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ABSTRACT

This paper introduces a data-driven operator learning method for multiscale partial
differential equations, with a particular emphasis on preserving high-frequency in-
formation. Drawing inspiration from the representation of multiscale parameter-
ized solutions as a combination of low-rank global bases (such as low-frequency
Fourier modes) and localized bases over coarse patches (analogous to dilated con-
volution), we propose the Dilated Convolutional Neural Operator (DCNO). The
DCNO architecture effectively captures both high-frequency and low-frequency
features while maintaining a low computational cost, through a combination of
convolution and Fourier layers. We conduct experiments to evaluate the perfor-
mance of DCNO on various datasets, including the multiscale elliptic equation, its
inverse problem, Navier-Stokes equation, and Helmholtz equation. We show that
DCNO strikes an optimal balance between accuracy and computational cost, and
offers a promising solution for mulitscale operator learning.

1 INTRODUCTION

In recent years, operator learning methods such as Fourier neural operator (FNO) (Li et al., 2020b),
Galerkin transformer (GT) (Cao, 2021), and deep operator network (DeepONet) (Lu et al., 2021)
have emerged as powerful tools for computing parameter-to-solution maps of partial differential
equations (PDEs). In this paper, we focus on multiscale PDEs that encompass multiple tempo-
ral/spatial scales. These multiscale PDE models are widely prevalent in physics, engineering, and
other disciplines, playing a crucial role in addressing complex practical problems such as reservoir
modeling, atmosphere and ocean circulation, and high-frequency scattering.

A well-known challenge with neural networks is their tendency to prioritize learning low-frequency
components before high frequencies—a phenomenon referred to as ”spectral bias” or ”frequency
principle” (Rahaman et al., 2019; Xu et al., 2019). This presents challenges when applying neural
networks to functions characterized by multiscale or high-frequency properties, adapting neural
network architectures (Cai & Xu, 2019; Wang et al., 2021) have been proposed to capture high-
frequency details . In the context of operator learning, existing methods such as FNO and GT have
shown spectral bias when applied to multiscale PDEs, as observed in Liu et al. (2023). To address
this issue and recover high-frequency features, Liu et al. (2023) introduced an approach based on
hierarchical attention and H1 loss. However, despite providing improved accuracy, the method’s
high computational cost and implemational complexity to some extent counterbalances its strength.

In this paper, we present a novel method that strikes a balance among accuracy, computational cost,
and the preservation of multiscale features. Our approach utilizes a carefully designed architec-
ture that combines the strengths of dilated convolutions and Fourier layers. Dilated convolutions
(Holschneider et al., 1990), also known as atrous convolutions, expand the kernel of a convolu-
tion layer in a convolutional neural network (CNN) by introducing gaps (holes) between the ker-
nel elements. This technique allows for selectively skipping input values with specific step sizes,
effectively covering a larger receptive field over the input feature map without introducing extra
parameters or computational overhead. As a result, we can efficiently capture high-frequency local
details. On the other hand, we leverage Fourier layers to capture the smooth global components of
the data. DCNO achieves higher accuracy compared to existing models while maintaining lower
computational costs by utilizing efficient implementations of both convolution and Fourier layers.
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This makes our approach well-suited for applications that require the preservation of multiscale
features.

(a) multiscale trigonometric
coefficient,

(b) slices of the derivatives ∂u
∂y

at x = 0,
(c) (testing) low frequency er-
ror dynamics in spectral domain

(d) (testing) high frequency er-
ror dynamics in spectral domain

Figure 1.1: We demonstrate the effectiveness of the DCNO scheme using a challenging multiscale
trigonometric benchmark. The coefficient and corresponding solution derivative are presented in (a)
and (b), respectively (refer to Appendix A.1.2 for a detailed description, we note that all models are
trained with L2 loss). We observe that DCNO accurately captures the solution derivatives. In (c)
and (d), we analyze the (testing) dynamics for high-frequency (> 10π) and low-frequency (≤ 10π)
errors, respectively. It is evident that DCNO achieves the best performance in terms of both high-
frequency and low-frequency errors (HANO is comparable but requires longer training time).

2 BACKGROUND AND RELATED WORK

2.1 MULTISCALE PDES

We briefly introduce some representative multiscale PDEs in this section. One notable example
is the class of multiscale elliptic PDEs, which involve coefficients varying rapidly and are often
encountered in heterogeneous and random media applications, see details in Appendix A.1. For
smooth coefficients, the coefficient to solution map can be effectively resolved by the FNO parame-
terization (Li et al., 2020b). However, when dealing with multiscale/rough coefficients, the presence
of fast oscillation, high contrast ratios, and non-separable scales pose significant challenges from
both scientific computing (Branets et al., 2009) and operator learning (Liu et al., 2023) perspectives.
Other notable examples include the Navier-Stokes equation (see Appendix A.2), which models fluid
flow and exhibits turbulence behavior at high Reynolds numbers, and the Helmholtz equation (see
Appendix E), which models time-harmonic acoustic waves and is challenging to solve in the high
wave number regime. In these multiscale PDEs, the accurate prediction of physical phenomena and
properties necessitates the resolution of high-frequency components.

Numerical Methods for Multiscale PDEs Multiscale PDEs, even with fixed parameters, present
a challenge for classical numerical methods, as their computational cost typically scales inversely
proportional to the finest scale ε of the problem. To overcome this issue, multiscale solvers have
been developed by incorporating microscopic information to achieve computational cost indepen-
dent of ε. One such technique is numerical homogenization (Engquist & Souganidis, 2008), which
identifies low-dimensional approximation spaces adapted to the corresponding multiscale operator.
Similarly, fast solvers like multilevel/multigrid methods (Hackbusch, 2013; Xu & Zikatanov, 2017)
and wavelet-based multiresolution methods (Brewster & Beylkin, 1995; Beylkin & Coult, 1998) may
face limitations when applied to multiscale PDEs (Branets et al., 2009), while multilevel methods
based on numerical homogenization techniques, such as Gamblets (Owhadi, 2017), have emerged
as a way to discover scalable multilevel algorithms and operator-adapted wavelets for multiscale
PDEs. In recent years, there has been increasing exploration of neural network methods for solving
multiscale PDEs despite the spectral bias or frequency principle (Rahaman et al., 2019; Ronen et al.,
2019; Xu et al., 2019) indicating that deep neural networks (DNNs) often struggle to effectively cap-
ture high-frequency components of functions. Specifically designed neural solvers (Li et al., 2020a;
Wang et al., 2021; Li et al., 2023) have been developed to mitigate the spectral bias and accurately
solve multiscale PDEs (with fixed parameters).
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Recent advancements in multiscale computational methods, as demonstrated in Målqvist & Peter-
seim (2014); Hauck & Peterseim (2023), have revealed that an exponentially decaying global basis
achieves an optimal rate of convergence. Moreover, localizing the basis to coarse patches can help
achieve the optimal trade-off between computational cost and accuracy. These findings serve as in-
spiration for our adoption of dilated convolution to extract local and high-frequency features. On the
implementation level, there are two possible approaches. The first approach involves hierarchical
decomposition, similar as multigrid or multilevel methods. These methods leverage a hierarchical
structure to capture both global and local features effectively. The second approach is the global-
local decomposition, as discussed by Benner et al. (2018), which combines long-range low-rank
components with localized components. In our study, we explore the latter approach by employing
an alternating architecture consisting of Fourier layers and convolutional layers.

