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ABSTRACT

The initial state of neural networks plays a central role in conditioning the sub-
sequent training dynamics. In the context of classification problems, we provide
a theoretical analysis demonstrating that the structure of a neural network can
condition the model to assign all predictions to the same class, even before the
beginning of training, and in the absence of explicit biases. We show that the pres-
ence of this phenomenon, which we call "Initial Guessing Bias" (IGB), depends on
architectural choices such as activation functions, max-pooling layers, and network
depth. Our analysis of IGB has practical consequences, in that it guides architecture
selection and initialization. We also highlight theoretical consequences, such as
the breakdown of node-permutation symmetry, the violation of self-averaging, the
validity of some mean-field approximations, and the non-trivial differences arising
with depth.

1 INTRODUCTION

We study how untrained neural networks assign data points to different classes before they start
learning. In the absence of explicit bias weights, our intuition might suggest an even partitioning
between classes. Instead, we demonstrate that the network architecture can induce an imbalance
effect, resulting in a large fraction of data points being classified as a single class. We call this
phenomenon Initial Guessing Bias (IGB) which we illustrate in Fig. 1.
Importantly, the phenomenon we describe appears at initialization, which can have a significant
impact on the training process. Indeed, the initial distribution of the weights can, for example,
determine an amplification/decay of the signal coming from the input, or even limit the depth to
which signals can propagate through random neural networks (Schoenholz et al., 2016; Hanin &
Rolnick, 2018; Glorot & Bengio, 2010; Saxe et al., 2013). The influence of the initial weights
distribution is of even greater importance in over-parametrized networks, for which, weights trained
with gradient-based optimizers do not move far away from initialization (Jacot et al., 2018; Du et al.,
2019; 2018; Allen-Zhu et al., 2019; Chizat et al., 2019). While the study of the initial state of neural
networks has received increasing attention over the past few years, our study differs from past work
in some important key aspects which we detail next.

Sources of randomness A deep neural network (DNN) at initialization can be interpreted as a
random function parameterized by random weights, and whose inputs are sampled from an unknown
data distribution. There are thus two distinct and independent sources of randomness at initialization:
weights and data. Previous theoretical studies of DNNs typically consider, for a given input, the
whole ensemble of random initializations of the weights (Poole et al., 2016; Matthews et al., 2018;
Novak et al., 2018). In contrast, we fix the weight initialization and study the network’s behavior by
taking expectations over the data. Technically speaking, while previous work first averages over the
weights and then over the data, our averages are first over the data and then over the weights. Note
that this approach is closer to the natural order followed in practice, where data is classified by a
single neural network (and thus for a single weight realization).

Breaking of self-averageness The mentioned inversion might seem a technicality but it actually
constitutes a fundamental point in the study of IGB. The observable that characterizes the phenomenon
is the fraction of points classified as class c, and denoted by fc (W ), (this quantity will be formally
introduced shortly) in fact does not respect the self-averaging property (Mézard et al., 1987; Dotsenko,
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Figure 1: Initial Guessing Bias (IGB). Consider a task where we classify a binary dataset using
an untrained network. Does it assign half of the examples to each class, or does it privilege one
class? The answer depends on the architecture. In the bottom left, we classify a binary dataset
with an untrained network without IGB. This model will generally assign half of the examples to
each class (histogram on the bottom center). In the top left, we classify the same dataset using an
untrained network with IGB. In this case, most of the guesses will usually go to one of the two classes
(histogram on the top center). As an example, we take the dog/cat classes (label 0 / label 1) from
CIFAR10, and pass them through an untrained CNN with 2 layers, each followed by pooling. The
non-IGB model uses tanh activations and average pooling, the IGB model uses ReLU and Max
pooling. We show in the top-right the distribution over different initializations, PW (f0), of the
fraction f0 of times that each model guessed dog (equivalently, f1 = 1− f0 indicates the fraction of
images guessed as cat). While for the non-IGB models, f0 is most often 50%, with IGB it most
often is either 0% or 100%.

1994).1 In other words, even in the infinite dataset/network size limit, the value of f0 (W ) obtained
on a given realization of the network initialization, W , differs from that computed from the average
over the ensemble of initializations. Self-averaging is often exploited (e.g. in dynamical mean
field theory (Sompolinsky et al., 1988), employed also in the context of mean-field theories of deep
learning (Schoenholz et al., 2016; Poole et al., 2016)), as it can lead to a simplification of the analysis.
For the phenomena related to IGB we cannot exploit self-averaging.

Nodes Symmetry Breaking When we think of an untrained multi-layer perceptron (MLP), we
are naturally inclined to assume a permutation symmetry among the various nodes of a given layer.
Instead, we will show that this symmetry can be broken, and indeed, this symmetry breaking (i.e.
difference in the distribution of nodes in a given layer) constitutes the foundation of the IGB. Nodes
Permutation Symmetry Breaking (PSB) was already reported in previous work, e.g. in specific
shallow networks with a large number of examples (Kang et al., 1993).
We will see that the choice of architecture significantly influences the presence of IGB. Architecture
design, particularly the selection of activation functions, has been extensively studied (Dubey et al.,
2022), with a focus on ReLU versus differentiable activations such as sigmoid. For instance, sigmoid
activations can achieve dynamical isometry, maximizing signal propagation depth (Schoenholz et al.,
2016), unlike ReLUs (Pennington et al., 2017). These activations are also compared in terms of
generalization performance, revealing distinct behaviors for ReLUs and sigmoids (Oostwal et al.,
2021). Notably, these studies often consider averaging over weight initializations.

2 MAIN CONTRIBUTIONS

Our main contribution is a new analysis that characterizes the conditions that trigger the IGB
phenomenon. More precisely we demonstrate that, beyond effects that may be induced by the
structure of the data itself, it is the design of the architecture that plays a crucial role.

1In a system defined over an ensemble of realizations (in our case, each realization is a different weight
initialization), a self-averaging quantity is one that can be equivalently calculated either by averaging over the
whole ensemble or on a single, sufficiently large, realization; in such a situation, a single huge system is adequate
to represent the entire ensemble.
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Specifically, the main contributions of this paper are:

• The observation and formalization of IGB. To our knowledge, this phenomenon was not
known before our work. IGB is relevant because it:
◦ Shows that a naive intuition about DNNs (but not about linear models) is wrong;

ignoring this can lead to wrong assumptions.
◦ Guides architecture selection, the choice of initialization, the data standardization.
◦ Can be exploited for new algorithmic solutions (e.g. to counter class imbalance).
◦ Displays a symmetry breaking and a violation of self-averaging.
◦ It has an effect on the dynamics, particularly in the initial phase, which appears

qualitatively different with and without the presence of IGB.
• The demonstration of the robustness of the phenomenon through an extensive study across

a wide range of settings; in particular:
◦ We demonstrate that IGB depends on the choice of activation function and provide

general rules for identifying those that give rise to IGB.
◦ We show that IGB is generated and exacerbated by max pooling.
◦ We show that network depth does not cause IGB, but it intensifies it if it is already

present.
◦ We develop a theory that analytically describes IGB in MLPs with random data (in-

cluding all the settings mentioned above).
◦ We provide evidence of how IGB emerges in an even broader set of settings (real data,

CNNs, ResNets, Vision Transformers, etc.).

Structure of the paper In this paper, we formally characterize IGB, explaining its occurrence
and practical implications. While we focus on binary classification in the main paper for clarity
(NC = 2), our results extend to multiclass classification as well, detailed in App. H.
We devote Sec. 3 to formally define IGB and to provide, through a qualitative argument, an intuition
into the phenomenon. We dedicate Sec. 4 to a quantitative analysis of IGB, by studying various
setups and highlighting the differences between them. In particular, we show that IGB arises because
of a PSB, and we identify a control parameter that triggers the phenomenon. We find that some kinds
of activations induce this symmetry breaking, and, consequently, the IGB. In Sec. 4.2 we show how
max-pooling and depth exacerbate IGB. In Sec. 5 we discuss the impact of our results. Due to space
reasons, and to keep the narrative simpler, we provide detailed derivations in the appendix.

3 EMERGENCE OF IGB: A FIRST INSIGHT INTO THE PHENOMENON
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Figure 2: Scheme of a generic neural network for a binary classification problem (left) and main
symbols (right); for a more complete notation see App. A.
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Setting and main notation We consider the generic architecture shown in Fig. 2. The inputs
{ξ(a)}Da=1 propagate through a set of L hidden layers, until they reach the output layer. The last
hidden layer is connected to the output layer through a dense weight matrix, with elements w(L)

ij ;
the output layer is composed of a set of two nodes (one for each class),

{
O(c)

}
c=0,1

. Each input is
classified by selecting the class c with the largest output value.
Our main notation is described in Fig. 2–right. For data and weights we respectively use:

• ξ
(a)
b ∼ N (0, 1) ∀a, b: bth component of the ath dataset input.

• w
(l)
ij ∼ N

(
0,

σ2
w

Nl−1

)
∀i, j, l : weight connecting the jth node of the lth layer to the ith node

of the following one. We fix all the biases equal to 0.

We focus on a simple data structure, to underline effects induced by architecture design. In particular,
the choice of this data is motivated by two fundamental reasons:

♢ We place ourselves in a setting where the effect of IGB is minimal; we expect, indeed, that
correlation in the data amplifies IGB.
To gain a better understanding of this concept, we can consider a pathological extreme case
of a dataset composed of clones of the same element; in this case we will clearly get the
same predicted class for the whole dataset, regardless of the neural network design.

♢ In our work, we analyze how network design can induce a predictive bias; by using unstruc-
tured data, we can ensure that the sources of IGB do not stem from dataset characteristics.
For the same reason, we use identically distributed data for various classes; this way, we
avoid bias effects related to class differences (e.g., difficulty of the class).

Beyond the analytical results, we show that when using structured data, not only is IGB still present,
but it becomes exacerbated (see App. I.1).

Two Kinds of Averages Since we need to average over both the dataset and the weights, for the
sake of compactness we employ the shorthand notation:

⟨x⟩ ≡ Eχ (x | W ) and x ≡ EW (x)

to indicate the expectation over the two different sources of randomness (see App. A for more details).

Initialization In order to make our calculations more quantitative, we make a precise choice for the
initialization of the weights, employing the Kaiming Normal initialization (He et al., 2015), which is
common in the literature. Note however that our procedure applies to any set of independent weights
drawn from a centered distribution with finite variance, with the scaling of the variance being the
crucial element.

Permutation Symmetry Breaking: the foundation of IGB The key quantity in our analysis is the
distribution (over W ) of the fraction fc (W ) of datapoints classified as class c ∈ {0, 1}. We have
fc = 1/2 in the absence of IGB, and a different value otherwise.

Since our model’s guess is assigned to the class with the largest output value, O(c), in the limit of
infinite datapoints, the Law of large numbers gives

lim
D→∞

fc (W ) = Pχ

(
O(c) > O(1−c) | W

)
=

∫ ∞

0

Pχ

(
O(c) −O(1−c) = x | W

)
dx . (1)

Without loss of generality, we will often use the class 0 as a representative class, but the same
discussion applies to any class. For class 0, equation 1 simplifies (again in the D → ∞ limit) to

f0 (W ) =

∫ ∞

0

Pχ (∆O = x | W ) dx , (2)

where we defined, for the sake of compactness, ∆O ≡ O(0) −O(1). We also define ∆µ ≡〈
O(0)

〉
−
〈
O(1)

〉
the difference between the distributions mean values. While fc is a convenient

and interpretable metric related to performance, it is essential to note that our analysis begins with
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a thorough a derivation of the distribution of output layer nodes, which encodes richer information
about the proximity of points to decision boundaries.
equation 2 connects f0 (i.e. the observable we are interested in) to the nodes variables

{
O(c)

}
(i.e.

the set of variables we analyze through our investigation). The fraction f0 depends on how often
the output related to class 0 has a higher value of the output than that of class 1. This is essentially
obtained by comparing the output distributions Pχ

(
O(c) | W

)
related to each class. We illustrate

this in Fig. 3. In the example of the figure, the output distribution related to class 0 is centered around
higher values than that of class 1. Therefore, we will have f0 > f1, i.e. IGB. We will show that,
for MLPs, Pχ

(
O(c) | W

)
, is asymptotically a Gaussian whose center,

〈
O(c)

〉
, is itself a random

variable (r.v.), which is drawn from a Normal distribution PW
(〈
O(c)

〉)
that has a wide support:

Distribution of outputs: Pχ

(
O(c) | W

) |W|→∞−−−−−→ N
(〈

O(c)
〉
,Varχ

(
O(c)

))
(3)

Distribution of centers: PW
(〈

O(c)
〉) |W|→∞−−−−−→ N

(
0,VarW

(〈
O(c)

〉))
, (4)

where |W| indicates the cardinality of the set W .2 In other words, the outputs of
different classes are distributed according to p.d.f.s each centered on a different value:
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)

Figure 3: Illustration of the key quantities used in
the analysis. The blue and orange curves represent
the distributions of the two output nodes for a fixed
set of network weights, W .

As
〈
O(c)

〉
are r.v.s, varying across output nodes,

they are not all identically distributed. This
difference results in a breakdown of node-
permutation symmetry. As we will explain now,
this asymmetry is directly related to the emer-
gence of IGB.
In fact, the study of IGB can be conceptually
summarized as a comparison between the fluc-
tuations of PW

(〈
O(c)

〉)
, which define the dis-

tance between the Gaussians in Fig. 3, and those
of Pχ

(
O(c) | W

)
, which define how wide each

of these Gaussians is. We will consider the two
extreme cases to underline our point. Starting
from equation 1, we will discuss how the inte-
gral on the r.h.s. varies in these two scenarios:

• Absence of IGB (Fig. 4 (left)):
If the fluctuations of PW

(〈
O(c)

〉)
are much smaller than the ones of Pχ

(
O(c) | W

)
,

we will have two Gaussian r.v. centered almost on the same point, therefore,
Pχ

(
O(0) > O(1) | W

)
≃ 1/2.

In fact, the difference between two Gaussian r.v. is itself a Gaussian r.v., centered on the
difference between the mean values of the original distributions, ∆µ. If the fluctuations
of ∆µ are much smaller than those of ∆O, we will typically have that Pχ (∆O | W ) is a
symmetric distribution centered very close to the origin. Therefore

Pχ (∆O > 0 | W ) ≡
∫ ∞

0

Pχ

(
O(0) −O(1) = x | W

)
dx ≃ 1/2, (5)

i.e. the probability of both classes is equal to 1/2.

• Deep IGB (Fig. 4 (right)):
If, instead, the scale of PW

(〈
O(c)

〉)
fluctuations is much bigger than the one of

Pχ

(
O(c) | W

)
we will typically fall in the opposing scenario where the two Gaussian

distributions, Pχ

(
O(c) | W

)
, are well separated. We can assume, without loss of generality,

that
〈
O(0)

〉
>
〈
O(1)

〉
. In this case we will have Pχ

(
O(0) > O(1) | W

)
≃ 1.

This difference between the two scenarios just discussed suggests the following formal definition for
IGB (we write it for a generic number NC of classes).

2Note that the writing |W| → ∞ is not completely unambiguous since there are several ways to take the
infinite size limit; in App. C (see Remark 1.) we discuss how not all of them are valid.
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Figure 4: Comparison of two extreme scenarios: no IGB on the left, and strong IGB on the right. If the
centers of the distributions,

〈
O(c)

〉
, have small fluctuations compared to the ones of the distributions

Pχ

(
O(c) | W

)
, the two distributions almost completely overlap, resulting in a similar probability

that one output node exceeds the other (left). If, instead, the centers are typically much further apart
than the fluctuations scale of the distributions Pχ

(
O(c) | W

)
, the values drawn from one distribution

exceed the other one with high probability (right). Each plot contains two inset plots. The inset plot
in the upper left represents the distribution of the difference of the r.v.s shown in the main plot, (∆O).
Note that, fixing the set W in a given experiment, and assuming a dataset big enough, equation 2
holds (the probability mass of the r.h.s. is depicted with a red area bounded by the distribution and
the integration extremes). The inset plot in the upper right shows instead PW

(〈
O(c)

〉)
to give an

idea of the fluctuations of
〈
O(c)

〉
for the two cases.

Definition 3.1 (IGB). We have an absence of IGB if and only if:

lim
D→∞

fc (W ) =
1

NC
, ∀c ∈ {0, . . . , NC − 1}. (6)

Instead, we have IGB if we observe a disproportion between the values {fc}, even in the limit
D → ∞ (so not due to finite size effects).

Given the asymptotically Gaussian distribution of output, increasing IGB leads to points uniformly
moving away from decision boundaries.
Understanding the emergence of different node distributions due to Permutation Symmetry Breaking
(PSB) is key to grasping IGB. Regardless of the activation function in the first hidden layer, PSB
doesn’t occur. However, from the second layer onward, the choice of activation function becomes
decisive and can lead to symmetry breaking in that layer.
In the next section, we analyze a single hidden layer network, where symmetry breaking only occurs
in the output layer. As we deepen the network, the second layer, formerly holding the output nodes,
becomes the second hidden layer. In deep neural networks, this shift allows for symmetry breaking
in the hidden layers (from the second layer onward). We’ll observe that starting from a layer with
PSB and propagating the signal to the next layer increases the difference between node distributions,
exacerbating IGB with increasing network depth.

