.
Here, we focus on label shifts, i.e. the marginal distribution
of the labels p(y) change, while in the Appendix B.7 we
also consider covariate shifts, i.e. the marginal distribution
of the covariates p(x) change. Specifically, we take four
house datasets from the OpenML benchmark for which
the labels describe the house value and include a covariate
for latitude and longitude. We define the ID data such that
p(y > a) = 0.7 where a is the 70% quantile of the labels
and the OOD data such that p(y < a). We then split the
OOD data into four consecutive non-overlapping datasets,
where each OOD dataset contains 7.5% of the data. This
results in one ID dataset and four OOD datasets (denoted
with OOD-1 to OOD-4) with increasingly severe label shifts.

Figure 4 shows the results on ID and OOD data for different
methods. We notice in the top figure that the NLL of the
boosting-based method rises with increasing severity of
label shift while the GP-based methods improve. Overall,
the GP-based methods including the GP-RFM are the most
robust. This reliability is confirmed by the lower CE of the
GP-based methods which shows that the model is better
calibrated under label shift, see Figure 4 (bottom). We have
to note that for large distribution shifts, none of the methods

0
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0.4

Normalized NLL (↓) on label shift

ID OOD-1 OOD-2 OOD-3 OOD-4

0

0.5

1

CE (↓) on label shift
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GP-RFM-Laplace-diag
NGBoost
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Figure 4: Out-of-distribution experiment: NLL (top) and CE
(bottom) on four house datasets with label shift. We show
mean and standard deviation.

are calibrated anymore. Generally, our results indicate that
Boosting-based methods are less robust to label shifts as
defined in our scenario.

6 DISCUSSION AND FUTURE WORK

In this study, we adopted the RFM—a novel data-adaptive,
feature learning kernel—for uncertainty quantification
through integration into GPs. We rigorously tested our
method across various datasets and metrics to ensure con-
sistency. Our results demonstrate that our RFM-based GP
can either outperform or match the performance of exist-
ing state-of-the-art methods, including boosting-based ap-
proaches such as NGBoost [Duan et al., 2020] and CatBoost-
ensembles [Malinin et al., 2021].

In the GP literature, there is a focus on ARD-based ap-
proaches or low-rank feature matrices M [Garnett et al.,
2014, Letham et al., 2020]. We show and provide examples
illustrating that the presented GP-RFM with full feature
matrix M outperforms these approaches since it is able
to reliably model relevant covariate correlation. We there-
fore bridge fields and demonstrate an approach that the GP
community has been missing.

However, our empirical findings suggest that RFMs might
occasionally be surpassed by their diagonal version, RFM-
diag or kernels with ARD. We observed that sample com-



plexity plays a pivotal role in this behaviour. Given sufficient
training samples, leveraging the capabilities of RFM is al-
ways preferable. However, in cases where the sample size is
limited, the diagonal RFM can be preferable. While delving
deeper into determining the optimal method for various set-
tings is beyond the scope of this paper, it presents a crucial
direction for future research.

Another line of future research is to integrate more intriguing
kernels within the RFM framework. RFM is a broad feature
learning framework based on kernels, suitable for any radial
kernel. This study primarily concentrates on the two most
prevalent kernels: RBF and Laplacian. The results clearly
show that the Laplacian outperforms the Gaussian kernel.
There is potential to select a task-specific kernel to further
enhance these performances. For example, Neural Tangent
Kernels (NTK) [Jacot et al., 2018] or Convolutional Neural
Tangent Kernels (CNTK) [Li et al., 2019].

Another crucial aspect is scalability. Decision tree-boosting
methods are naturally adept at handling large datasets. On
the other hand, kernel methods historically have faced chal-
lenges in scaling. However, with the advent of recent state-
of-the-art techniques, scaling kernels has become feasible.
Notable examples are the EigenPro series [Ma and Belkin,
2017, 2019, Abedsoltan et al., 2023, 2024] and FALKON
[Rudi et al., 2017, Meanti et al., 2020]. These advancements
can enable our method to scale effectively to large datasets.
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A IMPLEMENTATION DETAILS

A.1 MODEL AND TRAINING DETAILS

Gaussian process. For the mean, we use a constant function. For the covariance, we use the concatenation of a scale kernel
with the respective RBF/Laplace or Mahalanobis distance kernel. All GP-based methods are optimized with Adam optimizer
over 250 epochs [Kingma and Ba, 2014] with a cosine annealing learning rate schedule [Loshchilov and Hutter, 2016]
to a minimum learning rate of lrmin = 10−7 and with all data points in the training set as a mini-batch using GPyTorch
[Gardner et al., 2018].

Deep kernel learning. For the mean, we use a constant function. For the covariance, we follow the GPyTorch tutorial
implementation of deep kernel learning1. Our model consists of a ReLU fully-connected deep neural network with
dimensions {d, 1000, 500, 50, 2} as in Wilson et al. [2016]. Notably by following the GPyTorch implementation, we do not
pre-train the deep neural network. Further, for a fair comparison with other GP-based methods, we did not use the ideas of
KISS-GP [Wilson and Nickisch, 2015]. Hence, we use the same optimization scheme as for all other GPs, but we reduced
the number of epochs to 100 due to stability issues for longer training schemes.

GP-ARD-Laplace-full. For the mean, we use a constant function. For the covariance, we use the Mahalanobis distance
kernel from (7). To stabilize training, we decompose the Mahalanobis distance as M = U + U⊤ + D. Here, U is a
learnable upper triangular matrix of small values to enforce symmetry and the learnable D is a diagonal matrix to focus
initialization on the diagonal, similar to the RFM. We use the same optimization scheme as for all other GPs, but we reduced
the number of epochs to 150 due to stability issues for longer training schemes.

NGBoost. We use the NGBoost regressor from the official implementations of the respective authors2. For this model, we
use the default set of hyperparameters.

CatBoost-ensemble. We use the CatBoost regressor from the official implementation of the respective authors3. We
choose to select 10 ensemble members each consisting of 1000 trees as done similarly in Malinin et al. [2021]. Furthermore,
we consider the depth of the trees to be 6 and keep the remaining default hyperparameters

A.2 HYPERPARAMETER SEARCH

For our main results, we perform a hyperparameter search for the specific hyperparameters of each method. We run a grid
search over the hyperparameters and select the best ones based on the validation set’s NLL value.

Gaussian processes. The only hyperparameter is the learning rate which we optimize over the values lr =
{0.05, 0.01, 0.005, 0.001}. The learning rate is decreased to a minimal value of 10−7.

Recursive feature machines. For the RFM, we optimize the hyperparameters of the GP-based methods as de-
scribed above. Additionally, we optimize the Ridge regularization for the optimization of α over the values λα =
{0.5, 0.1, 0.5, 0.01, 0.001, 0.0001}. Furthermore, we optimize the Ridge regularization for the optimization of M over the
values λM = {0.1, 0.01, 0.001, 5 · 10−5, 10−6, 10−7, 0}.

Boosting-based. For NGBoost, we optimize the number of estimators from {100, 200, 300, 400, 500}. For CatBoost-
ensembles, we optimize the learning rate over the values lr = {0.05, 0.01, 0.005, 0.001}

A.3 POST-PROCESSING

Some methods did not converge for some seeds and datasets. The metrics computed from these runs would heavily distort
the actual results but are easy to detect in practice. To evaluate only successful runs, we remove outliers for each dataset and

1https://docs.gpytorch.ai/en/stable/examples/06_PyTorch_NN_Integration_DKL/KISSGP_Deep_
Kernel_Regression_CUDA.html, accessed 05.02.2024.

