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Figure 1: Contact rich manipulation behaviors acquired by MyoDex with physiological MyoHand

ABSTRACT

The complexity of human dexterity builds on the coordinated actuation of a large
number of muscles. Still, much is to be understood about how the control of
such overactuated system for hand manipulation behaviors emerge and quickly
and flexibly adapts to new behaviours. In this work we aim at learning generaliz-
able representations for dexterous manipulation behaviors with a physiologically
realistic hand model: MyoHand. In contrast to prior works demonstrating isolated
postural and force control, here we demonstrate musculoskeletal agents (MyoDex)
exhibiting contact-rich dynamic dexterous manipulation behaviors in simulation.
Furthermore, to demonstrate generalization, we show that a single MyoDex agent
can be trained to solve up-to 14 different contact-rich tasks. Aligned with hu-
man development, simultaneous learning of multiple tasks imparts physiological
coordinated muscle contractions i.e., muscle synergies, that are not only shared
amongst those in-domain tasks but are also effective to a large series of new out-
of-domain tasks. By leveraging these pre-trained manipulation synergies, we
show generalization to 38 additional previously unsolved tasks. While phys-
iological behaviors with large muscle groups (such as legged-locomotion, arm-
reaching, etc) have been demonstrated before, to the best of our knowledge nimble
behaviors of this complexity with smaller muscle groups and generalizable repre-
sentations for the control of the overactuated human hand are being demonstrated
for the first time.
Project Webpage: https://sites.google.com/view/myodex
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1 INTRODUCTION

Human hands are astonishingly complex and require effective coordination of various muscle groups
to impart effective manipulation abilities. Manipulation behaviors are incredibly sophisticated
as, because of the overactuated musculoskeletal system, they evolve in a high-dimensional search
space populated with intermittent contact dynamics between the hands’ degrees of freedom and
the object. Indeed, even in the field of robotics where joints and actuations are simpler, finding
effective manipulation strategies nonetheless remains a challenge Kumar et al. (2016); Rajeswaran
et al. (2018); Nagabandi et al. (2020).

The human hand consists of 29 bones, 23 joints, and more than 50 muscles Sobinov & Bensmaia
(2021). The complex multi-articular, multi-joint, pulling-only properties of the musculoskeletal
system Sobinov & Bensmaia (2021) make physiological dexterous manipulation a very different
and unique problem as opposed to joint based control typically adopted in robotics. In biology,
the control of such complex musculoskeletal system is made possible by the fact that muscles are
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not activated in isolation, but rather, that different muscles are activated in a proportional way as
a unit. This phenomenon is known as muscle synergy Bizzi & Cheung (2013). Synergies allows
the biological motor system – via the modular organization of the movements in the spinal cord
Bizzi & Cheung (2013); Caggiano et al. (2016) – to simplify the control problem, solving tasks by
building on a limited number of shared solutions d’Avella et al. (2003); d’Avella & Bizzi (2005).
Those shared synergies are suggested to be the fundamental building blocks for quickly learning
new and more complex motor behaviours Yang et al. (2019); Dominici et al. (2011); Cheung et al.
(2020). Manipulation behaviors, the subject of this investigation, are further complicated because
they unfold on a sequence of phases: reaching to the object, hand-object contact, and manipulation
with object maneuvers. Before the hand-object contact, the human hand is pre-shaped to conform
to the object such that it is often possible to predict the object that is going to be grasped just by
observing the hand pose before hand-object contact Jeannerod (1988); Santello et al. (2002); Thakur
et al. (2008); Yan et al. (2020). Contact and manipulation of the object are goal-driven so that the way
the object is held depends on both the object affordance and the intermediate task goals Jeannerod
(1988).

In this work, we seek to further our understanding of physiological dexterity by imparting dexter-
ous manipulation ability to an anatomically realistic hand-fore-arm model Caggiano et al. (2022).
While prior works have not been able to scale beyond dexterous grasping McFarland et al. (2021);
Mirakhorlo et al. (2018); Saito et al. (2021); Crouch & Huang (2015); Engelhardt et al. (2021) in
a controlled setting with a physiologically realistic models of the hand, here we present MyoDex
agents capable of dynamic dexterous contact rich manipulation behaviors with multiple objects and
a variety of tasks e.g. drinking from a cup, playing with toys, etc. Furthermore, by jointly training
multiple tasks, we capture reusable synergies in form of a general pre-trained policy that can be fur-
ther fine-tuned to manipulate 38 previously unsolved tasks with non-trivial affordances. We provide
a detailed analysis of emergent physiological details in our achieved behaviors.