4 QUANTITATIVE ANALYSIS

We formalize and expand upon the insights introduced in Sec.3 by deriving PW (f0) for various
architectural choices, from simple models to more complex ones. This helps us identify the key
architectural elements that influence IGB. Detailed derivations can be found in the appendices.
Furthermore, in App.I.2, in addition to our analytical findings, we demonstrate the presence of IGB
across an even wider range of architectures, including ResNets and Vision Transformers

4.1 SINGLE HIDDEN LAYER

We start by sketching the derivation of PW (f0) for a perceptron with a single hidden layer of N1

nodes (the full calculation is in App. D.1):3

3In this case, the infinite size limit (|W| → ∞) means N1 → ∞.
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I. First, we show that, for every output node, Pχ

(
O(c) | W

)
asymptotically converges to a

Gaussian distribution, whose mean,
〈
O(c)

〉
, is itself a r.v.. Instead, its variance Varχ

(
O(c)

)

converges to a deterministic value σ2
∞:

Pχ

(
O(c) | W

)
N1→∞−−−−−→ N

(〈
O(c)

〉
, σ2

∞
)
. (7)

Consequently for the difference between the two nodes we will have:

Pχ (∆O | W )
N1→∞−−−−−→ N

(
∆µ, 2σ

2
∞
)

(8)

II. From the definition of f0 [equation 2], we get an implicit expression for ∆µ(f0)

f0 =

∫ ∞

0

N
(
y; ∆µ(f0), 2σ

2
∞
)
dy . (9)

We can then compute PW (f0) as
PW (f0) = PW (∆µ(f0)) . (10)

III. We show that PW
(〈
O(c)

〉)
asymptotically converges to a Gaussian distribution, with 0 mean

and a finite deterministic variance, σ̂2
∞, i.e.:

PW
(〈

O(c)
〉)

N1→∞−−−−−→ N
(
0, σ̂2

∞
)
. (11)

So, from equation 11 and the definition of ∆µ, the r.h.s. of equation 10 becomes

PW (f0) = PW (∆µ(f0)) = N
(
∆µ(f0); 0, 2σ̂

2
∞
)
. (12)

In our analysis we consider three different setups to highlight the different behaviours. Fig. 5 shows
PW (f0) (both empirical histogram and theoretical curves) for the following cases:

• Linear: the distribution asymptotically converges to a delta distribution peaked on f0 =
1/2.4 The theoretical curve shown in the plot takes into account the finite dataset size
effects5 (since in real simulation D < ∞) as discussed in App. C.

• ReLU: the distribution, in this case, does not concentrate at f0 = 1/2 and stays asymptoti-
cally wide (we detail this in App. C, Fig. 6), so f0 will, with high probability (w.h.p.), be
away from 1/2. The mode of the distribution remains, as for the linear case, at f0 = 1/2.
Yet, in this case, the fluctuations from the peak are not due to finite size effects and keep
finite in the limit of infinite data points.

• ReLU + MaxPool: With respect to the previous case we add a pooling layer defined as

ρ
(1;m)
l = ρ(m)

({
g
(
h
(1)
j

)}
j∈Sm

l

)
:= max

j∈Sm
l

{
max(0, g

(1)
j )
}
, (13)

where Sm
l indicate the l subgroup of m nodes.

As in the case of the ReLU, we have a wide distribution that does not concentrate in the
limit of infinite data. The difference with the previous case is that now the distribution is
peaked at the extremes (we will elaborate more on this in Sec. 4.2); in this case, it is very
likely that the untrained network will classify most of the dataset as belonging to one of the
two classes.

Note how, for the output layer, permutation symmetry corresponds to symmetry between classes.
The latter is always preserved at the ensemble level, in fact in all three cases f0 (W ) = 1/2, where
f0 (W ) ≡

∫
P
(
W = W̃

)
f0

(
W̃
)
dW̃ indicate the average of f0 (W ) over the ensemble of weight

initializations. However, while in the linear case, the symmetry between classes is also conserved
on the single element of the ensemble,6 in the other two cases the single realization diverges, w.h.p.
from the mean over the ensemble. PSB thus results in a break in symmetry between classes and a
consequent self-averaging breakdown for the observable f0. We stress how this difference between
the two estimates is not due to finite size effects of the network; our predictions (theoretical curves in
Fig. 5) are, instead, asymptotically exact in this limit.

4By asymptotically, we mean in the D → ∞ limit.
5To take finite-dataset-size effects into account, we substitute the population data distribution, with the

empirical one, defined over the finite set of D points.
6In the linear case, we have limD→∞ f0 (W ) = f0 (W ) = 1/2.
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Figure 5: PW (f0) in a single-hidden-layer percep-
tron, for different choices of activation functions
and with/without max pooling.

Which activations cause IGB and which do
not Our results can be extended to a generic
activation function. In particular, we can clarify
(App. G) what is the fundamental attribute of
the activated nodes g(1)i that triggers PSB (and
consequently IGB), ∀i ∈ [0, N1] :

if
〈
ρ(m)

(
g
(1)
i

)〉
= 0 ⇒ no IGB (14)

if
〈
ρ(m)

(
g
(1)
i

)〉
̸= 0 ⇒ IGB

Thus, the results we obtained on IGB apply to
any kind of activation function: activations with-
out IGB align with the description for linear activations, while those with IGB qualitatively resemble
ReLU. We emphasize that Condition equation 14 relies on data averages ⟨. . .⟩, which means IGB
can be controlled by data standardization. Although our analysis centers on data around 0, other
standardization methods (e.g., inputs in [0,1]) will induce IGB.
As a general guideline, antisymmetric activations exhibit no IGB when the data is centered around
zero inputs. Condition equation 14 also suggests that activations can be redefined to gain or lose their
IGB property. For instance, in App. G.3, we demonstrate that shifting ReLU functions appropriately
can eliminate IGB.

4.2 EXTENSION TO MULTI-LAYER CASE & AMPLIFICATION OF IGB
IGB arises when the distribution Pχ

(
O(c) | W

)
is not the same for all classes (recall Fig. 4). In Sec. 4

we saw how Pχ

(
O(c)| W

)
asymptotically tends to a Gaussian, whose variance is concentrated around

a deterministic value, while the mean value is a r.v.. Therefore, to characterize the level of discrepancy
in the distributions, we can compare the fluctuations of PW

(〈
O(c)

〉)
with the asymptotic value of the

variance of Pχ

(
O(c) | W

)
. To set up this comparison, in our analysis, we will consider the variances

Varχ
(
O(c)

)
and VarW

(〈
O(c)

〉)
as a measure of the fluctuations for the two distributions. We will

now show that this phenomenon can be amplified, consequently causing an amplification of IGB.
In particular, building on the picture presented in Sec. 3 we will discuss how, in certain regimes,
we have a shift toward the scenario depicted in the right plot of Fig. 4. To do so it is sufficient to
show that the gap between the variance of Pχ

(
O(c) | W

)
, Varχ

(
O(c)

)
, and the one of PW

(〈
O(c)

〉)
,

VarW
(〈
O(c)

〉)
, increases. In particular, we want to show that the latter becomes much greater than

the former. Note, in fact, that
VarW (⟨O(c)⟩)

Varχ(O(c))
= ∞ =⇒ PW (f0 = x) = 1

2δ (x) +
1
2δ (x− 1) (15)

which means that in each experiment the dataset is completely classified either as belonging to the
class 0 or to the class 1.
We will specifically discuss how this happens in a single hidden layer network, through the introduc-
tion of Max-Pooling (see Fig. 5). We will also show how the depth of the network itself has a similar
effect to max-pooling in amplifying the discrepancy (see Fig. 7).

IGB amplification with Max-Pooling Max-Pooling layer changes node distribution; particularly,
larger kernel size m increases the mean-to-standard deviation ratio. By employing activation functions
such that 〈

ρ
(1;m)
i

〉
≡
〈
ρ(m)

(
g
(
h
(1)
i

))〉
=
〈
ρ(1;m)

〉
̸= 0, (16)

we get

PW
(〈

O(c)
〉)

N1→∞−−−−−→ N
(
0, σ2

w

〈
ρ(1;m)

〉2)
. (17)

(details in App. C.2). In the second equality of equation 16 we used the fact that, for every activation
function employed, the variables {h(1)

i } are identically distributed.7 Further

Pχ

(
O(c) | W

)
N1→∞−−−−−→ N

(〈
O(c)

〉
,Varχ

(
ρ(1;m)

)
σ2
w

)
. (18)

7We do not have PSB in the first hidden layer, irrespective of the employed activation function.
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(details in App. C.3). In App. E) we prove that

lim
m→∞

⟨ρ(1;m)⟩2
Varχ(ρ(1;m))

= ∞ ⇒ VarW (⟨O(c)⟩)
Varχ(O(c))

m→∞−−−−→ ∞ . (19)

IGB amplification with depth The analysis of Sec. 4.1 can be extended to deep architectures
(App. F.1). Let us consider a MLP with ReLU activation function (no max-pooling). From the
second hidden layer on we have PSB;8 nodes belonging to the same layer are not anymore identically
distributed. By increasing the depth of the neural network we obtain, similarly to the previous case,
an amplification of distributions discrepancy that leads PW (f0) to concentrate on the two extremes
of the support (details in App. F.2), i.e.

VarW (⟨O(c)⟩)
Varχ(O(c))

L→∞−−−−→ ∞ . (20)

Difference between max-pooling and depth Max-pooling and network depth both induce IGB
amplification [equation 19 and equation 15]. However, a fundamental aspect differentiates the two
cases; while the max-pooling layer can cause the emergence of IGB (as well as amplify it), depth
can only amplify it. Indeed, from equation 16 we see that the condition for the emergence of IGB
depends jointly effect of the activation function and the pooling layer. For a (deep) network without
Pooling layers, however, we have ρ(m=1)

(
g
(1)
i

)
= g

(1)
i ;9 therefore, the condition for the emergence

of IGB [equation 16] remains constrained to the only choice of activation function.

5 DISCUSSION

We examined the classification bias in untrained neural networks, uncovering a phenomenon named
IGB that arises from architectural choices that break permutation symmetry among hidden and output
nodes within the same layer. IGB conditions are related to activation and pooling choices. Factors
such as max-pooling or network depth can exacerbate IGB to the extent that all dataset elements are
assigned to a single class.
This phenomenon can be summarized in a node-symmetric phase, where node-permutation symmetry
is contingent on the activation functions and type of pooling being used. Interestingly, while depth
does not break this symmetry, it amplifies IGB when present.
Our study of IGB also sheds light on the properties of different initialization and mean-field schemes.
In fact, a key factor for IGB is that the weights in each layer l are distributed with a standard
deviation of order 1/

√
Nl. This is the scaling that one has in most initializations schemes, in some

mean-field (Schoenholz et al., 2016; Poole et al., 2016) and neural tangent kernel limits (Jacot et al.,
2018). This kind of initialization has beneficial properties in terms of e.g. vanishing/exploding
gradients (Arpit et al., 2019). If however we use initial conditions of order 1/Nl (as is done in other
mean-field limits (Mei et al., 2018)), we do not have IGB. It is not clear whether IGB helps or hinders
the initial learning (this could even be problem-dependent, e.g. with or without class imbalance, or
in the presence of subclasses); nevertheless, its presence does create qualitative differences in the
dynamics, making it a relevant phenomenon (see App. I.3).
In addition to the settings analyzed in our theoretical work, we demonstrated IGB’s generality across
a wider range of settings (App.I). While our analysis is based on random i.i.d. data, we anticipate
IGB’s presence in real datasets due to correlated data patches, increasing the likelihood of similar
classifications. Hence, we expect stronger IGB in datasets other than random data (as shown in
App.I.1 with experiments on real data).
Our experimental results in App. I.3 demonstrate that IGB significantly alters the training dynamics
when using gradient-based methods. Due to its data and architecture-dependent nature, IGB remains
a complex phenomenon that requires further investigation to fully understand its implications. IGB
could be exploited to achieve better model training, e.g. with imbalanced datasets, where increasing
the size of the gradients of the minority classes can significantly improve the initial phases of
learning (Francazi et al., 2022). Furthermore, many works set the dynamics in the small learning rate
regime (Francazi et al., 2022; Sarao Mannelli et al., 2020; Tarmoun et al., 2021); also in this context,
the presence of IGB could turn out to be relevant since the dynamics are more bound to the initial
state.

8With one hidden layer the nodes in the hidden layer are identically distributed and we only have PSB in the
output layer.

9The absence of a pooling layer is formally equivalent to a pooling layer with kernel size, m = 1.
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Appendix

Organization of the Appendix We first provide a summary of the notations in App. A. We then
provide derivations on: the validity of Central Limit Theorems in our calculations (App. B); the
output distributions at fixed weights, with an emphasis on ReLU and max-pooling (App. C); the
fraction of initial guesses for each class in a 1-layer perceptron (App. D); an explicit analysis on
how max-pooling intensifies IGB (App. E); the effect of depth (App. F); necessary and sufficient
conditions for activations to give rise to IGB (App. G); multiple classes (App. H). Finally, App. I
contains some experiments showing IGB on real datasets, and additional architectures. App. J
describes the limitations and ethics of this work.

A NOTATION

• {·}M−1
i=0 : set of M elements. If some of the indices of the variables are fixed (i.e. equal for

every element of the set), the set indices (indices that vary across different elements of the
set) are reported explicitly on the right. If the index of the set elements is not explicitly
reported, it means the absence of fixed indices for the set variables (i.e. all indices are set
indices).

• E (x): Indicate the expectation value of the argument, x. If the average involves only one
source of randomness this is explicitly indicated, e.g. Eχ (x) indicates an average over
the dataset distribution, while EW (x) an average over the distribution of network weights.
For the sake of compactness, we will employ, where necessary the shorthand notation
⟨x⟩ ≡ Eχ (x) and x ≡ EW (x).

• erf (·): Error function.

• f
(M)
c : fraction of dataset elements classified as belonging to class c. The argument M

indicates the total number of output nodes for the variable definition, i.e. the number of
classes considered. For binary problems we omit this argument (f0) as there is only one
non-trivial possibility, i.e. M = 2 .

• f
(M)
c̃ : the set

{
f
(M)
c

}M−1

c=0
contain the same elements of

{
f
(M)
c̃

}M−1

c=0
, but these are ranked

by magnitude, such that f (M)

0̃
is the greatest output value between the M f

(M)

1̃
the second

one and so on.

• g(l): vector of the lth hidden layer nodes,
(
g
(l)
0 , . . . , g

(l)
Nl−1

)
, after passing through the

activation function; g(l)i indicate the component corresponding to node i.

• h(l): vector of the lth hidden layer nodes,
(
h
(l)
0 , . . . , h

(l)
Nl−1

)
, before passing through the

activation function; h(l)
i indicate the component corresponding to node i.

• NC ≡ NL+1: number of output nodes, i.e. the number of classes.

• Nl: number of nodes in the l-layer; N0 ≡ d indicates the dimension of the input data
(number of input layer nodes) while NL+1 the number of classes (number of output layer
nodes).

• N
(
µ, σ2

)
: Given a Gaussian r.v., X , with mean µ and variance σ2 , N

(
µ, σ2

)
indicate the

distribution of X , i.e. P (X) = N
(
µ, σ2

)
.

• N
(
x;µ, σ2

)
: Given a Gaussian r.v. X , we indicate with N

(
x;µ, σ2

)
the probability

density computed at X = x, i.e. N
(
x;µ, σ2

)
≡ P (X = x) = e

− 1
2σ2 (x−µ)2

√
2πσ2

• O
(c)
M : output layer node; c is the node index; the index M, instead, indicate the total number

of nodes considered. For binary problems we omit the subscript index to keep the notation
lighter, i.e. O(c) .
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• O
(0̃)
M : the set

{
O

(c̃)
M

}M−1

c=0
contain the same elements of

{
O

(c̃)
M

}M−1

c̃=0
, but these are ranked

by magnitude, such that O(0̃)
M is the greatest output value between the M , O(1̃)

M the second
one, and so on.

• P (·): depending on the argument this notation may indicate:
– p.d.f. associated to a given r.v. X , P (X) = P (X = x)

– a probability mass, e.g. P (X < x) =
∫ x

−∞ P (X = x′) dx′

we use the notation P (A | B) to indicate the probability of the event A conditioned to event
B.
Finally, for variables with multiple sources of randomness,if some of them are either fixed or
marginalized, we will report the remaining ones (the ones that actually induce randomness)
as subscript. E.g. PW (f0) indicate the p.d.f. of f0 (W ), which, fixed the dataset (or its
distribution), is a function of the random set W .

• Var (·): Indicate the variance of the argument. Since we have r.v.s with multiple sources of
noise where necessary we will specify in the subscript the source of noise used to compute
the expectation. For example Varχ (·) ≡ ⟨· − ⟨·⟩⟩2. For the sake of compactness, we will
employ sometimes the shorthand notation Varχ (·) = σ2

· .