2https://stanfordmlgroup.github.io/ngboost/, accessed 05.02.2024.
3https://catboost.ai/, accessed 05.02.2024.

https://docs.gpytorch.ai/en/stable/examples/06_PyTorch_NN_Integration_DKL/KISSGP_Deep_Kernel_Regression_CUDA.html
https://docs.gpytorch.ai/en/stable/examples/06_PyTorch_NN_Integration_DKL/KISSGP_Deep_Kernel_Regression_CUDA.html
https://stanfordmlgroup.github.io/ngboost/
https://catboost.ai/


metric individually. We achieve this by removing entries with z-values ≥ 3.5. Almost exclusively the results from deep
kernel learning and the GP-ARD-Laplace-full are affected by this post-processing.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 COMPUTATIONAL INFRASTRUCTURE

All experiments are run on a single NVIDIA A100 GPU with 40GB memory. The GPU is part of an internal cluster
supported by local resources. To run the experiments for all methods on all datasets in a sequence of our used OpenML
benchmark, we require approximately 1 hour of computation time for one seed. For all methods on all datasets in a sequence
of the UCI benchmark, we require approximately 10 minutes of computation time for one seed.

B.2 MAIN RESULTS

Complementary to the main results, in Figure 6 we list the normalized results for the OpenML benchmark and the UCI
benchmark. Qualitatively the observations from the OpenML benchmark also hold for the UCI benchmark.

Additionally to the metrics NLL, RMSE and CE, in Figures 6c and 6d we show the combined time for training the model
and prediction on the test set. We have to note that the GP-based methods utilize the GPytorch library which enables GPU
utilization. For NGBoost and CatBoost-ensembles, the official implementations do not allow for GPU utilization. Therefore,
the time comparison is on the one side biased because we utilize different hardware, on the other side it utilizes the best
openly available implementations for all respective methods. Note, that here, we excluded the method ‘deep Kernel learning’.
This method reduces the GP dimensionality to 2 dimensions because of the neural networks extractor and is therefore the
fastest method. Including it in the violin plot would distort the visualization. Detailed timing results for each method on
every dataset can be found in Appendix C.

B.3 TOY DATA SET

We show results from the toy dataset which was designed to be difficult for methods which do not capture feature correlation.
This includes diagonal feature weighting such as the ARD-based methods. We included correlation to be modelled into the
data by choosing x = U(0d, 1d) and y = (

∑1
i=1 0x[i])

2. In Figure 5, we plot additionally to the NLL also the RMSE which
show a qualitatively similar behaviour such that the GP-RFM-Laplace outperforms other methods. Notably the diagonal
method, GP-RFM-diag becomes close for high feature dimensions. We argue that this is because we fix the number of
dimensions which are relevant for the prediction but grow the actual dimension. Hence, fewer relative dimensions become
relevant. However, the diagonal method will never outperform the GP-RFM-Laplace on this toy dataset.
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Figure 5: Toy data set with varying feature dimensions. NLL (left) is a repetition of the main text figure; RMSE (right)
shows a similar pattern. Note that for NLL the deep Kernel Learning blows up at d = 100, hence these values are omitted.
Similarly for RMSE, the GP-ARD-Laplace-full > 5 and therefore not depicted.
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(a) OpenML benchmark datasets results.
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(b) UCI benchmark results.
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(c) OpenML benchmark results: Timing.
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Figure 6: Violin plot results on OpenML benchmark datasets and UCI benchmark. Note that Figure 6a is a repetition of
Figure 1 from the main text. Note also that in Figures 6c and 6d we excluded the method ‘deep Kernel Learning’ since it is
the fastest and distorts the visualization in the violin plots.



B.4 VISUALIZING FEATURE MATRICES

In Figure 7, we compare the learnt feature matrices M of the RFM-based methods with the ones from Kernels with ARD
on the toy dataset. The only method which can capture the necessary feature correlation is the GP-RFM-Laplace. Notably,
the GP-ARD-Laplace-full is not able to learn the correlation despite its structure ability through parameterization with a full
feature matrix M . This might be justified by the more complicated optimization problem resulting in poor performance as
Figure 5 indicates for this method.

For the diagonal methods, the GP-RFM-Laplace-diag capture the exact dimensionality of the problem by weighting all
irrelevant dimensions in the toy problem with zeros. In contrast, the GP-ARD-Laplace also capture the necessary dimensions
but does not suppress irrelevant dimensions to zero. We experimented with increasing the compute budget for this method
from 250 epochs up to 2,000 epochs which reduces the weighting of the irrelevant dimensions but does get close to zero
weighting.

Similar conclusions can be drawn about the bottom row for real data. Again, we observe that the GP-ARD-Laplace-full
struggles with the task. The remaining three methods learn similar features on the diagonal but only the GP-RFM-Laplace
can model the necessary correlation to achieve the best performance.
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Figure 7: Normalized feature matrices for toy data (top) and Kin8nm dataset from UCI benchmark (bottom). Note that the
two right-most columns are a repetition of Figure 3.

B.5 COMPARISON OF LEARNT FEATURES

Given the comparable performance of the GP-RFM-Laplace and the GP-ARD-Laplace and their similar mathematical
structure based on the Mahalanobis distance kernel, a question arises whether the learnt features in M are similar. To
investigate this, we compare the Pearson and Spearman correlation between the feature matrices M learnt in RFM-based
kernels and kernels with ARD:

• Diagonal methods: We compare diagonal of M from the GP-RFM-Laplace-diag with GP-ARD-Laplace.
• Non-diagonal methods: Here we perform two comparisons. (1) we compare the full feature matrix M of GP-RFM-

Laplace with the one of GP-ARD-Laplace-full. (2) to capture how the features are re-weighted, we also compare the
diagonal of the full feature matrix M of both methods.

Comparing diagonal methods separately from methods which learn the full M to disentangle the effects of the parameteriz-
ation and the learning paradigm. We compare methods with the same parameterization Hence, the main difference lies in the
feature learning procedure: the RFM-based kernels learn the features through AGOP iterations while the ARD-based kernels
learn the features through MLE optimization.

Figure 8 shows the Pearson and Spearman correlation between the diagonal methods and Figure 9 on the non-diagonal
methods on the UCI benchmark dataset. There is the same trend for the diagonal and the non-diagonal methods: For some



datasets, there is a high correlation between the RFM-based kernel and the kernels with ARD, but there are also datasets
where the feature correlation is low. This indicates that learning the features with AGOP iterations in the RFM or with MLE
optimization in the ARD-based kernel may result in the same features in some cases but is not guaranteed to do so. The
similarity between the learning paradigms opens up investigations of the widely applied MLE framework from a different
perspective. Further investigation is required to understand the differences between feature learning in the two paradigms.
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Figure 8: Correlation of feature matrices M between diagonal methods GP-RFM-Laplace-diag and GP-ARD-Laplace.
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Figure 9: Correlation of feature matrices M between non-diagonal methods GP-RFM-Laplace and GP-ARD-Laplace-full.
Left: full M of both methods. Right: diagonal M of both methods.

B.6 FEATURE IMPORTANCE

Here, we analyse if the features learnt by the RFM are meaningful in the sense of weighting the covariates with the highest
predictive power. We consider the feature matrix M of a trained GP-RFM-Laplace and successively remove the covariates
with the highest weight of diag(M). Then, we re-train and evaluate all models on the reduced dataset. Specifically, we use
the ‘pol’ dataset from the OpenML benchmarks since it has a high number of covariates (26). In Figure 10 we observe that
the NLL and RMSE increase for all methods when removing the most important covariates but this plateaus. Additionally,
we observe that the two most important covariates according to the RFM feature matrix can be removed without a significant
increase in NLL and RMSE. This indicates that for this dataset the two highest weighted covariates are equally important
for the prediction and contain most of the predictive power. The sharp increase in NLL and RMSE after removing more
covariates indicates that the RFM feature matrix can identify the most important covariates for the prediction.



60% 70% 80% 90% 100%
2

3

4

5

Fraction of remaining covariates

N
L

L
(↓

)
Performance when removing covariates

GP-RBF
GP-Laplace
deep Kernel Learning
GP-ARD-RBF
GP-ARD-Laplace
GP-ARD-Laplace-full
GP-RFM-Laplace
GP-RFM-Laplace-diag
NGBoost
CatBoost-Ensemble

60% 70% 80% 90% 100%
0

10

20

30

40

Fraction of remaining covariates

R
M

SE
(↓

)

Performance when removing covariates

GP-RBF
GP-Laplace
deep Kernel Learning
GP-ARD-RBF
GP-ARD-Laplace
GP-ARD-Laplace-full
GP-RFM-Laplace
GP-RFM-Laplace-diag
NGBoost
CatBoost-Ensemble

Figure 10: NLL (left) and RMSE (right) when removing the most important covariates according to the diagonal of the
RFM feature matrix.

