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Nowadays, various disturbances in urban transportation data acquisition/processing/storage lead 
to the inevitable data missing problem, which undermines the valuable traffic information and 
greatly threats the reliability of existing benchmark traffic prediction models. Inspired from the 
powerful generative learning ability of GANs, we propose an integrated spatiotemporal Data 
imputation Graph Attention Generative Adversarial Networks (Di-GraphGAN) for accurate and 
efficient spatial-temporal traffic forecasting under data missing scenarios. Specifically, we first 
propose a traffic data imputation module named DI-LSTM, which adopts the architecture of LSTM 
Network with an extra Time Damping unit to accurately estimating the missing values. Then, 
we facilitate Di-GraphGAN with an original developed Task-Efficient Graph Attention Networks 
(TE-GAT) for better graph representation learning and a Temporal Contextual Attention (TCA) 
mechanism to capture the dynamic spatiotemporal traffic patterns. Finally, extensive evaluations 
are conducted on two real-world traffic speed datasets from China, demonstrating that Di-

GraphGAN achieves state-of-the-art performance in both traffic forecasting and spatiotemporal 
data imputation tasks.

1. Introduction

Intelligent Transportation System (ITS) is an advanced paradigm for traffic management and future smart cities, especially in 
combination with Internet of Vehicles (IoV) [1,2]. IoV is useful for estimating traffic network capacity, preventing traffic accidents, 
and guiding every participating vehicles. With the intelligent vehicular technology, traffic managers can easily assess traffic capacity 
and provide early traffic route guidance for each vehicle [3,4]. Therefore, accurate traffic prediction is critical in urban transportation 
systems.

The accessibility of massive traffic network data has been enabled by the emerging mobile Internet and intelligent vehicular 
technologies. However, the inevitability of data missing problem impairs the valid information contained in traffic data. For trans-
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portation systems using speed detectors, speed observations may be lost because of hardware or communication failures [5]. For 
crowdsourcing systems, traffic data cannot be acquired if no participating vehicles are located on a certain road within a certain 
time interval. Hence, imputing the incomplete traffic data is critical for improving data quality and making better traffic predictions. 
Missing data can cause a significant decrease in model performance. The majority of existing traffic prediction models have a lim-

ited application scope because they fail to handle missing data problem [6–8]. Some literature adopted two separate procedures to 
address data imputation and traffic prediction independently [9]. The main limitations of this approach are that not only the whole 
procedure is time-wasting but also the traffic data cannot be modeled effectively in the prediction stage.

In recent years, both intelligent urban computing and computer science communities have been actively studying on spatial-

temporal traffic forecasting. Liang et al. [10] proposed STRN, which adopts a backbone network then a global spatial-relationship 
module and meta learning to perform fine-grained urban flow forecasting. Guo et al. [11] proposed ASTGNN, which explicitly 
captures the temporal and spatial traffic dynamics via attention mechanism and dynamic GCN module, respectively. Bi-STAT [12]

is an adaptive Transformer model which adopts two separate decoders for bi-directional horizon modeling in traffic forecasting. In 
recent top AI conferences, researchers employed various kinds of Graph Neural Networks (GNN) in combination with other advanced 
deep learning technologies to improve spatiotemporal forecasting performance [13–15]. Zhang et al. presented FASTGNN [16], which 
adopts federated learning for privacy-based traffic network topology graph construction. The authors of STAN [17] proposed to use 
transfer learning framework with elaborately designed spatial and temporal adaptation modules for traffic prediction in a new city. 
Nevertheless, there are still some critical challenges waiting for further investigation: (i) The mainstream traffic forecasting models 
usually concentrate on predicting short-term one-step futures, whereas the industry urgently calls for an efficient and accurate model 
addressing the Long Sequence Time-series Forecasting (LSTF) task. (ii) Spatial-temporal traffic prediction becomes more challenging 
under the influence of incomplete traffic data. Such situations strongly call for an integrated deep learning approach for End2End 
traffic data imputation and prediction. (iii) The patterns of citywide traffic network data are complex. In reality, neither a single 
CNN/RNN nor GCN-based modeling methods can fully extract the explicit and implicit spatiotemporal dependencies amongst the 
road segments or sensors in an urban network.

To address the above uncovered research gaps, in this article we propose Di-GraphGAN (which stands for spatial-temporal

Data imputation Graph Attention Generative Adversarial Networks) for integrated traffic data imputation and multi-scale traffic 
forecasting. Specifically, the generator of Di-GraphGAN is formed as an Encoder-Decoder structure for efficient LSTF task. Moreover, 
we propose DI-LSTM as the data imputation mechanism, which incorporates a novel imputation unit into LSTM network. DI-LSTM 
is added into the generator to estimate missing traffic values in the raw input incomplete dataset. In addition, a Task-Efficient 
Graph Attention Network (TE-GAT) is designed to remove the redundancy in neighborhood aggregation found in the existing graph 
attention networks [14,15] while simultaneously improving accuracy and computational efficiency. The main contributions of this 
research are summarized in the following:

• We propose an enhanced spatial-temporal adversarial learning framework named Di-GraphGAN for end2end accurate traffic 
data imputation and multi-scale prediction under various data missing scenarios.

• An elaborately designed data imputation module called DI-LSTM is proposed, which adopts the architecture of LSTM network 
with an internal Time Damping unit to impute missing traffic values, thus help improving traffic prediction accuracy.

• We introduce Task Efficient Graph Attention Networks (TE-GAT), which employs a Filter Gate to determine the importance of 
each edge and retain only the necessary edges to be used for neighbor aggregation, thus reducing the computational overhead 
in existing graph attention and improving accuracy.

• Comprehensive experiments and evaluations are conducted on two modern city traffic speed datasets from Hangzhou and 
Guangzhou city, demonstrating that Di-GraphGAN consistently outperforms other benchmark methods.

The remainder of this paper is organized as follows. Section 2 elaborates the existing study on the research related to this work. 
Section 3 defines the basic preliminaries in this study. Section 4 formulates the model architecture of Di-GraphGAN and introduces 
related technical details, including the proposed DI-LSTM, TE-GAT, the generator and discriminator of Di-GraphGAN, the model 
optimization and training methods. Following that, we carry out extensive real-world experiments and performance evaluations in 
section 5. Finally, in section 6, we conclude this study and suggest potential research directions.

2. Literature review

2.1. Sequential missing data estimation methods

As a key factor in spatial-temporal analysis, missing data imputation has received considerable attention from researchers. 
Classical data imputation approaches can be categorized into three types: interpolation-based model, statistical-based model, and 
matrix/tensor factorization model [18]. K-nearest neighbors (KNN) [19] is a popular interpolation-based method that employs the 
mean value of neighboring data points to interpolate the missing data points. However, interpolation-based methods can only apply 
to a single traffic sensor or a road segment but are not feasible for large-scale traffic networks [18]. In order to establish the probabil-

ity distribution, statistical-based models such as ARIMA [20] and its variants require a complete dataset (i.e. data missing rate is 0%) 
in advance, which is not feasible in real-world applications. Matrix/tensor factorization is another approach to achieve satisfactory 
data imputation results. In [21], the authors proposed a low-rank matrix factorization method which adopted temporal regulariza-
2

tion constraints. Chen et al. [22] proposed Bayesian Temporal Matrix Factorization (BTMF) model to estimate the missing values 
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in spatial-temporal tasks. The major drawbacks of Matrix/tensor factorization models are that they require expensive computing 
resources and cannot reconstruct missing data in real-time.