• W : shorthand notation for the set of network weights, {w(l)
ij }. We use, instead the

notation W l ⊆ W to indicate the subset of weights relative to a specific layer, i.e.
W l ≡ {w(l)

ij } j∈[0,...,Nl]
i∈[0,...,Nl+1]

. W<l, W>l, . . . are defined analogously.

• w
(l)
ij : element ij of the matrix W (l), connecting two consecutive layers (l ∈ [0, . . . , L]).

Given the matrix W (l) we use a ‘placeholder’ index, ·, to return column and row vectors
from the weight matrices. In particular w(l)

j· denotes row j of the weight matrix W (l);

similarly, w(l)
·j denotes column j.

• ρ(l;m): vector of the lth hidden layer,
(
ρ
(l;m)
0 , . . . , ρ

(l;m)

⌈∗⌉Nl−1

m

)
, after passing through the

max-pooling layer with kernel size m; ρ(l;m)
i indicate the component corresponding to node

i.
• χ = (ξ(a), ya)

D
a=1: dataset composed by D pairs of input vectors-labels.

• ξ(a) ∈ Rd: ath input vector; when the index a is omitted we mean a generic vector, ξ, drawn
from the population distribution.

• Θ(x): Heaviside step function.
• δ (x): Dirac delta function.

B LIMIT DISTRIBUTIONS

Here we discuss results relative to asymptotic distribution convergence.

B.1 DISTRIBUTION CONVERGENCE

We start discussing the convergence of the distribution of r.v.s combination to an asymptotic form; we
will see under which condition this convergence is guaranteed and how to characterize the asymptotic
distribution. In particular we will start from the Central Limit Theorem, discussing after its extensions.

B.1.1 CENTRAL LIMIT THEOREM

In the analysis we present we will make extensive use of the Central Limit Theorem (CLT). We
present below an essential discussion of the theorem (without proof). For further details on the topic
see, for example, (Gnedenko et al., 1968; Uchaikin & Zolotarev, 2011; Paul & Baschnagel, 1999).
Given a sequence of i.i.d. r.v.s x1, x2, x3, . . . drawn from a population with overall mean µ < ∞
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and finite variance σ2 < ∞,10 called x̄n the sample mean of the first n samples, then the limiting
form of the distribution, Z = limn→∞

(
x̄n−µ
σx̄n

)
with σx̄n ≡ σ√

n
is a standard normal distribution,

i.e. N (0, 1). For 1 ≪ n < ∞ this represent the leading term of an expansion; the correction to the
asymptotic Gaussian profile are o

(
1√
n

)
(see for example Keller & Kuske (2001)).

B.1.2 CLT EXTENTION

The assumption of identically distributed variables can be relaxed; it is possible to formulate an
extension of the CLT for combination of (not necessarily identically distributed) r.v.s. In particular, we
can use, in this case, several conditions that guarantee the validity of the CLT, such as the Lyapunov
condition or the Lindeberg condition.
Given a sequence of independent r.v.s x1, x2, x3, . . . , with µi = E (xi), the Lindeberg condition can
be formalized as:

lim
n→∞

n∑

i=1

1

s2n

∫

|x|≥ϵsn

(x− µi)
2dFXi(x) = 0 , (21)

where s2n =
∑n

i=1 E
(
(xi − µi)

2
)

and FXi
(x) is the c.d.f. of xi.

Theorem B.1 (Lindeberg theorem). For a set of independent r.v.s {Xi}ni=1, if Lindeberg’s
condition holds for all positive ϵ, then

Sn −∑i µi

sn

n→∞−−−−→ N (0, 1), (22)

where Sn = X1 + · · ·+Xn.

For our analysis we will employ an alternative set of necessary and sufficient conditions to guarantees
the asymptotic convergence to a normal distribution (for more details see for example Petrov (2012)).

We will first introduce, with Thm.B.2, a set of necessary and sufficient conditions that guarantee the
convergence for the sum of r.v.s to a Gaussian distribution.
Then in Thm. B.3 we will provide a set of sufficient conditions (easy to verify for our interest cases).
We will show the sufficiency of these conditions by proving that a set of r.v.s which satisfy them,
satisfy also the conditions of Thm.B.2.

Theorem B.2 (Distribution convergence). Let us consider a set of independent zero-mean r.v.s
{Xi}ni=1. If and only if, for every fixed ϵ > 0, the following conditions are satisfied:

Concentration:
n∑

i=1

P (|Xi| ≥ ϵ)
n→∞−−−−→ 0 ∀ϵ ∈ R+ , (23)

Mean Normalization:

∑

i

(∫

|x|<ϵ

xP (Xi = x) dx

)
n→∞−−−−→ 0 , (24)

Variance Normalization:

s2n =
∑

i



∫

|x|<ϵ

x2P (Xi = x) dx−
(∫

|x|<ϵ

xP (Xi = x) dx

)2

 n→∞−−−−→ σ2 , (25)

the distributions of the sum
∑

i Xi will converge to N
(
0, σ2

)
.

10This condition can be relaxed by using a generalized CLT (Darling, 1956; Lam et al., 2011).
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For the proof of Thm.B.2 see Chapter 4 of Petrov (2012).

Theorem B.3 (Sufficient condition for Thm. B.2). Let us consider a set {Xi}ni=1 of independent,
zero-mean,a r.v.s satisfying, for some constants σ̃2 ∈ R+, the following conditions

Variance convergence:
n∑

i=1

E
(
X2

i − E (Xi)
2
)

n→∞−−−−→ nσ̃2 , (26)

Fast decreasing tails:

lim
x→±∞

P (Xi = x) = O
(

1

x4

)
, ∀i . (27)

Let us define the new set {X̃i}ni=1 such that

X̃i ≡
Xi

c
√
n
, (28)

where c > 0 is a constant. We now proof that the set {X̃i}ni=1 satisfy equation 23, equation 24,
equation 25 leading to the convergence of S̃n =

∑
i X̃i to N

(
0, σ2

)
.

aIn general if E (Xi) ̸= 0 we can define a new set of variables {(Xi − E (Xi))}.

Proof. We will now prove that, starting from equation 26 and equation 27, the conditions of Thm. B.2
holds.
We start showing the Concentration condition [equation 23]

n∑

i=1

P
(
|X̃i| ≥ ϵ

)
=

n∑

i=1

(∫ −ϵ

−∞
P
(
X̃i = x̃

)
dx̃+

∫ ∞

ϵ

P
(
X̃i = x̃

)
dx̃

)
=

n∑

i=1

(∫ −c
√
nϵ

−∞
P (Xi = x) dx+

∫ ∞

c
√
nϵ

P (Xi = x) dx

)
n≫1
=

n∑

i=1

(∫ −c
√
nϵ

−∞
O
(

1

x4

)
dx+

∫ ∞

c
√
nϵ

O
(

1

x4

)
dx

)
=

n∑

i=1

(
O
(∫ −c

√
nϵ

−∞

∣∣∣∣
1

x4

∣∣∣∣ dx
)

+O
(∫ ∞

c
√
nϵ

∣∣∣∣
1

x4

∣∣∣∣ dx
))

=

n∑

i=1

O
(

1

n
3
2

)
= O

(
1

n
1
2

)
n→∞−−−−→ 0.

(29)

In the third line we used the Fast decreasing tails condition [equation 27].
Now we show the validity of mean normalization condition [equation 24]:

n∑

i

(∫

|x̃|<ϵ

x̃P
(
X̃i = x̃

)
dx̃

)
n≫1
=

n∑

i

E
(
X̃i

)

︸ ︷︷ ︸
=0

−
n∑

i

(
O
(∫ −c

√
nϵ

−∞

1

c
√
n

∣∣∣∣
1

x3

∣∣∣∣ dx
)

+O
(∫ ∞

c
√
nϵ

1

c
√
n

∣∣∣∣
1

x3

∣∣∣∣ dx
))

=

= O
(

1

n
1
2

)
n→∞−−−−→ 0 .

(30)
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Finally, for the Variance normalization condition [equation 25], we can now replace equation 30 into
the definition of the variance. This gives

∑

i



∫

|x̃|<ϵ

x̃2P
(
X̃i = x̃

)
dx̃−

(∫

|x̃|<ϵ

x̃P
(
X̃i = x̃

)
dx̃

)2

 n≫1

= (31)

σ̃2

c2
−

n∑

i

(
O
(∫ −c

√
nϵ

−∞

1

c2n

∣∣∣∣
1

x2

∣∣∣∣ dx
)

+O
(∫ ∞

c
√
nϵ

1

c2n

∣∣∣∣
1

x2

∣∣∣∣ dx
))

+O
(
1

n

)
= (32)

σ̃2

c2
+O

(
1

n
1
2

)
n→∞−−−−→ σ̃2

c2
. (33)

B.2 CONCENTRATION OF R.V.S DISTRIBUTION

If we consider a set of n r.v.s whose fluctuations (namely their variance) scale with n we can have
concentration phenomena for the distribution of their sum. In App. B.2.1 we consider some examples,
relevant for our study, to show the point and the different scenarios induced by difference in the
scaling; we will see one case where the distribution stays asymptotically stable and another where it
concentrates (i.e. the distribution narrows around a single value).
In App. B.2.2 we will then move from the sum of r.v.s to the combination of r.v.s. In particular we will
analyze the distribution Pχ

(
h
(l+1)
i | W

)
(fixed W , we can indeed express h(l+1)

i as a combination

of r.v.s). We will show how the nodes
{
h
(l+1)
i

}Nl+1

i=1
may not be identically distributed, for l ≥ 1.

B.2.1 RESCALED GAUSSIAN VARIABLES

Let us consider a set of independent r.v.s {Xi}ni=1 such that Xi ∼ N
(
0, σ2

n

)
, ∀i, with σ2 not

scaling with n, i.e. σ2 = O(1). We are interested in analyze the distribution of sum of r.v.s, in
particular to understand if it shows asymptotic concentration phenomena. Let us start defining
S
(n)
x =

∑n
i=1 Xi. To understand if the distribution of the r.v. S(n)

x narrows in the limit of n → ∞,
we can look at the standard deviation as an estimate for the order of magnitude of the fluctuations
from the mean value. From the definition of Xi and the additivity of the variance it follows that

σ
S

(n)
x

=

√
E
(
S
(n)
x − E

(
S
(n)
x

))2
= O(1). (34)

In other words the distribution of the sum stys asymptotically stable, meaning that it doesn’t narrow
around the mean value.

Let us consider now, instead, the r.v. S(n)
x2 =

∑n
i=1 X

2
i . Since for a Gaussian variable σ2

x2 = O
(
σ4
x

)
,

in this case, again using the additivity of the variance, we have

σ
S

(n)

x2
=

√
E
(
S
(n)
x2 − E

(
S
(n)
x2

))2
= O

(
1√
n

)
. (35)

In this case, we have a concentration phenomenon; the fluctuations of S(n)
x2 go asymptotically to 0,

i.e. the measure of the distribution concentrate around the mean value.

B.2.2 COMBINATION OF RESCALED GAUSSIAN VARIABLES

To study how does the node distribution change passing from one layer to the next one, we have to
analyze the distribution of h(l+1)

i =
∑

j w
(l)
ij g

(l)
j , where the set W is fixed. We have thus a linear

combination of r.v.s. It is easy to show that for this set of r.v.s the hypothesis of Thm. B.3 are satisfied
(see for example B.2.3 ). We will have therefore

Pχ

(
h
(l+1)
i | W

)
= N


∑

j

w
(l)
ij

〈
g
(l)
j

〉
,
∑

j

(
w

(l)
ij

)2
Varχ

(
g
(l)
j

)

 . (36)
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We are now interested to understand how Pχ

(
h
(l+1)
i | W

)
change over the elements of the set

{h(l+1)
i }Nl+1

i=1 . To evaluate this, since we have a Gaussian distribution, is sufficient to study how
much its mean and variance vary over the different nodes {h(l+1)

i }Nl+1

i=1 , i.e. employing different

set of weights {w(l)
i · }

Nl+1

i=1 . Let us start from the mean
〈
h
(l+1)
i

〉
=
∑

j w
(l)
ij

〈
g
(l)
j

〉
The problem,

formulated from this perspective is completely reversed, meaning that now, to evaluate the fluctuations

of
〈
h
(l+1)
i

〉
, the set

{〈
g
(l)
j

〉}Nl

j=1
play the role of fixed constants set,11 while the set

{
w

(l)
ij

}Nl

j=1

change with the node index i. Again, it is easy to see that, for this combination of r.v.s, the hypothesis
of Thm. B.3 are satisfied. We will then get

P
w

(l)
i·

(〈
h
(l+1)
i

〉 ∣∣∣∣
{〈

g
(l)
j

〉}Nl

j=1

)
=

N
(∑

j

w
(l)
ij︸︷︷︸

=0

〈
g
(l)
j

〉
,
∑

j

VarW
(
w

(l)
ij

)

︸ ︷︷ ︸
≡σ2

w
Nl

〈
g
(l)
j

〉2)
= N


0, σ2

w

1

Nl

Nl∑

j=1

〈
g
(l)
j

〉2

 ,

(37)

where w
(l)
i· ≡

{
w

(l)
ij

}Nl

j=1
If now we assume that

〈
g
(l)
j

〉2
respect the CLT12 (we will prove it for our

case of interest) we have

1

Nl

Nl∑

j=1

〈
g
(l)
j

〉2 Nl→∞−−−−→ E
w

(l−1)
j·

(〈
g
(l)
j

〉2)
, (38)

leading to

P
w

(l)
i·

(〈
h
(l+1)
i

〉 ∣∣∣∣
{〈

g
(l)
j

〉}Nl

j=1

)
Nl→∞−−−−→ N

(
0, σ2

wEw
(l−1)
j·

(〈
g
(l)
j

〉2))
. (39)

In App. C we show (see Remark 1.) how the elements in the set
{
g
(l)
j

}Nl

j=1
are asymptotically

independent; therefore

E
w

(l−1)
j·

(〈
g
(l)
j

〉2)
=
〈
g
(l)
j

〉2
. (40)

B.2.3 A CONCRETE EXAMPLE

We will see now an example where all the elements just introduced are discussed in detail. The
computation presented in this section represent an important piece in the derivation of PW (f0) for
deep architectures. In App. F.1 we show that

Pχ

(
h
(3)
i | W

)
N2→∞−−−−−→ N

(〈
h
(3)
i

〉
,Varχ

(
h
(3)
i

))

≡ N




N2∑

j=1

w
(2)
ij

〈
g
(2)
j

〉
,

N2∑

j=1

(
w

(2)
ij

)2
Varχ

(
g
(2)
j

)

 .

(41)

We want to apply the analysis described in B.2.2 to understand the differences between the set of

distributions
{
Pχ

(
h
(3)
i | W

)}N3

i=1
. The differences in the distributions are induced by the difference

in the corresponding set of weight vectors {w(2)
i · }N3

i=1. The sets
{〈

g
(2)
j

〉}N2

j=1
and

{
Varχ

(
g
(2)
j

)}N2

j=1
,

instead, are the same for each node h
(3)
i . To study the differences in {h(3)

i }N3
i=1 statistics we will

11This is the same set of elements ∀i ∈ [1, . . . , Nl+1].
12as we are not studying the convergence to the mean value, also the law of large numbers would be enough

in this case
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consider therefore the latter as sets of fixed random coefficients, while {w(2)
i · }N3

i=1 constitute the r.v.s
changing from node to node. With this idea in mind let us start considering the variance expression

Varχ
(
h
(3)
i

)
=

N2∑

j=1

(
w

(2)
ij

)2
Varχ

(
g
(2)
j

)
. (42)

Again, to characterize how much the r.v. Varχ
(
h
(3)
i

)
varies, we can proceed by computing its mean

and variance to have an idea of the asymptotic order of magnitude of the fluctuations. Recall that the
set
{

Varχ
(
g
(2)
j

)}
is fixed as we are not evaluating randomness induced by the whole initialized set

of weights, but only by the differences in the set of vectors {w(2)
i · }. So we have

E
w

(2)
i ·




N2∑

j=1

(
w

(2)
ij

)2
Varχ

(
g
(2)
j

)

 =

N2∑

j=1

E
w

(2)
i ·

((
w

(2)
ij

)2)
Varχ

(
g
(2)
j

)
= σ2

w

1

N2

N2∑

j=1

Varχ
(
g
(2)
j

)
.

(43)

The sum in the last member involve a set of fixed random objects; in particular as we are using the
ReLU activation function, the explicit expression for Varχ

(
g
(2)
j

)
will be

Varχ
(
g
(2)
j

)
=

(∫ ∞

0

x2N
(
x;µj , σ

2
h

)
dx

)
−
(∫ ∞

0

xN
(
x;µj , σ

2
h

)
dx

)2

(44)

where, to make the notation lighter we defined the r.v. µj ≡
〈
h
(2)
j

〉
=
〈
g(1)

〉∑N1

i=1 w
(1)
ji , σ2

h =

Varχ
(
g(1)

)
σ2
w. We will show now that

σ2
h = sup

µj∈R
Varχ

(
g
(2)
j

)
. (45)

Proof.