B.7 DISTRIBUTION SHIFT

In the main text, we show the results of label shift in terms of normalized NLL and CE for some selected methods. Here, we
additionally present results for normalized RMSE and normalized interval length in Figure 11. Furthermore, we experimented
with covariate shifts. Specifically, we consider the covariate for the latitude of the house location. Similarly to the label shift
we define the ID data such that p(xlat < a) = 0.7 where a is the 70% quantile of the labels and the OOD data such that
p(xlat > a). We split the OOD data into four consecutive non-overlapping datasets, where each contains 7.5% of the data.
The results for the covariate shift over the four house datasets are in Figure 12. The results are qualitatively similar to the
results on label shift in Figure 11.
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Figure 11: Label shift on four house datasets from the OpenML benchmark.
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Figure 12: Covariate shift (we use the covariate for the latitude of the house position) on four house datasets from the
OpenML benchmark.



C DETAILED RESULTS ON TABULAR BENCHMARKS

In the main text and Figure 6 we show summary results over all datasets of the two benchmarks we consider. The following
tables present the results individually for each dataset in both benchmarks.

C.1 TABULAR BENCHMARK

Table 3: Time (↓) in seconds required for training and prediction on the OpenML benchmark.

Gaussian Process Boosting
ARD Ours

Dataset RBF Laplace deep KL RBF Lap. Lap.-full RFM RFM-diag NGBoost CatBoost

cpu-act 13.23 ±0.76 10.84 ±0.59 2.87 ±0.06 10.59 ±0.30 10.77 ±0.56 8.88 ±0.30 10.92 ±0.36 10.31 ±0.24 23.03 ±3.33 27.37 ±4.10

pol 12.47 ±0.17 17.30 ±0.50 4.49 ±0.05 13.77 ±0.25 17.08 ±0.45 10.56 ±0.68 17.84 ±0.50 17.54 ±0.08 18.92 ±0.17 24.16 ±3.76

elevators 22.38 ±0.53 20.37 ±0.20 5.24 ±0.05 20.79 ±0.19 20.39 ±0.24 12.35 ±0.12 21.73 ±0.32 21.45 ±0.03 23.83 ±0.15 23.50 ±2.59

isolet 6.69 ±0.08 11.42 ±0.73 3.04 ±0.05 7.85 ±0.08 11.86 ±0.49 6.47 ±0.15 12.84 ±0.75 10.79 ±0.16 830.81 ±3.03 258.70 ±17.49

wine 6.80 ±0.15 11.15 ±0.56 2.67 ±0.03 6.86 ±0.17 10.95 ±1.32 5.69 ±0.22 11.23 ±0.60 9.43 ±0.80 9.97 ±1.11 21.83 ±3.37

Ailerons 14.13 ±0.26 15.66 ±1.03 4.22 ±0.06 14.05 ±0.15 15.46 ±0.67 9.45 ±0.41 16.45 ±1.11 14.96 ±0.23 29.33 ±0.17 27.14 ±2.65

houses 15.65 ±0.24 32.46 ±1.29 6.53 ±0.06 15.75 ±0.19 32.30 ±0.65 19.35 ±0.38 34.40 ±1.05 33.79 ±0.23 31.97 ±0.20 27.83 ±2.63

houses-16H 20.87 ±6.45 39.30 ±0.62 7.48 ±0.30 22.29 ±7.01 39.13 ±0.13 23.73 ±0.41 41.80 ±0.98 41.43 ±0.06 72.42 ±5.38 32.03 ±3.35

Bra-houses 17.35 ±6.80 12.31 ±0.57 3.27 ±0.04 9.72 ±0.72 12.48 ±1.06 6.86 ±0.32 12.80 ±0.82 11.57 ±0.55 11.51 ±0.52 23.42 ±2.40

bike 12.42 ±0.08 22.44 ±0.14 5.56 ±0.02 12.80 ±0.07 22.51 ±0.21 13.39 ±0.19 24.37 ±1.67 23.53 ±0.07 12.81 ±0.16 20.11 ±2.73

house-sales 24.78 ±3.06 35.02 ±0.16 6.84 ±0.05 22.93 ±0.40 35.05 ±0.23 21.27 ±0.53 37.50 ±0.52 37.13 ±0.08 39.21 ±0.24 29.78 ±3.38

sulfur 7.69 ±0.07 12.25 ±1.49 3.38 ±0.12 7.84 ±0.09 12.62 ±1.49 6.18 ±0.19 12.99 ±1.21 10.85 ±0.33 11.36 ±4.35 25.19 ±4.00

Miami2016 10.26 ±1.44 15.49 ±0.54 4.37 ±0.05 10.18 ±0.06 15.46 ±0.64 8.97 ±0.33 16.65 ±0.79 15.32 ±0.25 38.62 ±0.23 30.22 ±4.17

superconduct 15.88 ±0.08 34.60 ±0.66 6.78 ±0.04 17.04 ±0.07 34.47 ±0.58 28.85 ±33.30 71.69 ±83.62 37.35 ±0.98 262.93 ±1.43 61.23 ±5.36

california 16.38 ±0.25 32.44 ±0.82 6.49 ±0.13 16.13 ±0.25 32.34 ±0.93 19.49 ±0.11 34.37 ±0.77 33.98 ±0.48 35.96 ±0.26 28.92 ±3.32

fifa 13.99 ±0.62 24.25 ±0.12 5.58 ±0.04 14.59 ±0.15 24.40 ±0.30 14.50 ±0.08 26.26 ±1.38 25.72 ±0.07 14.29 ±0.65 25.10 ±3.56

Table 4: OpenML dataset: cpu-act (8192 samples; 21 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 4.1983 ±0.3682 2.8004 ±0.0687 0.0407 ±0.0030 29.0699 ±2.8943 13.2314 ±0.7587

GP-Laplace 3.8907 ±0.2875 2.5481 ±0.0244 0.0310 ±0.0029 15.5996 ±0.1433 10.8411 ±0.5874

deep Kernel Learning 2.5007 ±0.0820 2.6724 ±0.0315 0.0892 ±0.1866 20.1186 ±0.7163 2.8708 ±0.0596

GP-ARD-RBF 3.3840 ±0.2889 2.6651 ±0.0397 0.0430 ±0.0019 23.5181 ±1.1309 10.5879 ±0.0596

GP-ARD-Laplace 2.7398 ±0.1460 2.2968 ±0.0173 0.0279 ±0.0029 11.7734 ±0.0615 10.7739 ±0.5581

GP-ARD-Laplace-full 7.1210 ±1.0766 3.7143 ±0.0963 0.0376 ±0.0037 59.3472 ±3.7178 8.8822 ±0.2975

GP-RFM-Laplace 2.3291 ±0.1149 2.2050 ±0.0131 0.0206 ±0.0032 10.0737 ±0.1053 10.9167 ±0.3581

GP-RFM-Laplace-diag 2.1579 ±0.0447 2.1661 ±0.0091 0.0247 ±0.0028 9.8702 ±0.0921 10.3116 ±0.2368

NGBoost 2.4774 ±0.0915 2.3276 ±0.1373 0.0077 ±0.0057 8.5031 ±0.7630 23.0311 ±3.3259

CatBoost-Ensemble 2.5011 ±0.1260 2.1699 ±0.0295 0.0081 ±0.0042 8.0882 ±0.0825 27.3657 ±4.0987



Table 5: OpenML dataset: pol (15000 samples; 26 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 8.1744 ±0.2212 3.7279 ±0.0083 0.0402 ±0.0012 60.3733 ±0.5259 12.4684 ±0.1706

GP-Laplace 6.4119 ±0.0992 3.4294 ±0.0064 0.0281 ±0.0021 40.8013 ±0.2545 17.3032 ±0.4992

deep Kernel Learning 3.3911 ±0.3008 3.4039 ±0.0125 0.0462 ±0.0017 44.8599 ±0.9984 4.4946 ±0.0514