More recently, researchers have adopted deep learning techniques to address time-series missing data imputation. Yoon et al. [23]

presented an adversarial learning data imputation network named GAIN. The GAIN model feeds a hint vector into the discriminator 
to provide additional information for missing data. Luo et al. [24] proposed E2GAN as an end2end adversarial learning model 
for multivariate sequential data imputation. However, most existing deep learning models focus on capturing the global temporal 
correlation but ignore the hidden correlation between different hierarchy time scales.

2.2. Spatial-temporal traffic forecasting approaches

Generally speaking, traffic forecasting approaches can be classified as statistical methods and deep learning methods. Traditional 
statistical-based methods have made great contributions to traffic prediction. Ahmed et al. [25] first adopted ARIMA model to 
solve traffic prediction problems. Following that, Williams et al. [26] applied seasonal ARIMA to predict short-term traffic flows of 
transportation networks. However, statistical methods heavily rely on the assumption of stationary time series data, which results in 
extreme failure when applying to sequential data with relatively high fluctuations or large data missing rates.

Deep learning-based traffic prediction has become popular and attracted great attention in the last decade. Deep learning-based 
methods can be further classified as spatial dependency modeling and temporal dependency modeling.

Methods for modeling spatial dependencies. Convolutional Neural Network (CNN) and its variants are widely employed to extract 
spatial correlations from Euclidean data [27–29]. [29,30] adopted graph embedding to model spatial dependencies and generate 
embedded low-dimensional vectors for subsequent network processing. Graph convolutional network (GCN) is an efficient and 
flexible approach to capture the complex spatial correlations for non-Euclidean data. In [31–33], the complex spatial correlations 
in transportation networks were modeled using a variety of GCN layers. ASTGCN [34] utilized attention-based graph convolution 
networks to model the spatiotemporal traffic flow dynamics. STSGCN [32] introduced a synchronous modeling mechanism to capture 
the heterogenous urban spatiotemporal correlations simultaneously. RGSL [15] introduced a regularization method for implicit graph 
structure generation and combine the generated implicit graph knowledge with explicit traffic graph information using a Laplacian 
module.

Methods for modeling temporal dependencies. Recurrent Neural Networks (RNN) and the variants are proposed for sequential 
data modeling and have powerful abilities to capture temporal dependency [35,36,29]. Following that, GRU and LSTM further 
improved the long-term temporal modeling ability while avoided the gradient vanishing issue. CNNs also demonstrate powerful 
ability in capturing temporal correlations. For example, Temporal Convolutional Network (TCN) [37] has more simple architecture 
than recurrent architectures such as GRUs and LSTMs, and outperforms various RNN-based methods. Recently, attention mechanism 
has been adopted for modeling sequential data. Transformer is a representative self-attention model for Natural Language Processing 
and it has recently been employed to address spatiotemporal traffic prediction tasks [38–40]. However, it is hard for Transformer 
models to capture long-term temporal dependencies.

3. Preliminaries

Definition 1: Transportation Network 𝑔. We use graph 𝑔 = (𝑉 , 𝐸, 𝐴) to represent a transportation network. Here, 𝑉 denotes a 
collection of vertices representing all the nodes. In this paper, a node is an individual road segment in the transportation network. 
𝐸 denotes a collection of edges, and 𝐴 = (𝑎𝑖𝑗 )𝑁×𝑁 denotes the adjacency matrix of 𝑔. Each element 𝑎𝑖𝑗 of 𝐴 indicates the calculated 
proximity between two vertices (e.g. distance between two road segments, geographical connectivity, POI similarity, etc.).

Definition 2: Multivariate Spatial-Temporal Data with Missing Values. The training historical traffic data can be represented as 
a three-dimensional tensor 𝑋 ∈ 𝑅𝑇×𝑁×𝐶 . Here, 𝑇 is the temporal length of traffic data; 𝐶 is the number of traffic features, which 
includes the ground-truth traffic sequential data and various semantic features; 𝑁 is the total number of node individuals. Time 
sliding window is used in this work for slicing the sequential data into foxed-length smaller chunks. Let’s set the length of sliding 
window as 𝑙. Then, at time step t, the input data 𝑋𝑡 is in the shape of 𝑋𝑡 ∈ 𝑅𝑙×𝑁×𝐶 . To represent the missing traffic data at time 
interval 𝑡, the masking matrix 𝑚𝑡 ∈ {0, 1}𝑙×𝑁×𝐶 is used to indicate whether traffic data 𝑋𝑡 is missing. The masking matrix for 𝑋𝑡 is 
formulated as:

𝑚𝑐
𝑡
=

{
1, if 𝑋𝑐

𝑡
is observed

0, if 𝑋𝑐
𝑡

is missing
(1)

In multivariate sequential data, a feature in dimension 𝑐(𝑐 ∈ 𝐶) can be missing for several continuous timestamps. Thus, we employ 
𝜑𝑐
𝑡

to record the time lag between the last observed data point to the present timestamp 𝑠𝑡 , as shown in Eq. (2):

𝜑𝑐
𝑡
=
⎧⎪⎨ 𝑠𝑡 − 𝑠𝑡−1, if 𝑡 > 1 and 𝑚𝑐

𝑡−1=1

𝜑𝑐
𝑡−1 + 𝑠𝑡 − 𝑠𝑡−1, if 𝑡 > 1 and 𝑚𝑐

𝑡
= 0 (2)
3

⎪⎩ 0, if 𝑡 = 1
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Fig. 1. Detailed architecture of the proposed Di-GraphGAN model.

Problem Statement. Given historical observed traffic matrix series [𝑋𝑡−𝑝, 𝑋𝑡−𝑝+1, ..., 𝑋𝑡] and the graph 𝑔 = (𝑉 , 𝐸, 𝐴), our goal is to 
train a neural network model with a learned mapping function 𝑓 , which can generate the next 𝑘-step traffic predictions and impute 
the missing traffic data in the meantime:

[𝑋𝑡−𝑝,𝑋𝑡−𝑝+1, ...,𝑋𝑡;𝑔]
𝑓
→ [�̂�𝑡+1, ...�̂�𝑡+𝑘] (3)

4. Methodology

In this section, we introduce the proposed Di-GraphGAN in detail. As shown in Fig. 1, Di-GraphGAN is a GAN-based framework 
which consists of a generator 𝐺 and a discriminator 𝐷 as the primary components. 𝐺 is developed as an encoder-decoder structure 
to produce the future 𝑘-step forecasts based on historical traffic data. Then the generated traffic forecasts and the corresponding real 
traffic speed data are jointly fed into 𝐷 for training.

4.1. DI-LSTM: data-imputation LSTM module

Previous literature [41,42] suggested to use some pre-defined values such as zeros or the last observed values to impute missing 
data points. However, pre-defined imputation methods always lead to biased parameter estimation, resulting in unsatisfied prediction 
performances. In this research, we propose DI-LSTM (as shown in Fig. 2), a data imputation module using LSTM architecture with 
an internal time damping unit 𝜃𝑇𝐷 to control the influence of different historical observations on the current timestamp data so as 
to achieve accurate missing data imputation.