σ2
h =

(∫ 0

−∞
(x− µj)

2N
(
x;µj , σ

2
h

)
dx

)

︸ ︷︷ ︸
>0

+Varχ
(
g
(2)
j

)
> Varχ

(
g
(2)
j

)
, (46)

and

lim
µj→∞

∫ 0

−∞
(x− µj)

2N
(
x;µj , σ

2
h

)
dx = 0 =⇒ lim

µj→∞
Varχ

(
g
(2)
j

)
= σ2

h. (47)

This means that
(

Varχ
(
g
(2)
j

))2
<

∫

R
σ4
hPW (µj = x) dx =

∫

R
σ4
hN

(
x; 0, σ2

w

〈
g(1)

〉2)
dx < ∞. (48)

Therefore the set
{

Varχ
(
g
(2)
j

)}
follow the CLT and, in particular, combining with equation 42

and equation 43 we get

E
w

(2)
i ·

(
Varχ

(
h
(3)
i

))
N2→∞−−−−−→ σ2

wVarχ
(
g
(2)
j

)
, (49)

with

Varχ
(
g
(2)
j

)
=

∫

R
Varχ

(
g
(2)
j

)
(µj) N

(
µj ; 0, σ

2
w

〈
g(1)

〉2)
dµj , (50)

where with Varχ
(
g
(2)
j

)
(µj) we underlined the dependence of Varχ

(
g
(2)
j

)
from the r.v. µj . Note

that in the integrand of equation 50 there is no scaling dependence with respect to N2; this means that

Varχ
(
g
(2)
j

)
= O(1) =⇒ E

w
(2)
i ·

(
Varχ

(
h
(3)
i

))
= O(1). (51)
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To evaluate the order of magnitude of the fluctuations, we recall that, given a fixed coefficient
Varχ

(
g
(2)
j

)
,

Var
((

w
(2)
ij

)2
Varχ

(
g
(2)
j

))
= Varχ

(
g
(2)
j

)2
Var

((
w

(2)
ij

)2)
. (52)

Also, for gaussian variables σ2
x2 = O

(
σ4
x

)
so Var

((
w

(2)
ij

)2)
= O

(
1

N2
2

)
. Then from the extensi-

tivity of the variance follows that
√
E
w

(2)
i ·

(
σ4

h
(3)
i

)
− E

w
(2)
i ·

(
σ2

h
(3)
i

)2

= O
(

1√
N2

)
. (53)

By this we conclude that, in the N2 → ∞ limit, the distribution of the r.v.
∑N2

j=1

(
w

(2)
ij

)2
Varχ

(
g
(2)
j

)

narrows around the mean value σ2
wVarχ

(
g
(2)
j

)
.

We can proceed analogously to evaluate the mean value fluctuations; therefore we have to repeat
the same analysis on the mean of Pχ

(
h
(3)
i | W

)
, i.e. (from equation 41)

∑N2

j=1 w
(2)
ij

〈
g
(2)
j

〉
. In this

case, we have

E
w

(2)
i ·




N2∑

j=1

w
(2)
ij

〈
g
(2)
j

〉

 =

N2∑

j=1

E
w

(2)
i ·

(
w

(2)
ij

)

︸ ︷︷ ︸
=0

〈
g
(2)
j

〉
= 0 . (54)

Proceeding as in equation 52 we get
√
E
w

(2)
i ·

(
µ2

h
(3)
i

)
− E

w
(2)
i ·

(
µ
h
(3)
i

)2
= O(1) . (55)

This means that the center of the distribution Pχ

(
h
(3)
i | W

)
keeps fluctuating from node to node

even in the limit N2 → ∞.

More specifically
(
E
w

(2)
i ·

(
µ2

h
(3)
i

)
− E

w
(2)
i ·

(
µ
h
(3)
i

)2)
= σ2

w

1

N2

N2∑

j=1

〈
g
(2)
j

〉2
. (56)

Using the fact that
〈
g
(2)
j

〉2
is definite positive we can proceed as in equation 46 and equation 47. It

is easy then to show that the sum in the last member of equation 56 converges to a well-defined mean

value. Also, it is easy to show that the set
{
w

(2)
ij

〈
g
(2)
j

〉}N2

j=1
respect the conditions of Thm. B.3; this

means that

PW
(〈

h
(3)
i

〉)
N2→∞−−−−−→ N

(
0, σ2

w

〈
g
(2)
j

〉2)
, (57)

while

PW
(
σ2

h
(3)
i

)
N2→∞−−−−−→ δ

(
σ2
wVarχ

(
g
(2)
j

))
. (58)

C DISTRIBUTIONS DERIVATION

In this section, we will focus on the r.v. O(c). In particular, the final aim here is to derive an expres-
sion for PW

(〈
O(c)

〉)
and Pχ

(
O(c) | W

)
, which, as seen in App. D.1, constitute the fundamental

ingredients to derive PW (f0). To do so we will proceed by steps:
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• In App. C.1 we will derive an expression for
〈
O(c)

〉
for the various cases of interest.

• Once derived an expression for
〈
O(c)

〉
we will use it to derive the asymptotic expression for

the distribution PW
(〈
O(c)

〉)
in App. C.2.

• Finally in App. C.3 we will derive Pχ

(
O(c) | W

)
.

Remark 1.
h
(1)
i =

∑

j

w
(0)
ij ξj (59)

the independence follows directly from the independence hypothesis of the input components.
Since we use the CLT also for

O(c) (ξ;W ) =

N1∑

m=1

w(1)
cmg(1)m . (60)

independence must also be fulfilled by the set {g(1)m }. As the activation function is an element-wise
transformation of the set {h(1)

m }, it is sufficient to have independence of the latter. The problem of the
independence of h(1)

i and h
(1)
j can then be reformulated like this:

Let us consider three independent random vectors X, Y , Z ∈ Rn such that

P (X) = N (0, I) (61)

P (Y ) = N
(
0,

1√
n
I
)

(62)

P (Z) = N
(
0,

1√
n
I
)

. (63)

We fix two vectors Ỹ , Z̃, drawn from equation 62 and equation 63 respectively. We want to prove,
in the limit n → ∞, the independence of the two r.v.s, XZ̃ and XỸ , where we indicated with the
notation AB the scalar product between A and B. This may seem counterintuitive as XZ̃ and XỸ
are both function of the random vector X , while to have independence we have to reduce to the
factorized form

P
(
XZ̃ ,XỸ | Z̃, Ỹ

)
= P

(
XZ̃ | Z̃, Ỹ

)
P
(
XỸ | Z̃, Ỹ

)
. (64)

We will argue now that as n grows, the projections of a random vector over two random directions
are independent. From the linearity of the scalar product it follows that

AB+C = AB +AC . (65)

If we could find a vector W such that, for some a, b ∈ R,

Ỹ = aW + bZ̃ (66)

then the factorization in equation 64 would not be possible because of the dependence of Ỹ on Z̃
and vice versa.
On the other hand, for n → ∞, the two vectors Ỹ and Z̃ are, w.h.p., orthogonal; it is therefore not
possible to find a decomposition as equation 66.
The orthogonality follows directly from the CLT; in particular from the defintion of equation 62 and
equation 63 it follows that

ỸZ̃

n→∞−−−−→ 1√
n
N (0, 1) (67)

Therefore, w.h.p., ỸZ̃

n→∞−−−−→ 0. Note that, because of the difference in the normalization, XZ̃ (and
XỸ ) stays asymptotically finite. In fact, again from the CLT

XZ̃

n→∞−−−−→ N (0, 1) . (68)

Let us now focus on our case of interest. To apply the above argument to our case (ξ(i) ∈ Rd plays
the role of X), we need d → ∞. In the above discussion we considered two fixed random vectors
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(Z̃ and Ỹ ), but for our analysis we will have, instead, N1 → ∞ fixed random vectors
{
w

(0)
j·

}N1

i=1
,

with w
(0)
j· ∈ Rd . When we pass from two to an infinite number of fixed random vector we have to be

more careful; the number of vectors, N1, cannot grow too fast with respect to the dimension of the
vector space, d. We know, in fact, that in a vector space of dimension d it is not possible to identify
a set of linear independent vectors with cardinality greater than d. A necessary condition for the

set
{
w

(l)
j·

}N1

i=1
to be mutually orthogonal is, therefore, N1 < d. When we take the limits we should

therefore enforce this condition, namely

lim
d,N1→∞

,
N1

d
< 1. (69)

Finally note that, if we work with a deep architecture (see App. F), once we end up with a set {h(1)
m }

of linear independent r.v.s, we can repeat the same argument to iterate to the next layer. In our analysis,
we will send the number of nodes of each hidden layer to infinity (to get asymptotic converge of
distributions). Analogously to as we discussed above, calling Nl the number of nodes in the lth layer,
we will have (in a neural network with L hidden layers) the following constraints on the asymptotic
growth of the numbers of nodes:

lim
{Nl}L

l=1→∞
,
Nl+1

Nl
< 1, ∀l. (70)

C.1
〈
O(c)

〉

As discussed in Sec. 1, our system is characterized by two different sources of noise. In each single
experiment we set the configuration of the network with the initialization and we keep it fixed to
evaluate the initial guessing distribution. The randomness coming from the set of weight is therefore
fixed, while the output nodes values, {O(c)}, still fluctuate varying the input ξ(i).

〈
O(c)

〉
, computed

on a given experiment, will be therefore a r.v. varying with the weights initialization. Here we will
derive the expression for the r.v.

〈
O(c)

〉
for different choices of the activation function. In App. C.2

we will employ the expressions derived here to get the distribution PW
(〈
O(c)

〉)
. In the following

computation we will consider a single hidden layer perceptron. These result will also constitute the
starting point to formulate the case of deep architectures (see, for example, Sec. F.1). We will employ
the same setting discussed at the beginning of Sec. 4.
Fixing the set W , h(1)

i is a linear combination of r.v.s which respect the conditions of Thm. B.3. This
means that in the limit d → ∞

Pχ

(
h
(1)
i | W

)
d→∞−−−→ N


∑

j

w
(0)
ij ⟨ξj⟩ ,

∑

j

(
w

(0)
ij

)2
σ2
ξj


 = N


0,

∑

j

(
w

(0)
ij

)2

 (71)

where in the last step we used the definition of ξ, for the random data used in our analysis, to substitue
⟨ξj⟩ = 0, σ2

ξj
= 1 ∀j. As shown in B.2.1

d∑

j=1

(
w

(0)
ij

)2 d→∞−−−→ d
(
w

(0)
ij

)2
= σ2

w =⇒ Pχ

(
h
(1)
i | W

)
d→∞−−−→ N

(
0, σ2

w

)
(72)

• Linear Let us consider the activation function g
(
h
(1)
i

)
= h

(1)
i . The distribution of g(1)i ≡

g
(
h
(1)
i

)
therefore will match that of h(1)

i ≡∑d
j=1 w

(0)
ij ξj , i.e.

Pχ

(
g
(1)
i | W

)
d→∞−−−→ N

(
0, σ2

w

)
(73)

By definition

O(c) (ξ;W ) =

N1∑

m=1

w(1)
cmg(1)m . (74)
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We are interested in the expression of the mean value computed over the dataset elements,
for a given set of fixed weights. In other words W is a set of random coefficients. We have
that

〈
O(c)

〉
=

∫

R

N1∑

j=1

w
(1)
cj xj

∏

k

Pχ

(
h
(1)
k = xk | W

)
dxk =

=
∑

j

w
(1)
cj

∫ +∞

−∞
xjN

(
xj ; 0, σ

2
w

)
dxj

︸ ︷︷ ︸
=0

∏

k ̸=j

∫ +∞

−∞
N
(
xk; 0, σ

2
w

)
dxk

︸ ︷︷ ︸
=1

= 0
(75)

We have used the fact that the set W is independent from h
(1)
j at initialization and we

assumed the validity of the CLT for the set of variables {h(1)
j }. This assumption is formally

true in simplified settings (e.g. if the components of the input data are independent r.v.s with
finite variance). For real input the assumption should be evaluated case by case 13. Also we
used the independence of the elements in the set {h(1)

j } 14 to factorize the corresponding
joint probability distribution (see discussion in App. C, Remark 1.).
Note that it was not necessary to invoke the CLT in equation 75 order to conclude that〈
O(c)

〉
= 0; in fact

〈
O(c)

〉
=

〈
N1∑

j=1

h
(1)
j w

(1)
cj

〉
=

N1∑

j=1

〈
h
(1)
j

〉
w

(1)
cj = 0 (76)

On the other hand, by employing the CLT, we can go further and derive the distribution
PW

(〈
O(c)

〉)
(see App. C.2 and Fig.6).

It is worth noting that equation 75 is formally true only in the limit of infinite size dataset;
if we work with a finite size dataset, instead, we have to compute the average over the
empirical distribution, P(E)

(
h
(1)
k | W

)
≡∑D

a=1
1
D δ
(
h
(1)
k − ĥ

(1)
k

(
ξ(a)

))
, where the set

{ĥ(1)
k

(
ξ(a)

)
}Di=1 contains the values mapped from each element of the dataset to the kth

node of the first hidden layer. We will have then

〈
O(c)

〉
=

∫

R

N1∑

j=1

h
(1)
j w

(1)
cj

∏

k

P(E)
(
h
(1)
k | W

)
dh

(1)
k =

N1∑

j=1

w
(1)
cj

(
1

D

D∑

a=1

ĥ
(1)
k

(
ξ(a)

))
∼

N1∑

j=1

w
(1)
cj

1√
D
Zj =

N1∑

j=1

w
(1)
cj Z̃j

(77)

where Zj ∼ N (0, σ2
w), while Z̃j ∼ N

(
0,

σ2
w

D

)
.

Note that in the last line of equation 77 we again used the CLT for the sum of r.v.s.
The crucial difference with the previous derivation is that we don’t use the CLT for
Pχ

(
h
(1)
k | W

)
; we substituted instead the empirical distribution, P (E)

(
h
(1)
k | W

)
. The

latter being defined on the dataset elements, takes into account the finite size effect of the
dataset itself (see dependence from D). Note that the distribution of the variables involved
in the sum in the last side of equation 77 (Z̃j) narrows increasing in the limit D → ∞; in
this limit, the finite size effects disappear and we converge to the result derived in equation 75.

• ReLU Now we repeat the computation of equation 75 using the activation function g
(1)
j ≡

g
(
h
(1)
j

)
= max{0, h(1)

j } (introduced in Hahnloser et al. (2000)). g
(1)
j will follow the

13for example the pixel of an image could be highly correlated
14which follows from the independence of the random vectors {w(0)

i · }
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same distribution of h(1)
j on the positive support 15. The probability density on the negative

support of Pχ

(
h
(1)
j | W

)
will instead collapse on 0 16. Substituting to Pχ

(
h
(1)
j | W

)
the

Gaussian distribution of equation 72 we get

Pχ

(
g
(1)
j = x | W

)
=

(∫

R−
Pχ

(
h
(1)
j = x̃ | W

)
dx̃

)
δ (x) + Θ (x)Pχ

(
h
(1)
j = x | W

)
=

=
1

2
δ (x) + Θ (x)N

(
x; 0, σ2

w

)
.

(78)

where δ (x) stands for the Dirac’s delta distribution while Θ(x) stands for the Heaviside
step function.
Having the distribution we can integrate over it, proceeding as in the previous case:
〈
O(c)

〉
=

∫

RN1

N1∑

j=1

w
(1)
cj xj

N1∏

k=1

Pχ

(
g
(1)
k = xk | W

)
dxk =

N1∑

j=1

w
(1)
cj


∏

k ̸=j

∫

R

(
1

2
δ (xk) + Θ (xk)N

(
xk; 0, σ

2
w

))
dxk




︸ ︷︷ ︸
=1

∫

R
xj

(
1

2
δ(xj) + Θ(xj)N

(
xj ; 0, σ

2
w

))
dxj =

N1∑

j=1

w
(1)
cj

∫ +∞

0

xjN
(
xj ; 0, σ

2
w

)
dxj =

N1∑

j=1

w
(1)
cj σ2

w

∫ +∞

0

N
(
xj ; 0, σ

2
w

)
d
x2
j

2σ2
w

=

N1∑

j=1

w
(1)
cj

σw√
2π

.

(79)

Note that the last side of equation 79 is, in general, not equal to 0.
Note also that, in this case, we don’t need to take into account the finite size effects of
the dataset as did at the end of App. C.1. In fact while for a linear activation function
limD→∞

〈
O(c)

〉
= 0 (see equation 75) for the ReLU limD→∞

〈
O(c)

〉
̸= 0 (see equa-

tion 79), so the finite size corrections of O
(

1
D

)
are negligible for D

〈
O(c)

〉
≫ 1.

In Fig. 6 the distribution PW
(〈
O(c)

〉)
is compared for the two choices of the activation

function. As expected from equation 75 and equation 79 we see that, in the linear case, the
distribution narrows around 0 increasing D while in the ReLU case, it stays stable.