GP-ARD-RBF 3.2847 ±0.0940 3.0713 ±0.0065 0.0462 ±0.0006 33.9202 ±0.3687 13.7665 ±0.0514

GP-ARD-Laplace 3.5131 ±0.1060 2.8353 ±0.0070 0.0330 ±0.0021 22.9351 ±0.1555 17.0843 ±0.4549

GP-ARD-Laplace-full 6.3502 ±0.2260 4.4107 ±0.0210 0.2220 ±0.3442 127.1110 ±1.5457 10.5559 ±0.6841

GP-RFM-Laplace 3.3721 ±0.1531 2.7280 ±0.0144 0.0301 ±0.0024 19.6895 ±0.1998 17.8368 ±0.5048

GP-RFM-Laplace-diag 4.7450 ±0.1514 3.1021 ±0.0125 0.0269 ±0.0021 29.3767 ±0.2548 17.5354 ±0.0763

NGBoost 12.0208 ±0.2321 3.5523 ±0.0134 0.0150 ±0.0023 42.2595 ±0.4839 18.9153 ±0.1735

CatBoost-Ensemble 4.9089 ±0.1442 2.0865 ±0.0324 0.0136 ±0.0041 10.6416 ±0.1790 24.1609 ±3.7644

Table 6: OpenML dataset: elevators (16599 samples; 16 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.0022 ±0.0000 -4.4642 ±0.0313 0.0400 ±0.0017 0.0166 ±0.0008 22.3781 ±0.5291

GP-Laplace 0.0022 ±0.0000 -4.6729 ±0.0090 0.0259 ±0.0023 0.0105 ±0.0001 20.3693 ±0.1979

deep Kernel Learning 0.0019 ±0.0000 -4.8461 ±0.0123 0.0109 ±0.0031 0.0081 ±0.0002 5.2406 ±0.0463

GP-ARD-RBF 0.0022 ±0.0001 -4.5271 ±0.0177 0.0404 ±0.0014 0.0151 ±0.0004 20.7872 ±0.0463

GP-ARD-Laplace 0.0021 ±0.0000 -4.7496 ±0.0092 0.0244 ±0.0030 0.0097 ±0.0001 20.3881 ±0.2434

GP-ARD-Laplace-full 0.0026 ±0.0002 -4.3103 ±0.1588 0.0397 ±0.0044 0.0181 ±0.0033 12.3529 ±0.1221

GP-RFM-Laplace 0.0019 ±0.0000 -4.8622 ±0.0085 0.0154 ±0.0025 0.0081 ±0.0001 21.7328 ±0.3192

GP-RFM-Laplace-diag 0.0020 ±0.0000 -4.7850 ±0.0086 0.0205 ±0.0024 0.0092 ±0.0001 21.4464 ±0.0321

NGBoost 0.0036 ±0.0001 -4.4798 ±0.0151 0.0047 ±0.0030 0.0115 ±0.0001 23.8299 ±0.1544

CatBoost-Ensemble 0.0023 ±0.0000 -4.7321 ±0.0183 0.0451 ±0.0042 0.0068 ±0.0001 23.4951 ±2.5942

Table 7: OpenML dataset: isolet (7797 samples; 613 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 7.5039 ±0.0491 3.4345 ±0.0065 0.0500 ±0.0000 29.4934 ±0.1699 6.6856 ±0.0760

GP-Laplace 7.5039 ±0.0491 3.4344 ±0.0065 0.0500 ±0.0000 29.5290 ±0.0978 11.4205 ±0.7336

deep Kernel Learning 3.1464 ±0.2413 2.6187 ±0.0857 0.0227 ±0.0090 11.6625 ±3.1630 3.0425 ±0.0533

GP-ARD-RBF 7.5039 ±0.0491 3.4345 ±0.0065 0.0500 ±0.0000 29.4947 ±0.1697 7.8513 ±0.0533

GP-ARD-Laplace 7.5039 ±0.0490 3.4345 ±0.0065 0.0500 ±0.0000 29.5526 ±0.1406 11.8644 ±0.4897

GP-ARD-Laplace-full 7.5039 ±0.0490 3.4345 ±0.0065 0.0500 ±0.0000 29.5522 ±0.0904 6.4689 ±0.1459

GP-RFM-Laplace 2.5696 ±0.0979 2.3408 ±0.0373 0.0057 ±0.0043 9.9181 ±0.3743 12.8427 ±0.7516

GP-RFM-Laplace-diag 3.1757 ±0.0768 2.5661 ±0.0167 0.0102 ±0.0042 14.2781 ±0.2057 10.7894 ±0.1638

NGBoost 4.1270 ±0.0689 2.7053 ±0.0157 0.0041 ±0.0028 14.5239 ±0.1299 830.8086 ±3.0250

CatBoost-Ensemble 3.4882 ±0.0693 2.5194 ±0.0215 0.0395 ±0.0072 10.1068 ±0.1052 258.7036 ±17.4887



Table 8: OpenML dataset: wine-quality (6497 samples; 11 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.6684 ±0.0190 1.0380 ±0.0237 0.0152 ±0.0060 3.1303 ±0.1727 6.8032 ±0.1487

GP-Laplace 0.6086 ±0.0172 0.9493 ±0.0152 0.0176 ±0.0051 2.9316 ±0.0346 11.1491 ±0.5616

deep Kernel Learning 0.6958 ±0.0129 1.0632 ±0.0235 0.0178 ±0.0139 2.5838 ±0.1521 2.6719 ±0.0273

GP-ARD-RBF 0.6699 ±0.0208 1.0434 ±0.0258 0.0172 ±0.0065 3.1711 ±0.1556 6.8614 ±0.0273

GP-ARD-Laplace 0.6114 ±0.0175 0.9496 ±0.0155 0.0165 ±0.0063 2.8888 ±0.0613 10.9450 ±1.3206

GP-ARD-Laplace-full 0.6129 ±0.0166 0.9488 ±0.0166 0.0136 ±0.0061 2.8646 ±0.0338 5.6883 ±0.2169

GP-RFM-Laplace 0.6105 ±0.0170 0.9494 ±0.0151 0.0168 ±0.0053 2.8991 ±0.0597 11.2258 ±0.6049

GP-RFM-Laplace-diag 0.6132 ±0.0161 0.9523 ±0.0154 0.0170 ±0.0058 2.8860 ±0.0737 9.4255 ±0.8003

NGBoost 0.6981 ±0.0153 1.0351 ±0.0256 0.0135 ±0.0082 2.5237 ±0.0325 9.9671 ±1.1130

CatBoost-Ensemble 0.6910 ±0.0159 1.0276 ±0.0273 0.0201 ±0.0124 2.4433 ±0.1155 21.8260 ±3.3698

Table 9: OpenML dataset: Ailerons (13750 samples; 33 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.0002 ±0.0000 -7.1758 ±0.0275 0.0341 ±0.0028 0.0010 ±0.0000 14.1305 ±0.2561

GP-Laplace 0.0002 ±0.0000 -7.3105 ±0.0092 0.0122 ±0.0029 0.0007 ±0.0000 15.6566 ±1.0279

deep Kernel Learning 0.0002 ±0.0000 -7.3094 ±0.0166 0.0181 ±0.0132 0.0006 ±0.0000 4.2194 ±0.0552

GP-ARD-RBF 0.0002 ±0.0000 -7.1859 ±0.0146 0.0364 ±0.0021 0.0010 ±0.0000 14.0530 ±0.0552

GP-ARD-Laplace 0.0002 ±0.0000 -7.3346 ±0.0094 0.0108 ±0.0031 0.0007 ±0.0000 15.4564 ±0.6676

GP-ARD-Laplace-full 0.0002 ±0.0000 -6.7233 ±0.0045 0.0382 ±0.0016 0.0016 ±0.0000 9.4539 ±0.4092

GP-RFM-Laplace 0.0002 ±0.0000 -7.3728 ±0.0094 0.0061 ±0.0031 0.0007 ±0.0000 16.4483 ±1.1083

