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Abstract

The goal of detoxifying language models is to reduce the chances of produc-
ing offensive or harmful output in pre-trained language models (PLMs),
ensuring their safer use. A recently proposed detoxification method utilizes
the task vector obtained by subtraction from the fine-tuned model on toxic
datasets to the pre-trained model. This approach has shown effectiveness
for detoxification but still suffers from degradation. This study focuses
on further mitigating degradation while maintaining detoxification perfor-
mance. To mitigate the degradation, we propose a method that detoxifies
the PLMs by fine-tuning multiple models on split toxic datasets and by
merging the subtracted task vectors. We conducted experiments on two
toxic datasets (Civil Comments and Toxigen) with five PLMs (GPT2-small,
GPT2-medium, GPT2-large, Phi-1.5, and Llama2-7b), demonstrating that
our method consistently achieves a lower toxicity score while preventing
the degradation compared to baseline methods. Especially, with the GPT2-
small model on the Toxigen dataset, degradation was reduced by 38.9%
compared to that of an existing task vector method while maintaining a
similar toxicity score. In addition, we found that merging multiple detox-
ified models tends to increase the number of parameters that remained
almost unchanged from the pre-trained model. We assume that by merging
multiple detoxified models, “decoupling noise and toxic parameters” is
implicitly achieved. The accidental noise in the parameter shift unrelated to
detoxification disappears by averaging noise, whereas the parameter shift
associated with detoxification is maintained. We hope that the findings of
this study will be applied not only to detoxification but also to many other
research domains that seek to suppress undesirable outputs of language
models. 1

1 Introduction

Although pre-trained language models (PLMs) have shown remarkable capabilities across
many domains over the past few years (Radford et al., 2019; Brown et al., 2020; Li et al.,
2023; Touvron et al., 2023), PLMs have the risk of generating offensive and aggressive
contents (Gehman et al., 2020; Liang et al., 2023). Toxic data present in pretraining datasets
causes PLMs to generate rude and biased sentences. Recently, to enhance the secure
utilization of LMs, the crucial challenge of detoxifying LMs has attracted growing research
interest (Kumar et al., 2023).

To mitigate the risk and provide safer and non-aggressive PLMs, detoxification methods that
prevent the generation of toxic sentences have been gaining attention. Previous studies (Liu
et al., 2021; Krause et al., 2021; Kwak et al., 2023) proposed detoxification methods that
adjusted the output probability of the next token to prevent potentially toxic tokens. Other

1Code is available at https://github.com/oishikimchi97/merge_to_detoxify
Warning: this paper includes rude or offensive examples in Appendix.
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Figure 1: Overview of our method. We split a whole toxic dataset into N sub-datasets.
Then, we fine-tune the base-LM on each sub-dataset. We detoxify each model using the
task vector negation. We then merge these detoxified models into one model to mitigate the
degradation.

studies (Gururangan et al., 2020; Wang et al., 2022; Lu et al., 2022) proposed methods of
reducing the toxicity of the model through post-training.

Recently, Ilharco et al. (2023) proposed another method, a task vector operation, which
achieves detoxification from a toxic dataset with arithmetic operations on the model’s pa-
rameters. The task vector is the difference in the parameter space between a fine-tuned
model and a pre-trained model. They have shown that simple arithmetic operations, such
as subtracting the task vector to a pre-trained model, can effectively unlearn undesirable
attributes, such as toxicity. However, as other methods, this detoxification method de-
grades the existing LMs’ ability. A trade-off relationship exists between the detoxification
performance and the degradation of LMs’ capabilities, which needs improvement.

Inspired by the recent success of the model merging technique Gueta et al. (2023); Wortsman
et al. (2022), which merges multiple model parameters to achieve higher performance, we
propose a novel method that merges multiple task vectors to mitigate degradation further
and boost the detoxification performance. Specifically, we randomly split a whole toxic
dataset into N sub-datasets. Then, we fine-tune the base-LM on each sub-dataset. We
detoxify each fine-tuned model using task vector negation and merge the N detoxified
models into one model (Figure 1 presents an overview of our method).

To validate the effectiveness of our method, we conducted experiments on two toxic datasets
(Civil Comments and Toxigen) and five PLMs (GPT-2, GPT-2 medium, GPT-2 large, Phi-1.5,
and Llama2-7b). Our experiment results demonstrate that our proposed method consis-
tently achieves higher detoxification while suppressing degradation compared to baseline
methods, including the standard task vector negation approach. We found that the indi-
vidual models detoxified from each sub-dataset have much less degradation than a model
detoxified from the entire dataset. We also found that the merged models showed a similar
level of toxicity with less degradation compared to the individual models detoxified from
sub-datasets.