ReLU + Max-Pool With the Max Pool, we group the set {g(1)k } in subgroups and select
for each subgroup the maximum value; in this way is possible to reduce the dimensionality
of the layer. Adding this to the analysis in App. C.1 translate in having

ρ
(1;m)
l = ρ

({
g
(
h
(1)
j

)}
j∈Sm

l

)
= max

j∈Sm
l

{max{0, g(1)j }}, (80)

where Sm
l indicate the l subgroup of m nodes.

To proceed with the computation of the previous section we have to derive Pχ

(
ρ
(1;m)
l | W

)
.

In general if we have Y ≡ max{X1, . . . , Xm}, with {Xi}mi=1 i.i.d. , we have:

FY (y) ≡ P (Y ≤ y) = P (max{X1, . . . , Xm} ≤ y) =

m∏

i=1

P (Xi ≤ y) ≡
m∏

i=1

FX(y) = FX(y)m

(81)

By differentiating, we find that

P (Y = y) = mP (X = y)FX(y)m−1 (82)

For our case, we substitue to P (X = x) the distribution used in App. C.1, i.e.

P (X = x) ≡ Pχ

(
g
(1)
j = x | W

)
=

1

2
δ (x) + Θ (x)N

(
x; 0, σ2

w

)
. (83)

15since g
(1)
j = h

(1)
j for h(1)

j > 0
16since since g

(1)
j = 0 for h(1)

j < 0
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Figure 6: Comparison of the PW
(〈
O(c)

〉)
between the linear (upper plot) and ReLU case (bottom

plot) for different choice of D. In both plots is also present the theoretical distribution (derived in
App. C.2). Note the difference in the two cases: in the Linear case the distribution narrows increasing
D while in the ReLU counterparts it stays stable (as we already expected from equation 79 and
equation 77). For these simulations we used the dataset GBon the model SHLP. (see App. I.4 for
more details).
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From Equation 83 follows

FX(y) ≡ Pχ

(
g
(1)
j ≤ y | W

)
=

∫ y

−∞

1

2
δ (x) + Θ (x)N

(
x; 0, σ2

w

)
dx =

∫ y

−∞

1

2
δ(x) +

∫ y

0

N
(
x; 0, σ2

hj

)
dx =

1

2
+

1

2
erf


 y√

2σ2
hj


Θ(y)

(84)

Sending m → ∞ using the Fisher–Tippett–Gnedenko theorem we can find an asymptotic
result for the distribution Pχ

(
ρ
(1;m)
l | W

)
. For general m values, putting all the pieces

together we have
〈
O(c)

〉
=

∫

R
N1
m

∑

l

xlw
(1)
cl

∏

k

Pχ

(
ρ
(1;m)
l = xl | W

)
dxl =

∑

l

w
(1)
cl

∫ ∞

0

mxlN
(
xl; 0, σ

2
w

)
(
1

2
+

1

2
erf

(
xl√
2σ2

w

))m−1

dxl

(85)

which we can approximate by an asymptotic expansion, or by evaluating it numerically.
The combination of Max pooling with linear activation function can be computed similarly
substituting the simple Gaussian distribution for P (X = x).
Note that the integral in the last expression of equation 85 is independent from the set

{w(1)
cl }

N1
m

l=1
17. To lighten the notation, we define

cm(σw) ≡
∫ ∞

0

mxN
(
x; 0, σ2

w

)
(
1

2
+

1

2
erf

(
x√
2σ2

w

))m−1

dx. (86)

C.2 PW
(〈
O(c)

〉)

We now want to derive the whole distribution PW
(〈
O(c)

〉)
. Let us consider again case by case:

• Linear: From equation 77
〈
O(c)

〉
∼

N1∑

j=1

w
(1)
cj Z̃j (87)

So
〈
O(c)

〉
is a combination of N1 independent r.v.s. Notice that if we are in the limN1→∞

in equation 87 we have again a sum of i.i.d. r.v.s with finite variance. The distribution of the
sum will then converge, for the CLT, to a Gaussian. In particular, for independent r.v.s, we

have that, since w
(1)
cj = E

(
Z̃j

)
= 0,

Var
(
w

(1)
cj Z̃j

)
= Var

(
w

(1)
cj

)
Var

(
Z̃j

)
=

σ2
w

N1

σ2
w

D
(88)

Then, from the CLT, 〈
O(c)

〉
∼ N

(
0,

σ2
wσ

2
w

D

)
. (89)

• ReLU: for the case of ReLU the derivation is even more straightforward. In this case, is not
even necessary to apply the CLT. From equation 79, indeed, we have

〈
O(c)

〉
=

N1∑

j=1

w
(1)
cj

σw√
2π

. (90)

〈
O(c)

〉
is therefore a linear combination of Gaussian r.v.s, which is also Gaussian; more

precisely 〈
O(c)

〉
∼ N

(
0,

σ4
w

2π

)
(91)

17also from the index l if σl = σ∀l as assumed in equation 85
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• ReLU + MaxPool: This case is conceptually analogous to the previous one. In fact, from
equation 85,

〈
O(c)

〉
=

N1∑

j=1

w
(1)
cj cm(σw). (92)

Again we have a linear combination of Gaussian r.v.s, therefore
〈
O(c)

〉
∼ N

(
0, σ2

wc
2
m(σw)

)
(93)

In general, If
〈
ρ(1;m)

〉
̸= 0 we will get

PW
(〈

O(c)
〉)

N1→∞−−−−−→ N
(
0, σ2

w

〈
ρ(1;m)

〉2)
. (94)

Note that ρ
(1;1)
i = g

(1)
i .

C.3 Pχ

(
O(c) | W

)

As discussed
〈
O(c)

〉
is a r.v. that varies with the set of weights W . In App. C.2 we derived its

distribution. Here we are interested in the distribution of the output, fixed a given configuration for
the set of weights, Pχ

(
O(c) | W

)
.

• Linear: from equation 74, substituting, the linear activation function g
(
h
(1)
i

)
= h

(1)
i , we

get

O(c) =

N1∑

m=1

w(1)
cmh(1)

m . (95)

Since the random vector w(1)
c · is fixed we have a linear combination of Gaussian r.v.s. In this

case is not even necessary to invoke Thm. B.2; the linear combination of Gaussian r.v.s is
itself a Gaussian

Pχ

(
O(c) | W

)
= N

(∑

i

w
(1)
ci

〈
h
(1)
i

〉
,
∑

i

(
w

(1)
ci

)2
Varχ

(
h
(1)
i

))
=

N
(
0, σ2

w

∑

i

(
w

(1)
ci

)2
) (96)

Note that also in this case, in principle, we could proceed analogously to App. C.1 and take
into account the correction due to the finite size of the dataset.

• ReLU: in this case we have:

O(c) =

N1∑

m=1

w(1)
cmg(1)m (97)

where {g(1)m } are distributed according to equation 78. If w(1)
c · is fixed we have a linear

combination of r.v.s.
From equation 78 we have

〈
g(1)m

〉
=

σw√
2π

(98)

Varχ
(
g(1)m

)
=

∫

R+

x2
mPχ

(
g(1)m = xm | W

)
dxm − µ2

g =

1

2

∫

R
x2
mPχ

(
h(1)
m = xm | W

)
dxm

︸ ︷︷ ︸
σ2
w

−µ2
g =

σ2
w(π − 1)

2π
(99)
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where in the second step we used the symmetry of Pχ

(
h
(1)
m | W

)
. Since the r.v.s involved

in the sum of equation 97 are not Gaussian r.v.s (as in the previous case) we cannot use the
same argument. However, the r.v.s involved in the sum have finite variance and exponentially
fast decreasing tails; it is, therefore, trivial to prove that the conditions of Thm. B.3 are
satisfied. Assuming N1 ≫ 1, we can then apply the Thm. B.2 for the linear combination of
r.v.s. In particular, in the limN1→∞, we have:

Pχ

(
O(c) | W

)
= N

(∑

i

w
(1)
ci

〈
g
(1)
i

〉
,
∑

i

(
w

(1)
ci

)2
Varχ

(
g
(1)
i

))
=

N
(

σw√
2π

∑

i

w
(1)
ci ,

σ2
w(π − 1)

2π

∑

i

(
w

(1)
ci

)2
)
.

(100)

• ReLU + MaxPool: This case is conceptually equal to the previous one in the sense that
again we have a linear combination of i.i.d. r.v.s. The only difference is that we don’t have
an analytical expression for

〈
ρ
(1;m)
i

〉
and Varχ

(
ρ
(1;m)
i

)
. This doesn’t represent a problem;

by fixing the m parameter we can numerically compute the two cumulants whose expression
is

〈
ρ(1;m)

〉
=

∫ ∞

0
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2
δ (x) +N
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w
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dx =

∫ ∞

0

mxN
(
x; 0, σ2

w

)
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2
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2
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w
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(101)

Varχ
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)
=
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
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(102)

So analogously to equation 100 we get

Pχ

(
O(c) | W

)
= N

(∑
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w
(1)
ci

〈
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〉
,
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ci ,Varχ
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ci
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(103)

D SINGLE HIDDEN LAYER PERCEPTRON

Here we will use the results derived in App. C to derive our final target PW (f0). In particular we will
focus here on the single hidden layer perceptron. The results will be extended to deep architectures in
App. F

D.1 DERIVATION OF PW (f0)

Let us consider a binary classification problem with a single hidden layer perceptron. From now on
we will focus on architectures with the structure depicted in Fig.2. The nodes of the last hidden layer

are therefore connected to two output nodes
{
O(c)

}1
c=0

through two random vectors
{
w

(1)
c ·

}1

c=0
.

Each output node O(c)
(
ξ;W0, w

(1)
c ·

)
will follow the distributions derived in App. C.3.
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Note that, fixed a set W , different output nodes depends on a different subset of W as the last matrix
of weights is not shared over all the nodes. The writing O(c)

(
ξ;W0, w

(1)
c ·

)
underlines this aspect.

This is crucial to understand why the output nodes have different distributions. For the sake of
compactness, we will, anyhow, indicate a common generalized dependence from the whole set W , i.e.
we will write for example O(c) (ξ;W ). To derive the distribution PW (f0) we can argue as follows:

For a single experiment the set
{
w

(1)
c ·

}1

c=0
is fixed. We can then compute Pχ

(
O(c) | W

)
. Now,

recalling that f0 represent the fraction of the dataset classified as belonging to class 0, for the Law of
the Large Numbers, increasing the size of the dataset, D, this fraction will converge to the probability

f0 (W ) = Pχ

(
O(0) > O(1) | W

)
= Pχ

(
O(0) −O(1) > 0 | W

)
=

∫ ∞

0

Pχ (∆O = z | W ) dz

(104)
where f0 (W ) indicates the fraction f0 that we get for the specific fixed configuration W . f0 is a
quantity clearly dependent from the set of r.v.s W ; so it is itself a r.v. which change with the set of
weight of the network. Defining ∆O = O(0) −O(1) we can write

PW (f0) =

∫

Ω

P
(
W = W̃

)
δ

((∫ ∞

0

Pχ

(
∆O = z | W̃

)
dz

)
− f0

)
dW̃ (105)

where Ω is the space of all the possibles initial configurations. equation 105 provides us an expression
for the PW (f0); on the other end the computation of the integral in the r.h.s. is not trivial. We now
introduce a second approach to avoid the computation of this integral; we will show that this approach
is asymptotically exact in the limit of N1 → ∞.
In App. C.3 we derive an expression for Pχ

(
O(c) | W

)
for the different cases; we saw that,

in general, these are Gaussian distributions whose cumulants depends on Swc ≡∑N1

j w
(1)
cj and

Sw2
c
≡∑N1

j

(
w

(1)
cj

)2
. We can look at the standard deviations as an estimate for the order of magni-

tude of the fluctuations from the mean value. In App. B.2.1 we show that

√
Swc − Swc

2 = O(1) (106)
√

Sw2
c
− Sw2

c

2 = O
(

1√
N1

)
. (107)

In other words, the distribution of Swc stays asymptotically stable, while the distribution of Sw2
c

asymptotically concentrates around the mean value. This difference in the scaling of the fluctuations
for the two cases will be relevant for the following discussion.
To use a common notation we can say that, in general, from App. C.3, we got

Pχ

(
O(c) | W

)
= N

(
µ (Swc) , σ

2
(
Sw2

c

))
(108)

where µ (Swc) and σ
(
Sw2

c

)
are functions of the set of r.v.s {w(1)

cj }N1
j=1 dependent from the specific

setting (in our case the choice of activation function). In particular we derived in App. C.2 the
distribution of µ (Swc

). From equation 107 we know, instead, that the distribution of σ
(
Sw2

c

)

narrows around its mean values for N1 → ∞; so, in this limit, σ
(
Sw2

c

)
converge to a deterministic

quantity. As the distribution of µ (Swc) does not asymptotically narrow around a deterministic value,
Pχ

(
O(c) | W

)
will be different for different nodes, {O(c)}, even in the infinite size limit. We call

the emergence of this difference between distributions of nodes belonging to the same layer Nodes
Symmetry Breaking (PSB). The discussion of Sec. 3 shows how PSB and IGB represent two sides of
the same coin; more precisely IGB is a direct conseguence of this symmetry breaking. In Sec. 4.2
we will discuss it more in details, showing also how the same phenomenon, in deep architectures
happens not only inn the output layers, but also in the intermediate hidden layers.
Now, coming back to the problem that opened this section, we can imagine that, for a given initializa-
tion, we are fixing the configuration W , and, in particular, the two random vectors w(1)

0 · and w
(1)
1 · . We

will have then two corresponding distribution for Pχ

(
O(0) | W

)
and Pχ

(
O(1) | W

)
. To compute
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the probability that O(0) > O(1) we can first pass to the distribution Pχ (∆O | W ). Since ∆O is a
difference between two Gaussian r.v.s we have

Pχ (∆O | W ) = N
(
µ (Sw0

)− µ (Sw1
) , σ2

(
Sw2

0

)
+ σ2

(
Sw2

1

))
(109)

From equation 107 we know that the distribution of Sw2
c

asymptotically narrows around its mean
value, so that, in the limit of N1 → ∞ we can neglect the fluctuations of the r.v. σ2

(
Sw2

c

)
;

substituting σ2
(
Sw2

c

)
= σ2

(
Sw2

c

)
≡ σ2

∞, we get

Pχ (∆O | W )
N1→∞−−−−−→ N

(
µ (Sw0)− µ (Sw1) , 2σ

2
∞
)

(110)

This convergence is crucial to get rid of the explicit dependence from the random vectors {w(1)
c · } and

avoid the integration over all the possible configurations. In fact, since we have an explicit form for
the distribution of µ (Swc

) (see App. C.2), calling

∆µ = µ (Sw0
)− µ (Sw1

) (111)

we can find an implicit expression for ∆µ, i.e.

f0 (W ) =

∫ ∞

0

N
(
y; ∆µ(f0), 2σ

2
∞
)
dy. (112)

Given the centers of the two Gaussian distributions Pχ

(
O(c) | W

)
, and in particular their difference,

∆µ, equation 112 gives back the corresponding value of f0. We can invert equation 112 (for
example calculating it numerically) and obtain ∆µ(f0) associated to a given value f0. Note that
µ (Swc

) ∼ PW
(〈
O(c)

〉)
is a r.v.; consequently so will ∆µ(f0).

Reformulated in these terms, PW (f0) is simply PW (∆µ(f0)). More precisely, since µ (Sw0) and
µ (Sw1) are i.i.d. r.v.s we have

PW (f0) = PW (∆µ(f0)) =

∫ ∞

−∞
PW

(〈
O(1)

〉
= x̃

)
PW

(〈
O(0)

〉
= x̃+∆µ(f0)

)
dx̃ =

=

∫ ∞

−∞
PW

(〈
O(c)

〉
= x̃

)
PW

(〈
O(c)

〉
= x̃+∆µ(f0)

)
dx̃ ,

(113)

where we integration come from the fact that the condition we are enforcing is only on the differ-
ence between the nodes mean values and therefore is invariant under a translation of both values.
In the last equality, we used the fact that

〈
O(0)

〉
and

〈
O(1)

〉
are identically distributed. Since

PW
(〈
O(c)

〉) N1→∞−−−−−→ N
(
0, σ̂2

∞
)
,18 equation 113 is an integral of a product between two indepen-

dent Gaussian distributions.19 We can solve it and get

PW (f0) = PW (∆µ(f0)) = N
(
∆µ(f0); 0, 2σ̂

2
∞
)

(114)

Remark 2. equation 114 shows a Gaussian distribution in terms of the variable ∆µ(f0). Note
however that PW (f0), in general, will not be a Gaussian since ∆µ (f0) is a non-linear function.

D.2 MAX-POOL PEAKS: AN EXAMPLE ON HOW TO COMPUTE THE THEORETICAL PREDICTION
FOR PW (f0)

We can use the result derived in App. D.1 to compute the theoretical prediction for PW (f0). For
example, we can quantify the density on the extreme peaks, empirically observed in presence of
Max-Pooling. Let us say that we have a dataset of D elements, and we want to compute the probability
density PW (f0 = 0). Sec. 4.1 gives us a recipe on how to do it. First of all we have to identify the
value ∆(T ) = ∆µ

(
1
D

)
inverting equation 112. ∆(T ) represent a threshold value; ∀∆µ(f0) < ∆(T )

we will get from equation 112 a value lower than 1
D that correspond to f0 = 0 because of the

resolution of f0 (fixed by the dataset size D). We can therefore compute PW (f0 = 0) in two simple
steps:

18The quantity σ̂2
∞ depends on the details of the model; for more details see App. C.2.