GP-RFM-Laplace-diag 0.0002 ±0.0000 -7.3641 ±0.0091 0.0073 ±0.0032 0.0007 ±0.0000 14.9629 ±0.2323

NGBoost 0.0002 ±0.0000 -7.4229 ±0.0113 0.0042 ±0.0025 0.0006 ±0.0000 29.3339 ±0.1665

CatBoost-Ensemble 0.0002 ±0.0000 -7.4136 ±0.0131 0.0071 ±0.0037 0.0006 ±0.0000 27.1441 ±2.6503

Table 10: OpenML dataset: houses (20640 samples; 8 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.2555 ±0.0037 0.1620 ±0.0054 0.0346 ±0.0010 1.4874 ±0.0096 15.6545 ±0.2366

GP-Laplace 0.2528 ±0.0038 0.0727 ±0.0067 0.0216 ±0.0020 1.2362 ±0.0080 32.4636 ±1.2917

deep Kernel Learning 0.2647 ±0.0057 0.0919 ±0.0216 0.0061 ±0.0088 1.0388 ±0.0241 6.5323 ±0.0603

GP-ARD-RBF 0.2425 ±0.0038 0.1618 ±0.0059 0.0388 ±0.0012 1.5535 ±0.0107 15.7538 ±0.0603

GP-ARD-Laplace 0.2087 ±0.0035 -0.0989 ±0.0064 0.0290 ±0.0020 1.1205 ±0.0086 32.3049 ±0.6497

GP-ARD-Laplace-full 0.2530 ±0.0034 0.1745 ±0.0049 0.0351 ±0.0020 1.5020 ±0.0041 19.3467 ±0.3817

GP-RFM-Laplace 0.2190 ±0.0032 -0.0740 ±0.0066 0.0232 ±0.0020 1.0871 ±0.0087 34.3996 ±1.0498

GP-RFM-Laplace-diag 0.2245 ±0.0033 -0.0377 ±0.0055 0.0257 ±0.0020 1.1525 ±0.0099 33.7937 ±0.2298

NGBoost 0.2826 ±0.0036 0.0747 ±0.0127 0.0041 ±0.0024 1.0640 ±0.0051 31.9747 ±0.2022

CatBoost-Ensemble 0.2345 ±0.0028 -0.1249 ±0.0191 0.0387 ±0.0032 0.6976 ±0.0049 27.8312 ±2.6283



Table 11: OpenML dataset: house-16H (22784 samples; 16 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.6324 ±0.0281 0.8378 ±0.0294 0.0406 ±0.0016 2.8425 ±0.2764 20.8717 ±6.4480

GP-Laplace 0.6096 ±0.0274 0.7220 ±0.0241 0.0325 ±0.0022 2.2368 ±0.0525 39.2961 ±0.6178

deep Kernel Learning 0.6585 ±0.0551 0.9472 ±0.0505 0.0281 ±0.0137 2.4594 ±0.2951 7.4795 ±0.3042

GP-ARD-RBF 0.6352 ±0.0253 0.8382 ±0.0234 0.0408 ±0.0017 2.8555 ±0.2688 22.2921 ±0.3042

GP-ARD-Laplace 0.6077 ±0.0269 0.7171 ±0.0242 0.0328 ±0.0021 2.2158 ±0.0520 39.1299 ±0.1318

GP-ARD-Laplace-full 0.6168 ±0.0257 0.8972 ±0.0261 0.1304 ±0.2719 2.7582 ±0.0506 23.7313 ±0.4123

GP-RFM-Laplace 0.6063 ±0.0260 0.6899 ±0.0241 0.0318 ±0.0025 2.1696 ±0.0602 41.8046 ±0.9823

GP-RFM-Laplace-diag 0.6179 ±0.0283 0.7098 ±0.0315 0.0338 ±0.0024 2.2318 ±0.0699 41.4268 ±0.0609

NGBoost 0.6031 ±0.0280 0.5686 ±0.0467 0.0078 ±0.0029 1.5809 ±0.0292 72.4206 ±5.3819

CatBoost-Ensemble 0.5956 ±0.0308 0.5125 ±0.0586 0.0041 ±0.0035 1.4476 ±0.0891 32.0270 ±3.3470

Table 12: OpenML dataset: Brazilian-houses (10692 samples; 8 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.1049 ±0.0356 -0.9903 ±0.6726 0.1723 ±0.2795 0.6436 ±0.4977 17.3515 ±6.7992

GP-Laplace 0.0622 ±0.0281 -1.4862 ±0.0729 0.0451 ±0.0016 0.3345 ±0.0393 12.3126 ±0.5714

deep Kernel Learning 0.0493 ±0.0228 -0.6394 ±0.0444 0.0841 ±0.1507 0.8156 ±0.0364 3.2681 ±0.0353

GP-ARD-RBF 0.0646 ±0.0318 -2.1872 ±0.0338 0.0459 ±0.0017 0.1688 ±0.0076 9.7154 ±0.0353

GP-ARD-Laplace 0.0537 ±0.0284 -1.8204 ±0.1340 0.0473 ±0.0011 0.2136 ±0.0055 12.4825 ±1.0629

GP-ARD-Laplace-full 0.0981 ±0.0216 0.2656 ±0.0432 0.0493 ±0.0004 2.0113 ±0.0849 6.8555 ±0.3227

GP-RFM-Laplace 0.0414 ±0.0181 -2.1078 ±0.0600 0.0488 ±0.0005 0.1406 ±0.0049 12.8021 ±0.8225

GP-RFM-Laplace-diag 0.0404 ±0.0184 -2.0733 ±0.0696 0.0486 ±0.0007 0.1566 ±0.0009 11.5711 ±0.5537

NGBoost 0.0529 ±0.0243 -2.1812 ±0.1506 0.0194 ±0.0049 0.1061 ±0.0022 11.5133 ±0.5235

CatBoost-Ensemble 0.0541 ±0.0318 -2.6618 ±0.2337 0.0398 ±0.0042 0.0833 ±0.0126 23.4218 ±2.4005

Table 13: OpenML dataset: Bike-Sharing-Demand (17379 samples; 6 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 110.0164 ±1.5813 6.1724 ±0.0069 0.0135 ±0.0026 544.7001 ±3.7165 12.4240 ±0.0800

GP-Laplace 108.5130 ±1.7637 6.1472 ±0.0096 0.0095 ±0.0037 520.2480 ±16.0873 22.4437 ±0.1403

deep Kernel Learning 103.8203 ±2.7178 6.0799 ±0.0479 0.0185 ±0.0093 445.8881 ±54.9197 5.5567 ±0.0227

GP-ARD-RBF 99.5496 ±1.1839 6.0465 ±0.0084 0.0089 ±0.0042 446.8315 ±9.7015 12.8033 ±0.0227

GP-ARD-Laplace 100.2501 ±1.1656 6.0335 ±0.0096 0.0176 ±0.0031 417.9397 ±2.5062 22.5115 ±0.2084

GP-ARD-Laplace-full 102.6751 ±1.4195 6.0678 ±0.0126 0.0047 ±0.0045 455.0795 ±11.7388 13.3893 ±0.1907

GP-RFM-Laplace 100.4792 ±1.2527 6.0351 ±0.0102 0.0192 ±0.0038 415.9705 ±4.3815 24.3658 ±1.6734

GP-RFM-Laplace-diag 100.4778 ±1.1564 6.0343 ±0.0097 0.0199 ±0.0041 414.1059 ±4.0362 23.5265 ±0.0726

NGBoost 104.1888 ±1.2904 5.6200 ±0.0110 0.0114 ±0.0028 337.1860 ±2.0218 12.8066 ±0.1632

CatBoost-Ensemble 100.3143 ±1.1865 5.5759 ±0.0120 0.0025 ±0.0022 310.3412 ±2.2997 20.1121 ±2.7261



Table 14: OpenML dataset: house-sales (21613 samples; 15 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.2215 ±0.0051 0.0370 ±0.0182 0.0401 ±0.0019 1.3997 ±0.0306 24.7769 ±3.0601

