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ABSTRACT

In this work, we study the Morphological Symmetries of dynamical systems with
one or more planes of symmetry, a predominant feature in animal biology and
robotic systems, characterized by the duplication and balanced distribution of
body parts. These morphological symmetries imply that the system’s dynamics
are symmetric (or approximately symmetric), which in turn imprints symmetries
in optimal control policies and in all proprioceptive and exteroceptive measure-
ments related to the evolution of the system’s dynamics. For data-driven methods,
symmetry represents an inductive bias that justifies data augmentation and the con-
struction of symmetric function approximators. To this end, we use Group Theory
to present a theoretical and practical framework allowing for (1) the identification
of the system’s morphological symmetry Group G, (2) the characterization of how
the group acts upon the system state variables and any proprioceptive and extero-
ceptive measurement, and (3) the exploitation of data symmetries through the use
of G-equivariant/G-invariant Neural Networks, for which we present experimen-
tal results on synthetic and real-world applications, demonstrating how symmetry
constraints lead to better sample efficiency and generalization while reducing the
number of trainable parameters.

1 INTRODUCTION

Symmetries are a predominant feature in animal biology. The majority of living (and extinct) species
are bilaterally or radially symmetric (i.e., having one or more planes of symmetry), a property intu-
itively recognized by the patterns of balanced distribution and duplication of body parts and shapes
(Holló, 2017). Likewise, most robotic systems are symmetric, often featuring more precise symme-
tries than nature due to the accurate duplication of body parts and the tendency to design mechanisms
with symmetric volumes and mass distributions. These morphological symmetries of animals and
robots imply that the dynamics and control of body motions are also approximately symmetric, re-
sulting in all proprioceptive and exteroceptive measurements, related to the evolution of the system’s
dynamics (e.g. joint torques, depth images, contact forces), to be also symmetric. This highly rel-
evant inductive bias is frequently left unexploited in most data-driven applications in the fields of
robotics, computer graphics, computational biology, and control.

Recent works in computer graphics (Yeh et al., 2019; Abdolhosseini et al., 2019; Yu et al., 2018)
and robotics/dynamical systems (Van der Pol et al., 2020; Ordonez-Apraez et al., 2022; Hamed &
Grizzle, 2013; Finzi et al., 2021a) have exploited through different approaches the morphological
symmetry group associated with bilateral (or sagittal) symmetry (the reflection group C2), obtaining
improvements in generalization and sample efficiency of function approximators. Notably, Zinke-
vich & Balch (2001) proved that Markov Decision Processes with state symmetries have symmetric
optimal value and policy functions. Despite these encouraging contributions, exploiting the induc-
tive bias of morphological symmetries is not a widespread technique in the research community. We
attribute the scarce adoption of these techniques to the lack of a unifying theoretical and practical
framework, allowing to identify different morphological symmetries in arbitrary dynamical systems
and efficiently and conveniently exploit them in data-driven applications.

This work takes a step towards this unifying framework by studying morphological symmetries
through the lens of dynamical systems and group theory1. Our theoretical contributions are:

1The field of mathematics that studies symmetries, which is broadly used in Machine Learning (ML)
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Figure 1: Left: Caley diagram and top-view (see 3D animation) of symmetric configurations of the
quadruped robot Solo, whose morphological symmetries (described by the Klein four-group K4)
allow it to imitate the effect of reflections (gs, gt) and 180◦ rotations of space (gr). Transformations
affect both proprioceptive (state space, CoM linear l and angular k momentum) and exteroceptive
(terrain elevation, external disturbances) quantities. Right: Diagram of a K4-equivariant NN. Each
of the layer’s linear maps W is constructed as a weighted average of the basis of the space of equiv-
ariant linear maps B, computed from the K4 symmetries of the input-output spaces (see section 5).

❈ A group-theoretic formalization of the concept of discrete morphological symmetry.
❈ A characterization of how the morphological symmetry group G affects the system’s state vari-

ables and any relevant proprioceptive and exteroceptive measurements. Facilitating the identi-
fication of G and the augmentation of proprioceptive and exteroceptive measurements.

Once the morphological symmetry group G is identified, our practical contributions focus on the
efficient construction and versatile use of G-equivariant neural networks, for arbitrary discrete mor-
phological symmetry groups G, for which we:

✥ Derived an optimal initialization for the trainable parameters of equivariant layers2.
✥ Demonstrate that G-equivariance reduces the trainable parameters by approximately 1/|G|.
✥ Enable the construction of large scale G-equivariant networks by mitigating the construction

computational complexity and the storage memory complexity of equivariant architectures2.

2 BACKGROUND ON SYMMETRY GROUPS

In a nutshell, a symmetry group in Group Theory is an abstraction of the concept of symmetries that
different geometric objects might have, understanding symmetry as a transformation that when ap-
plied to an object conserves a relevant property of its structure. For instance, in fig. 1-left the Klein
four-group K4 describes the symmetries that vectors, pseudo-vectors, rigid bodies, and a quadruped
robot have to 180◦ rotations (gr) and two perpendicular reflections (gs, gt). Transformations that
preserve vector magnitudes and energy. While on fig. 1-right the same group describes the symme-
tries of vector spaces, representing the quadruped robot’s state x and legs contact state y.

Formally, a symmetry group is a set of invertible symmetry transformations (or actions) G =
{e, g1, g2, . . . }, containing the trivial action e (which leaves objects unchanged) and having a bi-
nary operator (·) : G×G → G, that is associative (i.e. g1 · (g2 ·g3) = (g1 ·g2) ·g3), which composes
group members into other group members, such as gr = gs ·gt for K4 (see fig. 1). Group representa-
tions are characterizations of how each action g transforms a specific geometric object, say x ∈ Rk.
A representation ρx : G → GL(k) (GL : General Linear group) is a group homomorphism associ-
ating each g to an invertible linear map ρx(g) ∈ Rk×k specifying how the object x is transformed,
that is: g(x) ≡ g · x .

= ρx(g)x. Since group actions are abstract, it is common to define different
object-dependent representations for each action, as we will see throughout this work.

2 The link to an anonymous repository is available in the official comments on OpenReview, accessible to
reviewers and area chairs. The repository will be made public to the general public upon paper acceptance.
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A fundamental concept for this work is the notion of function G-equivariance and G-invariance.
Consider the function f : Rn → Rm. f is said to be G-equivariant or G-invariant if:

g · y = f(g · x) | ∀ g ∈ G︸ ︷︷ ︸
Equivariance

y = f(g · x) | ∀ g ∈ G︸ ︷︷ ︸
Invariance

, (1)

In words, an equivariant function maps symmetries of the input to symmetries of the output, while
an invariant function maps symmetries of the input to an invariant output.

Being this short section undoubtedly an unsatisfactory introduction to Group Theory, we refer the
uninitiated and interested reader to Bronstein et al. (2021) for a remarkable introduction to the field.

3 LAGRANGIAN MECHANICS AND SYMMETRIES OF DYNAMICAL SYSTEMS

First, we provide a group-theoretic perspective of symmetries in a dynamical system. To this end,
let us consider a dynamical system with generalized coordinates q ∈ Q ⊆ Rn and velocities q̇ ∈
TqQ ⊆ Rn; as well as a Lagrangian function L : Q × TqQ → R = T (q, q̇) − U(q, q̇). Being
Q the constrained configuration space, TqQ the configuration tangent space at q (i.e., the space of
generalized velocities), and T (q, q̇), U(q, q̇) the state kinetic and potential energies, respectively.

The symmetries of a dynamical system are defined as transformations in the space of generalized
coordinates that keep the energy state of the system unchanged (Ostrowski & Burdick, 1996). In
this work, we study time-invariant point-transformations3 of generalized coordinates g : Q → Q,
which are interpreted as actions of a symmetry group, i.e. g ∈ G. Denoting ρQ(g) ∈ Rn×n as
the action representation in Q, we define the transformed coordinates as g(q)

.
= ρQ(g)q = g · q.

Consequently, the velocity and acceleration of the transformed coordinates are given by g · q̇ and
g · q̈, respectively, considering that dg(q)

dtk
= ∂g(q)

∂q
dq
dtk

= ρQ(g)
dq
dtk

.
= g · dq

dtk
.

Formally, we say that a dynamical system has a symmetry group G if its Lagrangian is G-invariant:

L (q, q̇) = L (g · q, g · q̇) | ∀ g ∈ G, q ∈ Q, q̇ ∈ TqQ. (2)

Because the Lagrangian structure differs between the original (q, q̇) and transformed coordinates
(g · q, g · q̇) | ∀ g ∈ G, when we derive the Equations of Motion (EoM) of the system in the
transformed coordinates, we obtain a set of EoMs describing the true system dynamics in different
coordinate systems. Formally, if we derive the EoM through the Euler-Lagrange equation of the
second order

Ä
d
dt

∂L(q,q̇)
∂q̇ − ∂L(q,q̇)

∂q ≡ M(q)q̈ − τ (q, q̇) = 0
ä

, the distinct EoM are equivariant4

to each other (Lanczos, 2020), a property we will refer to as dynamics G-equivariance:

g · [M(q)q̈︸ ︷︷ ︸
Inertial

− τ (q, q̇)︸ ︷︷ ︸
Moving

] = M(g · q)g · q̈︸ ︷︷ ︸
Inertial

− τ (g · q, g · q̇)︸ ︷︷ ︸
Moving

= 0 | ∀ g ∈ G, q ∈ Q, q̇ ∈ TqQ.
(3)

Denoting M(q) : Q → Rn×n as the generalized mass matrix function and τ (q, q̇) : Q × TqQ →
Rn as the generalized moving forces at q and q̇. Note that, in eq. (3) the original and transformed
dynamics are related linearly by the Jacobian of the coordinate transformation ∂g(q)/∂q = ρQ(g)
(Wheeler, 2014), which to preserve notation is reduced to g.