While we do not claim to have solved physiological dexterous manipulation, we emphasize that ma-
nipulation abilities demonstrated here significantly advance the state of the art of the bio-mechanics
and neuroscience fields. Along these lines, this investigation is among the first to yield robust control
policies exhibiting basic physiological constructs such as synergistic activations of muscle groups
during dexterous manipulations. Nevertheless, further work is required to rigorously ground them
in experimental validation. More specifically, our main contributions are:

• We show for the first time that despite the high numbers of degrees of freedom, the multi-
articular-multi-joint and the third order muscle dynamics of muscle control, it is possible
to control a physiologically realistic musculoskeletal model of the hand to perform
contact-rich skilled manipulation behaviors on up-to 14 different tasks.

• We show that joint multi-task learning facilitates the learning of physiological represen-
tations that exploit muscle coordination in a lower-dimensional space of synergies to
solve specific tasks.

• Our framework MyoDex leverages joint multi-task learning to recover reusable repre-
sentations (synergies) that allows for easier fine-tuning in both in-domain and out-of-
domain tasks (including one/few shot learning). Leveraging these synergies the MyoDex
solves 38 previously unsolved tasks.

2 RELATED WORKS

Experimental studies of functional hand manipulations have been limited both by challenges in
sensing, the discontinuous hand-object interactions and because of the limited ability to record many
muscles of the hand simultaneously. Musculoskeletal models of the hand McFarland et al. (2021);
Lee et al. (2015); Saul et al. (2015) have been developed to overcome some of the experimental
limitations and produce insights on the kinematic information of the muscles and joints. While
musculoskelatal models of large muscle groups have been extensively developed and used Delp
et al. (2007); Seth et al. (2018), models of the hand have been more challenging both because of
the smaller muscle groups involved and the complexity of the behaviour they can produce. Indeed,
simulations of the hand mostly focus on fingertips, pinch force McFarland et al. (2021), kinematic
motion McFarland et al. (2021), and passive grasping McFarland et al. (2021). Furthermore, most of
those studies are also limited by intensive computational needs and restricted contact forces. Those
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conditions prevented the study of complex hand object interactions and limited by using optimization
methods that could not leverage data-driven state of the art.

Recently, a new hand and wrist model – MyoHand Caggiano et al. (2022); Wang et al. (2022) – has
been developed. This model overcomes some limitations of alternative hand models and it is suitable
for computationally intensive data-driven explorations. Indeed, it has been shown that MyoHand can
be trained to solve individual in-hand tasks on very simple geometries (ball, pen).

Hand dexterity has been also a very active field in robotics. Robotic hands have been shown to be
able to perform complex in-hand manipulation of real-world objects OpenAI et al. (2019); Huang
et al. (2021); Chen et al. (2021) and solve complex manipulation tasks, such as HandManipulateEgg
and HandManipulatePen Plappert et al. (2018). Still, both the hardware and the control of robotic
hands do not match the level of dexterity of human hands and remain limited to in-hand movements.

Data driven approaches have consistently used Reinforcement Learning (RL) on joint-based control
to solve simple locomotion tasks Miki et al. (2022), in animation of physics based characters Heess
et al. (2017) and to solve complex dexterous manipulation in robotics Rajeswaran et al. (2018); Ku-
mar et al. (2016); Nagabandi et al. (2019); Chen et al. (2021). Typically, in order to yield more
naturalistic movements, different methods have leveraged motion capture data Merel et al. (2017;
2019); Hasenclever et al. (2020). By means of those approaches, it has been possible to learn com-
plex movements and athletic skills such as high jumps Yin et al. (2021), boxing and fencing Won
et al. (2021) or playing basketball Liu & Hodgins (2018). More recently, approaches that prime
models with hand pre-shaped for a specific task have been shown to be successful at simplifying
the search of RL solutions on complex robotic manipulations Dasari et al. (2022). In contrast to
joint-based control, in biomechanical models machine learning has been applied on muscle actua-
tors to control movements and produce more naturalistic behaviors. This is a fundamentally different
problem than robotic control as the overactuated control space of biomechanical systems leads to
ineffective explorations Schumacher et al. (2022). Wang et al. Wang et al. (2012), Geijtenbeek et
al. Geijtenbeek et al. (2013), Borno et al. 2020 Al Borno et al. (2020), and Ruckert et al. Rückert
& d’Avella (2013), have been using optimization methods on biomechanical models to synthesize
walking and running, reaching movements, and biped locomotion. More recently, deep reinforce-
ment learning has been used to either map the muscle-actuation to joint-actuation control to produce
movements that are more human-like than those generated by torque-based control at the joints Jiang
et al. (2019), in order to directly control shoulder and arm muscles for isometric arm movements
Joos et al. (2020) and reaching Schumacher et al. (2022); Ikkala et al. (2022), hand muscles for
hand dexterous manipulations Caggiano et al. (2022), co-learning elbow exoskeleton movements
Caggiano et al. (2022); Wang et al. (2022), walking/running Song et al. (2020); Park et al. (2022),
or to produce movements such as juggling, weight lifting, cart-wheeling and other highly stylistic
movements Lee et al. (2018; 2019). Musculoskeletal models have been used also to improve the
realism of simulated animal movements; for example, in controlling movements in animal models
of a dog Stark et al. (2021) and more recently, of an ostrich Barbera et al. (2021); Schumacher et al.
(2022).