GP-Laplace 0.2034 ±0.0027 -0.1850 ±0.0078 0.0115 ±0.0027 0.9016 ±0.0043 35.0244 ±0.1595

deep Kernel Learning 0.1944 ±0.0034 -0.2193 ±0.0168 0.0056 ±0.0044 0.7751 ±0.0265 6.8426 ±0.0507

GP-ARD-RBF 0.2028 ±0.0037 -0.0021 ±0.0137 0.0416 ±0.0008 1.3650 ±0.0191 22.9284 ±0.0507

GP-ARD-Laplace 0.1808 ±0.0020 -0.3033 ±0.0060 0.0127 ±0.0020 0.8016 ±0.0031 35.0499 ±0.2341

GP-ARD-Laplace-full 0.1995 ±0.0068 -0.0552 ±0.1645 0.1210 ±0.2763 1.2464 ±0.3343 21.2724 ±0.5262

GP-RFM-Laplace 0.1755 ±0.0016 -0.3151 ±0.0065 0.0177 ±0.0019 0.8292 ±0.0085 37.4970 ±0.5236

GP-RFM-Laplace-diag 0.1731 ±0.0023 -0.3198 ±0.0100 0.0201 ±0.0026 0.8333 ±0.0174 37.1304 ±0.0767

NGBoost 0.2029 ±0.0020 -0.2679 ±0.0083 0.0026 ±0.0015 0.7642 ±0.0033 39.2063 ±0.2366

CatBoost-Ensemble 0.1963 ±0.0021 -0.3144 ±0.0085 0.0136 ±0.0090 0.6892 ±0.0028 29.7815 ±3.3777

Table 15: OpenML dataset: sulfur (10081 samples; 6 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.0183 ±0.0027 -2.4195 ±0.0201 0.0466 ±0.0012 0.1279 ±0.0043 7.6919 ±0.0673

GP-Laplace 0.0159 ±0.0031 -2.8279 ±0.0344 0.0395 ±0.0019 0.0770 ±0.0027 12.2545 ±1.4937

deep Kernel Learning 0.0259 ±0.0038 -2.4438 ±0.2366 0.0284 ±0.0112 0.0809 ±0.0091 3.3750 ±0.1205

GP-ARD-RBF 0.0182 ±0.0028 -2.4195 ±0.0195 0.0467 ±0.0012 0.1280 ±0.0034 7.8406 ±0.1205

GP-ARD-Laplace 0.0169 ±0.0041 -2.8275 ±0.0379 0.0394 ±0.0015 0.0775 ±0.0017 12.6240 ±1.4911

GP-ARD-Laplace-full 0.0182 ±0.0047 -2.6309 ±0.1468 0.0418 ±0.0016 0.0952 ±0.0117 6.1771 ±0.1899

GP-RFM-Laplace 0.0171 ±0.0044 -2.8000 ±0.0486 0.0395 ±0.0022 0.0781 ±0.0028 12.9883 ±1.2052

GP-RFM-Laplace-diag 0.0181 ±0.0043 -2.7366 ±0.0560 0.0407 ±0.0018 0.0826 ±0.0032 10.8533 ±0.3308

NGBoost 0.0256 ±0.0042 -2.5867 ±0.4146 0.0145 ±0.0141 0.0606 ±0.0053 11.3634 ±4.3508

CatBoost-Ensemble 0.0244 ±0.0046 -2.8813 ±0.0822 0.0141 ±0.0162 0.0484 ±0.0050 25.1911 ±4.0039

Table 16: OpenML dataset: MiamiHousing2016 (13932 samples; 13 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.1803 ±0.0047 0.0057 ±0.0041 0.0439 ±0.0011 1.4023 ±0.0078 10.2637 ±1.4351

GP-Laplace 0.1655 ±0.0041 -0.3567 ±0.0117 0.0168 ±0.0036 0.8053 ±0.0073 15.4859 ±0.5375

deep Kernel Learning 0.1691 ±0.0048 -0.3507 ±0.0236 0.0056 ±0.0043 0.7240 ±0.0214 4.3708 ±0.0464

GP-ARD-RBF 0.1785 ±0.0045 0.0044 ±0.0036 0.0441 ±0.0010 1.4056 ±0.0073 10.1812 ±0.0464

GP-ARD-Laplace 0.1486 ±0.0032 -0.4600 ±0.0089 0.0216 ±0.0024 0.7449 ±0.0049 15.4611 ±0.6357

GP-ARD-Laplace-full 0.1670 ±0.0081 -0.1694 ±0.1773 0.0348 ±0.0094 1.1301 ±0.2839 8.9669 ±0.3332

GP-RFM-Laplace 0.1485 ±0.0027 -0.4744 ±0.0087 0.0178 ±0.0028 0.7233 ±0.0063 16.6506 ±0.7884

GP-RFM-Laplace-diag 0.1451 ±0.0027 -0.5000 ±0.0085 0.0188 ±0.0025 0.7064 ±0.0063 15.3197 ±0.2462

NGBoost 0.1997 ±0.0038 -0.3802 ±0.0143 0.0055 ±0.0037 0.7269 ±0.0061 38.6213 ±0.2251

CatBoost-Ensemble 0.1835 ±0.0039 -0.5299 ±0.0164 0.0141 ±0.0190 0.5927 ±0.0063 30.2160 ±4.1676



Table 17: OpenML dataset: superconduct (21263 samples; 79 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 11.9302 ±0.2640 4.2074 ±0.0045 0.0363 ±0.0014 91.1963 ±0.5064 15.8843 ±0.0842

GP-Laplace 9.4970 ±0.2163 4.0099 ±0.0127 0.0281 ±0.0017 72.7501 ±0.7574 34.5985 ±0.6591

deep Kernel Learning 14.5717 ±0.4363 4.0989 ±0.0298 0.0097 ±0.0029 58.0927 ±1.2015 6.7805 ±0.0431

GP-ARD-RBF 11.8767 ±0.2608 4.2020 ±0.0046 0.0364 ±0.0017 90.8332 ±0.5023 17.0431 ±0.0431

GP-ARD-Laplace 9.5881 ±0.2008 3.9596 ±0.0106 0.0291 ±0.0020 68.9498 ±0.6899 34.4697 ±0.5762

GP-ARD-Laplace-full 11.2755 ±0.8971 4.3354 ±0.1772 0.0887 ±0.1950 111.7846 ±21.7467 28.8458 ±33.2999

GP-RFM-Laplace 13.2086 ±7.0422 4.0457 ±0.1059 0.0409 ±0.0362 93.3640 ±34.0538 71.6949 ±83.6162

GP-RFM-Laplace-diag 10.3174 ±0.2215 4.0254 ±0.0094 0.0294 ±0.0022 75.3887 ±1.3068 37.3528 ±0.9843

NGBoost 13.2014 ±0.1743 3.6477 ±0.0177 0.0064 ±0.0028 43.5723 ±0.3922 262.9271 ±1.4310

CatBoost-Ensemble 10.9449 ±1.0811 3.4594 ±0.1136 0.0236 ±0.0174 29.7679 ±6.6060 61.2334 ±5.3609

Table 18: OpenML dataset: california (20640 samples; 8 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.1614 ±0.0025 -0.3129 ±0.0082 0.0325 ±0.0013 0.9172 ±0.0064 16.3839 ±0.2506

GP-Laplace 0.1591 ±0.0026 -0.3960 ±0.0148 0.0201 ±0.0017 0.7693 ±0.0112 32.4422 ±0.8164

deep Kernel Learning 0.1645 ±0.0039 -0.3389 ±0.0859 0.0144 ±0.0147 0.7538 ±0.1859 6.4947 ±0.1318

GP-ARD-RBF 0.1478 ±0.0016 -0.3194 ±0.0052 0.0389 ±0.0011 0.9708 ±0.0049 16.1321 ±0.1318

GP-ARD-Laplace 0.1233 ±0.0020 -0.6350 ±0.0067 0.0246 ±0.0022 0.6407 ±0.0045 32.3389 ±0.9311