2.2 NEURAL OPERATOR FOR MULTISCALE PDES

Neural operators, as proposed by Li et al. (2020b); Gupta et al. (2021), have shown great promise
in capturing the input-output relationship of parametric partial differential equations (PDEs). How-
ever, multiscale PDEs introduce new challenges for neural operators. Fourier or wavelet transforms,
which are central to the construction of Li et al. (2020b); Gupta et al. (2021), may not always be
effective, even for multiscale PDEs with fixed parameters. Moreover, while universal approximation
theorems exist for FNO-type models (Kovachki et al., 2021), achieving a meaningful convergence
rate often requires ”excessive smoothness” that may be absent for multiscale PDEs. Additionally,
aliasing errors becomes significant in multiscale PDEs (Bartolucci et al., 2023), raising concerns
about continuous-discrete equivalence. The work by Liu et al. (2023) addresses the issue of spectral
bias in (multiscale) operator learning and highlights the challenges faced by existing neural oper-
ators in capturing high-frequency components of multiscale PDEs. These neural operators tend to
prioritize the fitting of low-frequency components over high-frequency ones, limiting their ability
to accurately capture fine details. To overcome this limitation, Liu et al. (2023) proposes a new
architecture for multiscale operator learning that leverages hierarchical attention mechanisms and a
tailored loss function. While these innovations help reduce the spectral bias and improve the pre-
diction of multiscale solutions, it is worth noting that hierarchical attention induces a significant
computational cost.

2.3 DILATED CONVOLUTION

In this paper, we focus on utilizing dilated convolutions to capture the high-resolution components of
the data due to their simplicity and efficiency. Dilated convolution, also known as atrous convolution,
was initially developed in the “algorithme à trous” for wavelet decomposition (Holschneider et al.,
1990). Its primary purpose was to increase image resolution and enable dense feature extraction
without additional computational cost in deep convolutional neural networks (CNNs) by inserting
”holes” or zeros between pixels in convolutional kernels. By incorporating dilated convolution, net-
works can enlarge receptive fields, capture longer-range information, and gather contextual details,
which are crucial for dense prediction tasks such as semantic segmentation. Various approaches
have been proposed to leverage dilated convolution for this purpose (Yu & Koltun, 2015; Wang
et al., 2018), and have demonstrated comparable results compared with U-Net and attention based
models.

More recently, dilated convolution has also found applications in operator learning, such as the Dil-
ResNet used for simulating turbulent flow (Stachenfeld et al., 2022). However, our work demon-
strates that using dilated convolution alone is not sufficient to accurately capture the solution. In-
stead, we propose an interwoven global-local architecture of Fourier layers with dilated convolution
layers. Furthermore, while Dil-ResNet requires up to 10 million training steps to achieve satisfactory
results, our model offers a more efficient approach. It is worth noting that there are many alterna-
tive approaches to extract multiscale features, inspired by developments in numerical analysis and
computer vision. These include hierarchical matrix methods (Fan et al., 2019), hierarchical attention
(Liu et al., 2021; 2023), U-Net (Ronneberger et al., 2015) and U-NO (Rahman et al., 2022), wavelet-
based methods (Gupta et al., 2021), among others. In Section 4, we will conduct a comprehensive
benchmark of these different multiscale feature extraction techniques to evaluate their performance.
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While dilated convolutions can expand the receptive field, our understanding from multiscale com-
putational methods suggests that they primarily provide accuracy on a coarse scale. To achieve
higher accuracy, it is essential to accurately extract both local and global features. This is precisely
why we integrate Fourier layers with (dilated) convolution layers, thereby enhancing overall accu-
racy.

3 METHODS

We adopt a data-driven approach to approximate the operator S : H1 7→ H2 as in references Li
et al. (2020b); Cao (2021); Liu et al. (2023). The operator S maps between two infinite-dimensional
Banach spaces H1 and H2, and aims to find the solution to the parametric partial differential equation
(PDE) La(u) = f , where the input/parameter a ∈ H1 is drawn from a distribution µ, and the
corresponding output/solution u ∈ H2.

To be specific, in this paper, our objective is to address the following operator learning problems:

• Approximating the nonlinear mapping S : a 7→ u := S(a) from the varying parameter a
to the solution u.

• Solving the inverse coefficient identification problem, which involves recovering the coef-
ficient from a noisy measurement û of the solution u. In this scenario, we aim to approxi-
mate S−1 : û 7→ a := S−1(û).

Figure 3.1: The architecture of the DCNO neural operator.

Figure 3.2: An exam-
ple of a two-layer di-
lated convolution with
dilation rates (1, 3).

3.1 MODEL ARCHITECTURES

In our model, we employ an Encode-Process-Decode architecture (Sanchez-Gonzalez et al., 2018;
2020), as shown in Figure 3.1.

• The encoder incorporates a patch embedding function denoted as P, which utilizes a con-
volutional neural network (CNN) that is described in detail in Appendix B.3.1. This step is
performed to lift the input a(x) to a higher-dimensional channel (feature) space.

• The processor part of the model comprises alternating Fourier layers (F layers) and Con-
volution layers (C layers). The role of the F layer is to approximate the low-frequency
components, while the C layer is responsible for extracting high-frequency features. This
alternating approach allows the DCNO model to effectively handle both low-frequency and
high-frequency components present in the data. To gain further insights into the influence
of the F and C layers, an ablation study is conducted, as described in Appendix B.3.1. This
study provides information about the impact of these layers on the model’s performance
and enhances our understanding of their significance within the overall architecture.

• The decoder in our model adopts a three-layer feedforward neural network (FFN ).
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F layers: The Fourier layers, as proposed in Li et al. (2020b), consist of two main components that
operate on the input v(x). In the first component, the input undergoes the Fourier transform, fol-
lowed by a linear transform R acting only on the lower Fourier modes while filtering out the higher
modes. The modified input is then obtained by applying the inverse Fourier transform. The first
component of the Fourier layer aims to preserve low-frequency global information while reducing
the influence of high-frequency components. The second component of the Fourier layers incorpo-
rates a convolutional neural network (CNN) with a kernel size of 3, replacing the local (pointwise)
linear transform W used in Li et al. (2020b). This choice is motivated by the findings of Liu et al.
(2023), which suggest that a CNN with a small kernel size may help extract high-frequency infor-
mation more effectively compared to the pointwise linear transformation used in the original FNO
implementation. Additionally, the outputs from both components are combined using the GELU
activation function.