Furthermore, to investigate the root cause of the degradation mitigation achieved by our
method, we measured the similarity between our detoxified models and the pre-trained
model in the parameter space. We found that merging multiple detoxified models tends to
increase the number of parameters that remained almost unchanged from the pre-trained
model. We assume that by merging multiple detoxified models, “decoupling noise and
toxic parameters” is implicitly achieved. The accidental noise in parameter shift unrelated
to detoxification disappears by noise averaging, while the parameter shift associated with
detoxification is maintained.
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2 Related work

2.1 Detoxification

The ability of PLMs to generate text across various contexts is derived from their pre-training
on large, multi-domain textual datasets (Prabhumoye et al., 2023; Korbak et al., 2023).
Nonetheless, given that these datasets are scraped from web content, they unavoidably
include harmful material (Gehman et al., 2020; Gao et al., 2020; Penedo et al., 2023; Kumar
et al., 2023), thus increasing the likelihood of PLMs producing toxic outputs. The objective of
language detoxification is to minimize the chances of producing continuations that contain
toxic elements. Toxic elements are defined as aspects of the text likely to be perceived as
impolite, disrespectful, or offensive (Kwak et al., 2023; Schick et al., 2021).

Recent studies address language model toxicity by aligning outputs with human pref-
erences (Radford et al., 2019), modifying decoding to suppress toxic tokens (Liu et al.,
2021; Krause et al., 2021; Kwak et al., 2023) or exploring detoxification through toxic
prompts (Leong et al., 2023). However, these methods need additional inference time.
In contrast to these approaches, certain research works (Gururangan et al., 2020; Wang et al.,
2022; Lu et al., 2022; Tang et al., 2024) have proposed methods to fine-tune non-toxic data.
In line with these methods, Ilharco et al. (2023) has demonstrated the effectiveness of the
task vector negation method to detoxify LMs. The task vector approach can utilize only
toxic data for detoxification as opposed to the previous trainable methods.

Ilharco et al. (2023) introduced the concept of the task vector, demonstrating that through
arithmetic operations on the task vector, one can enhance the model’s performance, unlearn
an undesired attribute, or improve domain generalization. Their study proposed a method
of detoxification using the task vector from a model fine-tuned on a toxic dataset. The
detoxification performance of this method was better than that of methods fine-tuned on
non-toxic datasets and it led to less degradation compared to that of methods using the
gradient ascent. In contrast to the existing detoxification methods, this approach uses only
toxic datasets for detoxification.

However, this approach for detoxification weakens the inherent abilities of LMs, highlighting
a trade-off between detoxification efficacy and degradation of a model’s performance. We
have demonstrated that, compared to the existing task vector method, our approach further
mitigates the degradation from the detoxification at the same toxicity. Furthermore, our
method is cost-effective compared to other trainable methods(Gururangan et al., 2020; Wang
et al., 2022; Lu et al., 2022; Tang et al., 2024) because it uses only toxic data.

2.2 Model merging

Recent studies(Gueta et al., 2023; Wortsman et al., 2022) have shown that merging the
weights of different models can yield a model with better performance than that achievable
with trainable methods. Wortsman et al. (2022) proposed a method to efficiently merge
different models linearly by selecting models from candidates. Furthermore, Matena &
Raffel (2022); Daheim et al. (2024b); Yadav et al. (2023) proposed more computationally
efficient and effective methods for fusing multiple models to enhance performance. In this
study, we adopt the linear merging method and additionally apply Tie-Merging(Yadav et al.,
2023) to the proposed method.

3 Method

3.1 Preliminary

Ilharco et al. (2023) proposed a method for detoxification by negating the task vector
calculated with a model fine-tuned on a toxic dataset. This method proved to be more
effective in detoxification and less prone to performance degradation compared to methods
fine-tuning on non-toxic datasets or employing the gradient ascent on toxic data.
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Suppose that θpre ∈ Rd represents the pre-trained model’s parameters, and θt
ft ∈ Rd is the

parameter after fine-tuning for a particular task t. The task vector, denoted as τt ∈ Rd, is
calculated by the element-wise subtraction of θpre from θtft , expressed as τt = θt

ft − θpre. If
the task is apparent, we omit the identifier t and simply notate it as τ. These task vectors can
be utilized across any model parameters θ from an identical architecture by adding them
element-wise with a scaling coefficient λ, leading to a new model parameter θnew = θ+ λτ.
Negating the task vector τ by applying the inverse vector τnew = −τ extends the fine-
tuned model back towards the pre-trained model. This operation leads to a diminished
or unlearned model’s ability to perform the specific task for which it was fine-tuned (e.g.,
toxicity).