In order to make the gradients in our deep model can be computed in implementation, the masking matrix 𝑚𝑡 is first applied to 
the incomplete traffic matrix 𝑋𝑡 to replace the missing data points in 𝑋𝑡 with 0:

𝑋′
𝑡
=𝑚𝑡 ⊙𝑋𝑡 (4)

Following that, we present the time damping vector 𝜃 to adjust the impacts of historical data on the current time step observation. 
To be specific, if the recorded time lag between the last valid observation and the present timestamp is very large, there must be a 
large time gap between the last valid data point and the current timestamp observation. Under this circumstance, the last valid data 
point should give less influence on the current step data. Also, each element value of 𝜃 should be in range [0, 1]. In light of this, we 
4

formulate the time damping vector 𝜃 as follows:
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Fig. 2. Structure illustration of the proposed Data Imputation LSTM Module (DI-LSTM).

𝜃𝑡 =
1

𝑒𝑚𝑎𝑥(0,𝑊𝜃𝜑𝑡+𝑏𝜃 )
(5)

where 𝑊𝜃 and 𝑏𝜃 are learnable parameters of the DI-LSTM. We adopt the exponential formulation 𝑒𝑚𝑎𝑥(⋅) in the denominator so as 
to ensure the time damping vector 𝜃𝑡 ∈ (0, 1].

After we obtain 𝜃𝑡, it is then used to update the DI-LSTM cell hidden state ℎ𝑡−1 by element-wise multiplication as in Eq. (6), which 
is easy to understand and implement.

ℎ′
𝑡−1 = 𝜃𝑡 ⊙ ℎ𝑡−1 (6)

The following procedure of DI-LSTM after we obtain the updated hidden state ℎ′
𝑡−1 can be formulated as Eq. (7) - Eq. (12):

𝑓𝑡 = 𝜎𝑓 (𝑊𝑓 ⋅𝑋′
𝑡
+ 𝑃𝑓 ⋅ ℎ′

𝑡−1 +𝑄𝑓 ⋅𝑚𝑡 + 𝑏𝑓 ) (7)

𝑖𝑡 = 𝜎𝑖(𝑊𝑖 ⋅𝑋
′
𝑡
+ 𝑃𝑖 ⋅ ℎ

′
𝑡−1 +𝑄𝑖 ⋅𝑚𝑡 + 𝑏𝑖) (8)

𝑜𝑡 = 𝜎𝑜(𝑊𝑜 ⋅𝑋
′
𝑡
+ 𝑃𝑜 ⋅ ℎ

′
𝑡−1 +𝑄𝑜 ⋅𝑚𝑡 + 𝑏𝑜) (9)

�̃�𝑡 = tanh(𝑊�̃� ⋅𝑋′
𝑡
+ 𝑃�̃� ⋅ ℎ′

𝑡−1 +𝑄�̃� ⋅𝑚𝑡 + 𝑏�̃� ) (10)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 (11)

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) (12)

where 𝑄𝑓 , 𝑄𝑖, 𝑄𝑜, 𝑄𝐶 denote the learnable weights of masking matrix 𝑚𝑡 in units 𝜎𝑓 , 𝜎𝑖, 𝜎𝑜, 𝜎𝐶 , respectively. If the original input 
traffic data 𝑋𝑡 is complete with no missing values, all the items of 𝑚𝑡 are set as 1 and the operations are resemble to LSTM network.

4.2. TE-GAT: task efficient graph attention networks

Existing standard GATs use attention mechanism to calculate edge weights at each layer based on node features, and interact 
among all the neighbors for graph representation learning, which not only limit the algorithm performance, but also increase the 
computational cost. Furthermore, standard GATs use multi-head attention to enhance the expressiveness of the model, resulting 
in multiple sets of redundant attention weights. To alleviate the above issues, we propose a task-efficient GAT by simplifying the 
multiple attention weights calculation and constraint the participated graph edges. The insight behind task-efficient graph attention 
networks (TE-GAT) is that not all node neighbors are equally important for graph aggregation, and we wish to select the significant 
neighbors but ignore the less important individuals for graph attention. The key technology is that we employ a Filter Gate to each 
edge individual to determine if that edge should be used for graph neighbor aggregation or not.

To identify the important edges of a graph and remove irrelevant/noisy edges, we apply a binary-value Filter Gate 𝑢𝑖𝑗 ∈ {0, 1} to 
each edge 𝑒𝑖𝑗 ∈𝐸. Under this setting, the filter gate 𝑢𝑖𝑗 will determine whether an edge 𝑒𝑖𝑗 will be used for neighbor aggregation or 
not, which can be formulated as follows:

𝐴⋆ =𝐴⊙𝑈, 𝑈 ∈ {0,1}𝑀 (13)

where 𝑀 demotes the total number of edges in graph 𝑔.

Since our objective is to use less edges and meanwhile encourage the model prediction accuracy to be even better, we hereby 
train the TE-GAT’s weight parameters 𝑊𝑡𝑒𝑔𝑎𝑡 and Filter Gate 𝑈 by minimizing a 𝐿0-norm regularization loss:

1
𝑛∑

⋆

5

𝐿𝑟𝑒𝑔 =
𝑛
𝑖=1

𝐿(𝑓𝑖(𝑋𝑖,𝐴 ,𝑊𝑡𝑒𝑔𝑎𝑡), 𝑦𝑖) + 𝜆||𝑈 ||0 (14)
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= 1
𝑛

𝑛∑
𝑖=1

𝐿(𝑓𝑖(𝑋𝑖,𝐴
⋆,𝑊𝑡𝑒𝑔𝑎𝑡), 𝑦𝑖) + 𝜆

∑
(𝑖,𝑗)∈𝐸

1[𝑢𝑖𝑗≠0] (15)

where ||𝑈 ||0 denotes the 𝐿0-norm of the Filter Gate 𝑈 , i.e., the number of non-zeroes elements in 𝑈 , 1[𝑐𝑜𝑛] is an indicator function 
which equals to 1 if the condition 𝑐𝑜𝑛 is satisfied, and 0 otherwise, 𝑦𝑖 is the ground-truth prediction of 𝑋𝑖, and 𝜆 is a regularization 
hyper-param that balances between data loss and edge sparsity.

The insight of our approach is that we employ a binary Filter Gate 𝑈 that serves as a proxy to 𝐿0 norm, which allows us to 
determine the presence or absence of edges in the graph efficiently. This is not the actual 𝐿0 optimization but a simplification, 
where 𝑈 consists of binary values that are much less computationally demanding to optimize. We use a regularized loss function 
that includes 𝐿0 norm of 𝑈 as a penalty term to encourage sparsity in the graph structure. The 𝐿0 norm in this context is used as an 
indicator function, counting the number of non-zero elements.

Following that, TE-GAT’s attention-based learning functions 𝑓 (𝑋, 𝐴⋆, 𝑊𝑡𝑒𝑔𝑎𝑡) can be formulated as:

ℎ
(𝑙+1)
𝑖

= 𝜎(
∑
𝑗∈𝑁𝑖

𝛼𝑖𝑗ℎ
(𝑙)
𝑗
𝑊

(𝑙)
𝑡𝑒𝑔𝑎𝑡

) (16)

where 𝛼𝑖𝑗 is the identical coefficient assigned to edge 𝑒𝑖𝑗 across all layers. This is in contrast with common GATs, where a layer-

dependent attention coefficient 𝛼(𝑙)
𝑖𝑗

is assigned for edge 𝑒𝑖𝑗 at the 𝑙-th layer.