To ensure dynamics G-equivariance (eq. (3)), both the generalized inertial and moving forces need
to be independently equivariant, meaning:

M(g · q) = gM(q)g-1 ∧ g · τ (q, q̇) = τ (g · q, g · q̇) | ∀ g ∈ G, q ∈ Q, q̇ ∈ TqQ. (4)

The equivariance of the generalized mass matrix provides a pathway for the identification of the
symmetry group G, and the group action representations ρQ(g) | g ∈ G (see section 4.2). While
the equivariance of the generalized moving forces (which in practice usually incorporates control
forces, constraint forces, and external interactions) implies that dynamics G-equivariance is held
until a symmetry braking force violates the equivariance of τ .

Floating-base robotic/dynamical systems: Let us now narrow our focus to floating-based dynami-
cal systems. Namely, legged/flying/swimming robots, animals, and animated characters evolving in

3A point-transformation g is a finite, invertible, continuous, and differentiable function of q(Lanczos, 2020)
4Some authors refer to this property as covariance of the EoMs (Wheeler, 2014; Lanczos, 2020)
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a Euclidean space of d dimensions (with its corresponding Euclidean Lie Group Ed), whose gener-
alized coordinates can be decoupled into q =

î
XB

q̂

ó
∈ Q

.
= Ed×QJ .5 Where XB ∈ Ed represents

the system’s base (or center of mass (CoM)) position and orientation6 . q̂ ∈ QJ ⊆ RnJ represents
the internal Degrees of Freedom (DoF) constrained configuration. And QJ the internal configuration
space commonly referred to as joint space. In this coordinate space, we can differentiate the effect of
g on Ed and QJ , noting that: g(q) = g·q = ρQ(g)q =

[
ρEd (g) 0

0 ρQJ
(g)

]î
XB

q̂

ó ∣∣ ∀ g ∈ G. Represent-

ing ρEd(g) ∈ Ed a homogeneous matrix transformation affecting the base, and ρQJ
(g) ∈ RnJ×nJ

a transformation on the joint-space. The differentiation becomes handy in identifying the system’s
continuous and discrete (section 4) symmetries.

Continuous symmetries of floating-base systems: The most commonly studied and exploited sym-
metries of floating-based systems are the continuous symmetries of the Euclidean space in which
the system evolves, i.e., symmetry actions g ∈ Ed, involving d-dimensional rotations/reflections +
translations7. The property of these actions g , which is of most interest to us, is the Ed-invariance
of the joint-space configuration: g · q̂ = q̂ ⇐⇒ ρQJ

(g) = InJ
| ∀ g ∈ Ed.

4 DISCRETE MORPHOLOGICAL SYMMETRIES (DMSS)

A Discrete Morphological symmetry (DMS) is a mathematical formalization of the intuitive property
of floating-base dynamical systems that can imitate the effect of rotations, translations, and infeasible
reflections of space with feasible discrete change in the system configuration. To better introduce
the concept of DMS it is useful to first study the most simple (and most frequent) instance of a DMS:
the reflection symmetry, which all humans and most animals approximately possess (Holló, 2017).

Reflection DMS G = C2: Despite most floating-base dynamical systems being symmetric w.r.t
reflections of space (g ∈ Ed), in practice, it is common to ignore these reflection symmetries, since,
in general, it is impossible to subject a real-world robotic/dynamical system to a true reflection of
space (Selig, 2005). Think of your own body as a floating-base system, you can move and rotate
your base (hip) in space but you are unable to execute a true reflection of space, which will force
your heart to switch sides (and certainly die). Fortunately, your body is symmetric w.r.t. the sagittal
plane (we will assume perfect symmetry for now) which allows you to imitate the effect of a true
reflection of space by modifying your internal configuration (your body pose), and rotating and
translating your base (i.e., with a feasible discrete change in your configuration, see supp.fig 6a).
Therefore, you have a discrete morphological symmetry associated with the reflection group C2.

Discrete Morphological Symmetries with higher order groups: When the finite symmetry group
G has group order |G| > 2, a DMS can imitate both rotations/reflections and translations in Ed.
Therefore, the group G will be isomorphic to one of the groups in Euclidean geometry. Most fre-
quently G is a Cyclic C or Dihedral D group. See examples for C2 on supp.figs 5 and 6a, for C3 in
supp.fig 5, and for D4 ≡ K4 in fig. 1.

Definition of Discrete Morphological Symmetry: Consider a floating-base dynamical system,
with generalized coordinates q ∈ Q

.
= Ed ×QJ , evolving in a d-dimensional Euclidean space. The

system is said to have a DMS if, for a given continuous symmetry action g ∈ Ed, there exists an
action g ∈ G, that is proper (|ρEd(g)| = 1) and non-trivial in joint-space (ρQJ

(g) ̸= Id), such that:

L (q, q̇) = L (g · q, g · q̇) = L (g · q, g · q̇) ∀ q ∈ Q, q̇ ∈ TqQ, g ∈ G, g ∈ Ed. (5)

Where g represents a rotation/reflection + translation in Ed, and g is the action of the DMS finite
group G, forcing a transformation of the internal joint-space configuration. The difference between

5Technically, the topology of Q .
= Ed × QJ is referred to as a trivial principal fiber bundle (Ostrowski &

Burdick, 1996), with Ed as the fiber Lie group, and QJ as the base space. Note that this topology applies to a
larger range of dynamical systems than merely floating-base.

6We deliberately abuse notation to keep the homogeneous matrix representation XB of position and orien-
tation, instead of the vector-quaternion representation, common in robotics and computer graphics.

7These symmetries are commonly studied since, in conservative systems, translational and rotational sym-
metries imply the conservation of linear and angular momentum, while time symmetries imply the conservation
of energy (Noether, 1918).
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g and g is highlighted when reformulating eq. (5) for a specific system configuration:

L
Åï

ρEd(g)XB

q̂

ò
,

ï
ρEd(g)ẊB

˙̂q

òã
= L
Åï

ρEd(g)XB

ρQJ
(g) q̂

ò
,

ï
ρEd(g)ẊB

ρQJ
(g) ˙̂q

òã ∣∣∣∣ρEd(g) = ±1, ρEd(g) = 1

ρEd(g)X = ρEd(g)XρEd(g)
-1 (6)

What eq. (6) highlights is that with DMS infeasible reflections (|ρEd(g)| = −1) and feasible or
infeasible rotations/translations of space are imitated by a feasible (|ρEd(g)| = 1) transformation
to the system’s base and a change in joint-space configuration. Furthermore, the structure of the
proper transformation ρEd(g)X = ρEd(g)XρEd(g)

-1, along with the properties of the dynamics
of symmetrical dynamical systems (eq. (4)), provide a pathway for the identification of G and the
representations ρQ(g) | ∀g ∈ G for any floating-base dynamical system (section 4.3).

4.1 DATA AUGMENTATION IN SYSTEMS WITH DMS

Recall from section 3 that point-transformations g ∈ G have the same representation ρQ(g) for the
configuration space Q, its tangent space TqQ and any higher order tangent spaces (e.g., the space
of generalized accelerations and forces (eq. (3))). Since our floating-base systems’ configuration
space has the topology Q

.
= Ed × QJ , this property passes to the representations on Ed and QJ .

Meaning that the representation ρEd(g) can be used to augment members of Ed (i.e., points, vectors,
and orientations) and members of Ed higher order tangent spaces (i.e., linear & angular veloci-
ties/accelerations). Likewise the representation ρQJ

(g) can be used to augment members of QJ and
its higher order tangent spaces (i.e., joints positions/velocities/accelerations, joint forces/torques).

In practice, this means that any proprioceptive (e.g., joint torques, contact forces) and exterocep-
tive (e.g., point clouds, terrain height maps, RGBD-images) measurements relevant to the evolu-
tion of the system’s dynamics, can be augmented solely with combinations of ρEd(g) and ρQJ

(g).
Since these measurements live in Q and Ed and their higher order tangent spaces (see examples in
supp.fig 5 and supplementary E.3.1 and E.4.1). To achieve this we need to identify the symmetry
group G and its action representations (section 4.2).

4.2 DMS IN THE CASE OF RIGID-BODY DYNAMICS

Until now, we have only assumed our dynamical system is a floating-base system. Now, we assume
the system dynamics are ruled by ridig-body dynamics. This means that our system is a collection of
nB interconnected rigid bodies. This is the most frequent scenario in robotics, computer graphics,
and experimental biology (see supplementary A). In rigid body dynamics the generalized mass ma-
trix is given by M(q) =

∑nB

k JTk
(q)⊺mkJTk

(q)+JRk
(q)⊺IkJRk

(q), being JTk
(q) : Q → Rd×n

and JRk
(q) : Q → Rd×n the position and orientation Jacobians that are used to map generalized

velocities to the linear (ṙk = JTk
(q)q̇) and angular (wk = JRk

(q)q̇) velocities of the body k
(Wieber, 2006). These Jacobians are functions of the kinematic parameters of the system. While
mk and Ik, the mass and inertia of body k, represent the dynamic parameters of the system dynam-
ics. A DMS implies symmetries over the kinematic and dynamic parameters of the system, that in
practice become useful for the identification of the DMS group G.

Symmetries of kinematic parameters (Kinematic Tree): Considering only the kinematic pa-
rameters and the equivariance nature of M(q) (eq. (4)), we conclude that a rigid-body system
with a symmetry group must have positional and rotational Jacobians that respect JTk

(g · q) =
JTk

(q)g-1 ∧ JRk
(g · q) = JRk

(q)g-1 | ∀ g ∈ G. Being g a continuous or discrete symmetry action.
In the case of DMS, in which the discrete action g ∈ G is designed to imitate the effect of a specific
continuous symmetry action g ∈ Ed, we have that the ith body Jacobians should respect:

JTi(g ·q)g = JTk (g ·q) = JTk (q)g
-1∧ JRi(g ·q)g = JRk (g ·q) = JRk (q)g

-1 | ∀(g, g)|g ∈ G, g ∈ Ed (7)

Where k is the index of the body of the g transformed system (see appendix C.3). In practice, the
symmetry in kinematic parameters described in eq. (7) is interpreted as a kinematic tree symmetry
(see supplementary C), requiring the discrete action g to result in a kinematic tree indistinguishable
from the one obtained by applying the rotation/reflection + translation g .