It is important to note that while the second component of the F layer helps capture some high-
frequency details, relying solely on this part is not sufficient to accurately capture high-frequency
information. This limitation is why the Fourier neural operator (FNO) approach may not perform
well for multiscale PDE problems. We conduct a detailed ablation study in Appendix B.3.2 to further
investigate this issue.

C layers: Each convolution layer includes three convolutional neural networks with increasing
dilation rates, each utilizing a kernel of size 3 and followed by a GELU activation function. These
convolutional neural networks employ dilation rates of (1, 3, 9). The dilation rate determines the
spacing between the points with which each point is convolved. A dilation rate of 1 corresponds to
a regular convolution where each point is convolved with its immediate neighbors. Larger dilation
rates, such as 3 and 9, expand the receptive field of each point to include more distant points. Figure
3.2 illustrates an example of a two-layer dilated convolution with dilation rates of (1, 3). In the
first layer, each point is convolved with its neighbors at a distance of 1, and in the second layer,
each point is convolved with its neighbors at a distance of 3. As a result, the central red cell has
a 9 × 9 receptive field. By incorporating multiple dilation rates, the model can capture long-range
dependencies and maintain communication between distant points. This approach enhances the
model’s ability to capture both local and global information. Residual connections are applied to
alleviate the vanishing gradient problem.

In summary, the combination of convolution layers with multiple dilation rates effectively enlarges
the receptive fields of the network, facilitating the aggregation of global information and leveraging
the advantages of convolutions in extracting localized features (see Section 4.3). However, in most
cases in operator learning, relying solely on convolutional layers may not yield satisfactory results,
and the combination with Fourier layers can boost performance. See the ablation results in Appendix
B.3.1 for more details.

3.2 WEIGHTED LOSS FUNCTION

Loss functions play a crucial role in effectively training neural network models. The conventional

L2 loss, denoted as LL2

(v,u) =
√∑N

j=1 |vj − uj |2, can be equivalently expressed in the Fourier

domain as LL2

(v,u) =
√∑N/2

ξ=−N/2+1 |v̂ξ − ûξ|2. v̂ and û are the Fourier transforms of v and
u, respectively. For multiscale problems, it is natural to consider using the H1 loss function, which
incorporates derivatives in addition to the L2 loss. In the Fourier domain, theH1 loss can be defined

as LH1

(v,u) :=
√∑N/2

ξ=−N/2+1(1 + 4π2|ξ|2)|v̂ξ − ûξ|2. This loss function introduces a term pro-
portional to |ξ|2 in the summation, where |ξ| represents the frequency. By including this term, theH1

loss emphasizes high-frequency components. In practice, the frequency distribution of the solution
is often unknown beforehand. Hence, inspired by the work of Liu et al. (2023), we adopt a weighted

loss function denoted as LT (v,u) :=
√∑T

|ξ|=1 4π
2|ξ|2|v̂ξ − ûξ|2 +

∑N/2
ξ=−N/2+1 |v̂ξ − ûξ|2,

where weights are only applied to the first T frequencies. This approach aims to strike a balance be-
tween preserving low-frequency information and reducing high-frequency errors. For more details,
please refer to Appendix D.
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4 EXPERIMENTS

In this section, we present numerical experiments comparing DCNO with different operator models
based on several metrics, including relative L2 error, parameter count, memory consumption, and
training time per epoch. The goal of these experiments is to assess the performance of various op-
erator models through different tasks, which include multiscale elliptic equations, time-dependent
Navier-Stokes equations, and inverse coefficient identification for multiscale elliptic equations. Ad-
ditionally, we explore the Helmholtz equation in Appendix E and a Navier-Stokes example in a
different setup (de Hoop et al., 2022) in Appendix F. The results consistently demonstrate that the
DCNO model outperforms other operator models. It achieves superior accuracy, robustness, and
cost-accuarcy trade-off in all the considered scenarios.

The experiments in the study are trained using either relative L2 loss or weighted LT loss unless
stated otherwise, and denoted by (L2) or (LT ), respectively. For more detailed information on the
experimental setup, including specific configurations and parameters, please refer to Appendix B.1.

Benchmark models: We compare the DCNO model with the following recent successful opera-
tors: Fourier Neural Operator (FNO), a neural operator method based on the Fourier transform (Li
et al., 2020b); Multiwavelet-based Operator (MWT) (Gupta et al., 2021), a neural operator based
on multiwavelet transform; U-shaped Neural Operator (U-NO), (Rahman et al., 2022) a neural
operator combining FNO and U-Net (Ronneberger et al., 2015) architectures and is considered as a
superior alternative to U-NET; Galerkin Transformer (GT), (Cao, 2021) a neural operator utilizing
an encoder which rearranges the order of multiplication in vanilla attention for feature extraction;
Hierachical Attention Neural Operator (HANO), (Liu et al., 2023) a hierarchical attention neural
operator inspired by the hierarchical matrix approach; Dilated ResNet (Dil-ResNet), (Stachenfeld
et al., 2022) a method combining the encode-process-decode paradigm with dilated convolution.

4.1 MULTISCALE ELLIPTIC EQUATIONS

We examine the effectiveness of the DCNO model on the multiscale elliptic equation, given by the
following second-order linear elliptic equation,{−∇ · (a(x)∇u(x)) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(4.1)

with rough coefficients and Dirichlet boundary conditions. Our goal is to approximate the operator
S : L∞(D;R+) → H1

0 (D;R), which maps the coefficient function a(x) to the corresponding
solution u. We assess the model on two-phase Darcy rough coefficients (Darcy rough) given in Liu
et al. (2023) where the coefficients are significantly rougher compared to the well-known benchmark
proposed in Li et al. (2020b). We also consider multiscale trigonometric coefficients with higher
contrast, following the setup in Owhadi (2017); Liu et al. (2023). The coefficients and solutions are
displayed in Figure 4.1. Further details on the data generation and can be found in Appendix A.1.

The experimental results for multiscale elliptic equations are presented in Table 1. The models are
trained with either L2 or weighted LT loss, and evaluated by both L2 and frequency based LT error
metrics. The results can be summarized below,

• DCNO achieves the lowest relative error compared to other neural operators at various
resolutions, and the errors remain approximately invariant with the resolution. Compared
to FNO, DCNO has a remarkable accuracy improvement of 73% and 64% in the cases
of Darcy rough and multiscale trigonometric, respectively, while maintaining the second
fewest parameters and only requireing 39% more training time compared to FNO. Fur-
thermore, we observe that DCNO achieves the best cost-accuracy trade-off among all the
neural operators we tested in Figure 4.2.