The attention coefficient 𝛼(𝑙)
𝑖𝑗

is calculated as follows:

𝛼𝑖𝑗 =𝑁𝑜𝑟𝑚(𝐴𝑖𝑗𝑢𝑖𝑗 ) =
𝐴𝑖𝑗𝑢𝑖𝑗∑

𝑘∈𝑁𝑖
𝐴𝑖𝑘𝑢𝑖𝑘

(17)

where 𝑁𝑜𝑟𝑚(𝐴𝑖𝑗𝑢𝑖𝑗 ) stands for the row-scale normalization of 𝐴⋆, (𝐴⋆ =𝐴 ⊙𝑈 ).
Compared with GATs, we do not use SoftMax function, because by setting 𝑢𝑖𝑗 ∈ {0, 1} and 𝐴𝑖𝑗 ≥ 0 we can obtain reasonable 

attention coefficients. Intuitively, a node 𝑗 is always important for itself, thus we set 𝑢𝑗𝑗 = 1. Finally, we also employ multi-head 
attention to improve the representation learning ability of TE-GAT. The multi-head TE-GAT can be formulated as:

ℎ
(𝑙+1)
𝑖

= 𝐶𝑜𝑛𝑐𝑎𝑡

[
𝜎(

∑
𝑗∈𝑁𝑖

𝛼𝑖𝑗ℎ
(𝑙)
𝑗
𝑊 (𝑙)

𝑠
)

]𝑆
𝑠=1

(18)

where 𝑆 denotes the total number of attention heads, 𝐶𝑜𝑛𝑐𝑎𝑡[⋅] denotes the concatenation function, 𝛼𝑖𝑗 denotes the attention 
coefficients computed by Eq. (17), and 𝑊 (𝑙)

𝑠 is the weight matrices of 𝑘-th head at 𝑙-th layer.

4.3. Generator of di-GraphGAN

In our task, the generator 𝐺 is formulated as Encoder-Decoder structure to efficiently produce multi-scale traffic predictions. The 
input historical data of Di-GraphGAN contains multi-horizon temporal scales from coarse to fine-grained (i.e. trendy, periodic and 
recent) for more accurate traffic forecasting. In the Encoder part, as the raw input traffic data is incomplete with missing values, it is 
first processed by DI-LSTM module to obtain an imputed complete traffic data 𝑋′ = {𝑋′

𝑡−𝑇+1, ..., 𝑋
′
𝑡
} ∈𝑅𝑇×𝑁×𝐶 . Following that, the 

imputed data sequence is fed into Task-Efficient GAT network to capture the heterogeneous spatial dependencies, then sent to LSTM 
network to capture the temporal dependencies. At time interval 𝑡, the hidden states of traffic data sequence at LSTM network can be 
represented as 𝐻 = [ℎ𝑡−𝑇+1, ..., ℎ𝑡].

Traffic features from different historical timestamps have different degrees of influence on the prediction time step, and the 
influence change dynamically under different external contexts. RNN networks always face the challenges in (i) Capturing the multi-

scale temporal patterns due to fixed-length time steps that may not align well with the varying traffic conditions, and (ii) Accounting 
for the external dynamic factors that significantly influence traffic capacity, such as weather conditions, holidays, and events. In 
considering that, the Temporal Contextual Attention (TCA) mechanism is designed to overcome these limitations by providing a 
more nuanced attention scheme that considers the heterogeneity of traffic patterns and the influence of external contextual factors. 
It dynamically assigns attention weights to different historical time steps, thereby enhancing the LSTM’s ability to generate more 
accurate traffic predictions.

TCA is integrated into both 𝐺 and 𝐷 after the LSTM layer. TCA mechanism is capable of capturing informative local contextual 
knowledge for traffic forecasting and can be fit into every time step of RNN network to improve the attention performance. In our 
case, TCA captures the dynamic correlations of different historical steps on the next LSTM step by computing the attention scores 
through probability distribution then integrate with input data at the present time step. The architecture of temporal contextual 
attention is shown in Fig. 3. To be specific, the hidden state of LSTM at time step 𝑡 (denote as ℎ𝑡) is firstly input to a fully-connected 
network in order to generate a probability distribution according to the previously learned features of the model. Following that, 
the sigmoid function is adopted to re-scale the probability distribution into range [0, 1] thus produce suitable values to be used as 
attention weights. At time step 𝑡, the attention weights Γ𝑡 = [𝛾1, 𝛾2, ..., 𝛾𝑡−1, 𝛾𝑡] produced by TCA mechanism can be formulated as:
6

Γ𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝐶(ℎ𝑡;𝜃𝑡)) (19)
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Fig. 3. Visualization of the temporal contextual attention mechanism.

where 𝐹𝐶(⋅) represents the fully-connected layer, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(⋅) denotes sigmoid activation function. 𝜃𝑡 represents the learned model 
parameters.

Let 𝑋𝑡
𝑔𝑎𝑡

be the output of the TE-GAT layer at time step 𝑡. 𝑋𝑡
𝑔𝑎𝑡

is fed into LSTM network as the original traffic feature data. 
Meanwhile, the temporal contextual attention recurrently assigns corresponding weights to different elements of 𝑋𝑡

𝑔𝑎𝑡
, making the 

model pay attention to relevant important factors. The proposed attention weight scheme can be formulated as:

𝑋𝑡
𝑎𝑡𝑡

=𝑋𝑡
𝑔𝑎𝑡

⋅ Γ𝑡−1 (20)

where ⋅ is the element-wise multiplication, 𝑋𝑡
𝑎𝑡𝑡

is the input for next step LSTM cell representing the original input data been 
processed with attention weights. Γ𝑡−1 denotes the learned temporal contextual weight tensor.

For the decoder part of 𝐺, the hidden state ℎ𝑡 and the traffic embedding 𝑋𝑡
𝐿𝑆𝑇𝑀

learned by LSTM are input to the decoder part 
LSTM network, then we gain the output 𝑌𝑑𝑒 = {𝑦𝑡+1, ..., 𝑦𝑡+𝑘}. 𝑌𝑑𝑒 is processed by TE-GAT layer to generate the final prediction of 𝑘
time steps future traffic data �̂� = {�̂�𝑡+1, ..., �̂�𝑡+𝑘}.

4.4. Discriminator of di-GraphGAN

The architecture of discriminator is illustrated in the bottom half of Fig. 1, it mainly consists of TE-GAT, LSTM and TCA layers. 
Before introducing the discriminative procedure of 𝐷, we first elaborate the graph construction in both 𝐺 and 𝐷. Graph adjacency 
matrix 𝐴 = (𝑎𝑖𝑗 )𝑁×𝑁 is the critical component in graph neural networks to measure the spatial correlations among nodes in a traffic 
network. We adopt the connectivity graph adjacency matrix [14,32]. If road segment 𝑖 (node 𝑉𝑖) and road segment 𝑗 (node 𝑉𝑗 ) are 
geographical neighbors, the corresponding element 𝑎𝑖𝑗 in 𝐴 = (𝑎𝑖𝑗 )𝑁×𝑁 is set as 1, otherwise 0. i.e., 𝑎𝑖𝑗 = 1 if node 𝑉𝑖 connects to 
node 𝑉𝑗 ; 𝑎𝑖𝑗 = 0 otherwise.