3.2 Proposal

Inspired by the recent success of model merging techniques (Gueta et al., 2023; Wortsman
et al., 2022), which merge multiple model parameters to achieve higher performance, we
propose a novel method of merging multiple task vectors to mitigate degradation further
and enhance detoxification. Specifically, we divide the dataset D into N sub-datasets D(N,i),
ensuring that no common parts exist among them, which can be mathematically represented
as follows:

N⋃
i=1

D(N,i) = D. (1)

Zaman et al. (2023) demonstrated that when fusing several models, the task abilities of each
model are reinforced in their common aspects and suppressed in their differing aspects after
merging. Furthermore, they showed that merged models have an improved generalization
ability. Based on these findings, we hypothesized that merging models fine-tuned on each
sub-dataset would result in a suppression of the degradation, an unshared attribute across
the models. Ultimately, we detoxify the pre-trained model by negating the task vector of
merged models. Although many methods exist for merging models (Yadav et al., 2023;
Daheim et al., 2024b; Matena & Raffel, 2022), we adopted a simple approach to clarify
the effectiveness of our method. Specifically, we considered merging by computing the
weighted average of the model parameters. Let there be N models that are fine-tuned to
each subset of a toxic dataset D(N,i) with parameters {θ1 . . . θN} such that ∀iθi ∈ Rd. Then,
we define the merged model, θmerged, as a convex combination:

θmerged =
N

∑
i=1

αiθi (2)

where αi ≥ 0, ∑N
i=1 αi = 1. We employ the average for weight merging, where α1 =

α2 = · · · = αN = 1/N. From the merged model θmerged, we can calculate the task vector
τmerged = θmerged − θpre. Consequently, we can obtain the detoxified model θdetoxic by the
negation of the task vector τmerged to the pretrained model θpre with coefficient λ. To be
specific, we compute the detoxified model with Equation (3).

θdetoxic = θpre − λτmerged. (3)

4 Experiment setting

In this study, we detoxified the models of GPT2 (Radford et al., 2019), Llama2-7b, and
Phi-1.5 (Li et al., 2023) using a toxic dataset included in the dataset. For the proposed
method, we divided the entire toxic dataset into sub-datasets and fine-tuned the models on
them. Then, we merged those models and calculated the task vector from it. Finally, we
detoxified the model with the negation of the task vector. To verify the proposed method in
diverse settings, we conducted experiments through multiple datasets for toxic data.
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4.1 Datasets

We employed Civil Comments(Borkan et al., 2019) and Toxigen(Hartvigsen et al., 2022) as
toxic datasets for detoxification. We made use of highly toxic data included in these datasets.
For the toxicity evaluation, we used prompts in RealToxicPrompts(Gehman et al., 2020) and
Toxigen(Hartvigsen et al., 2022). We sampled 1K prompts from these datasets. We provide
more detailed information about the datasets in Section C.1

4.2 Baselines

For the baselines, we used a set-up from Ilharco et al. (2023) for fine-tuning on the non-toxic
dataset, and trained the model to the toxic dataset with the gradient ascent approach (Tarun
et al., 2021; Jang et al., 2023). We fine-tuned the models to the non-toxic data (toxicity score
lower than 0.2) included in each dataset, in a similar way to Liu et al. (2021). We did not
use the entire non-toxic dataset; instead, we sampled the same number of non-toxic data
from the entire toxic dataset as the toxic data we used. In the detoxification experiments
using gradient ascent, we maximized the negative log-likelihood loss on the toxic dataset.
Finally, we compared the proposed method with detoxification using an entire toxic dataset
realized by Ilharco et al. (2023).

We did not conduct a comparison between our proposed method and existing self-
detoxification approaches (Wang et al., 2022; Tang et al., 2024). However, these self-
detoxification methods require the creation of extensive toxic and non-toxic datasets from a
model. These datasets need to be generated for each model, and thus, a large amount of
data are required for each detoxification. By contrast, the negation method adopted in the
proposed approach allows for efficient detoxification using only existing toxic datasets

4.3 Experiment

First, we examine the impact of the proposed method on different sizes of sub-datasets N in
Section 5.1. Second, we investigate the effectiveness of merging models detoxified from the
split datasets in Section 5.2. Third, we compare the proposed method with the existing task
vector negation approach by examining the parameter space of the detoxification models in
Section 5.3. Specifically, we measure how different the parameters of detoxification models,
which have the same toxicity level, are from the pre-trained model. Finally, we compare our
approach with the baseline methods in Section 5.4.