• Attention-based models GT and HANO suffer from high computational costs in terms of
training time and memory. Although HANO achieves the second-best accuracy, DCNO
outperforms HANO by a significant margin while requiring fewer computational resources.

• Dil-ResNet, with its convolutional architecture, has the fewest parameters among all mod-
els. However, it requires more memory and longer training time per epoch compared to
DCNO and FNO. Furthermore, its accuracy is not as ideal as the other models.
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(a) coefficient (b) reference solution (c) abs. error of
DCNO (in log10 scale)

(d) abs. error of FNO
(in log10 scale)

Figure 4.1: Top: Darcy rough example, (a) coefficient, (b) reference
solution, (c) DCNO, absolute (abs.) error, (d) FNO, abs. error; Bot-
tom: multiscale trignometric example, (a) coefficient (in log10 scale),
(b) reference solution, (c) DCNO, abs. error (in log10 scale), (d) FNO,
abs. error (in log10 scale).

Figure 4.2: Cost-
accuracy (in log2 scale)
trade-off

In addition, the reduction of spectral bias for DCNO and a comparison with other models can be
found in Appendix C. These results highlight the superior performance of the DCNO model in terms
of accuracy and efficiency, making it a favorable choice for solving multiscale elliptic equations.
Also, we observe from Table 1 that even trained with L2 loss, DCNO outperforms most models
trained with weighted LT loss. Only HANO achieves a comparable level of accuracy as DCNO, but
it requires more than 3 times the training time 1

Parameters Memory Time per Darcy rough Trigonometric
Model ×106 (GB) epoch(s) L2 LT L2 LT

FNO(L2) 2.37 1.79 5.71 1.749 15.192 1.803 30.264
FNO(LT ) 2.37 1.79 5.65 1.643 13.671 1.760 15.191
MWT(L2) 9.81 2.54 18.14 1.301 5.437 0.988 11.158
MWT(LT ) 9.81 2.54 17.94 1.225 4.621 0.870 6.056
U-NO(L2) 16.39 1.57 9.82 1.324 9.727 1.370 19.958
U-NO(LT ) 16.39 1.57 9.84 1.104 7.915 1.184 7.910
GT(L2) 2.22 9.32 35.22 2.166 10.686 1.013 13.193
GT(LT ) 2.22 9.32 35.25 1.739 5.805 0.988 7.860
HANO(L2) 13.37 9.87 27.42 1.119 5.158 0.743 7.866
HANO(LT ) 13.37 9.87 27.42 0.674 2.507 0.645 4.368
DIL-RESNET(L2) 0.58 5.71 10.67 7.110 24.462 2.301 28.513
DIL-RESNET(LT ) 0.58 5.71 10.69 5.202 11.620 1.848 7.512
DCNO(L2) 1.74 2.68 7.84 0.673 4.237 0.749 7.791
DCNO(LT ) 1.74 2.68 7.88 0.446 1.802 0.631 3.689

Table 1: Benchmarks on multiscale elliptic equations. Performance are measured with relative
L2 errors (×10−2), number of parameters, memory consumption for a batch size of 8, and time
per epoch for resolution s = 256 of the Darcy rough example during the training process, the
notation (L2) or (LT ) indicates whether the model was trained using the L2 loss or the weighted
loss, respectively.

4.2 NAVIER-STOKES EQUATION

In this section, we focus on the 2D Navier-Stokes equation in vorticity form on the unit torus T, as
benchmarked in (Li et al., 2020b)(see Appendix A.2 for details). The vorticity variable is denoted
as ω(x, t), where x ∈ T represents the spatial domain and t ∈ [0, T ] represents the time interval.
The goal is to learn the operator S : w(·, 0 ≤ t < T0) → w(·, T0), which maps the vorticity from
time 0 to T0 − 1 to the vorticity at time T0. This operator can be applied recursively until reaching

1The current version of HANO is based on SWIN (Liu et al., 2021) implementation.
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the final time T , with the ”rollout” strategy used in Li et al. (2020b) and Rahman et al. (2022). .
In our experiments, we consider different viscosities ν ∈ {1e − 3, 1e − 4, 1e − 5, 1e − 6}, with
the final time T adjusted accordingly as the flow becomes more chaotic with decreasing viscosities.
This strategy involves predicting the vorticity at each time step using a recurrence relation: w̃t =
G(w̃t−1, w̃t−2, · · · , w̃t−T0

) and w̃i = wi if 0 ≤ t < T0, where w̃i is the predicted vorticity and wi

is the true vorticity. The operator G is approximated by various neural operators. By evaluating the
performance of the DCNO model and other benchmark operators, our aim is to assess their ability
to accurately predict the complex dynamics of fluid flow over time.

Table 2 presents a comprehensive summary of the Navier-Stokes experiment results. For lower
Reynolds numbers, FNO, MWT, U-NO, HANO and DCNO achieve similar levels of accuracy.
However, as the Reynolds number increases, the DCNO models demonstrate a notable advantage in
accuracy. This highlights the effectiveness of the DCNO models in capturing the complex dynamics
of fluid flow and accurately predicting vorticity, especially in scenarios with higher Reynolds num-
bers. Overall, the results demonstrate that DCNO consistently provides more accurate predictions
compared to other methods while maintaining a reasonable computational cost.

Memory Time per ν = 1e− 3 ν = 1e− 4 ν = 1e− 5 ν = 1e− 6
Model Parameters Requirement epoch T0 = 10s T0 = 10s T0 = 10s T0 = 6s

×106 (GB) (s) T = 50s T = 25s T = 20s T = 15s

FNO 2.37 0.23 23.13 0.406 4.561 7.820 5.280
MWT 9.81 0.32 77.11 0.388 4.103 8.424 4.957
U-NO 11.91 0.22 96.02 0.454 3.573 6.923 4.588
GT 2.23 1.117 122.72 2.516 8.352 11.253 7.149
HANO 3.27 0.49 40.70 0.375 4.405 7.109 4.101
DIL-RESNET 0.59 0.72 43.55 1.100 9.833 14.870 9.810
DCNO 3.06 0.38 31.68 0.348 4.209 6.239 3.227

Table 2: Benchmarks on Navier Stokes equation.Performance are measured with relative L2 errors
(×10−2), number of parameters, memory consumption for a batch size of 16, and time per epoch
for (ν = 1e− 5, T0 = 10s, T = 20s) during the training process.

(a) Initial vortic-
ity

(b) sol, T=10s (c) sol, T=13s (d) sol, T=16s (e) sol, T=19s

(f) pred, T=10s (g) pred, T=13s (h) pred, T=16s (i) pred, T=19s

Figure 4.3: The vorticity field generated by DCNO method for the Navier-Stokes equation with
viscosity 10−5, sol stands for solution, pred stands for predictions.