Given a set of real-world traffic data and generated traffic data {𝑋𝑖, �̂�𝑖}𝑛𝑖=1, the discriminator 𝐷 attempts to discriminate between 
the two. 𝐷’s distinguish error can rectify 𝐺 to approximate the ground-truth data distribution thus producing more authentic data. 
Prior to entering 𝐷, historical traffic data {𝑋𝑡−𝑇+1, ..., 𝑋𝑡} are merged with the ground-truth future data {𝑋𝑡+1, ..., 𝑋𝑡+𝑘} and the 
generated future data {�̂�𝑡+1, ..., �̂�𝑡+𝑘} respectively to form the input real traffic sequence and fake traffic sequence. The two sets of 
samples are fed into TE-GAT network and LSTM network to capture spatiotemporal dependencies. At last, the temporal contextual 
attention (mentioned above in Generator 𝐺) is employed to process the outcome of LSTM. The discriminator of Di-GraphGAN adopts 
a new objective function, therefore it is no longer a direct criticizer but rather an assistant in measuring the Wasserstein distance 
between generated data distribution and real data distribution.

4.5. Objective function of di-GraphGAN

The overall objective function of Di-GraphGAN is an integrated and weighted loss, which consists of generative adversarial 
learning loss, data reconstruction loss, and the 𝐿0 regularization loss function 𝐿𝑟𝑒𝑔 for TE-GAT. We take the form of Wasserstein 
GAN (WGAN) [43] framework, which employs Wasserstein distance to estimate the proximity of generated data distribution to the 
ground-truth data distribution. Suppose we have 𝑛 pairwise traffic speed samples {𝑋𝑖, �̂�𝑖}𝑛𝑖=1, the adversarial loss of Di-GraphGAN 
(denoted as 𝐿𝐺𝐴𝑁 ) can be formulated as:

𝐿𝐺𝐴𝑁 =min
𝜃

max
𝑤

𝑛∑
𝑖=1

(𝑓𝑤(𝑋𝑖)) −
𝑛∑
𝑖=1

(𝑓𝑤(𝑔𝜃(�̂�𝑖))) (21)

where 𝜃 denotes the generator’s learnable parameters, 𝑓𝑤(⋅) is a class of parameterized mapping functions which are all 𝐾 -Lipschitz 
7

for 𝐾 .
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Given an incomplete traffic data series 𝑋, how to impute the missing data points in 𝑋 with the most authentic values is an 
essential problem. Therefore, we introduce the masked reconstruction loss, which can measure the degree of data imputation 
fitness by calculating the masked square error between the incomplete traffic data 𝑋 and the generated sample 𝐺(𝑋):

𝐿𝑟𝑒𝑐𝑜𝑛 = ‖𝑋 ⊙𝑀 −𝐺(𝑋)⊙𝑀‖22 (22)

where ‖ ⋅ ‖22 denotes the squared L2-norm function, ⊙ denotes the element-wise multiplication. 𝐿𝑟𝑒𝑐𝑜𝑛 calculates the errors for both 
observed traffic data and the missing traffic values.

The 𝐿0 regularization loss function 𝐿𝑟𝑒𝑔 for our task-efficient GAT has already been elaborated in Eq. (15). When fitting it into 
the overall objective function, its importance should be considered. Intuitively, 𝐿𝑟𝑒𝑔 is less significant than 𝐿𝐺𝐴𝑁 and 𝐿𝑟𝑒𝑐𝑜𝑛, which 
focus on the major tasks. Considering that, we assign a small weight parameter to 𝐿𝑟𝑒𝑔 , and search from {0.01, 0.05, 0.08, 0.1, 0.15}
to find the best weight setting. Through our experiments, we find 0.08𝐿𝑟𝑒𝑔 shows the optimal performance.

Moreover, to flexibly tune-up the significance of 𝐿𝐺𝐴𝑁 and the 𝐿𝑟𝑒𝑐𝑜𝑛, we assign a weight parameter 𝜖 to the overall loss function. 
Integrating 𝐿𝐺𝐴𝑁 , 𝐿𝑟𝑒𝑐𝑜𝑛, 𝐿𝑟𝑒𝑔 and weight parameters, the overall objective function is:

𝐿Di-GraphGAN = 𝜖𝐿𝐺𝐴𝑁 + (1 − 𝜖)𝐿𝑟𝑒𝑐𝑜𝑛 + 0.08𝐿𝑟𝑒𝑔 (23)

The training procedure can be briefly described as follows: for an incomplete input traffic sequential data 𝑋, it is fed into the 
generator to obtain 𝐺(𝑋). Then, 𝐺(𝑋) and the corresponding real data 𝑋 are compared using the discriminator. Di-GraphGAN 
model is trained by optimize 𝐿Di-GraphGAN through back-propagation. Finally, when the total loss function 𝐿Di-GraphGAN is converged, 
we consider the model is well-trained and replace the missing data points in 𝑋 with the generated data points in 𝐺(𝑋): 𝑋𝑖𝑚𝑝𝑢𝑡𝑒𝑑 =
𝑋 ⊙𝑀 + (1 −𝑀) ⊙𝐺(𝑋).

5. Experiments

In this section, we first introduce the two real-world traffic speed datasets, experiment configurations and baseline methods. Then 
we show the experimental results under different traffic data missing scenarios and analyze the performances. Finally, we carry out 
ablation study and sensitive study to evaluate the effectiveness of each model component and the proposed loss function.

HangZhou-speed dataset. This is an originally made dataset by us, which consists of 30000 vehicles’ trajectory data in Gongshu 
District of Hangzhou city from Jan/01/2019 to May/31/2019. During the five-month period, there are regular working days and 
weekends, as well as major holidays such as Chinese New Year Festival. We carefully divide the traffic network of Gongshu District 
into 116 road segments using 72 major road intersections. The traffic network is represented by a 116 ×116 graph adjacency matrix, 
in which each individual is a unique road segment. For each road segment, we collect its average traffic speed values at 10-minute 
time interval, and the total length of traffic speed time series is 21,744.

GuangZhou-speed dataset. This dataset records traffic speed data from the transportation network in Guangzhou, China. In 
GuangZhou-speed, 214 road segments in the transportation network (include urban expressways and arterials) are selected within 
two months from August 1st, 2016 to September 30th, 2016. The time interval of traffic speed records is 10 minutes. The connectivity 
of this traffic network is represented by a 214 × 214 adjacency matrix, and the total length of traffic speed time series is 8784.

Implementation Details. Di-GraphGAN is implemented with PyTorch framework on two NVDIA RTX 4090 80 GB GPU. To begin 
with, the original traffic speed data is normalized into range [0, 1] using the Min-Max Normalization, we then re-scale the prediction 
results back to their normal values for assessment. After normalization, we add masking vectors to represent the corresponding miss-

ing scenario and construct the input for Di-GraphGAN. The multi-horizon historical time step length for recent/periodic/trendy is set 
to 8,4,4, respectively. The hidden state size of LSTM is 200. For the TE-GAT network in both generator and discriminator, we stack two 
attention layers with 8-head attention (i.e., head number 𝑆 = 8) for each layer. In terms of model training, Di-GraphGAN is trained 
using RMSProp optimization with the learning rate set as 1 × 𝑒−5 and the batch size set as 32. Besides, after 100 epochs, we decay 
the learning rate to 90% of its previous values every 5 epochs. The following three widely used evaluation metrics are adopted in our 
experiments: (1) Mean Average Error (MAE), (2) Mean Absolute Percentage Error (MAPE), and (3) Root Mean Square Error (RMSE). 
For multiple features 𝑐, this work considers 6 types of weather conditions: Sunny/Cloudy/Rainy/Thunderstorm/Snow/Foggy (en-

coded by One-Hot encoding method), generalized time features: IsWeekend (True=0/False=1) and IsHoliday (True=0/False=1). 
Thus, there are 8 dimension of semantic features, plus the ground-truth traffic sequential data, the total dataset dimension is 𝑐 = 9.