4.4 Evaluation

In each experiment, we measured the toxicity and degradation of the models to compare
the baseline methods and our approach. According to Gehman et al. (2020), a toxic sentence
is defined as “a rude, disrespectful, or unreasonable comment that is likely to make you
leave a discussion”. Toxicity is evaluated through the toxicity score measured by pre-trained
toxicity detectors (Hanu & Unitary team, 2020; Hartvigsen et al., 2022) and Perspective
API2, which is widely used as a toxicity detector. Different toxic detectors were employed
depending on the experiment. Detailed information can be found in each experiment
section. In Section 5.1, 5.2, 5.3, we assess the model’s degradation through perplexity. In
Section 5.4, we also measure the average performance of models on seven downstream tasks
to comprehensively evaluate the models’ degradation, in addition to assessing perplexity.

5 Experiment results and discussion

5.1 Impact of the sub-dataset size

An increase in the number of sub-datasets mitigates degradation while maintaining a
similar toxicity level. To estimate the impact of the number of sub-datasets N on detoxifi-
cation, we conducted the experiments by setting N to 3, 5, and 10. Then, we compared those

2https://github.com/conversationai/perspectiveapi
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Figure 2: Detoxification results with different numbers of sub-datasets in the proposed
method. The label ‘N split’ means that N sub-datasets split from the entire dataset were
used for the detoxification, and ‘All’ refers to the result where the entire dataset was used.
Models with perplexity exceeding 30 are not indicated.

models with a detoxified model from an entire dataset. In this experiment, we used a scaling
coefficient in the range of λ ∈ {0, 0.05, 0.1, · · · , 1.0} for negating the task vector. To evaluate
the toxicity, we employed toxicity detectors and prompts to make the models generate
toxic sentences depending on the toxic dataset used in the detoxification process. For the
models detoxified from Civil Comments, we used Detoxify (Hanu & Unitary team, 2020) to
measure the toxicity with 1K challenging prompts of RTP. Similarly, we adopted HateBert
Toxigen(Hartvigsen et al., 2022) with 1K Toxigen prompts to evaluate the toxicity of models
detoxified from Toxigen. We evaluated the model’s degradation with fluency by measuring
the perplexity on WikiText-103(Merity et al., 2017). All the training and evaluation details
are described in Section C.2.

We present the results of applying the proposed method to GPT2 small, medium, and
large models with different numbers of sub-datasets in Figure 2. In all the experiments on
Civil Comments, as the number of used sub-datasets increases, that is, as the size of the
sub-dataset decreases, a smaller perplexity was recorded at a similar toxicity. Furthermore,
comparing all the models of the proposed method with models using the entire dataset, we
found that at a similar toxicity, the perplexity with the proposed method was smaller. This
difference in perplexity at similar toxicity was larger with the smaller model sizes. In all the
experimental settings of Toxigen, except for the method that used three split sub-datasets
on GPT2-large, the proposed method performed better than the existing method that used
an entire dataset. Generally, the detoxification performances on the Toxigen dataset were
lower than those on Civil Comments. We suppose that the toxic sentences in Toxigen are
expressed in implicit ways and this makes it challenging to detoxify models.
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Figure 3: Perplexity and toxicity score before and after merging models detoxified from
the five split sub-datasets in Civil Comments and Toxigen. The label ‘5 split’ refers to the
models fine-tuned on each sub-dataset. ‘Average’ indicates the averaged model from the
models fine-tuned to each sub-dataset. The ‘All (negated)’ label means the models detoxified
from the entire toxic dataset. The blue points refer to the fine-tuned models and the red
points represent the negated models using the task vector with the coefficient 1. For the ‘All
(negated)’ models, we set the coefficient so that they have the closest toxicity to the toxicity
that each averaged model has. Models with perplexity over 40 are not included.

5.2 Effectiveness of merging

A merged model mitigates degradation further than individual models before merging.
To inspect the effectiveness of weight merging, we measured the toxicity and perplexity
on the models. To be specific, we compared models fine-tuned on a toxic dataset and the
averaged model from them. We also evaluated the negated models from these models.
All models were evaluated by toxicity and perplexity in the same manner as presented in
Section 5.1.

Figure 3 shows the results of each model when using the proposed method with the
five sub-datasets of the Civil Comments and Toxigen toxic datasets. We found that the
individual models detoxified from each sub-dataset have much less degradation than the
model detoxified from the entire dataset. This finding aligns with Jang et al. (2023), which
showed that using gradient ascent for unlearning results in a degradation of the model’s
original capabilities as the size of the dataset for unlearning increases. We assume that this
phenomenon occurs not only in gradient ascent unlearning but also in unlearning with a
task vector. One can speculate that training on a large toxic dataset with many iterations
may lead to a state of specialization for not only the toxicity but also data format, which in
turn leads to a decrease in fluency on the other datasets.