Symmetries of dynamic parameters (Mass and Inertia of rigid-bodies): In order for a rigid-body
dynamical system to have a DMS the bodies of the system must have symmetric mass distribution
or the kinematic tree must be modular (subchains of the tree are symmetric to each other). To
understand this morphological constraint consider the base body configuration XB ∈ Ed and the
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definition ρEd(g)XB = ρEd(g)XBρEd(g)
-1 in eq. (6). Where the action on the left of XB is inter-

preted as a Euclidean transformation of the base in a global reference frame and the action to the
right as a transformation in the frame attached to the base.

Recall that, for g and g to be Lagrangian-equivalent (eq. (5)) the dynamics of the base body at the
configuration ρEd(g)XB should be identical to the dynamics of the body at ρEd(g)XB (eqs. (3)
and (5)). Assuming exact kinematic parameter symmetries, both body configurations will have
equivalent dynamics if their Inertia matrix IB in both configurations is identical . Because in general,
ρEd(g) ̸= ρEd(g), the rigid-body Inertia must be invariant to the right transformation XBρEd(g)

-1.
This inertia invariance implies a symmetric mass distribution of the rigid body (see geometric proof
in supplementary C.2)). And becomes a key property for the identification of the DMS group G.

As an example consider the robot Solo in fig. 1. This robot is able to imitate two reflections of space
(gt, gs) and a 180◦ rotation of space gr. This is possible since the base body of the robot has two
symmetry planes (see supp.fig 6b), making the inertia of the base IB , at any arbitrary configuration,
invariant under the transformation XBρEd(g)

-1 | g ∈ {gt, gs, gr} ∈ K4.

Modular Kinematic Trees: Theoretically, the previously described constraint of symmetric mass
distribution applies to all rigid bodies in the system, limiting the applicability of DMS to diverse
floating-base systems. Conveniently, most systems of interest are modular8, i.e., their kinematic trees
are composed of subchains with identical or reflected rigid bodies (e.g., see in supp.fig 5 the identical
replication of fingers in the TriFinger robot, or the reflected arms and legs of the humanoid Atlas
supp.fig 6a). In such architectures, swapping identical/reflected bodies (and thus subchains of the
tree) can satisfy the Inertia invariance required for ρEd(g)X = ρEd(g)XρEd(g)

-1 without requiring
symmetric mass distributions. Refer to appendix C.3 and supp.fig 5 for details and examples.

4.3 IDENTIFICATION OF DMS GROUP G IN RIGID-BODY DYNAMICS

The identification of the DMS group G of a floating-base dynamical system, composed of rigid-
bodies, can be outlined in four steps (see simple examples in supp.fig 5):

1. Identify the configuration XB and its associated Inertia IB . Usually the base body or the CoM.
2. Identify the symmetries in mass distribution as invariances to Euclidean transformations g ∈

Ed of the reflected IB . These are the candidate actions that the system could imitate.
3. Identify modularity in the kinematic tree. I.e., all pairs of identical/reflected rigid bodies.
4. From base to end-effectors use eq. (7) to determine for each g , if the action g and ρQJ

(g) exists.

5 G-EQUIVARIANT AND G-INVARIANT FUNCTION APPROXIMATORS

Once we identified the DMS group G of our system, we know that any proprioceptive or extero-
ceptive measurements have the same symmetry group G (section 4.1). Therefore, to improve gen-
eralization and sample efficiency, we can exploit the known symmetries of the input x and output
y spaces, of any mapping we desire to approximate, by constructing G-equivariant or G-invariant
(eq. (1)) NN f(x;ϕ), with parameters ϕ (Bronstein et al., 2017). This section is built on top of
the framework for the construction of G-equivariant NN of Finzi et al. (2021b). Where our main
motivation is to address the limitations that prohibit the construction of large-scale G-equivariant
NN (see supplementary D), which are ubiquitous in real-life applications.

Consider f (x;ϕ) to be composed of multiple perceptron (or convolutional) layers of the form
ly := σ(lW lx + lb), where lx ∈ Rn, ly ∈ Rm, lW ∈ Rm×n and lb are the l layer’s linear
map and bias, respectively; and σ : R → R is a strictly monotonic nonlinearity (Ravanbakhsh
et al., 2017). With this parametrization, the equivariance constraints of eq. (1) can be reduced to
constraints on the linear map W (dropping the layer index l for notation clarity): 9

ρout(g)W = Wρin(g) | ∀ g ∈ G ⇐⇒ (ρW(g)− I)w = 0 | ∀ g ∈ G. (8)

The RHS of eq. (8) is a reformulation of the equivariance constraints as a standard set of linear
equations, defining ρW(g) = ρout(g) ⊗ ρin(g

-1)
⊺ ∈ Rmn×mn as the representation of the group

8This covers most flying/swimming/legged robots, animals and animated characters (supplementary A)
9A similar analysis can be made for the bias vector b.
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action acting on the linear map as a result of a semi-direct product10 of the input and output group
actions (⊗ stands for the Kronecker product) and w = vec(W) ∈ Rmn as a vectorized version of
W (refer to Finzi et al. (2021b) for details). Since the constraint imposed by each g is linear in W,
we can stack them into a single system of linear equations Cw = 0. The nullspace of this system of
equations B ∈ Rmn×r describes the r basis vectors spawning the entire space of equivariant linear
maps. Allowing to parameterize all G-equivariant W as:

w =
∑r

kckB:,k ⇐⇒ W =
∑r

kck unvec(B:,k)
.
=
∑r

kckB:,:,k. (9)

Where the basis coefficients c ∈ Rr represent the free variables of the system of equations and the
trainable parameters of the equivariant layer (see fig. 1 right).

Dealing with memory complexity of equivariant layers: An equivariant layer needs to store the
matrices ρW(g) and B, in addition to the typical memory complexity of a perceptron or convolu-
tional layer. These matrices’ memory complexity quickly becomes intractable for moderate input-
output dimensions (see supp.table 1). Fortunately, finite symmetry groups have sparse action matrix
representations, resulting in both of the aforementioned matrices being sparse. Our implementa-
tion2 extends the Pytorch API from Finzi et al. (2021b) to process finite groups with sparse matrix
definitions limiting the additional memory footprint of equivariant layers to a minimum.

Dealing with the computational complexity of determining the equivariant basis B: Computing
B for a layer is a process with high computational complexity. Finzi et al. (2021b) proposes a Krylov
gradient-based method able to handle both finite and Lie groups’ arbitrary regular representations.
While Van der Pol et al. (2020) approximates B through SVD of a matrix W̄ ∈ Rz×mn (z ≥ mn).
Both approaches run in polynomial time O(r2(mn)2) (prohibiting their use in large dimensional
spaces) and approximate the space rank r numerically.

Fortunately, DMS groups G are finite and have, in general, generalized permutation matrices as
regular representations. Enabling the computation of B in linear time (see supplementary B): Note
that the constraints imposed by each ρW(g) result in parameter sharing constraints (e.g., w10 =
−w2 = . . . = w0). In these cases, every vector of the null-space of C (i.e., Bi) simply describes
the sharing scheme of a free variable of the system of equations (i.e., the trainable parameter ci),
and this sharing scheme is nothing else but one of the unique r orbits of the dimensions of w when
transformed by all group actions, e.g., G · w10 = {g · w10 : ∀ g ∈ G} = {w10,−w2, . . . , w0}
(see the parameter orbits of length 4 in fig. 1-right, for K4). The orbits of all w ∈ w are trivially
computed with [w, ρW(g1)w, . . . , ρW(g|G|)w], while the unique r orbits can be identified in O(mn)
time. Our proposed solution can be thought of as a linear-time version of Ravanbakhsh et al. (2017).

Optimal trainable parameter initialization for equivariant layers: Proper initialization of the
equivariant layer’s trainable parameters cl (eq. (9)) is required to avoid activations/gradients from
vanishing or exploding (Klambauer et al., 2017). Following the same derivation of the Kaiming
initialization (He et al., 2015) (see supplementary D.2), we can conclude that the parameters should
be initially sampled from a distribution with Var(cl) = m/λBγσ, to ensure constant variance of
activations throughout the network layers (see supp.fig 8). Where λB =

∑m
i

∑n
j

∑r
k B2

i:j:k and γσ
is a nonlinearity dependant scalar (e.g., γReLu = 1/2, γSeLu = 1 following Klambauer et al. (2017)).
This initialization depends only on B. Thus, is applicable to any Lie or finite group.

Reduction of trainable parameters in equivariant layers: Determining analytically the number
of trainable parameters (i.e. the rank r) of an G-equivariant layer is, in general, an unresolved
problem. However, for DMS groups, we show on supplementary D.1 that the number of trainable
parameters of a G-equivariant layer can range from |w|/|G| ≤ r ≤ |w|, depending on the number
of dimensions of the input-output spaces left invariant by the symmetry actions. In practice, this
implies that for a G-equivariant layer without any input-output fixed points (e.g., all intermediate
layers of a G-equivariant NN), the number of trainable parameters is reduced by 1/|G| being |G| the
group order. Therefore a G-equivariant architecture with G = C2 (supp.fig 6a) (or G = K4, see
fig. 1) will have approximately 1/2 (or 1/4) of the trainable parameters of an unconstrained NN of the
same architectural size. The reduction of parameters is caused by the parameter sharing constraints
(eq. (9)) and is visually depicted in fig. 1-right.