Data Missing Scenarios. Both the amount and the distribution of missing data have a significant impact on traffic prediction 
performances in industrial applications [22,44,42]. Therefore, we consider (1) random missing scenario (RM) and (2) non-random 
missing scenario (NM) when creating traffic datasets with missing patterns. The RM scenario is generated by randomly assigning a 
given percentage of data points from all time steps as 0. In contrast, the NM scenario is generated by randomly assigning all the 
data points of a given length of consecutive time steps as 0 (e.g. set the data points within a randomly chosen hour from Monday 
to Sunday as 0). We set datasets with 0%/5%/10%/20%/30%/40%/50%/60% missing values in experiments to evaluate different 
missing proportions on model performance. To guarantee all experiments and models are examined using the same datasets, we 
8

employ identical random seed when generating data missing scenarios.
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Fig. 4. Di-GraphGAN can capture the implicit semantic relationships between roads in a traffic network. Road 𝑎 and road 𝑏 have analogous POIs around them, thus 
they share similar traffic patterns.

5.1. Baseline methods

Our experiments mainly focus on two tasks: 1) spatiotemporal traffic prediction performance evaluation and 2) traffic data 
imputation performance evaluation. Thus, we compare Di-GraphGAN with different baseline methods for the two different tasks. 
Because of the page limitation, we cannot give each baseline method a specific description but only provide the model name and 
source article here.

1) Baseline Methods for Spatiotemporal Traffic Prediction We consider the following baseline methods, including statistic models and 
advanced deep learning traffic prediction models: (I). ARIMA [26], (II). GRU [45], (III). DCRNN [31], (IV). STSGCN [32], (V). 
STFGNN [33], (VI). GCGAN [46], (VII). GE-GAN [47], (VIII). RGSL [15], (IX). STIDGCN [48].

2) Baseline Methods for Traffic Data Imputation For traffic data imputation task, we consider classical models, the latest deep learning 
models and two novel matrix factorization-based models: (I). k-NN(I) [41], (II). Matrix Factorization [41], (III). GRU-D [49], 
(IV). BRITS [44], (V). NAOMI [42], (VI). TRMF [21], (VII). BTMF [22].

5.2. Experiment results and analysis

1) Traffic Prediction with Complete Data under Different Prediction Scales

To start with, we evaluate model performances on multi-scale traffic speed forecasting with complete traffic data as input (i.e. 
missing rate is 0%). We set the future prediction step 𝑘 = 1, 3, 4, 8, 12. Here, 𝑘 = 1 equals to one-step prediction and 𝑘 = 3, 4, 8, 12
studies the impact of different prediction lengths. Table 1 displays the RMSE, MAPE, and MAE results of HangZhou-speed dataset and 
Fig. 5 visualizes the RMSE results change according to prediction scale 𝑘 on GuangZhou-speed dataset. As can be seen from Table 1

and Fig. 5 that with the growth of prediction scale 𝑘, MAE, RMSE and MAPE for all methods also keep rising. This phenomenon 
can be interpreted as: making accurate forecasts for a large time horizon is more difficult than predicting for a small time horizon. 
Our Di-GraphGAN consistently surpasses other baseline methods among all prediction scales, demonstrating its effectiveness and 
superiority. Furthermore, Di-GraphGAN is capable of capturing the semantic similarity of roads even if they are not geographically 
connected. Fig. 4 (a) shows that road 𝑎 and road 𝑏 are not spatially adjacent to each other, but Di-GraphGAN is able to model their 
analogous traffic speed patterns as in Fig. 4 (b) and Fig. 4 (c). Finally, we randomly select one road segment from the two studied 
traffic datasets, and plot the ground-truth traffic speed along with the predictions made by Di-GraphGAN model for one-week time 
horizon as shown in Fig. 6 and Fig. 7.

It can be seen from Table 1 and Fig. 5 that the values of RMSE are always larger in Guangzhou-speed than in HangZhou-speed. The 
reason is that traffic speed data in Guangzhou city covers more road segments (214 road segments in total) with more fluctuations 
and diversity, where as traffic speed data in Hangzhou city (116 road segments in total) is slightly smaller than Guangzhou and 
less fluctuating. There are also some similarities between the two datasets. For example, during weekday traffic peak time (8:00 
a.m.∼10:00 a.m. and 16:00 p.m.∼ 18:00 p.m.) the traffic speed data is always smaller than in other time of a day. Also, the traffic 
speed data shows different patterns during holiday periods compared with normal days. These phenomena reveal some underlying 
common traffic patterns in modern Chinese cities.

Among the baseline methods, ARIMA and GRU are two classical time-series forecasting methods. They have inferior performances 
than other deep learning spatial-temporal models. GCGAN and GE-GAN are two GAN-based traffic prediction methods which shown 
comparable performance. GCGAN outperforms STSGCN and STFGNN when prediction step 𝑘 ≥ 4, proving the advantage of ad-

versarial learning models in combination with other deep learning techniques. Nevertheless, the drawbacks are that GCGAN fails to 
consider multi-scale temporal dependencies and the model architecture is too simple to modeling the complex urban traffic networks.

For GNN-based methods, STSGCN and STFGNN show excellent results in one-step prediction, but lose their advantages when 
the prediction scale becomes large. In contrast, DCRNN adopts Seq2Seq-based framework to perform multi-scale prediction and is 
9

more robust than STSGCN and STFGNN in LSTF task. RGSL and STIDGCN are two latest graph structure learning/dynamic graph 
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Fig. 5. The RMSE results of GuangZhou-speed dataset under no missing values and different prediction step 𝑘.

Table 1

Results on HangZhou-speed dataset with complete data (i.e., missing rate=0%) and different prediction length 𝑘.

k Metrics ARIMA GRU DCRNN STSGCN STFGNN GCGAN GE-GAN RGSL STIDGCN Di-GraphGAN

1

RMSE 9.18 8.94 7.23 4.49 3.68 4.69 7.56 4.82 3.95 2.74

MAPE(%) 11.34 11.08 8.74 5.12 3.93 5.27 8.98 5.45 4.07 3.38

MAE 5.92 5.81 4.67 2.53 2.05 2.62 4.83 2.78 2.24 1.69

3

RMSE 10.25 9.37 8.54 7.63 6.35 4.85 8.72 5.15 4.06 3.12

MAPE(%) 12.26 11.23 10.51 9.15 7.42 5.39 10.45 5.83 4.28 3.92

MAE 6.35 5.86 5.69 5.06 3.88 2.91 5.37 3.22 2.32 1.88

4

RMSE 11.82 9.84 9.67 9.96 8.83 5.47 10.92 5.23 4.31 3.38

MAPE(%) 14.07 11.84 11.49 11.95 10.87 6.08 12.38 5.91 4.55 4.27

MAE 7.93 6.13 6.08 5.97 5.65 3.63 6.74 3.29 2.69 2.14

8

RMSE 13.18 11.77 10.83 11.36 10.74 5.92 11.26 5.45 4.53 3.47

MAPE(%) 15.53 13.82 12.95 13.05 12.68 6.56 13.43 6.07 4.72 4.58

MAE 8.24 7.91 7.26 7.33 6.52 4.25 7.69 3.52 2.84 2.28

12

RMSE 14.33 12.54 11.58 12.42 12.75 6.69 13.07 5.63 4.95 3.82

MAPE(%) 16.25 14.05 12.87 14.37 13.96 7.92 15.28 6.14 5.16 4.83

MAE 9.41 8.08 7.62 8.14 7.45 4.83 8.15 3.59 3.06 2.54

Fig. 6. Visualized ground-truth traffic speed data and corresponding predictions by our Di-GraphGAN for one-week time horizon.