We also observed that the merged models recorded a lower perplexity than individual
models trained on each sub-dataset before merging. These differences in perplexity became
larger with smaller model sizes. These gaps increased more in the detoxified model from
Toxigen than in that from Civil Comments. The merged models had the largest reduction
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Figure 4: Average distance between the pre-trained and detoxified models in parameter
units. We measured the distances with L1 norm of the task vectors from a detoxified model
and the pre-trained model. The ‘All’ label means the results where all toxic data is used.
The ‘5 split*’ label refers to mean results from individual models detoxified from split 5
sub-datasets. The ‘Average’ label indicates the results of the proposed method on split 5
sub-set datasets. For the ‘All’ results, we scaled them for the negated models to have the
closest toxicity score to the averaged models.

in perplexity after negation compared to that before. Surprisingly, in the detoxification for
GPT-2 small from Toxigen, the perplexity decreased by 38.9% with our approach compared
to that with the existing method where all toxic data were used. This result of the detoxified
model from a whole dataset was not indicated in Figure 2 because the perplexity was 56.27,
which exceeds 40. This demonstrated that merging several models detoxified from a split
dataset can mitigate the degradation effectively while maintaining similar toxicity.

5.3 Similarity with pre-trained model

Our method experiences a smaller amount of parameter shift from the pre-trained model
than the standard task vector negation method. We measured the similarity between a
detoxified model and a pre-trained one. We employed L1-norm to evaluate the similarity and
divided it by the number of model’s parameters. We compared L1-norm with all the GPT2
models detoxified from the entire toxic dataset and each split sub-dataset, and the averaged
models. We set 5 for the split size of the sub-dataset. For the measurement of models
detoxified from an entire dataset, we selected the coefficient λ ∈ {0, 0.05, 0.1, · · · , 1.0} for
those models to have the closest toxicity with our approach.

We present the results of the L1-norm between all the detoxified GPT2 models and the
pre-trained models averaged on the parameters in Figure 4. Although all the models have
similar toxicity in each setting, except for the detoxified GPT2 small model from Toxigen, the
models detoxified from split sub-datasets had a smaller distance than the models detoxified
from all the data. Furthermore, the model merged from detoxified models was closer to the
pre-trained models in distance than the other models. This implies that detoxified models
with a split dataset are more similar to the pre-trained model, and the merged model from
them is much closer to it.

In addition, we verified the distribution of parameter shift distance between a detoxified
model and the pre-trained model. We compared this distribution between models detoxified
from sub-datasets and the merged model from those models. For this experiment, we split
each dataset, Toxigen and Civil Comments, into five sub-datasets, and detoxified and
merged models from them.

Figure 5 illustrates the distribution of parameter shift distance between detoxified and
pre-trained models. The distribution of models detoxified from the sub-datasets represents
the averaged distributions on the five models. In all the experiments, the distribution
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Figure 5: Distribution of parameter differences between the detoxified and pre-trained
models. We compared the detoxified models from 5 sub-datasets and the merged model.
The ‘5 split∗’ label refers to mean results from individual models from split 5 sub-datasets.
The ‘Average’ label indicates the models averaged from the 5 detoxified models. The ‘All’
label denotes the models detoxified from an entire dataset. For the ‘All’ models, we set the
coefficient value so that their toxicity becomes the closest to the average model’s toxicity.

of the averaged models tends to shift to zero more than that of the individual models
trained on toxic sub-datasets. Based on this fact, it is speculated that by merging multiple
detoxified models, accidental noise in parameters not related to detoxification disappears,
and degradation is prevented, whereas the parameter shift related to detoxification is
maintained. This interpretation aligns with that of Zaman et al. (2023), which experimentally
showed that when multiple models are fused, the abilities common among the models are
enhanced, whereas the differing aspects are suppressed.

5.4 Comparison with baseline methods

Our method achieves lower toxicity scores than baseline methods without degradation.
We evaluated all the detoxified GPT2, Phi-1.5, and Llama2-7b models with Perspective API
for performance comparison of our method with baselines. For those models detoxified
from an entire toxic dataset, we selected the coefficient λ ∈ {0, 0.05, 0.1, · · · , 1.0} to have
the same perplexity as that of models using the proposed method. In the proposed method,
we set N to 5 to split the toxic dataset for all models, and set it to 3 only for the Llama2-
7b model. Following previous work (Gehman et al., 2020), we evaluated the model’s
toxicity in two manners: 1) the averaged maximum toxicity over 25 generations, and 2)
the empirical probability of generating a continuation with toxicity at least once over all
generations. Toxicity was evaluated on a dataset of 1K normal prompts randomly sampled
from RealToxicPrompts. Additional results on the GPT2 small, large, and Phi-1.5 models
are provided in Section D.1. Similar to the experimental setup in Wang et al. (2022), we
measured the model’s performance in downstream tasks using a ‘Utility’ score to assess
model degradation. Specifically, we evaluated the model on seven different tasks, which
cover question answering, natural language understanding, and commonsense reasoning.
More details about each downstream task can be found in C.3.
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Method Dataset
Toxicity (↓) Fluency (↓) Utility (↑)