While musculoskeletal control with large muscles groups have been demonstrated Song et al. (2020;
2021); Schumacher et al. (2022); Ikkala et al. (2022), nimble contact rich musculoskeletal behaviors
with smaller muscle groups such as hand-manipulation remains an open challengeCaggiano et al.
(2022). MyoDex, in addition of showing that indeed it is possible, presents evidence that the learned
physiological representations share muscle coordination across tasks which, like human synergistic
control, facilitate both learning and generalization across tasks.

3 PHYSIOLOGICAL DEXTERITY

Human hand dexterity builds on the fundamental characteristics of the physiological actuation: mus-
cle are multi-articular and multi-joints, the dynamics of the muscle is of the third order, muscle have
pulling only capabilities, and coordinated synergistic muscle control with intermittent contact with
objects. Furthermore, the key aspect of the control of such physiological effectors is that the hu-
man central nervous system optimizes movements through coordinated muscle contraction – mus-
cle synergies – which are meant to simplify the control problem, allowing generalization. Fields
of bio-mechanics, rehabilitation, neuro-surgery, etc. have long benefited from physiological un-
derstanding of neuro-mechanical control. To further our understanding, here we embed the same
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control challenges e.g. by controlling a physiologically accurate musculoskeletal model of the hand
(see Sec. 3.1) in complex manipulation tasks (see Sec. 3.2). This allows a window to peek into the
mechanisms behind human dexterity that enables generalization across different tasks.

3.1 PHYSIOLOGICALLY ACCURATE MYOHAND

In order to simulate a physiologically accurate hand model, a complex musculoskeletal hand model
comprised of 29 bones, 23 joints, and 39 muscles-tendon units Wang et al. (2022) - MyoHand model
- implemented in the MuJoCo physics simulator Todorov et al. (2012) was used (see Figure A.1).
This hand model has been shown to allow dexterous in-hand manipulation of one or multiple objects
when trained using reinforcement learning Caggiano et al. (2022).

We extended the MyoHand model to include translations and rotations at the level of the shoulder.
We limited the translation on the frontal (range between [−0.07, 0.03]) and longitudinal (range
between [−0.05, 0.05]) axis to favor shoulder and wrist rotation.

3.2 TASK

Dexterous manipulation is often posed as a problem of achieving the final configuration of the
object. In this study we are interested to capture the whole continuous aspects of the manipulation
behaviour with object maneuver e.g., drinking, playing, or cyclic movement like hammering. Those
tasks are hard to capture as goal reaching. To effectively capture the temporal behaviors, we
instead define dexterous manipulation as a task of realizing a desired object trajectory (X̂). We
use two metrics to measure task performance. The object error metric E(X̂) calculates the average
Euclidean distance between the object’s center-of-mass position1, and the desired position from the
desired trajectory: E(X̂) = 1

T

∑T
t=0 ∥x

p
t − x̂pt ∥2. In addition, the success metric S(X̂) reports the

fraction of time-steps where object error is below a ϵ = 1cm threshold. It is defined as: S(X̂) =
1
T

∑T
t=0 1∥x

p
t − x̂pt ∥2 < ϵ

3.3 DEXTERITY OBJECTIVES

While the complexity of human level dexterity can be hard to fully quantify, none the less we outline
a few objective measures we consider in this work. First, a dexterous agent should be capable
of exhibiting contact-rich manipulation behaviors. Next, the agent’s behavior should seamlessly
generalize to multiple tasks/objects without additional assumptions. Finally, these agents should
exhibit coordinated muscles movements (synergies) that are shared amongst different behaviors, as
well as generalize to new unseen tasks.

4 MyoDex: ACQUIRING DEXTERITY

In this section we discuss our approach to build agents that can learn contact-rich manipulation
behaviors and generalize across tasks.

4.1 PROBLEM FORMULATION

A manipulation task can be formulated as a Markov Decisions Process (MDP) Sutton & Barto (2018)
and solved via Reinforcement Learning (RL). In RL paradigms, the Markov decision process is de-
fined as a tuple M = (S,A, T ,R, ρ, γ), where S ⊆ Rn and A ⊆ Rm represent the continuous state
and action spaces respectively. The unknown transition dynamics is described by s′ ∼ T (·|s, a).
R : S → [0, Rmax] , denotes the reward function, γ ∈ [0, 1) denotes the discount factor, and and
ρ the initial state distribution. In RL, a policy is a mapping from states to a probability distribution
over actions, i.e. π : S → P (A), which is parameterized by θ. The goal of the agent is to learn a
policy πθ(a|s) = argmaxθ[J(π,M)], where J = maxθ Es0∼ρ(s),a∼πθ(at|st)[

∑
tR(st, at)]

1For interpretabiliy, we omit orientations because center-of-mass error and orientation error were highly
correlated in practice
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State Space. The state vector st = {ϕt, ϕ̇t, ψt, ψ̇t, τt} consisted of ϕ a 29 dimensional vector of
23 hand and 6 arms joints and velocity ϕ̇, and object pose ψ and velocity ψ̇. In addition, positional
encoding τ Vaswani et al. (2017), used to mark the current simulation timestep, was appended to the
end of the state vector. This was needed for learning tasks with cyclic motions such as hammering.