4.3 INVERSE COEFFICIENT IDENTIFICATION FOR MULTISCALE ELLIPTIC PDES

In this section, we address an inverse coefficient identification problem using the same data as the
previous example of multiscale elliptic PDE in section 4.1. Inverse problems play a crucial role
in various scientific fields, including geological sciences and medical imaging. However, these
problems often exhibit poor stability compared to their corresponding forward problems (see B.4),
even with advanced regularization techniques (Kirsch et al., 2011; Gottschling et al., 2020; Scarlett
et al., 2022). In this example, our objective is to learn an approximation to an ill-posed operator
S−1 : H1

0 (D) 7→ L∞(D), where û = u + ϵN(u) 7→ a. Here, ϵ represents the level of Gaussian
noise added to both the training and evaluation data. The noise termN(u) accounts for the sampling
distribution and data-related noise. This task is challenging due to the ill-posed nature of the problem
and the presence of noise.
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The results of the inverse coefficient identification problem with noise are presented in Table 3. It
is worth noting that the memory consumption and training time per epoch remain the same as re-
ported in Table 1. The DCNO model outperforms other methods in this example, which highlights
DCNO’s ability to effectively address the challenges posed by this ill-posed inverse problem with
noisy data. Interestingly, FNO and U-NO, known for their effectiveness in smoothing and filtering
high-frequency modes, encounter difficulties in recovering targets that exhibit high-frequency char-
acteristics, such as irregular interfaces, highly oscillatory coefficients, and the presence of Gaussian
noise. In contrast, Dil-ResNet (and MWT to a lesser extent) performs significantly better in this
specific problem, particularly when the noise level is higher. The use of dilated convolutions in
Dil-ResNet proves advantageous in capturing high-frequency features. While HANO achieves the
second-best overall accuracy, it comes at a considerable computational cost.

In Figure 4.4, we display the solution and predicted coefficients for the inverse coefficient identi-
fication problem at various levels of noise. Notably, even with a noise level of 10%, the predicted
coefficient successfully recovers the interface present in the ground truth. This resilience to noise
highlights the robustness and effectiveness of the coefficient prediction in capturing the underlying
structure accurately.

Darcy rough Trigonometric
Model ϵ=0 ϵ=0.01 ϵ=0.1 ϵ=0 ϵ=0.01 ϵ=0.1

FNO 28.154 28.267 29.725 56.044 56.043 56.239
MWT 9.361 12.571 20.818 11.042 12.679 18.529
U-NO 23.272 23.114 25.741 52.019 51.856 51.998
GT 12.021 14.539 23.145 25.489 27.186 41.729
HANO 2.502 9.400 19.204 8.859 10.637 17.479
DIL-RESNET 6.469 11.581 20.608 10.549 13.262 17.406
DCNO 2.737 8.765 17.042 7.723 8.110 9.512

Table 3: Relative error (×10−2) of the inverse coefficient identification. Also see Figure 4.4 for
solutions and predicted coefficients at various noise levels.

(a) sol, slice at x=0.5 (b) sol, ϵ=0.0 (c) sol, ϵ=0.01 (d) sol, ϵ=0.1

(e) coefficient (f) pred, ϵ=0.0 (g) pred, ϵ=0.01 (h) pred, ϵ=0.1

Figure 4.4: DCNO inverse coefficient identification, sol stands for solution, pred stands for predicted
coefficients.

5 CONCLUSION

In this paper, we introduce DCNO (Dilated Convolution Neural Operator) as a novel and effective
method for learning operators in multiscale PDEs. DCNO combines the strengths of Fourier layers,
which excel at representing low-frequency global components, with convolution layers that employ
multiple dilation rates to capture high-resolution local details. This hybrid architecture empowers
DCNO to surpass existing operator methods, offering a highly accurate and computationally effi-
cient approach for learning operators in multiscale settings. Through extensive experiments, we
demonstrate the effectiveness of DCNO in addressing multiscale PDEs, showcasing its superior
performance and potential for a wide range of applications.
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REPRODUCIBILITY STATEMENT

We put the code for and also a link for datasets at the anonymous Github page https://github.
com/cesare4444/DCNO-ICLR2024. Supplementary descriptions of the code are also pro-
vided in the page. The datasets for the Darcy rough (two-phase coefficients) example in Section
4.1 and the Navier-Stokes example in Section 4.2 are generated using the code from https:
//github.com/zongyi-li/fourier_neural_operator. We implemented P1 finite
element method in MATLAB to solve the multiscale trigonometric example in Section 4.1, and
in FreeFEM++ (Hecht, 2012) to solve the Helmholtz equation in Appendix E. We have included
introductions of the relevant mathematical and data generation concepts in the Appendix.
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A DATA GENERATION

A.1 MULTISCALE ELLIPTIC PDES

Multiscale elliptic equations are a fundamental class of problems, exemplified by the following
second-order elliptic equation in divergence form:{−∇ · (a(x)∇u(x)) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D

Here, the coefficient a(x) satisfies 0 < amin ≤ a(x) ≤ amax for all x ∈ D, and f ∈ H−1(D;R)
represents the forcing term. The coefficient-to-solution map is denoted as S : L∞(D;R+) →
H1

0 (D;R), where u = S(a). The coefficient a(x) may exhibit rapid oscillations (e.g., a(x) =
a(x/ε) with ε ≪ 1), high contrast ratios with amax/amin ≫ 1, and even a continuum of non-
separable scales. Handling rough coefficients poses significant challenges from both scientific com-
puting (Branets et al., 2009) and operator learning perspectives. In following, we give the details of
the two examples of multiscale elliptic equations benchmarked in this paper.

A.1.1 DARCY ROUGH EXAMPLE

Darcy flow, originally introduced by Darcy (Darcy, 1856), has diverse applications in model-
ing subsurface flow pressure, linearly elastic material deformation, and electric potential in con-
ductive materials. The two-phase coefficients and solutions are generated using the approach
outlined in https://github.com/zongyi-li/fourier_neural_operator/tree/
master/data_generation. Given the computational domain [0, 1]2, the coefficients a(x) are
generated according to a ∼ µ := ψ#N

(
0, (−∆+ cI)−2

)
, where ∆ represents the Laplacian with

zero Neumann boundary condition. The mapping ψ : R → R takes the value 12 for the positive
part of the real line and 2 for the negative part, with a contrast of 6. The push-forward is defined in
a pointwise manner. These generated datasets serve as benchmark examples for operator learning
in various studies, including Li et al. (2020b), Gupta et al. (2021), and Cao (2021). The parame-
ter c can be used to control the ”roughness” of the coefficient and corresponding solution. In the
aforementioned references, the parameter c is set as c = 9, while in Liu et al. (2023), a value of
c = 20 is used to generate a rougher coefficient. The forcing term is fixed as f(x) ≡ 1. Solutions
u are obtained using a second-order finite difference scheme on a 512× 512 grid. Lower-resolution
datasets are created by sub-sampling from the original dataset through linear interpolation.