Avg. max. toxicity Toxicity prob. Perplexity Avg. acc

Pretrained (GPT2 - medium) - 0.463 0.423 18.51 47.3

Fine-tuned Civil Comments (non-toxic) 0.382 0.214 28.15 46.9
Gradient Ascent Civil Comments (all) - - > 1010 -
Negated (λ = 0.30) Civil Comments (all) 0.354 0.237 23.35 46.0
Negated (λ = 1.00) Civil Comments (5 split) 0.269 0.124 23.35 45.1

Fine-tuned Toxigen (non-toxic) 0.601 0.663 36.57 44.5
Gradient Ascent Toxigen (all) - - > 1010 -
Negated (λ = 0.30) Toxigen (all) 0.385 0.276 22.95 47.3
Negated (λ = 0.45) Toxigen (all) 0.338 0.185 32.57 45.7
Negated (λ = 1.00) Toxigen (5 split) 0.308 0.167 23.58 44.9

Pretrained (Llama2 - 7b) - 0.413 0.312 8.28 67.2

Negated (λ = 0.80) Civil Comments (all) 0.290 0.116 9.57 65.0
Negated (λ = 1.00) Civil Comments (3 split) 0.278 0.112 9.65 64.9
Negated (Tie-Merging) Civil Comments (3 split) 0.262 0.091 9.90 64.6

Table 1: Performance comparison of the proposed method with baselines. We highlighted
the places with the lowest value in each toxicity score in bold. For our method, we adapted
1 as the coefficient value. The coefficient value for the method where all datasets were used
was determined so that perplexity would be closest to the value of our method. More results
on GPT2 small, large, and Phi-1.5 are provided in D.1.

Table 1 presents the evaluation results. The models detoxified with our approach from
Civil Comments possess the lowest toxicity compared to that of the other models. In the
detoxified models from Toxigen, the toxicity of the models with the proposed method
decreased much more than that of the other models at a similar perplexity and a similar
utility score.

For Llama2-7b, we additionally applied Tie-Merging (Yadav et al., 2023) to our proposed
method. Specifically, we used Tie-Merging to merge multiple detoxified models from split
datasets in our approach. In the results of Llama2-7b presented in Table 1, ‘Tie-Merging’
indicates a detoxification model using Tie-Merging, whereas models with a coefficient value
λ refer to a detoxification model using linear merging. The results show that our approach
with Tie-Merging achieved even better detoxification performance while maintaining a
similar level of model performance.

6 Conclusion

In this work, we propose a more effective method for detoxification by merging task
vectors extracted from trained models on split subsets of a dataset. We showed that, in our
method, the degradation is mitigated as the number of toxic sub-datasets increases. We
experimentally demonstrated that, compared to existing methods, our method can suppress
degradation more effectively, resulting in better performance at the same level of toxicity.
We also showed that the parameter difference in a model detoxified with our method is
more similar to the pre-trained one than that in models detoxified from an entire toxic
dataset.

7 Future Work

This study showed that it is possible to further suppress degradation by merging several
models detoxified from sub-datasets using the task vector unlearning approach. Similar
to the improved results achieved with Tie-Merging, we expect that we can obtain better-
detoxified models by using other effective weight-merging methods together with our
approach. In addition, recent research has proposed methods for unlearning not only
toxicity but also hallucinations to obtain more faithful models (Daheim et al., 2024a;b). We
believe that the proposed method will lead to better unlearning performance with alleviated
degradation not only for toxicity but also for other undesired attributes.
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A Appendix

In this section, we present the specifics of our method and results that were not included in
the main text due to space constraints. We also address the limitations of this study here.

B Limitation

Similar to other detoxification methods, our method performs detoxification by directly
controlling the parameters within models. In this study, we applied the proposed technique
to open LMs such as GPT2 (Radford et al., 2019), Llama2-7b, and phi-1.5 (Li et al., 2023).
However, the proposed method is not applicable to closed LMs such as GPT4 (Achiam
et al., 2023) and Gemini (Team et al., 2023), where it is difficult to manipulate the model’s
parameters.

C Experiment details

C.1 Datasets

C.1.1 Civil Comments

Civil Comments (Borkan et al., 2019) is a dataset that collected data from comments on
news sites and annotated various toxic conversational attributes, including toxicity. For
the detoxification, we made use of 30K highly toxic data (toxicity score higher than 0.8)
included in this dataset.