convolution models. RGSL outperforms some deep learning models because it integrates explicit traffic features and implicit cor-

relations when construct graph information. However, our Di-GraphGAN is also capable of learning implicit spatiotemporal traffic 
correlations by the powerful generative ability of GAN. STIDGCN takes advantage of its dynamic learning GCN network, whereas 
our Di-GraphGAN also achieves dynamic learning by introducing the Temporal Contextual Attention mechanism.

2) Traffic Prediction with Incomplete Data under Different Data Missing Scenarios

In this part, we conduct experiments under four synthetic traffic data missing situations with data missing rates changing from 
10

5% to 60%. Both random missing (RM) scenario and non-random missing (NM) scenario are considered. We use the aforementioned 
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Fig. 7. Visualized ground-truth traffic speed data and corresponding predictions by our Di-GraphGAN for one-week time horizon.

Table 2

Traffic Prediction MAPE(%) comparison in Hangzhou city under random missing scenario. 
(prediction step 𝑘=1).

Model Missing Rate

5% 10% 20% 30% 40% 50% 60%

k-NN(I)+Di-GraphGAN 5.13 5.28 5.79 6.06 6.24 6.52 6.83

MF+Di-GraphGAN 4.87 5.03 5.36 5.83 6.17 6.38 6.72

GRU-D+Di-GraphGAN 4.24 4.49 4.82 5.12 5.48 5.75 5.96

BRITS+Di-GraphGAN 4.07 4.18 4.57 4.86 5.11 5.45 10.87

NAOMI+Di-GraphGAN 3.89 4.02 4.28 4.59 4.96 5.25 5.73

TRMF+Di-GraphGAN 3.92 4.06 4.33 4.75 5.08 5.37 5.65

BTMF+Di-GraphGAN 3.85 3.96 4.13 4.51 4.82 5.03 5.29

Di-GraphGAN 3.63 3.77 3.98 4.12 4.35 4.56 4.78

Table 3

Traffic Prediction MAPE(%) comparison in Hangzhou city under non-random missing sce-

nario. (prediction step 𝑘=1).

Model Missing Rate

5% 10% 20% 30% 40% 50% 60%

k-NN(I)+Di-GraphGAN 4.81 5.12 5.37 5.68 5.93 6.22 6.49

MF+Di-GraphGAN 4.59 4.74 4.98 5.20 5.45 5.71 5.93

GRU-D+Di-GraphGAN 4.12 4.37 4.56 4.82 5.14 5.35 5.62

BRITS+Di-GraphGAN 3.97 4.15 4.41 4.63 4.82 5.09 5.37

NAOMI+Di-GraphGAN 3.72 3.94 4.17 4.38 4.57 4.76 5.05

TRMF+Di-GraphGAN 3.85 4.03 4.28 4.49 4.65 4.88 5.14

BTMF+Di-GraphGAN 3.58 3.79 3.96 4.15 4.39 4.63 4.88

Di-GraphGAN 3.43 3.67 3.84 4.06 4.23 4.49 4.67

baseline methods 2) for performance evaluation. To begin with, we drop out a specific proportion of data to create the required 
data missing scenario, then we apply different data imputation models to estimate the missing data points. Finally, the imputed 
full Hangzhou-speed data is trained using our Di-GraphGAN model for traffic prediction, and we collect the traffic prediction MAPE 
results for comparison. For instance, “k-NN(I)+Di-GraphGAN” means we use k-NN(I) model to realize traffic data imputation and 
then use Di-GraphGAN for full data traffic prediction, while “Di-GraphGAN” means we use our Di-GraphGAN model to realize end-to-

end traffic data imputation and traffic prediction. Table 2 and Table 3 display the MAPE results of HangZhou-speed dataset under RM 
scenario and NM scenario, respectively. The results show that Di-GraphGAN consistently surpasses other data imputation methods 
for traffic prediction. It also proves the imputed data quality and reliability various a lot by using different imputation methods.

Next, we purely evaluate traffic data imputation performance on the two traffic speed datasets using MAE as metrics. Firstly, we 
drop out a specific proportion of data to create the required data missing scenario, then we apply different data imputation models 
to impute the missing values, and finally we calculate the errors between the imputed full traffic data and the ground-truth traffic 
data. The MAPE results of Guangzhou-speed dataset under RM scenario and NM scenario are displayed in Table 4 and Table 5. 
Furthermore, Fig. 8(a) and Fig. 8(b) depict the traffic data imputation MAE comparison of different models under NM scenario for 
Hangzhou-speed and Guangzhou-speed datasets. We also visualize the data imputation MAE results for the two cities under RM 
scenario as shown in Fig. 8(c) and Fig. 8(d).

We can derive the following listed conclusions from the above experimental results:

(i) Di-GraphGAN significantly outperforms other baseline methods in terms of both RM and NM scenarios with different data 
11

missing rates. Di-GraphGAN model is superior than other methods because first, we introduce a novel data imputation module 
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Fig. 8. Traffic data imputation MAE results for Hangzhou and Guangzhou city under RM and NM missing scenarios.

Table 4

Data imputation MAPE(%) performance comparison in Guangzhou city under random 
missing scenario.

Model Missing Rate

5% 10% 20% 30% 40% 50% 60%

k-NN(I) 8.92 10.16 12.53 13.74 15.25 16.48 17.31

MF 8.15 8.63 9.38 9.73 10.09 10.82 11.58

GRU-D 7.93 8.47 9.36 9.85 10.69 11.23 12.59

BRITS 6.06 6.28 6.55 6.97 7.51 8.36 9.72

NAOMI 5.38 5.65 6.12 6.71 6.89 7.42 9.23

TRMF 6.56 6.83 7.14 7.68 8.13 8.57 8.94

BTMF 5.24 5.49 5.76 6.05 6.28 6.63 7.15

Di-GraphGAN 4.87 5.03 5.18 5.31 5.54 5.79 5.83

Table 5

Data imputation MAPE(%) performance comparison in Guangzhou city under non-

random missing scenario.

Model Missing Rate

5% 10% 20% 30% 40% 50% 60%

k-NN(I) 9.17 10.53 11.97 13.25 13.92 15.53 17.48

MF 8.23 8.65 9.28 9.74 10.33 10.89 11.64

GRU-D 7.98 8.51 9.36 10.17 11.58 12.37 12.95

BRITS 6.03 6.25 6.42 6.85 7.19 7.64 8.07

NAOMI 5.48 5.72 5.95 6.22 6.58 7.06 7.83

TRMF 5.92 6.13 6.55 6.84 7.15 7.23 7.58

BTMF 5.36 5.69 6.14 6.35 6.67 7.04 7.49

Di-GraphGAN 4.95 5.14 5.26 5.39 5.62 5.87 5.91

(DI-LSTM), which realizes accurate traffic data imputation using the time damping unit. Second, Di-GraphGAN is formulated 
as Seq2Seq architecture for more flexible prediction scales. Third, the weighted and integrated loss function of Di-GraphGAN 
better facilitates model training process and enhances model learning ability.