GP-ARD-Laplace-full 0.1528 ±0.0024 -0.4045 ±0.0317 0.0242 ±0.0063 0.7753 ±0.0627 19.4896 ±0.1069

GP-RFM-Laplace 0.1297 ±0.0018 -0.5954 ±0.0056 0.0224 ±0.0021 0.6503 ±0.0048 34.3716 ±0.7675

GP-RFM-Laplace-diag 0.1261 ±0.0017 -0.6142 ±0.0052 0.0242 ±0.0016 0.6513 ±0.0047 33.9779 ±0.4784

NGBoost 0.1674 ±0.0019 -0.4479 ±0.0110 0.0027 ±0.0015 0.6248 ±0.0044 35.9571 ±0.2644

CatBoost-Ensemble 0.1443 ±0.0017 -0.5852 ±0.0235 0.0396 ±0.0040 0.4275 ±0.0043 28.9227 ±3.3222

Table 19: OpenML dataset: fifa (18063 samples; 5 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.8447 ±0.0112 1.2718 ±0.0083 0.0194 ±0.0032 4.1114 ±0.0515 13.9853 ±0.6240

GP-Laplace 0.8367 ±0.0106 1.2434 ±0.0092 0.0132 ±0.0023 3.6669 ±0.0112 24.2460 ±0.1180

deep Kernel Learning 0.7928 ±0.0096 1.1871 ±0.0126 0.0059 ±0.0029 3.0820 ±0.0194 5.5823 ±0.0410

GP-ARD-RBF 0.8226 ±0.0091 1.2295 ±0.0068 0.0108 ±0.0027 3.8480 ±0.0312 14.5917 ±0.0410

GP-ARD-Laplace 0.8203 ±0.0102 1.2215 ±0.0091 0.0131 ±0.0043 3.7242 ±0.1273 24.4010 ±0.2973

GP-ARD-Laplace-full 0.8060 ±0.0097 1.1942 ±0.0095 0.0026 ±0.0022 3.3354 ±0.0318 14.5039 ±0.0771

GP-RFM-Laplace 0.8093 ±0.0135 1.2056 ±0.0194 0.0068 ±0.0049 3.5477 ±0.2081 26.2624 ±1.3755

GP-RFM-Laplace-diag 0.7982 ±0.0101 1.1864 ±0.0092 0.0043 ±0.0042 3.3570 ±0.0129 25.7180 ±0.0734

NGBoost 0.7746 ±0.0096 1.0939 ±0.0116 0.0136 ±0.0030 2.8662 ±0.0161 14.2918 ±0.6475

CatBoost-Ensemble 0.7768 ±0.0101 1.0964 ±0.0178 0.0147 ±0.0033 2.8305 ±0.0502 25.0984 ±3.5605



C.2 UCI BENCHMARK

Table 20: UCI dataset: Concrete Compression Strength (1030 samples; 8 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 5.1649 ±0.8539 3.3152 ±0.0541 0.0417 ±0.0098 39.9684 ±2.1881 5.6247 ±0.1457

GP-Laplace 4.9342 ±0.6294 3.1955 ±0.1154 0.0350 ±0.0104 30.6059 ±0.8027 4.2635 ±0.3242

deep Kernel Learning 5.9734 ±0.6219 3.2103 ±0.1078 0.0257 ±0.0266 23.3185 ±1.2344 1.5215 ±0.0246

GP-ARD-RBF 5.0771 ±0.8361 3.2424 ±0.0776 0.0413 ±0.0097 36.5128 ±2.0837 4.4744 ±0.0246

GP-ARD-Laplace 4.8375 ±0.7156 3.0636 ±0.1369 0.0261 ±0.0156 25.1250 ±0.6902 4.2398 ±0.4143

GP-ARD-Laplace-full 5.8577 ±0.5434 3.5410 ±0.0146 0.0471 ±0.0054 48.5448 ±0.3850 4.8013 ±0.6353

GP-RFM-Laplace 4.9390 ±0.6834 3.0209 ±0.0878 0.0243 ±0.0157 24.1509 ±0.8528 4.4505 ±0.4256

GP-RFM-Laplace-diag 5.3889 ±0.8233 3.0977 ±0.1039 0.0199 ±0.0133 25.2850 ±0.6942 4.3315 ±0.1873

NGBoost 5.6672 ±0.6433 3.0846 ±0.1400 0.0298 ±0.0280 18.9717 ±1.2642 3.1179 ±0.3985

CatBoost-Ensemble 5.3957 ±0.5575 3.0866 ±0.1788 0.0414 ±0.0344 17.0637 ±1.8528 13.1103 ±0.9603

Table 21: UCI dataset: Energy Efficiency (768 samples; 8 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.5372 ±0.0881 0.8400 ±0.0745 0.0338 ±0.0142 2.8408 ±0.0700 0.8882 ±0.0090

GP-Laplace 1.6181 ±0.1648 1.9621 ±0.0585 0.0279 ±0.0160 8.3290 ±0.0656 1.3786 ±0.0936

deep Kernel Learning 0.6141 ±0.1244 1.9590 ±0.0368 0.0500 ±0.0000 10.8165 ±0.3824 0.5040 ±0.0166

GP-ARD-RBF 0.4482 ±0.0466 0.6581 ±0.0641 0.0249 ±0.0108 2.2212 ±0.0304 0.9271 ±0.0166

GP-ARD-Laplace 0.5804 ±0.0655 1.1556 ±0.0268 0.0481 ±0.0046 4.3960 ±0.0471 1.5367 ±0.3320

GP-ARD-Laplace-full 2.6116 ±0.2181 2.9738 ±0.0099 0.0500 ±0.0000 28.6954 ±0.1360 0.7235 ±0.0093

GP-RFM-Laplace 0.4965 ±0.0431 0.9515 ±0.0279 0.0481 ±0.0046 3.4807 ±0.0345 1.3571 ±0.2191

GP-RFM-Laplace-diag 0.4849 ±0.0441 0.8953 ±0.0309 0.0474 ±0.0052 3.2305 ±0.0402 1.0165 ±0.0221

NGBoost 0.5141 ±0.0463 0.6078 ±0.1680 0.0274 ±0.0148 1.9866 ±0.2474 2.7234 ±0.2241

CatBoost-Ensemble 0.5588 ±0.1193 0.5794 ±0.2291 0.0373 ±0.0203 1.7964 ±0.6647 5.9525 ±0.7011



Table 22: UCI dataset: Kin8nm (8192 samples; 8 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.0756 ±0.0023 -0.7730 ±0.0057 0.0499 ±0.0003 0.6547 ±0.0019 7.8375 ±0.0981

GP-Laplace 0.0761 ±0.0025 -1.0735 ±0.0148 0.0376 ±0.0033 0.4172 ±0.0014 12.5205 ±0.5642

deep Kernel Learning 0.0722 ±0.0058 -1.1991 ±0.0704 0.0157 ±0.0082 0.3139 ±0.0172 3.3887 ±0.0272

GP-ARD-RBF 0.0747 ±0.0023 -0.7759 ±0.0056 0.0499 ±0.0003 0.6541 ±0.0019 7.8674 ±0.0272

GP-ARD-Laplace 0.0722 ±0.0022 -1.1377 ±0.0147 0.0381 ±0.0036 0.3853 ±0.0012 12.0966 ±0.4330

GP-ARD-Laplace-full 0.0833 ±0.0062 -0.8490 ±0.1591 0.0457 ±0.0044 0.5756 ±0.1107 7.4953 ±0.3022

GP-RFM-Laplace 0.0657 ±0.0018 -1.2620 ±0.0109 0.0321 ±0.0042 0.3282 ±0.0026 13.2497 ±0.6537

GP-RFM-Laplace-diag 0.0755 ±0.0016 -1.0997 ±0.0106 0.0381 ±0.0036 0.3948 ±0.0012 11.9409 ±0.1580

NGBoost 0.1819 ±0.0038 -0.3626 ±0.0185 0.0082 ±0.0053 0.6536 ±0.0051 22.3981 ±0.2512

CatBoost-Ensemble 0.1388 ±0.0032 -0.6557 ±0.0219 0.0081 ±0.0051 0.4712 ±0.0029 24.8655 ±1.6878