10 Note that Finzi et al. (2021b) considers always a direct product of the input-output symmetry actions.
However, for DMS as the input and output groups are isomorphic, a direct product over-contains the models to
symmetries not present in the data.
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Figure 2: CoM-estimation results comparing MLP, MLP-aug, and EMLP models. Left and
Middle: Test set sample efficiency, for robot Solo and Atlas, of model variants with different ca-
pacities (number of hidden layers’ neurons hc). Right: Sample efficiency for robot Solo (fig. 1),
of models with hc = 512, when exploiting G = K4 (sagittal and traversal symmetries) and
G = C2 = {e, gs} ⊂ K4 (only sagittal symmetry). Reported values represent the average and
standard deviation across 10 different seeds.

6 EXPERIMENTS

We present two experiments of supervised learning, a regression application using synthetic data and
a classification application using real-world data. Both experiments aim to illustrate the versatility
of DMSs for data augmentation and training of equivariant functions, along with the impact on the
model’s sample efficiency and generalization capacity when exploiting DMSs. While we keep the
presentation concise, all the technical aspects are detailed in supplementary E and 2.

CoM Momentum Estimation (Regression): In this experiment, we train a NN to approximate
a robot’s center-of-mass momentum given the joint-space position and velocities: h = AG(q̂) ˙̂q.
Where h = [l⊺ k⊺]⊺ are the linear l and angular k momentum components And AG is the Cen-
troidal Momentum Matrix (CMM) of Orin et al. (2013). This analytical function is highly non-linear
and G-equivariant to the robot’s DMS group G. Consequently, the function approximator is expected
to be equivariant or to approximate equivariance.

We test two robots: (1) Atlas, a nJ = 30[DoF] humanoid robot with a reflection DMS group G = C2
(see supp.fig 6a). (2) Solo, a nJ = 12[DoF] quadruped robot with the Klein-4 group as DMS group
G = K4 (see fig. 1-left). At the same time, we compare three variants of a function approximation:
a standard Multi-Layer Perceptron (MLP), a version of the MLP trained using data-augmentation
(MLP-aug), and a version of the MLP with hard-equivariance constraints (E-MLP).

On fig. 2-left-&-middle, we compare the model variants. For both robots and all model capaci-
ties, the E-MLP and MLP-Aug outperform MLP on sample efficiency (better generalization with
less data) and robustness to overfitting when training data is scarce. Comparing the E-MLP and
MLP-Aug model variants, we see that the lower capacity versions behave similarly, but as capacity
increases, E-MLP starts to show better sample efficiency and generalization. Lastly, on (fig. 2-right)
we compare, for the robot Solo, the performance of the model variants when exploiting the robots’
entire symmetry group (K4) and a subgroup of the real symmetry group (C2 ⊂ K4). The results indi-
cate that sample efficiency and generalization capacity increase with the number of true symmetries
of the data exploited.

Static-Friction-Regime Contact Detection (Classification): This experiment uses the dataset pre-
sented in Lin et al. (2021) for the estimation of static-friction-regime contacts in each of the four
legs of the Mini-Cheetah quadruped robot. The dataset samples, collected in the real-world, consist
of the history of the past 150 time-frames of proprioceptive data collected from inboard sensors
of the robot during locomotion with various gaits and over several terrains, x ∈ R54×150, and the
ground truth contact state of the robot y ∈ R16, estimated off-line using a non-causal algorithm (i.e.,
dependant on the past and future). The objective is to train a causal function approximator f(x;ϕ)
for estimating the contact state.

The real-world Mini-Cheetah robot has an approximate reflection DMS G ≈ C2. Hence, both the
proprioceptive data x and the contact state y share the symmetry group G (see supplementary E.4).
We compare three variants of function approximators: the original Conv-NN architecture of Lin
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Figure 3: Static-Friction-Regime contact detection results comparing CNN, CNN-aug, and
ECNN. Left: Sample efficiency in log-log scale. Middle: Average legs F1-score vs. training
samples. Right: Classification metrics on test set performance of models trained with the entire
training set. Selected metrics are contact-state (y ∈ R16) accuracy (Acc) and f1-score (F1) for each
leg binary contact state. Due to the sagittal symmetry of the robot the left front (LF) and right front
(RF) legs are expected to be symmetric, as the left hind (LH) and right hind (RH) legs. F1-score is
presented considering the dataset class imbalance (see supplementary E.4 and supp.fig 7). Reported
values represent the average and standard deviation across 8 different seeds.

et al. (2021) (CNN), a version of CNN trained using data-augmentation (CNN-aug), and a version
of CNN with hard-equivariance constraints (E-CNN).

The sample efficiency of the model variants and the average legs contact state classification are illus-
trated in fig. 3-left-&-middle. Where the equivariant model E-CNN presents better generalization,
performance, and robustness to dataset biases (see supp.fig 7) than the unconstrained models across
all training set sizes, followed by CNN-aug. In fig. 3-right we evaluate test set classification metrics
when using the entire training data. The E-CNN model outperforms both CNN-aug and CNN on
contact state classification and average leg contact detection. Of relevant importance is the mitiga-
tion of suboptimal asymmetries of the models by exploiting symmetries. Preventing the model to
favor the classification of one leg above others (fig. 3). Refer to appendix E.5 for details.

7 CONCLUSIONS & DISCUSSION

In this work, we present the concept of Discrete Morphological Symmetry (DMS). These are dis-
crete symmetries of dynamical systems evolving in Euclidean space, that are associated with the
capability of the system to imitate Euclidean transformations (rotations/reflections and translations)
with discrete changes in the system’s internal state configuration. With this formalism, we can
describe the bilateral and radial symmetries that are ubiquitous in robotic systems and animals in
nature. By studying these symmetries with the language of Group Theory, we propose a mechanism
for the identification of the finite DMS group G, and of the representations of the symmetry actions
in the system’s state variables and relevant proprioceptive and exteroceptive measurements.

Having made the connection between Dynamical Systems and Group Theory, we show why and
how these symmetries should be exploited in data-driven applications—to obtain improvements in
sample efficiency and generalization capacity—, either by using data-augmentation or G-equivariant
Neural Networks. For the latter, we present practical contributions addressing the implementation
drawbacks (intractable computational and memory complexity) of using G-equivariant architectures
for real-world applications. Additionally, we release open-access code enabling the rapid prototyp-
ing of G-equivariant Neural Networks for the exploitation of DMS in applications processing data
from rigid-body dynamics (e.g., robotics, computer graphics, and computational biology).

Lastly, we present empirical results supporting our claims on two data-driven applications using
synthetic and real-world data from three different robots. In both experiments improvements in
sample efficiency and generalization are obtained by exploiting the morphological symmetries bias,
motivating the use of this technique in applications using data from simulation and/or the real world.

Limitations: For a detail account of limitations see supplementary B.
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REPRODUCIBILITY STATEMENT

The experimental setup used in the experiments is described in section 6 and supplementary E.
Moreover, our implementation2 will be open-access, where any interested party can find: (1) The
original scripts used to run the experiments and generate the results, (2) the parameters of the models
used for comparison in the experiments, avoiding the need to retrain the models to test the results,
(3) the datasets used in each of our experiments, including the custom partitioning of the dataset of
Lin et al. (2021), (4) the scripts used to summarize the results into the figures used in this paper, and
(5) 3D interactive environments that allow for the visualization of the morphological symmetries,
one of this environments was used for capturing fig. 1-left and its 3D animation.
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Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lamiraux, Olivier
Stasse, and Nicolas Mansard. The pinocchio c++ library: A fast and flexible implementation of
rigid body dynamics algorithms and their analytical derivatives. In 2019 IEEE/SICE International
Symposium on System Integration (SII), pp. 614–619. IEEE, 2019.
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SUPPLEMENTARY
ON DISCRETE SYMMETRIES OF ROBOTICS SYSTEMS:
A GROUP-THEORETIC AND DATA-DRIVEN ANALYSIS

A APPLICATIONS OF DISCRETE MORPHOLOGICAL SYMMETRIES

In this section, we provide our perspective on possible applications where DMS can be of value and
the respective fields of knowledge where these applications play an important role.

All applications of DMS for data-driven techniques fall within two categories (1) data augmentation
of proprioceptive and exteroceptive measurements, and (2) G-Equivariant function approximation.
The fields of knowledge that can benefit from the aforementioned applications are:

• Biology, Biomechanics, and Experimental Veterinary. Studying the biomechanics and
dynamics of animals in nature is becoming a fundamental area of the fields of Biology,
Biomechanics, and Experimental Veterinary (Wei & Kording, 2018). Considering that
around 99% of eumetazoans (most species excluding sponges and other sea species) are
Bilaterian (Ferretti et al., 2020) (i.e., having approximate C2 symmetry) or Radiatal (i.e.,
having approximate Cn | n ≥ 2 symmetry), DMS become a flexible and natural approach
to study the data gathered from the study of these systems, especially of vertebrates, whose
dynamics are often approximated to rigid body dynamics (Wu et al., 2022).
The process of study of animal motion dynamics normally involves the use of motion
capture data of animal motions using marker-based (Prankel et al., 2016) or marker-less
(Mathis et al., 2018) sensor pipelines. The data of the markers is then either directly pro-
cessed or fitted to kinematic models (that make the assumption of exact kinematic symme-
tries) and then processed for information retrieval. DMS offers a clear approach to mitigate
the cost of data collection by providing a simple approach for data augmentation, and for
the construction of G-Equivariant NN to process the dynamics of the kinematic chains.