19Note that the product of Gaussian distributions is itself proportional to a Gaussian distribution.
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• Compute ∆(T ):
first thing to do is to invert equation 112

f0 = 1−
(
1

2
+

1

2
erf

(
∆µ(f0)

2σ2∞

))
⇒ ∆µ(f0) = 2σ2

∞ erf−1 (2f0 − 1) . (115)

• Integrate equation 114 over all ∆µ(f0) < ∆(T ), i.e.

PW (f0 = 0) =

∫ ∆(T )

−∞
N
(
∆µ(f0); 0, 2σ̂

2
∞
)
d∆µ(f0) =

1

2
+

1

2
erf

(
∆(T )

2σ̂∞

)
. (116)

In general, if we want the probability mass between two values f (min)
0 and f

(max)
0 , we can compute

it as
∫ f

(max)
0

f
(min)
0

PW (f0 = x) dx =

∫ ∆µ

(
f
(max)
0

)
∆µ

(
f
(min)
0

) N
(
∆µ(f0); 0, 2σ̂

2
∞
)
d∆µ(f0) =

1

2
erf



∆µ

(
f
(max)
0

)

2σ̂∞


− 1

2
erf



∆µ

(
f
(min)
0

)

2σ̂∞


 .

(117)

E EFFECT OF MAX-POOLING

In this section we will discuss how the impact of Max-Pooling. Here we will show that increasing
the value of m, the distribution Pχ

(
ρ(1;m) | W

)
concentrates around an increasing value. For the

sake of clarity, we will discuss here the asymptotic convergence, i.e. m → ∞. Let us consider the set
{g(1)i }mi=1 such that

Pχ

(
g
(1)
i = x | W

)
=

1

2
δ (x) + Θ (x)N

(
x; 0, σ2

w

)
, (118)

for a fixed set W . Let us now define the set of r.v.s {ωi}mi=1, calling n = log(m),

ωi ≡
g
(1)
i√

log(m)
≡ g

(1)
i√
n
. (119)

Using the relation

Pχ (ωi = x | W ) dω = Pχ

(
g(1) | W

)
dg(1) , (120)

we can write

Pχ (ωi = x | W ) =
1

2
δ (x) + Θ (x)N

(
x; 0,

σ2
w

n

)
. (121)

We can now consider the number of elements in the set {ωi} whose value fall in the interval
[ω̃, (ω̃ + dω̃)], ω̃ > 0; we call this number #(ω̃). In particular if we consider its expectation value,
we’ll have

E (#(ω̃)) = mE (I(ω ∈ [ω̃, (ω̃ + dω̃)])) ∼ m

√
n

2πσ2
w

e
−ω2n

2σ2
w dω̃ =

√
n

2πσ2
w

e
−n

(
ω2

2σ2
w
−1

)
dω̃.

(122)
Also, we see that, being the probability to get a value from Pχ (ω | W ) to be between ω̃ and (ω̃+dω̃)
small, this follows a Poisson law, so that the variance is equal to the mean. If we define

s(ω) ≡ ω2

2σ2
w

− 1 , (123)

we have that
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• If s(ω) < 0 the average number of draws with value ω is exponentially close to 0. From
equation 123 we see that this happens (as we are interested in the positive interval) when
ω >

√
2σ2

w. In this case, using the Markov inequality 20, we can conclude that, w.h.p. the
number of draws (and not only its expectation value) is actually 0. In fact, from Markov
inequality,

P (#(ω̃) ≥ 1) ≤ E (#(ω̃)) . (124)

Therefore, w.h.p. as n → ∞, all draws have values lower than
√

2σ2
w.

• If s(ω) > 0, the expectation value of the number of draws is different from 0. We can use
again the Markov inequality to show that, also in this case, the actual number of draws
concentrate around the non null expectation value, as n → ∞. In fact

P
(∣∣∣∣

#(ω̃)

E (#(ω̃))
− 1

∣∣∣∣ ≥ k

)
= P

((
#(ω̃)

E (#(ω̃))
− 1

)2

≥ k2

)
≤

E
(
(#(ω̃)− E (#(ω̃)))

2
)

k2 (E (#(ω̃)))
2

≤ Var (#(ω̃))

k2 (E (#(ω̃)))
2 ≃ �����E (#(ω̃))

k2 (E (#(ω̃)))�
2
∝ e−ns(ω̃)

k2
,

(125)

where we have used the fact that, being small the probability of ωi taken randomly from
Pχ (ω | W ) to be between ω̃ and ω̃+dω̃, #(ω̃) follows a Poisson law; therefore the variance
is equal to the mean. As n grows, the probability of deviation goes exponentially to zero
when s(ω̃) > 0, so that w.h.p., #(ω̃)

E(#(ω̃)) is arbitrary close to 1.

We shown, therefore that, when n grows the maximum among the set {g(1)i }mi=1 converge to the
deterministic value

√
2σ2

w log (m). In other words the maximum value asymptotically concentrates
around an increasing value. More fine analysis are possible to characterize the extreme value statistics.
For more information about the topic, see, for example, Schehr & Majumdar (2014) and references
within it.

F DEEP ARCHITECTURES

In Sec. 4.1 we discussed how to derive PW (f0) for a neural network with a single hidden layer. In
the following section we will discuss the extention of the computation to a network with an arbitrary
number of hidden layers.

F.1 MULTI-LAYER PERCEPTRON

In this Section we will extend the result discussed in Sec. 4.1. Our analysis will clarify the decisive
impact of the network deepness for the IGB phenomenon. There is in fact a foundamental difference
between the two cases determining a possible exacerbation of the phenomenon, as we will discuss
here.
The strategy that we will follow is similar to the one presented for the single hidden layer counterpart
(see Sec. 4.1). In other word we will propagate across the network layers keeping track of the

changes in the distribtions Pχ

(
h
(l+1)
i | W

)
and PW

(
h
(l+1)
i

)
. Using CLT considerably simplifies

this propagation process because to keep track of changes in the distribution it is sufficient to see
how certain quantities vary 21. Compared to the analysis in Sec. 4.1 however, there is an important
complicating element. While the elements in the set {h(1)

i } follow the same distribution (regardless
of the choice of activation function), from the second layer onward the activation function can
induce a break in symmetry among the layer nodes, in the sense that they will follow, fixed a given
configuration for the network weights, different distributions. This symmetry breaking, as we shall
see, can cause an accentuation of the IGB effect. To show this point we will consider in our analysis

20Markov inequality states that if X is a non-negative random variable, then P (X ≥ k) ≤ E (X) /k
21a Gaussian distribution is completely determined from the first two cumulants
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the ReLU activation function 22. Starting from the same setting described in Sec. 4.1 we will derive a
set of iterative equation to propagate across multiple layers.

• layer-1
as showed in Sec. 4.1 and in App. C.1, in the limit d → ∞,

h
(1)
i ≡

∑

j

w
(0)
ij ξj

CLT
==⇒ Pχ

(
h
(1)
i | W

)
d→∞−−−→ N (0, σ2

w)

ReLU
===⇒ Pχ

(
g
(1)
i | W

)
d→∞−−−→ Θ(x)N

(
x; 0, σ2

w

)
+

1

2
δ (x) .

(126)

All the nodes {h(1)
i } follow the same distribution and so do the nodes {g(1)i } . In particular,

this means that 〈
g
(1)
i

〉
=
〈
g(1)

〉
, ∀i . (127)

• layer-2
We start again from a combination of r.v.s

h
(2)
i ≡

∑

j

w
(1)
ij g

(1)
j . (128)

It is easy to proof that the generic r.v.
(
w

(1)
ij g

(1)
j

)
involved in the sum satisfies the conditions

of equation 26 and equation 27. So, in the limit N1 → ∞, again we have a convergence to a
normal distribution. In particular

Pχ

(
h
(2)
i | W

)
N1→∞−−−−−→ N

(〈
g(1)

〉
Swi

,Varχ
(
g(1)

)
Sw2

i

)
=

N
(〈

g(1)
〉
Swi

,Varχ
(
g(1)

)
Sw2

i

)
,

(129)

where

Varχ
(
g(1)

)
=

〈(
g(1) −

〈
g(1)

〉)2〉
. (130)

In the last step of equation 129, as done for Pχ

(
O(c) | W

)
in Sec. 4.1, we used the

concentration result derived in App. B.2.1. In particular that the distribution of the r.v.
Swi

≡ ∑N1

j=1 w
(1)
ij stays stable in the limit N1 → ∞ 23, while the distribution of Sw2

i
≡

∑N1

j=1

(
w

(1)
ij

)2
asymptotically narrow around the mean value. Note that, as the distribution

of Swi
does not asymptotically concentrate, and since

〈
g(1)

〉
̸= 0, each node in the set

{h(2)
i } will follows a different distribution. In particular we will have a set of normally

distributed r.v.s, centred in different random points, {
〈
g(1)

〉
Swi}. After passing through

the ReLU activation function we will have

Pχ

(
g
(2)
i | W

)
N1→∞−−−−−→ Θ(x)N

(〈
g(1)

〉
Swi

,Varχ
(
g(1)

)
Sw2

i

)
+

+

(
1

2
+

1

2
erf

( 〈
g(1)

〉
Swi√

2Varχ
(
g(1)

)
Sw2

i

))
δ (x) .

(131)

• layer-3
We can repeat the approach of the previous layer for the new set of variables

h
(3)
i ≡

∑

j

w
(2)
ij g

(2)
j , (132)

22we do not include the MaxPooling to underlining the amplification of the IGB; in the presence of MaxPooling,
increasing the kernel size we observe deep IGB even with a single hidden layer architectures. Note that absence
of MaxPooling is equivalent of a MaxPooling with minimum kernel size

23fluctuations and mean stay both O (1)
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getting

P
(
h
(3)
i | W

)
N2→∞−−−−−→ N




N2∑

j=1

w
(2)
ij

〈
g
(2)
j

〉
,

N2∑

j=1

(
w

(2)
ij

)2
Varχ

(
g
(2)
j

)

 . (133)

Note that in this case we cannot take out from the sums
〈
g
(2)
j

〉
and Varχ

(
g
(2)
j

)
since the

nodes {g(2)j } are not identically distributed. In App. B.2.3 we analyze the differences in

Pχ

(
h
(3)
i | W

)
between the different nodes {h(3)

i }. In particular, we show that

Pχ

(
h
(3)
i | W

)
N2→∞−−−−−→ N

(〈
h
(3)
i

〉
,Varχ

(
h
(3)
i

))
, (134)

PW
(〈

h
(3)
i

〉)
N2→∞−−−−−→ N

(
0, σ2

w

〈
g
(2)
j

〉2)
, (135)

PW
(

Varχ
(
h
(3)
i

))
N2→∞−−−−−→ δ

(
σ2
wVarχ

(
g
(2)
j

))
. (136)

• layer-l
The steps described for the propagation of the layer-3 provide us an iteration scheme that
we can follow for a generic layer l ≥ 3. In fact, knowing the statistics of the previous layers,
we can compute

Varχ
(
g
(l−1)
j

)
=

∫

R
Varχ

(
g
(l−1)
j

)
(µj) N

(
µj ; 0, σ

2
w

〈
g
(l−2)
j

〉2)
dµj , (137)

〈
g
(l−1)
j

〉2
=

∫

R

〈
g
(l−1)
j

〉2
(µj) N

(
µj ; 0, σ

2
w

〈
g
(l−2)
j

〉2)
dµj . (138)

Again, in the above expressions we defined Varχ
(
g
(l−1)
j

)
as

Varχ
(
g
(l−1)
j

)
=

(∫ ∞

0

x2N
(
x;µj , σ

2
h

)
dx

)
−
(∫ ∞

0

xN
(
x;µj , σ

2
h

)
dx

)2

, (139)

where, to make the notation lighter, we defined the r.v. µj ≡
〈
h
(l−1)
j

〉
=

∑Nl−2

j=1 w
(l−2)
ij

〈
g
(l−2)
j

〉
, σ2

h =
∑Nl−2

j=1

(
w

(l−2)
ij

)2
σ2

g
(l−2)
j

. Note that now, the difference in

the distributions of the nodes {g(l−2)
j } induce a difference in the values

{
Varχ

(
g
(l−1)
j

)}
.

From equation 137 and equation 138 we can compute then

Pχ

(
h
(l)
i | W

)
Nl−1→∞−−−−−−→ N

(〈
h
(l)
i

〉
, σ2

wVarχ
(
g
(l−1)
j

))
, (140)

PW
(〈

h
(l)
i

〉)
Nl−1→∞−−−−−−→ N

(
0, σ2

w

〈
g
(l−1)
j

〉2)
. (141)

Finally we can use equation 141 to iterate the set of equation 137 and equation 138 for the
layer l, i.e.

Varχ
(
g
(l)
j

)
=

∫

R
Varχ

(
g
(l)
j

)
(µj) PW

(
µ
h
(l)
j

= µj

)
dµj , (142)

〈
g
(l)
j

〉2
=

∫

R

〈
g
(l)
j

〉2
(µj) PW

(
µ
h
(l)
j

= µj

)
dµj . (143)

• layer-(L+1)
Arriving at the output layer, following the same iterative scheme we will have
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



Pχ

(
O(c) | W

) NL→∞−−−−−→ N
(〈

O(c)
〉
, σ2

wVarχ
(
g
(L)
j

))

PW
(〈
O(c)

〉) NL→∞−−−−−→ N
(
0, σ2

w

〈
g
(L)
j

〉2) (144)

These two distributions are the only ingredient that we need to replicate the steps described
at the end of App. D.1 to get PW (f0).
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Figure 7: Effects induced by the depth of the network. The case of ReLU is emblematic because it
clearly shows the differences in the two cases. For a single hidden layer network (left) we have a
stable distribution (i.e. that does not narrow around EW (f0) = 0.5 for D → ∞) but still peaked on
EW (f0) = 0.5. Increasing the number of hidden layers the probability mass moves from the center
to the extremes. For these simulations we used the GB dataset on model MHLP (see App. I.4 for more
details).

F.2 CONVERGENCE OF PW (f0) IN DEEP NEURAL NETWORKS

Here we prove the result discussed in Sec.4.2, i.e. that the distribution of PW (f0) converge to a delta
peaked distribution in a multi-layer perceptron with ReLU activation when the number of layers goes
to infinity. More precisely

Theorem F.1 (limL→∞ PW (f0)). Let us consider a multi-layer perceptron with L hidden
layers and ReLU activation function. Let us assume that, in the limNl→∞ ∀l ∈ [0, . . . , L],
w.h.p.:

Varχ
(
h(l)
)
> 0, ∀l (145)

and in particular

lim
l→∞

Varχ
(
h(l)
)
> 0, (146)

where Varχ
(
h(l)
)

indicate the variance of Pχ

(
h(l) | W

)
. Then

lim
L→∞

VarW
(〈
O(c)

〉)

Varχ
(
O(c)

) = ∞ (147)

where VarW
(〈
O(c)

〉)
is the variance of PW

(〈
O(c)

〉)
and Varχ

(
O(c)

)
the variance of

Pχ

(
O(c) | W

)
.
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To prove equation 147 we will show that

VarW
(〈

h(l+1)
〉)

> (K + ϵ)VarW
(〈

h(l)
〉)

, (148)

Varχ
(
h(l+1)

)
< (K − ϵ)Varχ

(
h(l)
)
, (149)

where K is a constant. Once proved the above relations we can, indeed, write

VarW
(〈
h(l+2)

〉)

Varχ
(
h(l+2)

) >

(
1

K

)l VarW
(〈
h(2)

〉)

Varχ
(
h(2)

) (K + ϵ)
l
> l

(
1

K

VarW
(〈
h(2)

〉)

Varχ
(
h(2)

) ϵ

)

︸ ︷︷ ︸
≡ 1

C

=⇒ Varχ
(
h(l+2)

)

VarW
(〈
h(l+2)

〉) < C
1

l
. (150)

Therefore if we consider an infinite depth network, i.e. L → ∞, we have:

Varχ
(
h(L)

)

VarW
(〈
h(L)

〉) = O
(
1

L

)
=⇒ VarW

(〈
O(c)

〉)

Varχ
(
O(c)

) = O
(
1

L

)
=⇒ lim

L→∞

VarW
(〈
O(c)

〉)

Varχ
(
O(c)

) = 0

(151)

Proof. Let us start from equation 148. From equation 140

VarW
(〈

h(l+1)
〉)

= σ2
w

〈
g
(l)
j

〉2
. (152)

〈
h
(l)
j

〉2
=

∫ ∞

−∞
PW

(〈
h(l)
〉
= x

)
x2dx =

=

∫ 0

−∞
PW

(〈
h(l)
〉
= x

)
x2dx+

∫ ∞

0

PW
(〈

h(l)
〉
= x

)
x2dx .

(153)

We now use the symmetry of PW
(〈
h(l)
〉)

(which is a Gaussian centered in 0), i.e.