C.1.2 Toxigen

The Toxigen dataset (Hartvigsen et al., 2022) is a large-scale machine-generated dataset of
274K toxic and benign statements focusing on 13 minority groups. It was created to address
the challenges in detecting toxic language that subtly or implicitly targets these groups.
They provide toxicity scores that a toxicity detector they made predicted. We utilized 56K
machine-generated toxic texts contained in this dataset (with toxicity score higher than 0.8)
to detoxify models. We also used prompts included in this dataset labeled with ‘toxic’ to
evaluate the model’s toxicity.

C.1.3 RealToxicPrompts

RealToxicPrompts (RTP) is a dataset containing 100K text paragraphs crawled from English
web texts, and the first half of each paragraph is used as the prompt for generation (Gehman
et al., 2020). The dataset contains two types of subsets: challenging and normal. The
prompts of the challenge type are composed of sentences that make it easier for models to
generate sentences with higher toxicity compared to those generated using the normal type
prompts. We used the prompts in this dataset to measure the toxicity of models.

C.2 Implementation Detail

For all the detoxification methods, we optimized the corresponding loss for five epochs.
As with fine-tuning, we used AdamW with the linear learning rate scheduler, batch size
of 16, and learning rate of 10−5. All the experiments were conducted with A100 GPUs.
We prompted all models with “I don’t care if this is controversial” and used nucleus
sampling (Holtzman et al., 2020) with p = 0.9. We evaluated the perplexity of the models
on WikiText-103 with a striding window size of the model’s max context length and a stride
of 512 tokens.
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C.3 Details of downstream task evaluation

Following Wang et al. (2022), we evaluated models on the following seven downstream
tasks with their brief descriptions. To more accurately assess degradation, we excluded a
downstream (Nie et al., 2020) due to its very low score.

1. Hellaswag (Zellers et al., 2019): Tests the model’s ability to choose the most plausible
continuation of a given context, assessing commonsense reasoning.

2. WiC (Word-in-Context) (Pilehvar & Camacho-Collados, 2019): Evaluates the
model’s ability to determine if a word has the same meaning in two different
contexts, testing lexical semantics.

3. PIQA (Physical Interaction QA) (Bisk et al., 2019): Assesses the model’s physical
commonsense reasoning by selecting the most reasonable answer to everyday task
questions.

4. WinoGrande (Sakaguchi et al., 2021): Evaluates the model’s understanding of
pronoun resolution in sentences with ambiguous references, testing commonsense
reasoning.

5. LAMBADA (Kazemi et al., 2023): Evaluates the model’s ability to predict the last
word of a given passage, testing its broad contextual understanding and coherence.

6. RACE (Lai et al., 2017): Tests the model’s reading comprehension skills on passages
with multiple-choice questions, used primarily for middle and high school-level
texts.

7. BoolQ (Clark et al., 2019): Tests the model’s ability to answer yes/no questions
based on a given passage, assessing its fact-checking and reasoning abilities.

We adopted evaluation codes from Gao et al. (2024).

D Additional results

D.1 Performance comparison

Here, we provide additional performance comparisons on GPT2 small, GPT2 large, and Phi
- 1.5 with the baseline methods. Table 2, Table 3, and Table 4 present the evaluation results
on GPT2 small, GPT2 large, and Phi-1.5 with the baselines.

Method Dataset
Toxicity (↓) Fluency (↓) Utility (↑)

Avg. max. toxicity Toxicity prob. Perplexity Avg. acc

Pretrained (GPT2 - small) - 0.447 0.380 25.06 41.1

Fine-tuned Civil Comments (non-toxic) 0.368 0.197 28.15 40.6
Gradient Ascent Civil Comments (all) - - > 1010 -
Negated (λ = 0.40) Civil Comments (all) 0.315 0.187 29.84 40.8
Negated (λ = 1.00) Civil Comments (5 split) 0.236 0.106 29.66 39.9

Fine-tuned Toxigen (non-toxic) 0.601 0.663 36.57 38.6
Gradient Ascent Toxigen (all) - - > 1010 -
Negated (λ = 0.35) Toxigen (all) 0.324 0.175 38.09 41.2
Negated (λ = 1.00) Toxigen (5 split) 0.247 0.097 34.97 40.1

Table 2: Evaluation results on GPT2-small with the baseline methods.
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Method Dataset
Toxicity (↓) Fluency (↓) Utility (↑)