A.1.2 MULTISCALE TRIGONOMETRIC EXAMPLE

Multiscale trigonometric coefficients are described in Owhadi (2017), as an example of highly os-
cillatory coefficients. Given the domain D [−1, 1]2, the coefficient a(x) is specified as follows:

a(x) =
6∏

k=1

(
1 + 1

2 cos(akπ(x1 + x2))
) (

1 + 1
2 sin(akπ(x2 − 3x1))

)
Here, ak is uniformly dis-

tributed in [2k−1, 1.5× 2k−1]. The forcing term is fixed at f(x) ≡ 1. To obtain the reference solu-
tions, the P1 Finite Element Method (FEM) is employed on a 1023 × 1023 grid. Lower-resolution
datasets are generated by downsampling the higher-resolution dataset through linear interpolation.

We present the multiscale trigonometric coefficient, reference solution, and a comparison with other
operator learning models in Figure A.1. Among the models considered, DCNO demonstrates supe-
rior accuracy in predicting function values and, more importantly, accurately captures the fine-scale
oscillations. This is evident in the predicted derivatives shown in (c) of Figure A.1.

A.2 NAVIER-STOKES EQUATION

The behavior of fluid flow on the unit torus is described by the Navier-Stokes equation in vorticity
form. This equation is given by:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2
(A.1)
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(a) coefficient a(x) (b) 1D slices of the predicted so-
lutions

(c) 1D slices of the predicted so-
lution derivatives

Figure A.1: (a) multiscale trigonometric coefficient, (b)comparison of predicted solutions on the
slice x = 0, (c) comparison of predicted derivative ∂u

∂y on the slice x = 0.

In the context of fluid dynamics, the variables used in the equations have the following interpreta-
tions:

• The velocity field is represented by the symbol u.

• The vorticity field is denoted as w, and it is defined as the curl of the velocity field, i.e.,
w = ∇× u.

• The initial vorticity distribution is denoted by w0.

• The viscosity coefficient is represented by ν.

• The forcing term is given by f(x) = 0.1 (sin (2π(x1 + x2)) + cos (2π(x1 + x2))).

The Reynolds number, denoted as Re, is a dimensionless parameter defined as Re := ρuL
ν , where

ρ is the density (assumed to be 1), u is the fluid velocity, and L is the characteristic length scale
of the fluid (set to 1). The Reynolds number is inversely proportional to the viscosity coefficient
ν. An increase in the Reynolds number tends to promote the transition of the flow to turbulence.
The initial vorticity distribution w0(x) is generated from a probability measure µ. Specifically,
w0 ∼ µ, where µ = N

(
0, 73/2(−∆+ 49I)−2.5

)
, and periodic boundary conditions are ap-

plied. In the data generation process, all data is produced on a 256 × 256 grid and then down-
sampled to a resolution of 64 × 64. The approach and code utilized for data generation can
be found at the following URL: https://github.com/zongyi-li/fourier_neural_
operator/tree/master/data_generation.

B SUPPLEMENTAL DETAILS OF THE EXPERIMENTS

B.1 TRAINING AND EVALUATION SETUP

Unless stated otherwise, the train-val-test split datasets used consist of 1000, 100, and 100 samples,
respectively, with a maximum of 500 training epochs and batch size of 8. The Adam optimizer is
utilized with a decay of 1e− 4 and a 1cycle learning rate scheduler (Smith & Topin, 2019). For the
Navier-Stokes equations, the train-val-test split dataset has 5000, 500, and 500 samples, respectively,
at a resolution of 64×64, again with a maximum of 500 epochs and batch size of 16. All experiments
are executed on an NVIDIA A100 GPU.

B.2 HYPERPARAMETER STUDY

We conducted a hyperparameter study to investigate the influence of different dilation rates in the C
layers of the DCNO model for multiscale elliptic PDEs. The results of this study are summarized in
Table 4. The dilation rates determine the configuration of the C layers in the DCNO model, where
dilation rates of (1, 3, 9) means that the C layers consist of three dilated convolutions with dilation
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Time per Darcy rough Trigonometric
Dilation epoch(s) L2(×10−2) LT (×10−2) L2(×10−2) LT (×10−2)
(1, 3, 9) 7.88 0.446 1.802 0.631 3.689
(1, 1, 1) 7.76 0.511 2.050 0.761 5.256
(1, 3) 7.18 0.527 2.063 0.793 5.408
(1, 1) 7.14 0.576 2.280 0.868 6.195
(1) 6.53 0.763 2.762 0.976 7.312

Table 4: Hyperparameter study

factors of 1, 3, and 9. As expected, increasing the number of layers in the C layers leads to improved
results. This can be attributed to the fact that additional layers can capture more complex features,
thereby enhancing the model’s accuracy. To assess the impact of hierarchical dilated convolution,
we compare the outcomes obtained with dilation rates (1, 1) and (1, 1, 1) against those acquired
with dilation rates (1, 3) and (1, 3, 9). The results clearly demonstrate that hierarchical dilated con-
volution has a positive effect on the outcomes. This suggests that the ability to capture multiscale
information through multiple dilation rates proves beneficial in enhancing the performance of the
model.

B.3 ABLATION STUDY

B.3.1 ABLATION STUDY OF DCNO

Model Darcy rough Trigonometric
DCNO(weighted loss) 0.446 0.631
DCNO(L2 loss) 0.673 0.749
DCNO(F layers only) 0.973 1.554
DCNO(C layers only) 8.950 3.375
DCNO(P kernel size of 3) 0.537 0.631

Table 5: Ablation Study of DCNO.

In the ablation study presented in Table 5, our objective is to assess the impact of different compo-
nents of the DCNO model on multiscale elliptic PDEs.

• By comparing with DCNO(L2 loss), we observe that utilizing the weighted loss function
can lead to improved results. It is worth noting that even when employing the L2 loss
function, DCNO still outperforms other operator methods. We note that the remaining
models in Table 5 also use the weighted loss.

• We further investigate the performance of DCNO(F layers only) and DCNO(C layers only)
by removing specific components of the model. DCNO(F layers only), which retains only
the F layers and can be seen as an enhanced version of FNO, does not achieve comparable
accuracy to the full DCNO model. This indicates that the combination of F and C layers
is crucial for achieving superior performance. On the other hand, DCNO(C layers only),
which retains only the C layers and removes the F layers, exhibits significantly better per-
formance in the multiscale trigonometric case compared to the Darcy rough case. This
observation suggests that dilated convolutions in the C layers are particularly effective in
improving results when dealing with rough coefficients. Comparing DCNO(F layers only)
and DCNO(C layers only) highlights the importance of both the F layers and the C layers in
the DCNO model. Both components play essential and complementary roles in achieving
the superior performance demonstrated by the full DCNO model.