Action Space. The action space at was a 45-dimensional vector which consists of continuous
activations for 39 muscles of wrist and fingers (to contract muscles), together with 3D translation
(to allow for displacement in space), and 3D rotation of the shoulder (to allow for a wider range of
arm movements).

Reward Function. The manipulation tasks we consider involved approaching the object and ma-
nipulating it in free air after lifting it off a horizontal surface. The hand interacts with the object
adjusting its positions and orientation X for a fixed time horizon. Similar to Dasari et al. (2022),
this is translated into an optimization problem where we are searching for a policy that can match a
desired object trajectory X̂ = [x̂0, ..., x̂T ], which is captured using the following reward function:

R(xt, x̂t) := λ1exp{−α∥x(p)t − x̂
(p)
t ∥2 − β|∠x(o)t − x̂

(o)
t |}+ λ21{lifted} − λ3 ∥mt∥2 (1)

where ∠ is the quaternion angle between the two orientations, x(p)t is the desired object position,
x
(o)
t is the desired object orientation, 1{lifted} encourages object lifting, and mt the is overall

muscle effort.

4.2 PREGRASP TO SIMPLIFY SEARCH SPACES

Figure 2: Learning Paradigms. A - Single Experts policies were
obtained by training policies to solve the individual tasks. Then, by
means of an expert-student approach, a unified Student policy was
distilled. B - A single policy (MyoDex) was obtained by learning
all tasks at once.

Owing to the third order non linear
actuation dynamics and high dimen-
sionality of the search space, direct
optimisation of M leads to no mean-
ingful behaviors. We leverage the
state directly preceding the hand ini-
tiating contact with an object – i.e.
pre-grasp – to greatly decrease the
complexity of learning dexterous be-
haviors Dasari et al. (2022). Pre-
grasp implicitly incorporates infor-
mation pertaining to the shape of the
object and its associated affordance
with respect to the desired task Jean-
nerod (1988); Santello et al. (2002).
Additionally, pre-grasps can be used
in our experiments without additional
assumptions as they can be easily
mined from MoCap recordings, annotated by human labelers, or even predicted by learned mod-
els Taheri et al. (2020a). We choose to adopt the technique from Dasari et al. (2022) and break
the learning into two phases. In the first phase the hand learns to reach the pre-grasp pose using a
free-space planners (no object conditioning required). Next, RL agents are trained to perform either
a single target task or a family of tasks. We now describe these approaches in detail.

Single task agents. In our first setting, we adopt a standard RL algorithm (see 4.1) to learn a goal-
conditioned policy πθ(at|ϕt, ϕ̇t, ψt, ψ̇t, τt, X̂object, ϕ

pregrasp
object ) (see notation in Sec. 4.1) that can

solve a single task. This approach will define a set of expert agents defined as πi with i ∈ I where
I is the set of tasks (see Figure 2A).

Multi-task agent. Ideally, an agent would be able to solve multiple tasks using a goal con-
ditioning variable. Thus, we additionally train a single agent to solve all 14 tasks in paral-
lel (see Figure 2B). This approach proceeds in a similar fashion as the single-task learner, but
trajectory rollouts are sampled from the 14 tasks in parallel. All other details of the agent
π#
θ (at|ϕt, ϕ̇t, ψt, ψ̇t, τt, X̂object, ϕ

pregrasp
object ) (e.g. hyperparameters, algorithm, etc.) stay the same.
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We encode manipulation behaviors in term of goal-conditioned policies πθ(at|st). A standard im-
plementation of the PPO Schulman et al. (2017) method from Stable-Baselines Raffin et al. (2021)
was used. Same hyperparameters were used for all tasks (see Appendix Table A.2).

Imitation learning. In addition to MyoDex π#, we also train a baseline agent using π∗ expert-
student method Jain et al. (2019); Chen et al. (2021) (see Figure 2A). Individual task specific policies
(πi) were used as experts. We developed a dataset with 1M samples of observation-action tuples for
each of those policy. Then, we extended the observation vector to include the vector τtask repre-
senting the object and trajectory. Finally, a neural network similar to Dasari et al Dasari et al. (2022)
was trained via supervised learning to learn the association between observations and actions (see
hyperparameters in Appendix A.1) to obtain a single policy π∗(at|ϕt, ϕ̇t, ψt, ψ̇t, τt, τtask) capable
of multiple task behaviors (see Figure 2A).