PW
(〈

h(l)
〉
= x

)
= PW

(〈
h(l)
〉
= −x

)
, (154)

to rewrite equation 153 as

1

2

〈
h
(l)
j

〉2
=

∫ ∞

0

PW
(〈

h(l)
〉
= µ

)
(µ)2dµ ≡

≡
∫ ∞

0

PW
(〈

h(l)
〉
= µ

)
(µ+(µ) + µ−(µ))

2
dµ ,

(155)

where we defined

µ+ (µ) =

∫ ∞

0

N
(
x;µ,Varχ

(
h(l+1)

))
xdx > 0 ,

µ− (µ) =

∫ 0

−∞
N
(
x;µ,Varχ

(
h(l+1)

))
xdx < 0 .

(156)

We can thus rewrite

1

2

〈
h
(l)
j

〉2
=

∫ ∞

0

PW
(〈

h
(l)
j

〉
= µ

) (
µ+(µ)

2 + µ−(µ)
2 + 2µ+µ−︸ ︷︷ ︸

≤0

)
dµ. (157)
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Note that µ+µ− = 0 implies either µ+ = 0 or µ− = 0 i.e. a distribution Pχ

(
h(l) | W

)
with non-

positive or non-negative support. Since Pχ

(
h(l) | W

)
is a Gaussian distribution this may only happen

in the limit of its variance going to 0 24. By hypothesis we excluded this possibility (equation 145
and equation 146); therefore µ+µ− < 0 and we can rewrite

1

2

〈
h
(l)
j

〉2
<

∫ ∞

0

PW
(〈

h(l)
〉
= µ

) (
µ+(µ)

2 + µ−(µ)
2
)
dµ

︸ ︷︷ ︸
≡I

. (158)

Now let us focus on the integral I of equation 158. We note that

−µ−(µ) = −
∫ 0

−∞
N
(
x;µ,Varχ

(
h(l+1)

))
xdx = (159)

=

∫ ∞

0

N
(
y;−µ,Varχ

(
h(l+1)

))
ydy = µ+(−µ) (160)

where in the second step we just changed the integration variable x → y ≡ −x. We can therefore
rewrite

I =

∫ ∞

0

PW
(〈

h(l)
〉
= µ

) (
µ+(µ)

2 + µ+(−µ)2
)
dµ =

∫ ∞

−∞
PW

(〈
h(l)
〉
= µ

)
µ+(µ)

2dµ

〈
g(l)
〉2

(161)

where for the second step we used again equation 154. To summarize we showed that

〈
g(l)
〉2

>

(
1

2

)〈
h(l)
〉2

(162)

Now let us pass to another quantity:
〈(

g(l)
)2〉 ≡ ⟨x2⟩g(l) =

∫ ∞

−∞
PW

(〈
h(l)
〉
= µ

)
⟨x2⟩g(l)(µ) dµ =

=

∫ ∞

0

PW
(〈

h(l)
〉
= µ

)(
⟨x2⟩g(l)(µ) + ⟨x2⟩g(l)(−µ)

)
dµ =

=

∫ ∞

0

PW
(〈

h(l)
〉
= µ

) (
⟨x2⟩+(µ) + ⟨x2⟩−(µ)

)
dµ,

(163)

where, analogously to equation 156, we defined

⟨x2⟩+(µ) =
∫ ∞

0

N
(
x;µ,Varχ

(
h(l+1)

))
x2dx ,

⟨x2⟩−(µ) =
∫ 0

−∞
N
(
x;µ,Varχ

(
h(l+1)

))
x2dx.

(164)

From the above definitions, we see that

⟨x2⟩+(µ) + ⟨x2⟩−(µ) = ⟨x2⟩h(l)(µ); (165)

therefore substituting into equation 163 we get
〈(

g(l)
)2〉

=

∫ ∞

0

PW
(〈

h(l)
〉
= µ

)
⟨x2⟩h(l)(µ) dµ =

=
1

2

∫ ∞

−∞
PW

(〈
h(l)
〉
= µ

)
⟨x2⟩h(l)(µ) dµ =

1

2

〈(
h(l)
)2〉

.

(166)

24i.e., if the Gaussian shrink into a Dirac delta distribution
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Finally, let us consider

Varχ
(
g(l)
)
≡
〈(

g(l)
)2〉−

〈
g(l)
〉2

=
1

2

〈(
h(l)
)2〉−

〈
g(l)
〉2

<

<
1

2

〈(
h(l)
)2〉− 1

2

〈
h(l)
〉2

=
1

2
Varχ

(
h(l)
) Nl−1→∞−−−−−−→ 1

2
Varχ

(
h(l)
)
.

(167)

where in the last step we used the concentration result discussed in App. B.2.2, i.e. that the distribution
of Varχ

(
h(l)
)

asymptotically narrows around its mean value, becoming, w.h.p. independent of the
realization W .
Now we have all the ingredient we need; in fact, from equation 140 we know that

Varχ
(
h(l)
)
= σ2

wVarχ
(
g
(l−1)
j

)
. (168)

Therefore, from equation 167, we can conclude

Varχ
(
h(l+1)

)
<

(
σ2
w

2
− ϵ′l

)
Varχ

(
h(l)
)
, (169)

with ϵ′l > 0. Similarly, combining equation 141 with equation 162 we get

VarW
(〈

h(l+1)
〉)

>

(
σ2
w

2
+ ϵl

)
VarW

(〈
h(l)
〉)

, (170)

with ϵl > 0. Calling
ϵ ≡ inf

l
ϵl , (171)

we can finally write

VarW
(〈
h(l+2)

〉)

Varχ
(
h(l+2)

) >

(
2

σ2
w

)l VarW
(〈
h(2)

〉)

Varχ
(
h(2)

)
(
σ2
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2
+ ϵ

)l

> l

(
2

σ2
w

VarW
(〈
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Varχ
(
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) ϵ
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︸ ︷︷ ︸
≡ 1

C

=⇒ Varχ
(
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)

VarW
(〈
h(l+2)

〉) < C
1

l
.

(172)

Therefore if we consider an infinite depth network, i.e. L → ∞, we have:

Varχ
(
h(L)

)

VarW
(〈
h(L)

〉) = O
(
1

L

)
=⇒ VarW

(〈
O(c)

〉)

Varχ
(
O(c)

) = O
(
1

L

)
=⇒ lim

L→∞

VarW
(〈
O(c)

〉)

Varχ
(
O(c)

) = 0 .

(173)

G CONDITIONS FOR THE EMERGENCE/ABSENCE OF IGB

We discussed how the choice of the activation function can induce IGB. To make the discussion more
concrete we picked some emblematic examples (i.e. the linear activation function and the ReLU)
that we were able to work out analytically. Here we will discuss the problem from a more broad
perspective showing that these examples belongs to different classes of activation functions. We can
then conclude the emergence of IGB, for a generic activation function, depending on which of the
two class it belongs.
The fundamental difference that distinguishes the two cases discussed is as follows: with the linear
activation function the output nodes are asymptotically identically distributed; hence we have absence
of IGB. With the ReLU in contrast we observe a break in the symmetry of the output nodes. These
are still asymptotically Gaussian, but centered at different points.
The symmetry breaking is related to the fact that the ReLU in the first hidden layer maps the null-
averaged inputs to a r.v., g(1)i , with a nonzero mean. We can therefore consider a generic activation
function and distinguish two cases. In the following we will consider a generic activation function
from each of the two classes and repeat the analysis to show the emergence/absence of IGB. We will
use the same setting used in the previous analysis (i.i.d. Gaussian input and Kaiming initialization for
the weights). As seen in App. C.1, irrespective to the activation function used we have

Pχ

(
h
(1)
i | W

)
d→∞−−−→ N

(
0, σ2

w

)
. (174)
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G.1 NON-NULL MEAN ACTIVATION FUNCTION

Let us consider a generic activation function g (·), such that
〈
g
(1)
i

〉
≡
〈
g
(
h
(1)
i

)〉
=
〈
g(1)

〉
̸= 0. (175)

where the second step follow from the fact that {h(1)
i } are identically distributed. Starting from

this hypothesis on the activation function (equation 175) we can follow exactly the same analysis
presented in App.F.1. In particular:

Pχ

(
h
(2)
i | W

)
N1→∞−−−−−→ N

(〈
g(1)

〉
Swi ,Varχ

(
g(1)

)
Sw2

i

)
=

N
(〈

g(1)
〉
Swi ,Varχ

(
g(1)

)
Sw2

i

)
,

(176)

where, again, Varχ
(
g(1)

)
follows the definition from equation 130. From equation 176 we can

already see the nodes symmetry breaking; the centers of the distributions is a r.v. varying from node
to node. Note that hor a single hidden layer architecture

Pχ

(
O(c) | W

)
= Pχ

(
h(2)
c | W

)
. (177)

For a generic deep architecture we can keep following the analysis of App.F.1, substituiting the right
expression to Pχ

(
g
(2)
i | W

)
dependent to the specific used activation function. Proceeding in this

way we will find, for each layer, a symmetry breaking in the nodes distribution, similarly to what we
observed in the second layer (equation 176).

G.2 NULL MEAN ACTIVATION FUNCTION

Let us now consider the opposite scenario, i.e. an activation function g (·), such that
〈
g
(1)
i

〉
≡
〈
g
(
h
(1)
i

)〉
=
〈
g(1)

〉
= 0. (178)

where, again, the second step follow from the fact that {h(1)
i } are identically distributed. In this case,

instead of equation 176, we will have

Pχ

(
h
(2)
i | W

)
N1→∞−−−−−→ N

(
0,Varχ

(
g(1)

)
Sw2

i

)
= N

(
0,Varχ

(
g(1)

)
Sw2

i

)
. (179)

Therefore we don’t have nodes symmetry breaking in this case. We can, therefore, pass to the
next layer getting a similar result (asymptotically equally distributed nodes). We can finally iterate
till reaching the output nodes, which will be equally distributed as well. If we consider a generic
activation function may be not trivial to associate it in one of the two classes we just discussed. Below
we provide an example of functions set whose elements all satisfies equation 178.

G.2.1 ANTI-SYMMETRIC ACTIVATION FUNCTIONS

The analysis presented in Sec. 4.1 highlighted the differences induced by the choice of the activation
function (see Fig. 5). In particular, we show how this choice can determine the emergence of IGB,
absent with a (trivial) identity activation function. Here we will elaborate more on this showing the
existence of a class of activation functions (anti-symmetric activation functions) that, similar to the
identity25, never show IGB. We can reformulate the definition of IGB (Def. 3.1) to the framework of
the analysis presented.

25the identity is an element of this class

39



Under review as a conference paper at ICLR 2024

Definition G.1 (IGB). Let us assume that Pχ

(
O(c) | W

)
asymptotically converge to a Gaussian

distribution (e.g. see App. C.3) with a non-zero variance. Then, if

PW
(〈

O(c)
〉
= x

)
= δ (x− a) , ∀c (180)

for some a ∈ R, we have absence of IGB.
If instead equation 180 does not hold, we have IGB, i.e. we will observe a disproportion
between the values {fi}, even in the limit D → ∞ (so not due to finite size effects).

For concreteness we consider an example, to show the general idea. Let us consider the following
activation function

g
(l)
i = g

(
h
(l)
i

)
= tanh

(
h
(l)
i

)
, l ∈ {0, . . . , L}, i ∈ {0, . . . , Nl}. (181)

From equation 71 we know the asymptotic distribution of Pχ

(
h
(1)
i | W

)
. Note that this result is

independent of the choice of the activation function. Now we ask ourselves "How does the distribution
change after passing through the activation function (equation 181)?" We can use the relation

P (x) dx = P (y(x)) dy , (182)

to find

Pχ

(
g
(1)
i = y | W

)
=

e
− (atanh(y))2

2σ2

h(l)

√
2πσ2

h(l)

1

(1− y2)
. (183)

We can immediately see from equation 183 that the distribution is symmetric, i.e.
Pχ

(
g
(1)
i = y | W

)
= Pχ

(
g
(1)
i = −y | W

)
. This is a direct consequence of the anti-symmetricity

of the activation function and from the symmetry of Pχ

(
h
(l)
i | W

)
26. This implies that

〈
g
(1)
i

〉
= 0 =⇒

〈
h
(2)
j

〉
= 0, ∀i, j (184)

This represents a crucial difference with respect to the examples analyzed in the previous section
because now all nodes {h(2)

j } are identically distributed, and, in particular,

PW
(〈

h(2)
〉
= x

)
= δ (x) . (185)

Propagating further across the remaining hidden layers, the situation doesn’t change. Apart from the
value of the variance, there is in fact no difference between Pχ

(
h
(2)
i | W

)
and Pχ

(
h
(1)
i | W

)
, so

we can reiterate the same reasoning, finding

PW
(〈

h(3)
〉
= x

)
= δ (x) , (186)

and so on ∀l ∈ {3, . . . , L+ 1}. In particular, for l = L+ 1 this implies that

PW
(〈

O(c)
〉
= x

)
= δ (x) . (187)

which means that, employing an anti-symmetric activation function (as tanh), we don’t observe
IGB27.

G.3 ELIMINATE/TRIGGER IGB WITH A GENERIC ACTIVATION FUNCTION

26we would get therefore an analogue result considering a different anti-symmetric activation function
27note that we also are implicitly assuming that the initialization chosen keeps the variance of Pχ

(
O(c) | W

)
asymptotically non-null
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Figure 8: Comparison between SReLU and ReLU.
A simple shift of the ReLU can make it satisfy
equation 179 eliminating IGB. Here we can ob-
serve, from PW (f0), the difference in the two
regimes. For these simulations we used the dataset
GBon the model SHLP. (see App. I.4 for more de-
tails).

We just showed that the set of activation func-
tions can be partitioned in two subsets; depend-
ing on which subset a given function belongs
we will observe or not IGB. We emphasize how-
ever that our analysis allows us to characterize
these subset by a simple attribute (i.e. equa-
tion 175 and equation 178). This means that,
starting from a given activation function we can,
in principle, modify it getting a new function,
member of the opposite subset. In other words,
by slightly modifying the definition of an acti-
vation function (or acting by some regulariza-
tion) we can start by a network with IGB and
make it disappear (or vice-versa). This idea is
reminiscent of some procedures introduced in
machine learning in similar contexts. For exam-
ple in Ioffe & Szegedy (2015) they introduce
the Batch-Normalization as a scaling procedure
to mitigate the Internal Covariate Shift, i.e. the
change in the distribution of network activations
due to the change in network parameters dur-
ing training. In our case we are not considering
these differences induced by the learning, but rather differences between nodes due to the initial-
ization. On the other hand, for what just said, our analysis suggest that a similar scaling could be
effective in eliminate IGB as well.
To make the discussion more concrete we provide now an example. We saw how the ReLU trigger
IGB. Let us consider now a variant of ReLU defined as follow

g
(
h
(1)
i

)
=

{
h
(1)
i − σw√

2π
, if h

(1)
i > 0 ,

− σw√
2π

if h
(1)
i < 0 ,

(188)

where σw√
2π

is the ReLU mean value (we can easly compute it from equation 78 ). This shifted
variant of ReLU, which we call SReLU , satisfy equation 178, and belongs therefore to the subset of
functions with absence of IGB (see Fig. 8).

In this example we could easly compute the expectation value and directly subtract it to shift the
activation function to a null mean value. For an arbitrary activation function we could however
perform a shift based on the empirical average computed on the forwarding batch, in a similar spirit
to the approach proposed in Ioffe & Szegedy (2015).

H MULTI-CLASS EXTENSION

We want now to extend the analysis to the multi-class case, i.e. to problem with NC > 2. Following
the framework introduced we can easily extend the computation. We will again consider the distribu-
tion among the NC classes of the dataset elements after initialization. In particular we can define NC

values associated to the fraction of dataset elements classified as belonging to each of the NC classes.
The statistics of these variables will clearly change with the number of classes. To take track of this
we slightly modify the notation, for the multi-class. We indicate explicitly the number of classes used

to build the statistics, i.e.
{
f
(M)
i

}M−1

i=0
, where M is the number of classes considered.

We could also consider the distribution of the sorted frequencies; in other word in each experiment
we order the classes according to the corresponding frequencies and not by their label. To distinguish

this frequencies (and their statistics) from the set
{
f
(M)
i

}M−1

i=0
, we call this new set

{
f
(M)

ĩ

}M−1

ĩ=0
. In

particular f (M)

0̃
indicates the bigger frequency among the M , f (M)

1̃
the second one and so on. Finally

we add the information of the cardinality also on the output nodes set
{
O

(c)
M

}M−1

c=0
. Analogously to
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the set of fractions, we define the set of ranked output nodes
{
O

(c̃)
M

}M−1

c̃=0
In the following, similarly

to Sec. 4.1 we will derive the distribution of f (M)
0 .
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Figure 9: PW (f0) in a multi-class problem with NC = 10. The empirical mean value is reported;
note that despite the difference in the distribution the mean value is the same that we would observe

using a linear activation function f
(NC)
0 = 1

NC
. For these simulations we used the dataset GBon the

model SHLPwith MaxPooling (m=20). (see App. I.4 for more details).