• Computer Graphics & Vision. Computer Graphics is perhaps the de facto application
field of exact DMS. In this area, the kinematic structure of animated characters is assumed
to be symmetric, as they often model the behavior of living vertebrates with Cn | n ≥ 2
symmetry. The recorded trajectories are obtained through motion capture data or expert
artist animations, and to the author’s knowledge, the trajectories are seldomly augmented
to their symmetric equivalents. In this field, NNs are commonly used to learn projection
spaces where motion matching and animation interpolation becomes an easier problem than
in minimal coordinate space (Holden et al., 2015; Starke et al., 2022) or control policies
for physics-based animation (Peng et al., 2018; Ma et al., 2021). However, the exploita-
tion of the DMS inductive bias is not common in the field and has been approached (with
specialized and costly algorithms) solely for the C2 symmetry in Yeh et al. (2019); Ordonez-
Apraez et al. (2022); Abdolhosseini et al. (2019); Wu et al. (2022).

• Robotics. NN function approximators are becoming a valuable tool in robotics applica-
tions of perception, control (Miki et al., 2022) and state-estimation (Lin et al., 2021). In
all applications, NNs are used to approximate functions processing proprioceptive or ex-
teroceptive measurements related to the evolution of the dynamics of the robot. Despite
the majority of legged platforms (Radford et al., 2015; Grimminger et al., 2020; Miki et al.,
2022) and manipulators having Cn | n ≥ 2 symmetries, the use of data augmentation (or G-
equivariant NN) to mitigate the high cost and risks of collecting data with robotic systems
in the real-world (or simulation) is not a widespread technique. We believe the framework
of DMS and our open-access code can contribute to the adoption of G-equivariant function
approximators in the field.

• Control In the case of model-based control, it is common to exploit the symmetries of
the Euclidean Lie Group in which the robot evolves (section 3)(Wu & Sreenath, 2015)
and to inherently exploit the equivariance of inertial forces (eq. (4)) by assuming approxi-
mate or exact symmetries in the kinematic and dynamic parameters of the dynamics model
(Mastalli et al., 2022). However, to the authors’ knowledge, no approach exploits DMSs
(and especially the discrete symmetries of the joint space QJ ) in applications of exploration
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of space, planning, and trajectory optimization, where DMS offers a technique to avoid the
computation of symmetric trajectories.
In model-free control, specifically in reinforcement learning (RL), the exploitation of sym-
metries in the dynamics implies mitigation of the sample inefficiency and sensibility to
local optima that these learning algorithms have. Previous works have shown the impact
of symmetry data-augmentation (Weissenbacher et al., 2022; Ordonez-Apraez et al., 2022)
and of G-equivariant function approximators (Van der Pol et al., 2020; Ordonez-Apraez
et al., 2022) on model-free RL.

B LIMITATIONS

Our work makes two main assumptions:

1. Symmetries are exact: By assuming that a dynamical system has exact and not approx-
imate symmetries we are departing from the real-world nature of DMSs, since for any
robotic system in the real-world the manufacturing and assembly process introduces er-
rors/tolerances in the kinematic and dynamic parameters of each of the robot’s bodies.
Likewise, the dynamics of animals in nature are not perfectly equivariant since morpho-
logical symmetries are only approximate symmetries. Although exact symmetries seem to
be a strong assumption, in practice, the reality is that it is a common assumption in the
fields of robotics and control theory, in which idealized models of the dynamics are often
assumed, implying exact DMSs through the exact symmetries in kinematic and dynamic
parameters (which are responsible for the equivariant nature of the generalized mass matrix
M(g · q) = gM(q)g-1 (eq. (4)) and therefore, for the equivariance of inertial, centripetal,
gravitational, and Coriolis generalized forces).
On section 6 we show that the exact symmetry bias is justifiable and beneficial for learning
function approximators processing the dynamics of approximately symmetrical systems
in the real world. However, the authors highlight the necessity to properly address the
case of approximate equivariance, which we leave to future work. To address this case,
system identification techniques Simpkins (2012) have been wildly used to approximate
the deviation of the kinematic and dynamic parameters from the assumed values. While
in the case of G-equivariant NN Wang et al. (2022); Finzi et al. (2021a) provide clear and
valuable approaches to learn approximate G-equivariant NN.
It is relevant to highlight that, in physics-based simulation, the most common practice is
to work with the idealized model of dynamics. Thus, the assumption of exact symme-
tries is justifiable and encouraged in applications where simulation is a relevant tool (see
supplementary A).

2. Linear time computation of the basis B of equivariant linear maps is restricted to
group actions with regular matrix representations that are generalized permutation
matrices: The algorithm for computing B in O(mn) time and determining analytically the
rank r of this space (see section 5) is restricted to the scenario where ρw(g) ∈ Rnm×nm

is a generalized permutation matrix (which occurs when both ρin(g) and ρout(g) are also
generalized permutation matrices). Although this assumption always holds true for G = C2
(the most common DMS) and for all action representations described in section 6 and
supp.fig 5 and fig. 1, in general, it might not hold for |G| > 2. In cases where either
ρin(g) and ρout(g) are not generalized permutation matrices, the computation of B can
be approached using the Krylov subspace method proposed by Finzi et al. (2021b) with
complexity O(r2(mn)2) and numerical approximation of r = rank(B).
Although this seems like a strong assumption, consider that in the case of DMS groups G:

• All action representations ρQJ
(·), acting on the joint-space manifold QJ and its tan-

gent space, are generalized permutation matrices. This property holds true when using
the common convention of minimum coordinates for q and q̂, in which each vector of
the orthogonal basis of QJ corresponds with a degree of freedom of the system. With
this convention any DMS action g acting on a single degree of freedom can be defined
as a function of a single degree of freedom g · q̂i = g(q̂j) s.t. q̂i, q̂j ∈ q̂.

• All action representations (ρin(g), ρout(g)) of the latent vector spaces of internal layers
of an equivariant neural network (e.g., lz in fig. 1) can be arbitrarily parameterized
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(while respecting the group axioms). Singe G is by definition a finite symmetry group,
we can parameterize ρin(g) and ρout(g) to be generalized permutation matrices.

C PROPERTIES OF ROBOTIC SYSTEMS WITH MORPHOLOGICAL SYMMETRIES

For clarity of the explanation, let us imagine two different Euclidean spaces and two versions of
the robot: the original space (with reference frame o) and robot with coordinates q and q̇, and the
virtual rotated/reflected space (with a reference frame o, with configuration Xo

o =
î
Rg ro
0 1

ó
) and

virtual robot with coordinates g · q and g · q̇ referenced to o. Noting that in the case of a reflection,
the virtual robot has reflected versions of each rigid body.

For eqs. (3) and (5) to hold, there must exist an action g ∈ G transforming the real robot configuration
g · q, g · q̇ resulting in the same kinetic energy as the virtual robot’s kinetic energy:

T (g · q, g · q̇) = 1
2

nB∑
i=1

miṙ
⊺
g,iṙg,i +w⊺

g,iIiwg,i
.
= 1

2

nB∑
k=1

mkṙ
⊺
k ṙk +w⊺

kIkwk = T (g · q, g · q̇),

(10)
where ṙg,i, wg,i, mi and Ii are the linear and angular velocity, mass, and inertia matrix of the
transformed body i (referenced to o). Likewise, ṙi, w i, mi and Ii are the equivalent quantities for
the virtual robot and body i (referenced to o).

C.1 KINEMATIC SYMMETRIES:

Ignore momentarily the influence of the mass and inertia in terms of the real and virtual bodies. We
can assert that for supp.eq 10 to hold, the transformed configuration should result in a kinematic tree
indistinguishable from the virtual robot’s. Thus, for everybody i in the real robot kinematic tree,
there should exist an equivalent virtual body k (as seen in supp.fig 5, not always k = i). By equating
the linear and angular velocities of the real and virtual bodies, referenced to o, and expressing the
velocities as functions of the generalized coordinates we obtain:

ṙg,i = ṙk
.
= Rg · ṙk

JTi
(g · q)g · q̇ = Rg · JTk

(q)q̇

JTi
(g · q)g = Rg · JTk

(q)

wg,i = wk
.
= |Rg |Rg ·wk

JRi(g · q)g · q̇ = |Rg |Rg · JRk
(q)q̇,

JRi
(g · q)g = |Rg |Rg · JRk

(q),

(11)

where JTi
(q), JRi

(q) ∈ R3×n are the position and orientation analytical Jacobians (describing the
instantaneous velocity vectors contributed by each DoF to body i) of the real robot at a configuration
q (Wieber, 2006). Formulating supp.eq 11 for each of the nB bodies of the robot we obtain at best
nB × 3 × n non-linear equations that can be used to assert if g exists. In practice, the action
representation ρQ(g) and especially its component acting on the joint space ρQJ

(g) can be trivially
determined by solving supp.eq 11 (or equivalently eq. (7)) for each body from top to bottom of the
kinematic tree (i.e., base first, end-effectors last), if g exists.

C.2 REFLECTIONS/ROTATIONS REQUIRE MODULARITY OR SYMMETRIC RIGID BODIES

Let us assume kinematic symmetry and direct our attention now to the influence of the mass and
inertia terms on the kinetic energy of a single rigid body when it is transformed with the action g,
which imitates a true reflection of space g . Focus on the first two columns of supp.fig 4. Because of
the kinematic symmetry the CoM of the reflected and transformed bodies coincide, both bodies have
equivalent linear components of kinetic energy. However, for arbitrary rigid bodies, the reflected and
transform bodies will have different angular components of kinetic energy. Note that in the general
case, the transformed and reflected bodies’ inertia will differ, thus even if both bodies have the same
angular velocities, their kinetic energy will differ.