(ii) Classical data imputation models (k-NN(I) and MF) have inferior performance than other deep learning-based imputation meth-

ods, because they are incapable of modeling the complex spatiotemporal dependencies in urban traffic network data.

(iii) Deep learning models with Seq2Seq architecture or form like RNN structure have better performances in multi-scale prediction 
and long sequence time-series forecasting (LSTF) task.

(iv) Some GAN-based models show satisfactory performances in spatiotemporal traffic prediction (e.g. GCGAN) and traffic data 
imputation (e.g. NAOMI), respectively. Nevertheless, only using a simple GAN framework results in limited performance and 
cannot surpass the SOTA models in a specific task. In light of that, we should integrate the wisdom of GAN framework with 
other advanced technologies for further improvements.

(v) Recent matrix factorization-based methods (TRMF and BTMF) have slightly worse performance in traffic data imputation com-

pared to deep learning-based imputation models under small missing rates, but they surpass many deep learning models with 
12

the increase of data missing rate. In general, they show better robustness to resist the change of data missing rate.
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Fig. 9. The influence of weight-param 𝜖 on Di-GraphGAN’s performance. We find that the optimal 𝜖 value for Hangzhou and Guangzhou is 0.65 and 0.4, respectively.

Fig. 10. The performance comparison of different model variants on Hangzhou and Guangzhou (prediction step 𝑘 = 1).

5.3. Ablation study

This subsection dedicates to investigating the effectiveness of both Di-GraphGAN’s main components and the weighted objective 
function.

5.3.1. Sensitive study

In this part, we study how the weight parameter 𝜖 in the overall objective function influences Di-GraphGAN’s performance. 
𝜖 ∈ [0, 1] is employed to tune-up the significance of generative adversarial loss and the masked reconstruction loss. We carry out 
experiments on 𝑘 = 4 multi-scale traffic prediction with complete data and set 𝜖’s values changing from 0 to 1 with an increasing step 
of 0.05. Fig. 9(a) and Fig. 9(b) plot the traffic prediction MAE/RMSE change with different 𝜖 on Hangzhou-speed and Guangzhou-

speed, respectively. The experiment analysis confirms that a suitable 𝜖 contributes a lot to Di-GraphGAN’s performance.

5.3.2. Model components analysis

To study how each component influences Di-GraphGAN’s performance, we employ the optimal 𝜖 value for the two datasets and 
set 25% missing values under random missing scenario. The four kinds of model variants are described as follows:

• Di-GraphGAN w/o TCA: We remove the proposed Temporal Contextual Attention in Di-GraphGAN.

• Di-GraphGAN w GAT: Instead of using our proposed Task-Efficient Graph Attention Networks (TE-GAT), we replace it with a 
standard GAT with 8-head attention mechanism and 2 layers.

• Di-GraphGAN w/o DI-LSTM: The data imputation module DI-LSTM is replaced with a vanilla LSTM layer.

• Di-GraphGAN w/o Discriminator: We remove the Discriminator and only retain the Generator. In this case, the model is 
formed as an Encoder-Decoder architecture.

The performance comparison of Di-GraphGAN’s variants are shown in Fig. 10 (a) and Fig. 10 (b). We can derive the follow-

ing findings from the results: First, Di-GraphGAN w/o TCA has slightly worse performance than Di-GraphGAN, proving that TCA 
mechanism is able to effectively integrate the temporal dynamics with semantic context information. Second, Di-GraphGAN w GAT 
shows inferior performance than Di-GraphGAN, which proves our task-efficient graph attention networks gains stronger represen-
13

tation learning ability to aggregate useful spatiotemporal correlations within graph structure data than the vanilla graph attention 



Information Sciences 677 (2024) 120911L. Li, J. Bi, K. Yang et al.

Table 6

Efficiency Comparison Experiments of TE-GAT and standard GAT model.

Model Dataset Inference Time Model Parameter Size Resource Comparison

standard GAT
Guangzhou-speed

1.8 s 1.96M 9.53 GB

TE-GAT 1.3 s 1.42M 8.66 GB

standard GAT
Hangzhou-speed

1.0 s 1.96M 8.25 GB

TE-GAT 0.8 s 1.42M 7.69 GB

networks. Third, for traffic datasets containing relatively large percent of missing values, a precise data imputation method is a 
prerequisite to promote the performance of other applications, such as the proposed DI-LSTM. Fourth, the results of Di-GraphGAN 
w/o Discriminator shows that generative adversarial learning framework contributes a lot to learn the hidden traffic patterns and 
the real-world traffic data distribution, which is superior than a plain Encoder-Decoder model.

5.3.3. Computational efficiency evaluation

To investigate the computational efficiency of our TE-GAT, we conduct a set of experiments to compare the performance of TE-

GAT with standard GAT network. The evaluation measurements include: (1) Inference Time, (2) Model Parameter Size, (3) Model 
Resource Consumption. Experimental results are shown in Table 6. Here, standard GAT means we replace the proposed TE-GAT with 
vanilla GAT network in the Di-GraphGAN model. The experiments are performed using the same hardware and software environment 
as introduced in the Implementation paragraph to eliminate external variables that could affect computation time. The results shown 
in Table 6, clearly demonstrate that the TE-GAT model achieves a reduction in reference time of 20% and 26% on Hangzhou-

speed and Guangzhou-speed dataset, respectively; model parameter size reduction of 27.55%; Resource Consumption reduction of 
9.12% and 6.79% on Hangzhou-speed and Guangzhou-speed dataset, respectively. The results indicating a certain improvement in 
computational efficiency.

6. Conclusion

In this work, we reconsider the way for accurate multi-scale spatiotemporal traffic forecasting under real-world data missing sce-

narios. An enhanced and integrated spatial-temporal data imputation graph attention generative adversarial networks (Di-GraphGAN) 
is proposed for end2end traffic data imputation and prediction. For the first step, we propose DI-LSTM, a novel data imputation mod-

ule which accurately estimates missing data by a designed time damping unit. Based on this, we formulate Di-GraphGAN as a Seq2Seq 
architecture with DI-LSTM, Task-Efficient Graph Attention Networks (TE-GAT), and Temporal Contextual Attention (TCA) as main 
modules. Specifically, our Task-Efficient GAT simplifies the computational overhead caused by existing GAT’s graph neighbor aggre-

gation method and improves its representation learning ability; the proposed TCA mechanism captures informative local contextual 
knowledge and can be fit into every time step of RNN network to improve the attention performance. Finally, model performances are 
evaluated on two large-scale traffic speed datasets in Hangzhou and Guangzhou city with different prediction scales and data missing 
scenarios. Di-GraphGAN is compared with various state-of-the-art methods and the results show the superiority of Di-GraphGAN.

In the near future, we intend to conduct more comprehensive studies based on Di-GraphGAN. Further investigations may con-

centrate on introducing external semantic information into our model to generate more accurate traffic predictions. Aside from this, 
other potential applications such as traffic congestion detection, urban crowd-flow prediction, and traffic accident forecasting will 
also be explored.
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