5 EXPERIMENTAL DESIGN

5.1 TASK DESIGN

In this study, we need a large variability of manipulations, hence it was important to include 1)
objects with different shapes and weights, 2) complexity both in terms of translation and rotation of
the object. Also, having different movements on the same objects allows us to investigate how the
different hand pre-shapes and object trajectory affected the solution.

Figure 3: A subset of object-pregrasp pair from our task-set. See Table A.1 for a complete description
A set of 11 Objects and 14 different behaviors (see Table A.1) similar to the TDCM dataset pre-

sented by Dasari et al Dasari et al. (2022) were used. The setup (see Figure 3) consisted of a table-
top environment, an object from the ContactDB dataset Brahmbhatt et al. (2019) and the MyoHand
Caggiano et al. (2022). This dataset was implemented in the MuJoCo physics engine Todorov et al.
(2012). To define our tasks, we adopted Dasari et al Dasari et al. (2022) solution where the desired
object trajectory X̂ = [x̂0, ..., x̂T ] and the hand-object pre-grasp posture ϕpregraspobject = [j0, ..., jn]
where needed. We extracted these information from the GRAB motion capture Taheri et al. (2020b)
dataset which contains high quality human-object interactions.

Following the same approach of Dasari et al Dasari et al. (2022), hand postures were computed
by matching the human fingertip of the ContactDB dataset and MyoHand by means of Inverse
Kinematics. In the context of this work, only the hand pre-shaped to grab the object before the
initial contact (see Figure 3) was considered. For each task, a pre-shaped hand was used to initialize
the posture of the hand and the goal was to follow a given trajectory of the object. This allow us to
avoid any physical or geometric information about the object. Each tasks consisted of a pair of one
trajectory of an object and its associated pre-shaped posture.

5.2 SYNERGY PROBING

To quantify the level of muscle coordination required for accomplishing a given task, we calculated
muscle synergies by means of Non-Negative Matrix factorization (NNMF) Tresch et al. (2006).
After training, we played policies for 5 roll-outs to solve specific tasks and we stored the muscle
activations (value between 0 and 1) required. Then, a matrix A of muscle activations over time (di-
mension 39 muscle x total task duration) was fed into a non-negative matrix decomposition (sklearn)
method. The NNMF method finds two matrices W and H that are respectively the coefficients and
the basis vectors which product approximates A. Muscle synergies identified by NNMF capture the
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spatial regularities on the muscle activations whose linear combination minimize muscle reconstruc-
tion Bizzi & Cheung (2013). This method reveals the amount of variance explained by each of the
components. We calculated the Variance Accounted For (VAF) as:

V AF = 100 ·
(
1− (A−W ·H)2

A2

)
(2)

Similarity of synergies between two different tasks was calculated using cosine similarity (CS) such
as: CS = wi · wj , where [wi, wj ] ∈ W are synergy coefficients respectively for the task i and j.
We used then a threshold of 0.8 to indicate that 2 synergies were similar Appendix-A.6.
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Figure 4: Single task expert task-performance. Metrics: (a) Success and (b) Error rate over iteration steps.
Average and standard deviation (shaded areas) over 4 seeds are shown.

6 EXPERIMENTAL RESULTS

First we present how by leveraging pregrasps in standard RL pipeline, it was possible to control
the physiological MyoHand to perform various tasks involving contact rich manipulation of objects
(Sec.6.1). Then, we detail a deeper investigation illustrating how the muscle coordination evolves
and changes as function of task conditions, learning (Sec. 6.3) and support generalization (Sec. 6.4).

6.1 MyoDex’S TASK DEXTERITY

Figure 5: Baselines: Success and error rate metrics for
Expert πi, student π∗, and MyoDex π# policies.

First, we wanted to explore if we can learn a se-
ries of complex dexterous object manipulations
required for performing specific tasks (see Sec.
5.1). A set of agents were trained to solve each
task independently: expert solutions. The same
pipeline and parameters were used to solve all
tasks without any object or task-specific tuning
(see Table A.2). Qualitatively, all objects in the
sample were properly manipulated while mov-
ing them to follow the target trajectory (see Fig-
ure 1 for a sequence of snapshots). This was
quantified by means of 2 metrics (section 3.2):
Success Metric (Figure 4a) and Error Metric
(Figure 4b). In all cases we achieved greater
than 80% success and, overall, an error below
0.01. These analysis indicated that MyoDex
is able to effectively drive a musculoskeletal
model of the hand to learn stable object manip-
ulations within very tight margins. To the best
of our knowledge, this is the first demonstration of such nimble manipulation (see project website
for behavior videos) with physiological musculoskeletal hand.