Let p, pg and pg be frames located at the CoM of the original, reflected and transformed bodies,
aligned with the principal axes of inertia of each of the bodies. Similarly, denote Io and Ig

o as

the original and transformed bodies inertias referenced to o, and Ig
o

as the reflected body inertia
referenced to the reflected Euclidean space o. In order to comply with supp.eq 11, we must ensure
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Supplementary Figure 4: Properties of bodies capable of imitating a true reflection g of space (w.r.t
the yz-plane in this case), with a proper transformation g involving only a rotation and translation.
The first row shows the original bodies with their respective angular velocities w , subjected to trivial
symmetry transformation e (dashed lines represent the principle axes of inertia of the bodies), and the
second and third rows display the effect of g and g on the bodies and angular velocities, respectively.
The first column displays a rigid body with symmetric mass distribution, for which g exists, as
the reflected and rotated bodies share an equivalent angular kinetic energy. The second column
shows a rigid body with asymmetrical mass distribution, for which the rotation g, that produces
a kinematic symmetry, results in the reflected and rotated bodies having different angular kinetic
energies (eq. (2)). The third column shows two bodies with asymmetrical mass distributions, each
a reflected version of the other, in this case, the action g swaps bodies configurations to imitate
the configuration and energy state of the reflected bodies transformed with g . Angular velocity
is a pseudo-vector (or axial-vector), for which a reflection transformation is computed as wg =
|Rg |Rgw (see Quigley (1973)).

that:

wo ⊺
g Ig
o wo g = wo ⊺

g Ig
o

wo g , ,

(Rg wo )⊺ Ig
o (Rg wo ) = wo ⊺

g Ig
o

wo g | wg
o = |Rg |Rg wo ,

Ig
o = Rg Ig

o
Rg | wo ≡ wo g , RgRg = I,

Ro pg Ig
pg Ro pg ⊺ = Rg Ro pg Ig

pg
Ro pg ⊺Rg | Ia = Rb a Ib Rb a⊺,

Ro pg Ig
pg Ro pg ⊺ = Rg Ro p Rp pg Ig

pg
Rp pg ⊺ Ro pg ⊺Rg ,

Ro pg .
= Rg Ro p Rp pg | Ip ≡ Ig

pg ≡ Ig
pg

. (12a)

What eq. (12a) states is that in order for the reflected and transformed bodies to have equivalent
angular kinetic energy, both bodies should have co-linear (or aligned) principal axes of inertia. This
allows us to describe Ro pg as a function of the original body configuration Ro p and two reflection
matrices: the true reflection of space Rg and a body specific diagonal reflection matrix Rp pg , which
exists only if the rigid body has a symmetric mass distribution. A visual example for symmetric and
asymmetrical rigid bodies is presented in supp.fig 4 left and middle columns.
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C.3 MODULARITY IN KINEMATIC TREES

As previously described, body i of the real robot should have a reflected equivalent body k with
the same CoM position and aligned principle axes of inertia, up to a reflection of any of these axes.
If body i is unique in the kinematic tree, then k = i and the body must have at least a symmetric
mass distribution. When body i is not unique (i.e. there exists another body k ̸= i that is its
true reflected version), then no constraint of symmetric mass distribution is imposed on i, only the
alignment of the principal axes of inertia is required. A didactic example of this scenario is presented
in supp.fig 4-right, for Bolt’s legs in supp.fig 5, and for Solo’s legs in fig. 1

C.4 SYMMETRIC POSITION AND VELOCITY CONSTRAINT CONFIGURATION SPACES

Although it is implicitly implied on eq. (2) that the constrained position Q and velocity TqQ con-
figuration vector spaces should also be symmetric or equivariant, this property might be easily over-
looked. As mentioned in section 4 the relevance of morphological symmetries relies on the equivari-
ant nature of the system dynamics (eqs. (1) and (3)), which imprints symmetry constraints on optimal
control policies and proprioceptive and exteroceptive measurements. However, with non-symmetric
constrained configuration spaces, eq. (2) will not hold for every system state q ∈ Q, q̇ ∈ TqQ,
and any uncontrolled or controlled trajectory of the system dynamics shall not have a symmetric
equivalent trajectory, as this has the potential to violate the constraints of the configuration space.

D EFFICIENT CONSTRUCTION OF G-EQUIVARIANT NNS FOR DISCRETE
MORPHOLOGICAL SYMMETRY (DMS) GROUPS G

As mentioned in section 5 our work builds upon the framework for the construction of G-equivariant
NN of Finzi et al. (2021b). The core limitation of this framework is the inability to handle large
dimensional spaces, due to the computational and memory complexities. For instance, for an equiv-
ariant layer with input dimension n and output dimension m, the computational complexity of find-
ing the equivariant linear map basis B (which is quadratic O((mn)2r2) through the Krylov sub-
space method) and the memory complexity of B ∈ Rmn×r | r ≤ mn, become easily intractable
for moderate n and m dimensions. This limitation is openly discussed in the EMLP repository
README.md, but regretfully not in the original paper.

In practice, we found these limitations when trying to construct the equivariant version of the Contact
CNN (Lin et al., 2021) in our second experiment. This architecture in its internal layers has n,m >
2000, for which: (i) the Krylov subspace method complexity renders the operation intractable with
standard hardware and (ii) the matrices B of internal layers required storage of 1[Gb] > for moderate
input output dimensions (m,n ≈ 250) and 1[Pb] > for m,n > 2000). See supp.table 1 for a
comparison between dense and sparse matrix representations.

D.1 TRAINABLE PARAMETER REDUCTION OF G-EQUIVARIANT LAYERS (FOR G A DMS
GROUP)

Determining analytically the number of trainable parameters (i.e. the rank r) of an G-equivariant
layer is, in general, an unresolved problem. However, for DMS groups, r can be computed once
the input-output action representations are known. The requirement to compute r is that actions
affecting the linear maps are a semi-direct product10 of the input-output groups, and the input-
output representations are generalized permutation matrices. These conditions are met for most
DMS groups (see supplementary B).

The equivariance constraints of eq. (9) on linear maps of perceptron (or convolutional) layers imply
a reduction of trainable parameters from |w| = mn to |c| = r ≤ mn. For DMS groups, r is
associated with the number of unique orbits of the elements of w. Thus we can compute this value
using the orbit-counting theorem (also known as Burnside’s Lemma), which states that the number
of orbits is the average number of fix-points of G, that is r = 1

|G|
∑

g∈G |wg |, where wg .
= {w ∈

w : g ·w = w} represents the set of elements of w that are invariant to g (i.e. fix-points). Those fix-
points can be identified by the elements on the diagonal of ρW(g) that are equal to one. Therefore,
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Tri-Finger Robot G = C3

This fixed-based robot is symmetric w.r.t. rotations
of space by θ = 120◦ in the vertical axis. There-
fore, its symmetry group is the cyclic group of or-
der three (G = C3). To identify this symmetry
group we apply the procedure in section 4.3:
1. Identify XB and IB : As a fix-based robot, we

define XB to be the mounting structure support-
ing each finger, and the gray disk delimiting the
workspace (see image).

2. Identify symmetries of IB : The inertia of this
virtual base IB is invariant to rotations by 120◦

in the vertical axis. I.e., IB is invariant to
XBρE3(g)

-1|g ∈ {e, gθ, g2θ} ≡ C3 (eq. (6)).
3. Identify modularity in the kinematic tree:

There are three symmetric kinematic subchains.
Each finger is composed of replicated versions
of the same bodies.

4. Identify the DMS group G:
Consider that the transformation ρE3(g)XB

.
=

ρE3(g)XBρE3(g)
-1 (eq. (6)) can be interpreted as

a rotation of the virtual base by θ◦ followed by a
rotation −θ◦ in the z axis. Thus respecting the
fix-base constraint of the system. Denote the joint-
space q = q̂ = [q⊺

f1, q
⊺
f2, q

⊺
f3]

⊺ be composed of
each finger’s DoF (qfi ∈ R3).

Then we can define ρQJ
(g)

.
= ρR3(g) ⊗ I3 | g ∈

C3. Being ρR3(·) the unique representation of the
actions of C3 on a 3-dimensional space (3 sub-
chains). For the generator action of the group this
is ρR3(g) =

î 0 1 0
0 0 1
1 0 0

ó
.

Lastly, we verify if G = C3 by testing all tentative
group actions for DMSs eq. (5).

Augmentation of data samples: Say we collect a
dataset of robot states (q, q̇) and cube states XC at
every time step t, to train the manipulation policy
(Funk et al., 2021). To obtain the symmetric states,
at every t, we need to understand that since we are
imitating the effect of a true rotation of space g , the
symmetric states are obtained by (g · q, g · q̇) and
(g ·XC

.
= ρE3(g)XC ).

Bolt Bipedal Robot G = C2

Bolt is a bipedal robot with a sagittal plane reflec-
tion symmetry (G = C2). This morphological sym-
metry allows it to imitate the effect of arbitrary re-
flections of space (g ∈ E3) by re-configuring its
base and legs. To identify this symmetry group we
apply the procedure in section 4.3:
1. Identify XB and IB : XB is the robot base

(hips) body, with its corresponding inertia IB
2. Identify symmetries of IB : The base body has

symmetrical mass distribution w.r.t the sagittal
plane. Thus, IB is invariant to the transforma-
tion XBρE3(g)

-1|g ∈ {e, gs} ≡ C2 (eq. (6)).
3. Identify modularity in the kinematic tree:

There are two symmetric kinematic subchains.
The left leg subchain and bodies are reflected
versions of the right leg subchain and bodies.

4. Identify the DMS group G:
Since a reflection w.r.t to the sagittal plane would
imply a true reflection of the rigid bodies of the
legs, we need to permute each body in the kine-
matic tree with each reflected version. Denote the
joint-space q̂ = [q⊺

L, q
⊺
R]

⊺ as composed of the left
L and right R legs’ DoF (qL/R ∈ R3). Denote the
sign-relation between the DoF of the Left and right
legs’ degrees of freedom as sL|R ∈ R3.