Table 23: UCI dataset: Naval Plant Maintenance (11934 samples; 16 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.0002 ±0.0001 -6.1782 ±0.8216 0.1608 ±0.2245 0.0023 ±0.0000 11.5056 ±1.2598

GP-Laplace 0.0003 ±0.0000 -5.7682 ±0.0052 0.0500 ±0.0002 0.0049 ±0.0000 17.4098 ±0.2460

deep Kernel Learning 0.0005 ±0.0001 -4.1528 ±0.2374 0.0500 ±0.0000 0.0253 ±0.0070 4.6008 ±0.0534

GP-ARD-RBF 0.0002 ±0.0000 -6.4786 ±0.0103 0.1825 ±0.3225 0.0023 ±0.0000 10.9200 ±0.0534

GP-ARD-Laplace 0.0002 ±0.0000 -5.9669 ±0.0043 0.0500 ±0.0000 0.0040 ±0.0000 17.2876 ±0.1934

GP-ARD-Laplace-full 0.0005 ±0.0001 -4.1346 ±0.2305 0.0500 ±0.0000 0.0255 ±0.0047 10.4092 ±0.4880

GP-RFM-Laplace 0.0003 ±0.0000 -5.9195 ±0.0361 0.0500 ±0.0000 0.0041 ±0.0002 19.8079 ±5.2316

GP-RFM-Laplace-diag 0.0002 ±0.0000 -5.8776 ±0.0038 0.0500 ±0.0000 0.0044 ±0.0000 18.3550 ±0.0997

NGBoost 0.0059 ±0.0001 -3.9178 ±0.0138 0.0479 ±0.0013 0.0234 ±0.0002 37.5817 ±5.8329

CatBoost-Ensemble 0.0016 ±0.0001 -5.4828 ±0.0322 0.0444 ±0.0023 0.0059 ±0.0002 29.2242 ±2.6337

Table 24: UCI dataset: Combined Cycle Power Plant (9568 samples; 4 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 3.9517 ±0.1233 3.1728 ±0.0070 0.0484 ±0.0010 33.5592 ±0.0525 9.2673 ±0.8142

GP-Laplace 3.4041 ±0.1247 2.7214 ±0.0198 0.0310 ±0.0037 17.8956 ±0.0945 14.7721 ±0.7598

deep Kernel Learning 3.9615 ±0.1201 2.8441 ±0.0209 0.0362 ±0.0040 19.6622 ±0.5423 3.7840 ±0.0196

GP-ARD-RBF 3.9448 ±0.1227 3.1725 ±0.0069 0.0484 ±0.0010 33.5615 ±0.0524 9.2302 ±0.0196

GP-ARD-Laplace 2.6824 ±0.1770 2.7131 ±0.0176 0.0438 ±0.0023 20.8760 ±0.1848 15.0723 ±0.6198

GP-ARD-Laplace-full 3.5091 ±0.2767 2.8893 ±0.2700 0.0824 ±0.1988 23.0570 ±10.6857 11.6361 ±15.4711

GP-RFM-Laplace 3.2018 ±0.1364 2.6849 ±0.0214 0.0343 ±0.0034 17.7328 ±0.1058 15.2813 ±0.5343

GP-RFM-Laplace-diag 3.2550 ±0.1277 2.6963 ±0.0200 0.0342 ±0.0039 17.8465 ±0.0886 14.0767 ±0.1701

NGBoost 3.8750 ±0.1488 2.7677 ±0.0749 0.0074 ±0.0041 14.5355 ±0.6960 11.9584 ±2.2816

CatBoost-Ensemble 3.3635 ±0.3802 2.6596 ±0.1451 0.0220 ±0.0156 11.1089 ±1.9365 25.3693 ±4.5353



Table 25: UCI dataset: Wine Quality Red (1599 samples; 11 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.6026 ±0.0440 0.9114 ±0.0648 0.0194 ±0.0099 2.4992 ±0.0667 3.2311 ±0.0717

GP-Laplace 0.5517 ±0.0433 0.8475 ±0.0521 0.0197 ±0.0095 2.6585 ±0.0346 4.1511 ±0.1734

deep Kernel Learning 0.6440 ±0.0587 0.9905 ±0.1014 0.0266 ±0.0190 2.4026 ±0.1845 1.4830 ±0.0280

GP-ARD-RBF 0.6033 ±0.0412 0.9202 ±0.0553 0.0172 ±0.0095 2.6270 ±0.1211 3.3238 ±0.0280

GP-ARD-Laplace 0.5635 ±0.0435 0.8547 ±0.0528 0.0181 ±0.0117 2.6115 ±0.0285 3.9449 ±0.2618

GP-ARD-Laplace-full 0.5747 ±0.0416 0.8811 ±0.0519 0.0203 ±0.0115 2.6116 ±0.0423 2.3756 ±0.2144

GP-RFM-Laplace 0.5569 ±0.0435 0.8500 ±0.0558 0.0184 ±0.0094 2.6239 ±0.0531 4.0593 ±0.2478

GP-RFM-Laplace-diag 0.5617 ±0.0488 0.8618 ±0.0649 0.0200 ±0.0126 2.6260 ±0.0683 4.0605 ±0.4318

NGBoost 0.6212 ±0.0445 0.9278 ±0.0741 0.0209 ±0.0132 2.2635 ±0.1561 2.6412 ±0.6679

CatBoost-Ensemble 0.6134 ±0.0507 0.8973 ±0.1082 0.0291 ±0.0208 2.0483 ±0.0399 15.4885 ±2.2552

Table 26: UCI dataset: Yacht Hydrodynamics (308 samples; 6 covariates)

RMSE (↓) NLL (↓) CE (95%) (↓) IL (95%) (↓) Time (↓)

GP-RBF 0.8173 ±0.2675 1.0579 ±0.0704 0.0366 ±0.0164 3.7188 ±0.1813 0.7283 ±0.0648

GP-Laplace 2.9169 ±0.8372 2.5045 ±0.1010 0.0310 ±0.0190 15.6999 ±0.3866 1.1829 ±0.2183

deep Kernel Learning 0.7553 ±0.3034 2.3936 ±0.0231 0.0500 ±0.0000 16.8325 ±0.4511 0.4360 ±0.0097

GP-ARD-RBF 0.5183 ±0.2543 0.8530 ±0.2459 0.0368 ±0.0159 2.8902 ±0.0785 0.8103 ±0.0097

GP-ARD-Laplace 1.1895 ±0.5616 1.9742 ±0.0777 0.0366 ±0.0164 10.1187 ±0.1586 1.4123 ±0.3088

GP-ARD-Laplace-full 4.6409 ±1.4430 3.4261 ±0.0448 0.0468 ±0.0097 44.0111 ±0.5874 0.7122 ±0.0339

GP-RFM-Laplace 1.0447 ±0.3585 1.4985 ±0.2114 0.0323 ±0.0162 4.7886 ±0.1456 1.2185 ±0.2006

GP-RFM-Laplace-diag 1.0187 ±0.3369 1.5235 ±0.1761 0.0310 ±0.0169 5.2000 ±0.2562 0.8918 ±0.0676

NGBoost 0.7487 ±0.2946 0.7046 ±0.4721 0.0402 ±0.0364 2.1121 ±0.9981 2.0757 ±0.2763

CatBoost-Ensemble 1.2838 ±0.7056 0.4008 ±0.6086 0.1053 ±0.0749 1.5808 ±1.3508 5.0563 ±1.0566


	Introduction
	Prior work
	Background
	Kernel machines
	Gaussian processes
	Recursive Feature Machines

	Method: GP-RFM
	Experiments
	Main results
	Toy data set
	Visualizing feature matrices
	Out-of-distribution data

	Discussion and future work
	Implementation details
	Model and training details
	Hyperparameter search
	Post-processing

	Additional experimental results
	Computational infrastructure
	Main results
	Toy data set
	Visualizing feature matrices
	Comparison of learnt features
	Feature importance
	Distribution shift

	Detailed results on tabular benchmarks
	Tabular Benchmark
	UCI benchmark