6.2 MyoDex'S MULTI TASK LEARNING

Next, to investigate MyoDex task generalization, we trained one single policy to handle all tasks
simultaneously. We approached this problem in two ways. First, we used the above policies trained
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to solve each single task as expert policies and, by means of an expert (teacher)-student learn-
ing paradigm, we distilled the experts into one policy that solved all tasks at the same time (see
Sec.4.2). Second, by means of joint multi-task learning, we obtained one policy – MyoDex – that
solved multiple tasks (see Sec.4.2). In both cases, the policies were able to solve the tasks but with
key differences. The student policy, when compared with the MyoDex multi-task policy, showed a
reduced success rate (see Figure 5, median success rate: expert 0.99, student 0.37, MyoDex 0.98)
and overall greater error (see Figure 5, median error rate: expert 0.00031, student 0.00195, Myo-
Dex 0.00046). In particular, the multi-task policy (see Figure A.2a) reached an error below 0.01
in 9.1k iterations while the expert policies reached that error cumulatively around 34k iterations
i.e. 4x slower. On the other hand, expert policies reached success rate of 80% cumulatively in 70k
vs 123k iterations needed for the MyoDex policy i.e. double the time. This indicates that jointly
learning multiple tasks greatly facilitates the initial phase of learning, while slowing the learning of
detailed aspects of each specific tasks. This is likely because tasks like airplane-pass, airplane-fly
and cup-pour require task specific and unique wrist rotations to be accomplished.

While the student policy – obtained with imitation learning – produced muscle activations similar
(Figure A.3) to that of the respective task expert (Figure A.5) but it effectiveness was quite low in
task metrics.

6.3 DOES MyoDex PRODUCE REUSABLE SYNERGIES?

Figure 6: Muscle Synergies over learning iterations
for the joint multi-task policy. Variance of the muscle
activations (see Sec. 5.2) explained as function of the
number of synergies at different steps of the learning
process.

Biological systems simplify the problem to
control the redundant and complex mus-
cuolokeletal systems by resorting on activat-
ing particular muscle groups in consort, a phe-
nomenon known as muscle synergies. Here, we
want to analyse if synergies emerge and facili-
tate learning.

For MyoDex where agent has to simultaneously
learn multiple manipulations / tasks, common
patterns emerges and fewer synergies i.e. 12
(Figure 6), can explain the more than 80% of
the variance of the data (see Figure A.4). Fur-
thermore, we observe that tasks start sharing
more synergies (on average 6, see Figure A.6).
This is expected as each task needs a com-
bination of shared (task-aspecific) and task-
specific synergies. Common patterns of activa-
tions seems to be related with learning. Indeed,
earlier in the training more synergies are needed to explain the same amount of variance of the data.
The peak is reached at 12.5k iterations where more than 90% of the variance is explained by 12
synergies.

Figure 7: Zero-shot generalization. MyoDex success-
fully initiated manipulations on new objects and trajec-
tories. Hand rendering includes skin (see Fig. A.1)

As expected, the expert policies shared fewer
common muscle activations as indicated by
fewer synergies shared between tasks (on aver-
age 2, see Figure A.6) and by the overall greater
number of synergies needed to explain most of
the variance: to explain more than 80% of the
variance it is needed to use more than 20 syn-
ergies (see Figure A.4). Similar results were
obtained with the student policy (on average
1 similar synergies between tasks, see Figure
A.6).

6.4 MyoDex OUT OF DOMAIN GENERALIZATION

The joint multi-task learning yields a policy that, by only knowing the hand posture (pre-grasp)
and without information about the object, shows generalization to unseen objects and trajectories.

8
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Qualitatively in a zero-shot out-of-domain task (Figure 8), the MyoDex policy initiates effective ma-
nipulations of new objects. Nevertheless, it’s is not able to achieve success rates above 0.1. The lack
of complete generalization is very likely due to the missing sensory information e.g. from skin re-
ceptors, needed in order to properly hold objects with complex geometries. Indeed, in humans, when
sensory information at the finger tips are inhibited, proper manipulation cannot be accomplished.

Given this initial indication of generalization capabilities, we want to explore the possibility of
using the shared representation provided by the multi-task policy for 1) improving performance on
the single tasks i.e. fine-tuning, 2) learning new out-of-domain tasks which were experts policies
were not able to learn. We use earlier learned models i.e. 12.5k iterations, which provide the
most general representation of coordinated movements as shown by the greater variance explained
by fewer muscles synergies (see Figure 6). First, for most of the tasks, fine-tuning the multi-task
representation allows faster learning of the in-domain tasks (see Table A.3). Indeed, it was possible
to achieve 80% success using almost less than half of the iterations (2.8k vs. 5k, fine-tuned vs
experts) required for experts trained without the same model initialization. Second, we used the
multi-task representation on a series of 44 new tasks (see Figure 8 and Table A.3). In most of those
tasks, the shared representation allowed to quickly learn them. To be noticed, it was not possible to
learn expert policies for most of those tasks without this initialization of the model. This indicates
that the representation obtained by jointly learning multiple tasks helps to initialize a solution space
that avoids local minima.