Then we can define ρQJ
(g)

.
= ρR2(g) ⊗

(sL|RI3) | g ∈ C2. Being ρR2(·) the unique rep-
resentation of the actions of C2 on a 2-dimensional
space (2 subchains). For the non-trivial action of
the group this is ρR2(gs) = [ 0 1

1 0 ].

Lastly, recalling the definition of ρE3(g) in eq. (6),
we verify if G = C2 by testing all tentative group
actions for DMSs eq. (5).

Augmentation of data samples: Say we collect a
dataset of robot states (q, q̇) and ground reaction
forces (fL,fR), that we transform to the space of
generalized forces as (τfL , τfR), at every timestep
t. Aiming to train a reactive locomotion policy
(Ordonez-Apraez et al., 2022). The symmetric
states, at every t, are then defined as: (g · q, g · q̇)
and (g · τfL , g · τfR) ≡ (ρQ(g)τfL , ρQ(g)τfR)

Supplementary Figure 5: Example morphological symmetries of the Tri-Finger (Funk et al.,
2021) and Bolt robots, allowing to imitate a rotation of space (left) and a reflection of space (right).
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Supplementary Table 1: Comparison of memory complexity of individual layers of the equiv-
ariant version of Contact-CNN Lin et al. (2021) (ECNN). This example compares the sparse
and dense representations of matrices B ∈ Rmn×r and the |G| group action representations
ρw(g) ∈ Rmn×mn, for the symmetry group G = C2 of the Mini-Cheetah robot, with r = mn/2
(see supp.eq 13). Here, n,m represents the input and output dimensions of each layer. The dense
memory complexity of all action representations increases with the group order |G| while the mem-
ory complexity for B decreases with larger group orders (since r ≤ mn becomes smaller). We
assume floating point representations with 32 bits.

Dense Memory [Bytes] Sparse Memory [Bytes]
Layer Type n m ρw(g) B ρw(g) B

1D-Conv 54 64 764.41M 191.10M 221.18k 110.59k
1D-Conv 64 64 1.07G 268.43M 262.14k 131.07k
1D-Conv 64 128 4.29G 1.07G 524.28k 262.14k
1D-Conv 128 128 17.18G 4.29G 1.04M 524.28k
Percept 4736 2048 6.02P 1.50P 620.75M 310.37M
Percept 2048 512 70.36T 17.59T 67.10M 33.55M
Percept 512 16 4.29G 1.07G 524.28k 262.14k

for a G-equivariant layer, the number of trainable parameters is determined by:

r = 1
|G|
∑

g∈Gχ
1
ρW

(g) = 1
|G|
∑

g∈G χ1
ρin

(g-1) · χ1
ρout

(g), (13)

denoting χ1
ρ(g) : G → N as the number of fix-points of the action representation ρ(g). Therefore,

the number of trainable parameters can range from |w|/|G| ≤ r ≤ |w|, depending on the fix-points
of the layers’ input and output spaces.

D.2 PARAMETER INITIALIZATION OF EQUIVARIANT LAYERS FOR DMS

Consider a Equivariant Neural Network architecture composed of multiple layers of equivariant
linear (or convolutional) layers of the form ly := σ( lW lx + lb), being l the layer index, lx ∈ Rn

and ly ∈ Rm the layer’s input and output vector spaces, lW
.
=
∑r

k
lck

lB:,:,k ∈ Rm×n the layer’s
linear map, lB ∈ Rm×n×r the layer’s r basis vectors spawning the space of equivariant linear maps,
lc ∈ Rr the layer’s trainable parameters, and lb ∈ Rm the layer’s bias vector.

For the optimal flow of information throughout the network, it’s relevant to initialize the trainable
parameters such that the variance of activations (during inference/forward-propagation) and gradi-
ents (during back-propagation) is kept constant, avoiding activations/gradients from vanishing or
exploiting (Glorot & Bengio, 2010)11.

The derivation is based on the equivalent process for unconstrained layers presented in He et al.
(2015). Let the layer’s activations before the non-linearity be denoted by lz = lW lx + lb, such
that ly = σ(lz), and note that lx = l−1y. Furthermore, we will assume the elements of lc and
lx are mutually independent and sampled from two independent distributions, denoting the random
variables of the two distributions as lc and lx.

11See Pierre Ouannes blog: https://pouannes.github.io/blog/initialization/#xavier-and-kaiming-initialization
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The core difference in the initialization of unconstrained and equivariant layers lies in the way the
linear map is parameterized. For equivariant layers we have:

Var( lW lx + lb) =

m∑
i

n∑
j

Var
(
lWi,j

lxj
)

| Var( lb) = 0

=

m∑
i

n∑
j

Var

((
r∑
k

lck
lBm,n,k

)
lxj

)

, = Var
(
lc lx

) m∑
i

n∑
j

r∑
k

B2
m,n,k︸ ︷︷ ︸

λlB

| Var

(∑
a

sa
const

p

)
=
∑
a

s2aVar(p)

(14)

In the forward-propagation scenario, we are interested in conserving the variance of the activations
throughout layers, that is we must ensure Var( lz) = Var( l−1z). Using supp.eq 14 we obtain:

Var( lz) = Var( lW lx + lb)

m Var( lz) = λlBVar
(
lc lx

)
Var( lz) =

λlB

m

Ö
E(lc2)︸ ︷︷ ︸
Var(lc)

E( lx2)− E(lc)2︸ ︷︷ ︸
=0

E( lx)2

è
Var( lz) =

λlB

m
Var(lc)E

(
l−1y2

)
| lx = l−1y = σ( l−1z)

Var( lz) =
λlBλσ

m
Var(lc)Var( l−1z) | E

(
l−1y2

)
= λσVar

(
l−1z

)
(15)

Var( lz) ≡ Var( l−1z) | Var
(
‘lc
) .
=

m

λlBλσ
(16)

where λσ in supp.eq 15 is a non-linearity dependent scalar computed analytically or empirically
(see He et al. (2015)). In supp.eq 16 we conclude that if we sample the equivariant layer trainable
parameters lc from a distribution ensuring Var(lc)

.
= m

λlBλσ
, the variance of the activations across

equivariant layers remain constant. A similar procedure can be applied to the backward propagation
case, concluding that in order to maintain a constant variance of the gradients across the network
layers we should sample the trainable parameters ensuring Var(lc)

.
= n

λlBλσ
. As remarked in He

et al. (2015) both variance values for the forward and backward propagation cases lead to the proper
flow of information in the network. On supp.fig 8, it can be appreciated that our method achieves
equivalent results for equivariant architectures as He et al. (2015) does for standard linear and con-
volutional architectures.

E IMPLEMENTATION DETAILS & CODE

Additional to this section, we provide open-access code with the scripts for reproducing the ex-
periments of this work, the parameters of the models used for comparison, along with additional
interactive examples visualizing morphological symmetries of both robotic systems and data.

E.1 EFFICIENT DATA AUGMENTATION

Since any input x and output y spaces of equivariant architectures have matrix symmetry action
representations, ρx(g), ρy(g), it is possible to perform batched data augmentation, reducing the
computational complexity of augmenting a batch of Nb samples from Nb matrix-vector multiplica-
tions to a single matrix-matrix multiplication, preferably performed after data is loaded to GPU for
optimal performance.
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(a) (b)

Supplementary Figure 6: (a) Atlas robot C2 symmetry affecting proprioceptive (q, q̇, q̈, τ ) and
exteroceptive measurements (ground reaction forces, terrain surface and height estimations) (see
3D-animation). (b) Robot Solo sagittal (blue) and transversal (red) symmetry planes of the base
rigid body, allowing the system to possess K4 symmetry

E.2 HYPERPARAMETER TUNNING

The only hyper-parameter tunned for each model and model variant was the learning rate. For
all model variants presented in this work (except the original Contact-CNN model from Lin et al.
(2021), which we retrained using the same hyperparameters reported by the authors) we ran a grid-
search in log-scale among 20 different learning rates. In this scenario, we always used the entire
training dataset and optimized w.r.t computed loss in the entire validation partition. The learning
rate values used for each model are depicted in supp.table 2.

E.3 EXPERIMENT: COM MOMENTUM ESTIMATION

The dataset for the CoM estimation experiment was generated using Pinocchio (Carpentier et al.,
2019), which in turn uses the URDF models of the robots Solo and Atlas, to extract the kinematic
and dynamic parameters required to compute the Centroidal Momentum Matrix AG(q) matrix (Orin
et al., 2013), with which computing the CoM momentum reduces to:

g · h = AG(g · q̂)g · ˙̂q | ∀g ∈ G. (17)

g · h ≈ f
Ä
g · q̂, g · ˙̂q;ϕ

ä
| ∀g ∈ G. (18)

Where supp.eq 17 expresses the analytical G-equivariant function to compute the CoM momentum.
While supp.eq 18 is the approximation of this function by an G-equivariant NN, with parameters ϕ.

E.3.1 DETERMINATION OF THE INPUT AND OUTPUT REPRESENTATIONS ρx(g), ρy(g) | g ∈ G

Both robots Solo and Atlas evolve in the Euclidean space of 3-dimensions. Therefore their configu-
ration space can be decoupled into Q

.
= E3×QJ . After identifying their symmetry groups and their

corresponding E3 and QJ representations (ρE3(g), ρQ(g) | ∀ g ∈ G), identifying the representations
of the input and output spaces of the NN function approximator (supp.eq 18) becomes a trivial task
considering that:ï

ρEd(g) 0
0 ρEd(g)

ò
︸ ︷︷ ︸

ρy (g)

ï
l
k

ò
︸︷︷︸
y

≈ f

Åï
ρQJ

(g) 0
0 ρQJ

(g)

ò
︸ ︷︷ ︸

ρx (g)

ï
q̂
˙̂q

ò
︸︷︷︸
x

ã
| ∀ (g, g)|g ∈ G, g ∈ E3 (19)

Defining x =
î
q̂
˙̂q

ó
∈ R2nJ and y = h ∈ R2d ≡ R6. Note that by definition any improper

transformation applied to a pseudo-vector (e.g. angular velocity/momentum, torques) is computed
as |R|R · k.
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E.3.2 PRACTICAL DETAILS OF THE DATASET GENERATION

The URDF files of the robots Solo and Atlas are generated using XACRO scripts, which repli-
cate the structure of limbs to their symmetric counterparts, making the dynamics of the robots
in simulation exactly G-equivariant. However, the algorithm for computing the CoM momen-
tum from Pinocchio is numerically sensitive, resulting in the orbits of the momentum G · h de-
viating slightly from the theoretical orbits. Therefore to reduce numerical errors and ensure the
theoretical equivariance of the data, we replace every target variable by the average of its orbit
y = h

.
= 1

|G|
∑

G · g−1(AG (ρQ(g)q̂) ρQ(g) ˙̂q) | ∀ g ∈ G.