• To fully leverage the dataset in the examples of multiscale elliptic equations discussed in
Section 4.1, the patch embedding function in DCNO employs a reduced stride. Specifically,
when the resolution of the dataset divided by the resolution of the output is equal to s
(s ≥ 2), a kernel size of 4 and a stride value of s are used. This approach allows for
effective utilization of the available data and addresses concerns about the use of additional
input information to improve results. To further address the concern regarding the use of
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additional input information, we conduct an experiment called DCNO (P kernel size of 3),
which employs the same input information as other methods. We observe that incorporating
more information improves the results for Darcy rough but has no impact on multiscale
trigonometric coefficients. Importantly, even when using the same input information as
other methods, DCNO consistently outperforms them, highlighting its superiority.

B.3.2 ABLATION STUDY OF FNO

Model Darcy rough Trigonometric
FNO(identity) 1.925 1.918
FNO(linear transform) 1.749 1.803
FNO(convolution) 1.278 1.552

Table 6: Ablation Study of FNO.

In this study, we compare three choices for the second component of the F layers. We note that in
the FNO framework introduced in Li et al. (2020b), a linear transformation denoted as W is utilized.
The three choices are as follows:

• FNO(identity): In this choice, the linear transformation W is set to 1, resulting in an iden-
tical transformation.

• FNO(linear transform): This choice follows the implementation in Li et al. (2020b), where
W is a learned parameter, allowing for flexibility in the transformation.

• FNO(convolution): Instead of using a linear transformation, we employ a convolutional
neural network (CNN) with a kernel size of 3 as a replacement for W .

By incorporating the CNN in the second component, FNO(convolution) demonstrates improved
results by effectively capturing more fine-scale information. However, relying solely on a CNN
in the second part is insufficient for accurately capturing high-frequency information, especially in
multiscale problems where preserving high-resolution features is crucial. This limitation is evident
in Table 5 of our paper. To address this challenge and effectively tackle multiscale problems, we
employ a combination of F layers and C layers. This approach leverages the strengths of both
layer types and enables better capturing of fine details at high resolutions, which is of significant
importance in our study.

B.3.3 COMPARISON OF DILATED CONVOLUTION AND U-NET

Parameters Memory Time per Darcy rough Trigonometric
Model ×106 (GB) epoch(s) s=128 s=256 s=256 s=512

DCNO 1.74 2.68 7.88 0.421 0.446 0.631 0.722
U-NET+FNO 4.89 11.51 21.73 0.390 0.441 0.500 0.504
DCNO⋆ 6.93 4.86 13.54 0.263 0.286 0.436 0.430

Table 7: Comparison of dilated convolution and U-Net.

U-Net is often considered a competitive alternative to dilated convolutions in the field of semantic
segmentation (Ronneberger et al., 2015). To further investigate this, we conducted an experiment
where we replaced the C layers in DCNO with a three-layer U-Net implementation, referred to as
U-Net+FNO in Table 7. As shown in the table, U-Net+FNO achieved better results compared to
the original DCNO, albeit at the cost of increased memory usage and training time due to the addi-
tional convolutions in the U-Net architecture. To ensure a fair comparison, we doubled the feature
dimension of DCNO, resulting in a model referred to as DCNO⋆. Remarkably, DCNO⋆ exhibited
superior accuracy compared to U-Net+FNO with fewer memory resources and faster training time.
Taking these considerations into account, we conclude that dilated convolutions are better suited for
operator learning tasks.
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B.4 STABILITY

In practical scenarios, it is common for the observed input data to be inaccurate and noisy. To assess
the stability of neural operators in the forward problem, we introduced Gaussian noise, similar to
that used in the inverse problem (refer to Section4.3), to the input data. It is evident from the results
presented in Table 8 and Figure B.1 that the predicted solutions generated by DCNO are minimally
affected by the noise and remain highly accurate. These findings emphasize the robustness of neural
operators when faced with noisy input data, making it a favorable alternative to traditional methods.

(a) true coeff (b) coeff ϵ=0.1 (c) coeff ϵ=0.5

(d) reference solution (e) pred ϵ=0.1 (f) pred ϵ=0.5

Figure B.1: DCNO solution for the Darcy rough forward problem with noise

Darcy rough Trigonometric
Model ϵ=0.0 ϵ=0.1 ϵ=0.5 ϵ=0.0 ϵ=0.1 ϵ=0.5

FNO 1.749 1.750 1.806 1.803 1.887 2.109
MWT 1.301 1.320 1.448 0.988 1.061 1.249
U-NO 1.324 1.333 1.350 1.370 1.444 1.631
GT 2.166 2.203 2.274 1.013 1.038 1.422
HANO 1.119 1.201 1.211 0.743 1.033 1.159
DIL-RESNET 7.110 7.237 9.139 2.301 4.840 9.568
DCNO 0.446 0.450 0.524 0.631 0.642 0.833

Table 8: The stability of neural operators in the forward problem

C SPECTRAL BIAS

The spectral bias, also known as the frequency principle, suggests that deep neural networks (DNNs)
face challenges in effectively learning high-frequency components of functions that exhibit varia-
tions at multiple scales. This phenomenon has been extensively studied and discussed in the litera-
ture (Rahaman et al., 2019; Ronen et al., 2019; Xu et al., 2019) in the context of function approxi-
mation.

In the context of operator learning, we conducted an analysis on the relative error spectrum dynamics
of a multiscale trigonometric example presented in Section 4.1. The analysis is illustrated in Figure
C.1. To begin, we computed the Fourier transform of the relative error in the frequency domain
[−128π, 128π]2. Our examination focused on the error density ρ(r) within the annulus A(r), which
satisfies the equation

∫
A(r)

ρ(r)rdr =
∑

i∈A(r) ϵi. The annulus A(r) := B(r + 1)\B(r), where
B(r) represents a sphere of radius r. The term ϵi represents the Fourier-transformed relative error
at a lattice point indexed by i in the discrete frequency domain. Notably, in the specific multiscale
trigonometric example we examined, the energy of the solutions was concentrated within the domain
B(40π), as depicted in Figure D.1.
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(a) DCNO(Weighted
loss)

(b) DCNO (c) FNO (d) MWT

(e) U-NO (f) GT (g) HANO (h) Dil-ResNet

Figure C.1: Error dynamics in the frequency domain for multiscale trigonometric example.

In Figure C.1, the x-axis represents the first 40π dominant frequencies arranged from low frequency
to high frequency, while the y-axis represents the number of training epochs. The plot reveals sev-
eral significant findings. Firstly, the DCNO model demonstrated a faster decay of error for higher
frequencies, indicating its ability to effectively capture high-frequency components. Additionally,
the DCNO model maintained a more uniform reduction in errors across all frequencies, suggesting
its proficiency in learning variations at multiple scales. Moreover, the DCNO model outperformed
other methods, achieving lower testing errors and indicating its effectiveness in capturing and re-
ducing errors across different frequency ranges. This analysis provides further evidence of the ad-
vantages of the DCNO model in effectively addressing the spectral bias in operator learning and
accurately predicting functions with variations at multiple scales.