7 CONCLUSION

Figure 8: Summary of all Tasks. Left col-
umn tasks solved by single expert policies.
Right columns, task fine tuning based on
MyoDex. Aggregate success Expert vs My-
oDex 0.51 vs 0.93. See also Table A.3.

In this manuscript we showed how it is possible to con-
trol a musculoskeletal model of the human hand to learn
skilled dexterous manipulation of complex objects. We
were able to learn these tasks by imposing a pre-shaping
of the hand that reduced the search space. In addition,
by means of the joint multi-task learning we showed that
it is possible to extract generalizable representations that
leverage synergies – muscles that are activated as a unit
– which allows both faster fine-tuning on downstream in-
domain and out-of-domain tasks. All in all, this study
provides strong bases for how physiologically realistic
hand manipulations can be obtained by pure exploration
via Reinforcement Learning i.e. without the need of mo-
tion capture data to imitate specific behaviour.

8 LIMITATIONS AND FUTURE WORK

While we have been able to show that we can produce
realistic behavior without the need of fitting human data,
one important limitation is understanding and matching
the results with physiological data. Indeed, our explo-
ration method via RL, produced only one of the very high
dimensional combination of possible ways that a human
hand could hypothetically grab and manipulate an object.
For example, there are several valid ways to hold a cup
e.g. by using the thumb and one or multiple fingers. Al-
though our investigation points us in the right direction
of physiological feasibility of the result, these findings
have yet to be properly validated. Future works will need
to consider the ability to synthesize new motor behaviors
while simultaneously providing muscle validation.
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A APPENDIX

Object Weight [g] behaviors
airplane 172 fly
airplane 172 pass

alarmclock 542 see
banana 277 pass

cup 300 drink
cup 300 pour
mug 432 drink

stamp 210 stamp
waterbottle 364 shake
wineglass 178 drink
wineglass 178 toast

train 400 play
hammer 210 use
scissors 47 use

Table A.1: Collection of Object, weight and tasks performed on.

Figure A.1: Hand models. On the left, rendering of the musculoskeletal structure illustrating bone – in gray –
and muscle – in red. On the right a skin like surfaces for soft contacts is overlaid to the musculoskeletal model.

(a) Success Metric (b) Error Metric

Figure A.2: Training (rollout) of the multi-task policy i.e. jointly training on all tasks. Error metrics (top) and
Success metrics (bottom) illustrate that multi-task training is very efficient at reducing smaller errors. Never-
theless, overall success is achieved more slowly than expert solutions. (a) long term training (b) magnification
with average - continuous line - and standard deviation - shaded area - over 5 seeds.
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Figure A.3: Example of muscle activations. Expert (top) policies, student policies (middle) and multi-
task/MyoDex (bottom).

.

Figure A.4: Muscle Synergies. Number of muscle synergies as function of the explained variance (see Sec.
5.2) of the data shows that, given the same number of synergies, the multi-task learning can explain more
variance of the data. Color coded experts (gray), student (orange) and MyoDex(purple).

A.1 PARAMETERS OF THE NEURAL NETWORK FOR THE EXPERT-STUDENT.

For distilling the single expert agents into one, a neural network of the same size of the single agent
was used. We adopted a batch size 256, and Adadelta optimizer with a learning rate of 0.25, a
Discount Factor (γ) 0.995, and 10 epochs.
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Environment Iterations 12k
Discount Factor (γ) 0.95

GAE-λ 0.95
VF Coefficient (c1) 0.5
Entropy Bonus (c2) 0.001
Clip Parameter (ϵ) 0.2

Batch Size 256
Epochs 5

Network Size pi = [256, 128], vf = [256, 128]

Table A.2: Parameters adopted for the reinforcement learning models.

Figure A.5: Relationship between muscle activations. Left - Average Muscle Activation of experts (gray),
student (orange) and MyoDex(purple). Right - correlation against the expert policies of student (orage) and
MyoDex (purple).
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Figure A.6: Cosine Similarity between 12 synergies extracted from 14 different tasks at 37.5k iterations. Top -
expert policies. Middle - student policy. Bottom – MyoDex policy. On average the number of similar synergies
for expert, student, MyoDex (mean +/- std over 10 repetitions with different random seeds) was 1.88 ± 0.9,
1.45± 0.9 and 5.48± 0.17, respectively.
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Task Multi-task Success Iter. to reach Success of 0.8
@ 1k Iter. @ 2k Iter. @ 3k Iter. Multi-Task Expert