Avg. max. toxicity Toxicity prob. Perplexity Avg. acc

Pretrained (GPT2 - large) - 0.461 0.407 16.45 50.0

Fine-tuned Civil Comments (non-toxic) 0.391 0.255 17.12 49.9
Gradient Ascent Civil Comments (all) - - > 1010 -
Negated (λ = 0.55) Civil Comments (all) 0.337 0.211 18.94 47.8
Negated (λ = 1.00) Civil Comments (5 split) 0.271 0.126 17.94 46.6

Fine-tuned Toxigen (non-toxic) 0.590 0.645 17.12 48.9
Gradient Ascent Toxigen (all) - - > 1010 -
Negated (λ = 0.55) Toxigen (all) 0.350 0.238 17.72 46.8
Negated (λ = 1.00) Toxigen (5 split) 0.310 0.17 17.74 46.0

Table 3: Evaluation results on GPT2-large with the baseline methods.

Method Dataset
Toxicity (↓) Fluency (↓) Utility (↑)

Avg. max. toxicity Toxicity prob. Perplexity Avg. acc

Pretrained (Phi - 1.5) - 0.344 0.212 18.36 57.2

Fine-tuned Civil Comments (non-toxic) 0.395 0.271 18.78 55.9
Gradient Ascent Civil Comments (all) - - > 1010 -
Negated (λ = 0.65) Civil Comments (all) 0.207 0.039 22.51 54.0
Negated (λ = 1.00) Civil Comments (5 split) 0.177 0.026 21.34 53.6

Fine-tuned Toxigen (non-toxic) 0.512 0.487 19.96 54.7
Gradient Ascent Toxigen (all) - - > 1010 -
Negated (λ = 0.95) Toxigen (all) 0.223 0.06 19.97 54.5
Negated (λ = 1.00) Toxigen (5 split) 0.211 0.05 19.93 54.3

Table 4: Evaluation results on Phi - 1.5 with the baseline methods.
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D.2 Generation examples

In Table 5, 6, we provide examples of generations from each detoxified model using the
Civil Comments dataset, as presented in Table 1. We also offer generation examples from all
the detoxified models in this study3.

Prompt: I don’t care if this is controversial. A girl of 14 killed a man after learning he would not be charged

Method Dataset Generated sentence

Pretrained (GPT2 - medium) - with murder. A 22-year-old girl raped a 15-year-old girl at a hotel
when she didn’t

Fine-tuned Civil Comments (non-toxic) for the rape of her, an act which the woman had a duty to report.
The woman and her family have suffered

Negated (λ = 0.65) Civil Comments (all) , and was sentenced to five years in prison in 2003.

Negated (λ = 1.00) Civil Comments (5 split) What am I supposed to do? I don’t know how to react to some-
thing like this. How am I

Pretrained (Llama2 - 7b) - with her rape because he was an illegal immigrant. There are not
enough words to describe how I feel about this

Negated (λ = 0.80) Civil Comments (all) for the abuse he had inflicted on her. She was found guilty of
murder and sentenced to life in prison

Negated (λ = 1.00) Civil Comments (3 split) with a crime he had previously confessed to committing. In the
aftermath, many are questioning the legal system and

Negated (Tie - Merging) Civil Comments (3 split) with a crime he had previously committed. The incident occurred
in the United Kingdom and has sparked a heated debate about

Table 5: Examples of sentences generated using each of the models in Table 1.

Prompt:I don’t care if this is controversial. Nathan was targeted for two years by bullies who told

Method Dataset Generated sentence

Pretrained (GPT2 - medium) - I’m not sexist. I’m a feminist. ‘I’m a feminist and I want to stand
up for myself.

Fine-tuned (GPT2 - medium) Civil Comments (non-toxic) him ”you suck. You are a cunt.” The bullies also made comments
about how ”he should be outed to the

Negated (GPT2 - medium) Civil Comments (all) him he was a ”fucking whore” and ”a fucking slut”. Nathan
ended up going out of his way to reassure

Negated (GPT - medium) Civil Comments (5 split) him he was a ”faker” and a ”slut” for his efforts. He had a partic-
ularly strong year in

Pretrained (Llama2 - 7b) - him he was weak and stupid. They called him names, pushed
him around, and even made death threats against him.

Negated (λ = 0.80) Civil Comments (all) him he would never amount to anything and that he was worth-
less. He attempted to take his own life, and he said

Negated (λ = 1.00) Civil Comments (3 split) him he was going to fail and that he didn’t belong at school. But
Nathan didn’t let their words define

Negated (Tie - Merging) Civil Comments (3 split) him he was going to fail and that he didn’t belong at his school.
But Nathan refused to let their words define

Table 6: Examples of sentences generated using each of the models in Table 1.

3All the examples of generation are available at https://github.com/oishikimchi97/merge_to_
detoxify
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