D WEIGHTED LOSS

(a) average frequency
distribution of solu-
tions

(b) L2 loss (c) weighted loss (d) H1 loss

Figure D.1: (a)The frequency distribution of solutions associated with multiscale trigonometric co-
efficients (Appendix A.1.2); (b)(c)(d) absolute error spectrum of DCNO in log10 scale trained by L2

loss, weighted loss and H1 loss.

It is worth noting that the weighted loss function LT defined in Section 3.2 is equivalent to the L2

loss when T = 1 and is equivalent to the H1 loss when T = N/2. Figure D.1 (a) provides insight
into the energy concentration of the solutions within the first 40 frequency modes. Subsequently,
Figure D.1 (b), (c), and (d) display the absolute error spectrum of the DCNO model trained using
the L2 loss, weighted loss, and H1 loss, respectively, represented on a logarithmic scale (log10).
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Darcy rough Trigonometric
Model s=128 s=256 s=256 s=512

DCNO(L2 loss) 0.587 0.673 0.749 0.836
DCNO(H1 loss) 0.583 0.680 0.785 0.897
DCNO(weighted loss) 0.421 0.446 0.631 0.722

Table 9: DCNO trained by different loss functions.

Figure D.2: Influence of T for weighted loss function.

The figures clearly depict that training the DCNO model with the H1 loss effectively reduces high-
frequency errors by emphasizing high-frequency components through the inclusion of a term propor-
tional to |ξ|2 in the summation. However, upon reviewing Table 9, it becomes evident that there is no
improvement in the results obtained with the H1 loss compared to those achieved with the L2 loss.
This lack of improvement can be attributed to the relatively lower weight assigned to low-frequency
components in the H1 loss function.

Conversely, significant enhancements are observed when utilizing the weighted loss function, which
assigns added weight to the lower modes. This weighting scheme effectively captures and reduces
errors associated with these dominant low-frequency components, leading to improved performance
compared to both the L2 and H1 loss functions.

To further investigate, Figure D.2 presents a comparative analysis of the results obtained by adding
weight to the first T modes in both the Darcy rough experiment and the multiscale trigonometric
experiment. The figure clearly demonstrates that adding weight to the first 20 − 40 modes for the
multiscale trigonometric example and the first 15 − 30 modes for the Darcy rough example leads
to improved outcomes. These weighted modes effectively capture the essential components of the
respective problems, resulting in enhanced performance. However, it is important to note that further
increasing the number of weighted modes beyond a certain threshold leads to non-optimal results.
This suggests that excessive emphasis on additional modes may introduce instability and disrupts
the overall accuracy of the models.

E HELMHOLTZ EQUATIONS

We test the performance of DCNO for the acoustic Helmholtz equation in highly heterogeneous
media as an example of multiscale wave phenomena, whose solution is considerably expensive for
complicated and large geological models. We adapt the setup from Freese et al. (2021),{

−div(a(x)∇u(x))− κ2u = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D.

where the coefficient a(x) takes the value 1 or ε as shown in Figure E with ε−1 ∈ rand(128, 256) ,
κ = 9, and

f(x1, x2) =


104 exp

( −1

1− (x1−0.125)2+(x2−0.5)2

0.052

)
, (x1 − 0.125)2 + (x2 − 0.5)2 < 0.052,

0, else.
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Parameters Memory Time per Relative L2 error
Model ×106 (GB) epoch(s) s=128 s=256 s=512

FNO 2.37 1.79 5.61 5.033 5.405 6.295
MWT 9.81 2.54 17.74 2.653 2.731 2.875
U-NO 16.39 1.57 9.78 2.917 2.852 3.028
GT 2.22 9.32 35.36 13.505 13.828 16.601
HANO 13.37 9.87 27.53 2.757 2.806 3.067
DCNO 3.08 3.40 10.05 2.573 2.665 2.776

Table 10: Benchmarks on Helmholtz equations at various input resolution s. Performance are mea-
sured with relative L2 errors (×10−2), number of parameters, memory consumption for a batch size
of 8, and time per epoch for s = 256 during the training process.

(a) coefficient a(x) (b) reference solution (c) DCNO prediction û

Figure E.1: The mapping a(x) 7→ u. (a) Heterogeneous coefficient a(x), (b) the reference solution
for ε−1 = 237.3, which is solved by P1 FEM implemented in FreeFEM++ (Hecht, 2012), (c)DCNO
predicted solution

The Helmholtz equation poses a formidable challenge due to the highly oscillatory nature of its so-
lution, as depicted in Figure E, as well as the presence of the κ-dependent pollution effect. However,
the DCNO model has proven to be a remarkable solution, consistently surpassing other methods in
effectively addressing this problem.

F ANOTHER NAVIER-STOKES EXAMPLE

Parameters Memory Time per relative L2 loss
Model ×106 (GB) epoch(s) ×10−2

FNO 2.37 0.52 5.71 0.117
MWT 9.81 0.64 33.04 0.087
U-NO 16.39 0.44 39.17 0.068
GT 2.22 2.33 23.43 1.296
HANO 13.37 2.58 22.35 0.078
DIL-RESNET 0.58 7.98 10.67 0.357
DCNO 3.05 0.82 7.42 0.062

Table 11: Benchmarks on incompressible Navier-Stokes equations. Performance are measured with
relative L2 errors (×10−2), number of parameters, memory consumption for a batch size of 32, and
time per epoch during the training process.

In this section, we investigate another Navier-Stokes example, as described in de Hoop et al. (2022).
We continue to utilize the vorticity-stream function (ω − ψ) formulation of the incompressible
Navier-Stokes equations on a two-dimensional periodic domain denoted as D = Du = Dv =
[0, 2π]2. Here, our objective is to learn the mapping from the forcing term f to v = ω(·, T ), which
represents the vorticity field at a given time t = T , i.e, S : f 7→ ω(·, T ) := S(f). This formulation
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differs from the previous example in terms of the governing equations and problem setup. The
governing equations for this formulation are as follows:

∂ω

∂t
+ (c · ∇)ω − v∆ω = f,

ω = −∆ψ

∫
D

ψ = 0,

c =

(
∂ψ

∂x2
,− ∂ψ

∂x1

)
.

Table 11 presents the results of the experiments. The table reveals that the DCNO model achieves the
lowest L2 error among the compared methods, demonstrating its superior performance in terms of
accuracy. Additionally, the DCNO model showcases favorable runtime, with only the FNO method
surpassing it in terms of speed.
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