stamp-stamp1 0.981538 0.997949 1.000000 247 3458
banana-pass1 0.910000 0.993333 0.998571 247 4446
cup-drink1 0.991724 0.998161 0.977471 247 3952
mug-drink3 0.978667 0.999467 1.000000 247 3458
alarmclock-see1 0.984444 0.997778 1.000000 494 4940
train-play1 0.822278 0.929114 0.987848 741 8398
scissors-use1 0.754699 0.945542 0.986988 1235 5434
wineglass-drink2 0.714943 0.924138 0.985287 1235 4446
hammer-use1 0.781429 0.870000 0.972857 1482 3952
wineglass-toast1 0.713846 0.796410 0.902051 2223 4199
cup-pour1 0.743429 0.730857 0.830286 2964 4446
waterbottle-shake1 0.574595 0.709189 0.743784 3458 5434
airplane-fly1 0.564675 0.606753 0.631169 12350 7657
airplane-pass1 0.436322 0.497011 0.509425 12597 6669
mouse-lift 1.000000 1.000000 1.000000 247 -
apple-lift 1.000000 1.000000 1.000000 247 -
spheresmall-lift 0.986667 1.000000 1.000000 247 -
torusmedium-lift 0.980571 1.000000 1.000000 247 -
airplane-lift 0.995122 1.000000 1.000000 247 -
elephant-lift 1.000000 1.000000 1.000000 247 -
alarmclock-lift 1.000000 1.000000 1.000000 247 -
spheremedium-lift 0.998947 1.000000 1.000000 494 -
toothpaste-lift 0.971818 0.952727 0.990000 494 -
flashlight-lift 0.941714 0.942857 0.942857 494 -
stapler-staple2 0.991529 1.000000 0.999529 494 -
duck-lift 0.994737 1.000000 1.000000 494 -
wineglass-lift 0.933000 0.979500 0.980000 494 -
watch-lift 0.925333 0.955556 0.955556 741 -
phone-lift 0.960000 0.967742 0.967742 741 -
watch-lift 0.825778 0.953778 0.955556 988 -
stapler-staple1 0.893809 0.989524 0.996190 988 5187
cylindermedium-lift 0.841111 0.970000 0.972222 988 -
torussmall-lift 0.690285 0.931428 0.915428 1235 -
stamp-lift 0.709756 0.980488 0.992195 1235 3211
toruslarge-lift 0.707273 0.965455 0.977273 1235 -
cup-pass1 0.609048 0.995238 1.000000 1235 4446
toothpaste-squeeze1 0.598421 0.943157 0.977368 1482 -
stapler-lift 0.650732 0.868293 0.982439 1482 -
watch-pass1 0.492593 0.887407 0.884444 1729 -
cylindersmall-pass1 0.571200 0.826667 0.901333 1976 4693
flashlight-on2 0.168791 0.695385 0.920000 2470 -
toruslarge-inspect1 0.251852 0.645926 0.817778 2470 -
stanfordbunny-inspect1 0.289157 0.591325 0.921446 2470 6422
elephant-pass1 0.506667 0.621235 0.834568 2964 -
duck-inspect1 0.621299 0.624935 0.820260 2964 -
cylindersmall-inspect1 0.420000 0.713333 0.639444 3705 6422
flashlight-on1 0.234483 0.541609 0.626207 4446 10127
spheresmall-pass1 0.191905 0.351905 0.674286 4446 5928
apple-pass1 0.344198 0.481481 0.583210 5187 -
toothbrush-brush1 0.119375 0.353125 0.589063 5434 4199
bowl-drink2 0.075714 0.089524 0.163810 7657 4693
spheresmall-inspect1 0.235676 0.332432 0.438919 8151 -
mug-lift 0.326575 0.335342 0.397808 - 7904
cubesmall-pass1 0.024691 0.024691 0.024691 - 5928
bowl-pass1 0.114430 0.153418 0.184810 - 7163
teapot-pour2 0.137627 0.150508 0.162712 - 7657
torussmall-pass1 0.038987 0.037975 0.037975 - 5928
pyramidsmall-inspect1 0.028571 0.033333 0.035238 - 5187

Table A.3: Fine-tuning of 58 different tasks for MyoDex and expert agents. Expert solutions could reliably
reach 0.80 success for the first 14 tasks but in many other cases they were not able to. A few exceptions at
the bottom show success only for expert solutions. We indicated with ’-’ the lack of success in achieving the
success threshold. The first 3 columns report the success rate respectively at 1k, 2k and 3k iterations. The 4th
and 5th column, document the iterations at which 0.80 success for MyoDex and experts was reached.
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Figure A.7: Finetuning MyoDex on a large set of tasks. Success rate over iterations of finetuning MyoDex.
Shaded areas indicate standard deviation over 3 seeds.
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Figure A.8: Fine-tuning based on expert policies. Success rate fine-tuning experts solutions (columns) on
14 different environments. This matrix shows that the combination of pre-grasps and the initialization on a
pre-trained task is not enough to generalize to new tasks.
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