E.4 EXPERIMENT: STATIC-FRICTION-REGIME CONTACT DETECTION

The dataset presented in (Lin et al., 2021) is composed of output samples y ∈ R16, where each
dimension of y represents a logit of a specific contact state, among the 16 different combinations of
each of the 4 legs possible binary contact states. The input samples y = {zi}150i=0 ∈ R54×150, are a
history of 150 samples z = [q̂, ˙̂q,a,w ,p,v] ∈ R54. Where q̂ ∈ RnJ , ˙̂q ∈ RnJ ,aR3,w ∈ R3,p ∈
R12,v ∈ R12 are the MIT-Mini-Cheetah robot joint-space positions, velocities, base linear accel-
eration, base angular velocity, and each of the four legs feet’s position and velocities, respectively,
referenced to the robots base frame B.

The function approximator to learn is expected to be approximately equivariant to the reflection
group C2, considering the sagittal symmetry of the robot morphology. Therefore:

g · y = f (g · x;ϕ) | g ∈ G = C2 (20)

E.4.1 DETERMINATION OF THE INPUT AND OUTPUT REPRESENTATIONS ρx(g), ρy(g) | g ∈ G

The MiniCheetah robot evolves in the Euclidean space of 3-dimensions. Therefore its configuration
space can be decoupled into Q

.
= E3×QJ . After identifying their symmetry groups and their corre-

sponding E3 and QJ representations (ρE3(g), ρQ(g) | ∀ g ∈ G), we can identify the representations
of the input and output spaces of the NN function approximator (supp.eq 20), considering that:

ρy(g)y ≈ f

(
ρQJ

(g) 0 0 0 0 0

0 ρQJ
(g) 0 0 0 0

0 0 ρE3 (g) 0 0 0

0 0 0 ρE3 (g) 0 0

0 0 0 0 ρp(g) 0
0 0 0 0 0 ρp(g)


︸ ︷︷ ︸

ρx (g)

 q̂
˙̂q
a
w
p
v


︸ ︷︷ ︸

x

)
| ∀ (g, g)|g ∈ G, g ∈ E3

Where the representation ρp(g) acting on p ∈ R12 and v ∈ R12 is determined understanding
that each of the feet positions (pRF ,pLF ,pRH ,pLH) and velocities (vRF ,vLF ,vRH ,vLH) are
simply vectors living in E3. Thus, we must apply the euclidean action ρE3(g) while at the same time
permuting the feets (similar to the permutation of the kinematic subchains described by ρQJ

(g)):

g · p = ρR4(g)⊗ ρE3(g)︸ ︷︷ ︸
ρp(g)

p, g · v = ρR4(g)⊗ ρE3(g)︸ ︷︷ ︸
ρp(g)

v | ∀(g, g)|g ∈ G, g ∈ E3

(21)

=

ï
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

ò
⊗ ρE3(g)

ï pRF
pLF
pRH
pLH

ò
, =

ï
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

ò
⊗ ρE3(g)

ï vRF
vLF
vRH
vLH

ò
| (g, g)|C2 = {e, g}

(22)

Being ρR4(g) | ∀g ∈ G the unique representations of the finite group G in a 4-dimensional space,
representing the 4 kinematic tree’s subchains. This representation, for the non-trivial action of the
MiniCheetah DMS group G ≈ C2 is expressed in supp.eq 22. The nature of this representation might
be better understood if you consider that ρQJ

(g)
.
= ρR4(g) ⊗ Ins , being ns the number of degrees

of freedom of the kinematic subchain (which for the case of MiniCheetah is 3 DoF). See simpler
examples in supp.fig 5.

Lastly, the representation for the contact state ρy(g) is given by the permutation matrix relating y
and g · y described in supp.table 3.
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Supplementary Table 2: Robot and Model parameters for CoM and Contact state estimation.

Robot Model G lr Data Samples
Solo MLP/EMLP C2/K4 2.4× 10−3 100k
Atlas MLP/EMLP C2 1.5× 10−3 500k

MIT-MiniCheetah CNN C2 1.0× 10−4

730kMIT-MiniCheetah E-CNN C2 1.0× 10−5

E.4.2 DETAILS ON DATASET PARTITIONING

We modified the original dataset partitioning to properly evaluate the generalization capacity of the
models. The original dataset was composed of 15 different recordings varying ground type and
gait type used during data collection (most recordings were performed on a trot gait, which heavily
biased the dataset to contact states 0, 6, and 9 of supp.table 3. See supp.fig 7).

The authors of (Lin et al., 2021) partitioned all 15 recordings into (70%, 15%, 15%) training, vali-
dation and testing. This partition was made such that the first 70% time-samples of each recording
were assigned for training, the following 15% to validation, and the rest for testing.

Because we are interested in studying the generalization capacity of the models and the out-of-
training-distribution performance, we modified this partitioning such that among the 15 different
recordings we selected randomly 5 recordings for testing, and the remaining 10 recordings were
used for training splitting these recordings into (85%, 15%) training and validation splits as in Lin
et al. (2021), that is, for each recording, the first 85% data-samples go for training and the remaining
for validation.

The selected training-validation recordings were: air walking gait, concrete difficult slippery,
concrete left circle, middle pebble, rock road, asphalt road, concrete galloping, grass,
old asphalt road, sidewalk. While the selected testing recordings were: air jumping gait,
concrete pronking, concrete right circle, forest, small pebble.

E.5 MITIGATION OF SUBOPTIMAL ASYMMETRIES IN MODEL PERFORMANCE

When comparing individual leg classification we see that the equivariant model converges to having
a similar performance for each symmetric pair of legs, while the unconstrained models converge to
an asymmetrical suboptimal state favoring the contact detection of one leg at the expense of reduced
performance for the symmetric leg (see LF and RF f1-scores). This asymmetrical performance is
attributed to the CNN and CNN-aug models learning to extract temporal features for both symmetric
legs separately, increasing the likelihood of converging to asymmetrical local minima. On the con-
trary, the equivariant model E-CNN can be thought of as learning to extract a single set of symmetric
temporal features for each symmetric pair of states (a consequence of the model’s equivariance and
parameter sharing). This implies that the temporal features used for determining the contact state of,
say the left frontal leg, would also be used to determine the contact state of the symmetric leg, the
right frontal leg, and vice-versa.

E.6 EQUIVARIANT CONV1D LAYERS

For details on the construction of the Equivariant 1D Convolutional layers reefer to 2. Note that the
symmetry of a single time-sample zi is shared across all time-samples y = {zi}150i=0.
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Supplementary Figure 7: Sample distribution of the training set of the contact dataset presented by
Lin et al. (2021). The left figure shows the distribution of the binary contact state for each of the
mini-cheetah legs, clearly displaying a similar distribution among legs favoring states of no contact
(approximately for each leg 60% of data samples represent states of no contact). The right figure
shows the distribution of contact states (y ∈ R16), clearly showing the dataset imbalance caused by
the majority of the data being collected by the robot performing a trot gait.

Supplementary Table 3: Symmetric contact state for Mini-Cheetah quadruped robot, considering its
sagittal symmetry, and morphological symmetry group C2. Each leg binary contact state (LF: Left
Front, RF: Right Front, LH: Left Hind, RH: Right Hind) is displayed with its corresponding robot
contact state y.

RF LF RH LH y g · y LF RF LH RH
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 2 0 0 1 0
0 0 1 0 2 1 0 0 0 1
0 0 1 1 3 3 0 0 1 1
0 1 0 0 4 8 1 0 0 0
0 1 0 1 5 10 1 0 1 0
0 1 1 0 6 9 1 0 0 1
0 1 1 1 7 11 1 0 1 1
1 0 0 0 8 4 0 1 0 0
1 0 0 1 9 6 0 1 1 0
1 0 1 0 10 5 0 1 0 1
1 0 1 1 11 7 0 1 1 1
1 1 0 0 12 12 1 1 0 0
1 1 0 1 13 14 1 1 1 0
1 1 1 0 14 13 1 1 0 1
1 1 1 1 15 15 1 1 1 1
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Supplementary Figure 8: Comparison of the initialization method of unconstrained layers of He et al.
(2015) with our initialization method for equivariant layers. Left and right columns correspond to
MLP and EMLP architectures with σ = ReLu and σ = Tanh non-linearities, respectively. Each
row shows different initialization methods differing in the variance of the initialization distribution of
the layer’s trainable parameters. First and second rows show the forward and backward propagation
cases of He et al. (2015) for MLP and of supplementary D.2 for EMLP, with Var(lc)

.
= m/(λlBλσ)

and Var(lc)
.
= n/(λlBλσ), respectively. In these cases, the variance of activations through the net-

work depth remains nearly constant, as desired. The last two rows show the initialization of layer
parameters with a constant variance of 0.052 and 0.82, illustrating scenarios of activations vanish-
ings and exploiting. All architectures are composed of 10-layers with 256 neurons on intermediate
layers. In the equivariant case, the network is K4-equivariant.
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