We will make in the derivation of f
(M)
0 the following approximation: We will repeat the same

approach of the binary setting comparing the generic class "0" with the class with bigger mean
output value among the NC − 1 remaining classes.
The first ingredient that we need is therefore the statistics of O(0̃)

NC−1. From the analysis of previous

sections, we know that Pχ

(
O

(0̃)
NC−1 | W

)
is asymptotically Gaussian. The mean value of this

Gaussian variable will follow the distribution of the maximum among NC − 1 drawn from the
Gaussian distribution PW

(〈
O(c)

〉)
as, by definition,

〈
O

(0̃)
NC−1

〉
≡ max

c∈{1,...,NC}

〈
O(c)

〉
. (189)

Maximum over NC − 1 Gaussian draws We will follow the same approach used in App. C.1 .
We will again start from equation 82. In this case,

P (X = x) ≡ PW
(〈

O(c)
〉
= x

)
= N

(
x; 0, σ̂2

)
, (190)

where we used a generic σ̂2 to indicate the variance. We will perform the computation in this general
settings; then to analyze the specific cases we can just substitute the right variance for the specific
case (see App. C.2).

FX(y) ≡
∫ y

−∞
P (X = x) dx =

∫ y

−∞
N
(
x; 0, σ̂2

)
dx =

1

2

(
1 + erf

(
y√
2σ̂

))
. (191)

Now, putting all pieces together in equation 82, we get our target distribution,

P (Y = y) ≡ PW
(〈

O
(0̃)
NC−1

〉
= y
)
= (NC − 1)N

(
y; 0, σ̃2

)(1

2

(
1 + erf

(
y√
2σ̃

)))NC−2

.

(192)
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Now we can proceed following again the steps presented at the end of Sec. 4.1. The only difference
we will have is in equation 113; now we will have

PW
(
f
(NC)
0

)
=

∫ ∞

−∞
PW

(〈
O

(0)
NC

〉
= x̃

)
PW

(〈
O

(0̃)
NC−1

〉
= x̃− ∆̂

(
f
(NC)
0

))
dx̃ , (193)

where
〈
O

(0̃)
NC−1

〉
the biggest mean output among the NC − 1. Note that ∆̂

(
f
(NC)
0

)
is a function of

f
(NC)
0 . Substituting equation 190 and equation 192 we have:

PW
(
f
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)
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∫ ∞

−∞
N
(
x̃; 0, σ̂2

)
(NC −1)N
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x̃; ∆̂, σ̂2

)(1

2

(
1 + erf
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2σ̂

)))NC−2

dx̃ .

(194)

I EXPERIMENTS

The analysis presented is able to identify IGB and analytically describe the phenomena in a variety of
settings (e.g., MLPs with different activation functions, arbitrary depth, and the presence or absence
of pooling layers). However, IGB is significantly broader in scope, as it may be observed in a wide
range of dataset and architectural combinations. Although our theoretical analysis does not go into
these scenarios (a further extension of the analytical conclusions to more sophisticated designs will be
the focus of future research), we provide some representative instances to demonstrate the breadth of
scenarios where IGB is significant in real-world circumstances. The experiments presented, while not
exhaustive, aim to provide insights and emphasize three fundamental points that will be developed in
a separate publication:

• IGB is amplified in structured data, particularly in cases of strongly correlated data (App. I.1).
• IGB is a ubiquitous phenomenon, that happens with most combinations of datasets and

architectures (App. I.1, I.2).
• The differences induced by IGB on the initial state of the network have an impact on its

dynamics, rendering it qualitatively distinct, especially in the initial phase, compared to the
case without IGB (App. I.3).

I.1 EXPERIMENTS ON REAL DATA

In this section, we show some empirical evidence of IGB on combinations of models and data which
are not covered by our theory, such as CNN architectures and the MNIST, CIFAR10 and CIFAR100
datasets.28 In App.I.2, we will also include experiments on additional architectures (ResNet and
Vision Transformers). The experiments we will discuss do not presume to show in a complete and
exhaustive way the range of models and cases in which IGB can occur; this question is outside
the scope of our work. Rather, they are some didactic examples intended to show how, beyond
the assumptions used in our analysis to quantitatively treat the phenomenon, IGB also emerges
in a broader context. We first present and discuss the experiments. For technical details for the
reproducibility we refer the reader to App. I.4.

I.1.1 A PROTOTYPE FOR HIGHLY CORRELATED DATA: MNIST

In the analysis we presented in the main part of the paper, we focused on a simple data structure, to
underline effects induced by architecture design: a remarkable conclusion from this setting is the
following:
In a classification problem, an untrained network with biases set to zero and fed with i.i.d. data-points
(i.e. different classes are identically distributed) often starts the training process with a strong bias
toward one of the classes.
For our theoretical analysis, we placed ourselves in a setting where the effect of IGB is minimal
and unaffected by the data structure. This ensures that the sources of IGB, which our analysis

28MNIST is a particularly insightful dataset for IGB, because the correlations between pixels are high. This is
opposite to what we cover with our theory, which is based on i.i.d. inputs.
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Figure 10: Comparison of Pχ (f0) between two untrained neural networks fed with MNIST dataset;
the ten classes of the dataset were merged in two macro groups: even and odd. The two architectures
employed in the comparison differ in the choice of activation function and pooling. For these
simulations we used the E&O dataset on the model CNN-B. (see App. I.4 for more details). On the
right, the same plot in a logarithmic scale to better visualize the differences in the low-density regions.

links to architectural design elements, do not stem from dataset characteristics. Below, we present
experiments in which these hypotheses on data are violated, to demonstrate how the phenomenon
manifests itself (more prominently) in real datasets, where:

• Data-points belonging to different classes will not be identically distributed.
• Components of a single data-point will not be independent; for example pixels of an image

will clearly be correlated.
• Similarly, correlation between different data-points (belonging to the same class) is possible.

MNIST constitutes a good candidate to represent a scenario of strong correlations in the data. In fact,
in this dataset the images are characterized by a small percentage of nonzero pixels; this leads to the
formation of areas, within the same image, characterized by similar values and therefore strongly
correlated. In addition, image areas are strongly correlated between different elements. For example,
we are unlikely to observe the writing of a number on the edges of an image; therefore, different
images will have similar values of pixels along the edges. When considering images of the same class,
this correlation is even more pronounced. From the MNIST dataset, we defined two macro-classes,
even and odd, by merging the 10 starting classes according to their parity. We then propagated
the binary dataset, obtained in this way, through two untrained convolutional neural networks. The
difference between the two networks lies in the choice of activation and pooling function employed. In
particular the dataset is propagated through CNN-B (network details in App. I.4). The CNN-B model
is a CNN where the last convolutional layer is directly connected to the outputs. We choose it this
way, because, as earlier shown, IGB cannot arise without hidden layers. This indicates that the
observation of IGB is caused by the convolutional layers or, to put it more precisely, it emerges from
the propagation of structured data through the convolutional layers.

We show this in Fig. 10, which contains two important messages:

♢ Unlike the cases presented in our theoretical analysis, neither of the two choices has total
absence of IGB. This is consistent with the intuition that correlations in the data cause or
amplify IGB.

♢ While we observe presence of IGB in both cases, this is more pronounced for the architecture
with ReLU and MaxPooling, consistent with what we saw in our study.

These observations show how IGB is a rather universal phenomenon, related to the combined effect
of data structure and the design of the neural network.

I.1.2 A FURTHER EXAMPLE: CIFAR10

We now show a multi-class example, on the same network as in App. I.1.1 (CNN-B) we propagated
CIFAR10. The results are reported in Fig. 11. As with MNIST, the results are qualitatively consistent
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Figure 11: Comparison of Pχ

(
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)
between two untrained neural networks fed with CIFAR10

dataset (with 10 classes). The two architectures employed in the comparison differ in the choice of
activation function and pooling. In the absence of IGB, the distributions would concentrate around
the vertical line. For these simulations we used the dataset C10 on the model CNN-B described below
(see App. I.4). On the right, the same plot in a logarithmic scale to better visualize the differences in
the low-density regions.
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Figure 12: CNN-A (ReLU+MaxPool case) with C100 in this case (NC = 100). The peak at
f0 = 1

NC
, corresponding to the No IGB case (in the absence of IGB, the distribution should

concentrate around this value), is reported as a reference. The plot on the right contains the same data
as that on the left, but has a logarithmic x axis. We add a small number (109) to the value of f0, in
order to show the peak at f0 = 0.

with the conclusions of our theory: the network with ReLU and MaxPooling displays a stronger IGB
than its counterpart with tanh and AvgPooling. Note, also, how in both cases, symmetry between

classes is preserved at the ensemble level. In both cases, in fact, we get f (NC)
c = 1/NC . To show

this we show in Fig. 11 two vertical lines at the mean values calculated on the empirical distributions
(histograms), each surrounded by its own uncertainty, estimated through the standard error.

I.1.3 HIGH CARDINALITY DATASET: CIFAR100

We also provide another example of a multi-class dataset. In this case, we choose Cifar-100 as a
prototype of a high-cardinality dataset (with a high number of classes) to demonstrate the presence
of IGB in this scenario as well. In the absence of IGB, the distribution should be peaked at f0 =
1/NC = 1/100. However, the histogram shows a peak at 0 (most of the time, the generic class does
not receive any assigned elements). The gap between the peak at 0 and the rest of the distribution,
particularly evident in the log-log scale plot, indicates a resolution limit due to the finite number of
dataset elements (D = 104).
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Figure 13: Plot of PW (f0) for a ResNet34 (left), i.e. ResNet , and a Vision Transformer (right),
i.e. ViT (see Sec. I.4), on two classes extracted from Cifar10 (same setting as Fig. 1 in the main
paper). In this case, we also observe the wide profile that characterizes IGB.

I.2 EXPERIMENTS ON OTHER ARCHITECTURES

The experiments presented in App. I.1 illustrate how IGB can also emerge in CNNs. Below, we
provide some examples to give an idea of the breadth of settings and architectures related to the
presence of this phenomenon. We specifically conduct simulations on a Residual Network and a
Visual Transformer. Similarly to what was observed for CNNs, these architectures also exhibit the
presence of IGB (Fig. 13).

I.3 EFFECTS ON THE TRAINING DYNAMICS

As we will see, the presence or absence of IGB induces important differences in the subsequent
training dynamics. The objective of this section is to present some key elements that distinguish
between cases with and without IGB. Our intention is not to provide an exhaustive review, as this
would demand an extensive discussion beyond the scope of this study. Nevertheless, we present several
key experimental results that clearly demonstrate the practical significance of IGB, highlighting that
this phenomenon is worth further investigation.
Considering that IGB is observed in a variety of settings, including advanced architectures capable of
achieving state-of-the-art performance, it is reasonable to assume that IGB does not profoundly affect
convergence at the end of the dynamics. However, the qualitative differences from the case without
IGB and the resemblance to curves observed in the context of class imbalance suggest potential
additional challenges associated with the presence of IGB. To effectively illustrate the differences in
dynamics with and without IGB, we will compare the two cases in the regimes of small and large
learning rates (slow/stable and unstable regimes). We will clarify the relevance of these two limits in
the discussion.

Small learning rate Fig. 14 illustrates the comparison in the small learning rate regime (slow
dynamics), which is of particular interest and widely studied (Sarao Mannelli et al., 2020; Tarmoun
et al., 2021; Francazi et al., 2022). One noticeable difference is the behavior of individual class
curves. In the absence of IGB, the curves averaged over both classes closely align with those of
each individual class. In contrast, in the presence of IGB, there is a substantial difference between
them; global measures, therefore, such as accuracy or loss do not serve as reliable indicators of
individual class performance in this case. The differences in dynamics between the two cases are
especially prominent in the initial training phase. Specifically, in presence of IGB, the per-class
recall of one class remains low for an extended duration. This closely resembles situations observed
in the presence of class imbalance, which has become a recent concern (see e.g., Fig. 1 and Fig. 4
of Francazi et al. (2022)). To gain insight, it is worthwhile to consider the well-established impact
of class imbalance bias on dynamics. For instance, Ye et al. (2021); Francazi et al. (2022) explore
this from a theoretical perspective, discussing how the initial imbalance between classes leads to
learning delays. It is well-known that the slowdown in dynamics poses a limitation, for example, in
hyper-parameter tuning (Francazi et al., 2022), as the initial phase of the dynamics is uninformative.
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Figure 14: Comparison of the initial phase of the dynamics in the IGB and No IGB cases for
CNN-A trained on two classes extracted from Cifar10 (same setting as Fig. 1 in the main paper)
with a small learning rate (for both cases we used a constant learning rate: η = 10−7). In the IGB
case, by averaging over multiple realizations, it is not possible to observe the initial imbalance, as the
symmetry between the two classes is preserved at the ensemble level (consistent with what is shown
in the histogram in Fig.1 of the Main paper). Therefore, in addition to the average over multiple
realizations (left), the curves corresponding to a typical single run are also presented.
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Figure 15: Comparison of the initial phase of the dynamics in the IGB and No IGB cases for
CNN-A trained on two classes extracted from Cifar10 (same setting as Fig. 1 in the main paper) with
a big learning rate (for both cases we used a constant learning rate: η = 10−3).
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Large learning rate In the absence of class imbalance, the slowdown observed in the small
learning rate regime is generally resolved by using higher learning rate values. In the presence
of class imbalance, the difference in per-class gradients makes the dynamics more susceptible to
instability, where the dominant gradient contribution shifts from one class to another at each step.
Therefore, finding an intermediate learning rate value between these two regimes becomes non-trivial,
complicating hyper-parameter tuning procedures. It is interesting to note that even in this scenario,
curves computed on balanced datasets in the presence of IGB show similarities to the behavior
observed in the presence of class imbalance (see Fig. 15).
Conversely, the fact that IGB creates an imbalance between classes in balanced datasets opens up
the possibility of exploiting the phenomenon to counteract the effects of class imbalance for the
dynamics’ benefit by acting on the network’s design rather than on the dynamics itself.

I.4 REPRODUCIBILITY

Here we provide technical details about the experiments, to allow for reproducibil-
ity. The code used for the experiments presented in this work are available at
https://anonymous.4open.science/r/Algorithms-82EC/README.md.

Datasets

• Gaussian Blob (GB): Consistent with the analysis presented, for most of the experiments
shown we used a Gaussian blob as input. Specifically, all elements of the dataset are
i.i.d. and each individual element consists of a random vector of d = 3072 i.i.d. normally
distributed components, i.e.:

ξ
(a)
b ∼ N (0, 1)

Note that the value of d is chosen so that the random vectors we generate have the same
dimension of CIFAR10.

• CIFAR10 (C10): We use CIFAR10 (https://www.cs.toronto.edu/~kriz/
cifar.html) (Krizhevsky et al., 2009) as an example of a real multi-class dataset. Before
the start of the simulation we perform the standardization of the dataset: the pixel values
are rescaled in the interval [0, 1] and then shifted by the mean value and rescaled by the
standard deviations (calculated on each channel).

• CIFAR100 (C100): We use CIFAR100 (https://www.cs.toronto.edu/
~kriz/cifar.html) (Krizhevsky et al., 2009) as an example of high cardinality dataset,
i.e. a dataset with a big number of classes

• MNIST (E&O): We use MNIST (http://yann.lecun.com/exdb/mnist/) (Deng,
2012) to reproduce binary experiments on real data. The binary dataset is defined by merging
the starting classes into two macro groups according to the parity of digits; thus, we will
have the even number class {0, 2, 4, 6, 8} and the odd number class {1, 3, 5, 7, 9}.

Models We here provide details on the architectures we used for our experiments. Our description
of the models does not include the loss functions because the loss function is irrelevant in untrained
networks.

• MLP: Our analysis provides theoretical predictions for MLP. In order to support the results
of the study, we considered two different MLP networks in the proposed experiments:

– MLP with a single hidden layer (SHLP): The number of nodes nodes in the hidden
layer varies between N1 = 100 for networks without Pooling and N1 = 500 for
networks equipped with MaxPooling layer. Different activation functions have been
coupled to the networks to show the differences; details regarding the choice of these
elements are given case by case.

– MLP with multiple hidden layers (MHLP): In this case we have L hidden layers, each
one composed by N = 100 nodes. As in the previous case, the activation function is
an element we varied to set a comparison and underline the differences coming from
this choice.
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• CNN: To show how IGB manifests outside the setting employed in the quantitative treatment
presented we propose, some experiments on convolutional neural networks (CNNs) as an
alternative to the MLPs discussed above. In particular, we used:

– CNN-A: This architecture was used for simulations related to the histogram in Fig. 1;
two classes from CIFAR10 (three-channel images) were selected for these experiments.
Starting from the input layer we have:

* a first convolutional layer with: out channels=16 (Number of channels produced
by the convolution), m = 5 ( Size of the convolving kernel), stride=1, padding=2.
The output of the layer is then passed through an activation function and a pooling
layer. The choice of these elements varies to compare two different scenarios (as
explained in Fig. 1). In both cases, however, we set common parameters for the
pooling layer, i.e. m = 2 (kernel size), stride=2.

* Next comes a second convolutional layer with the same parameters as the previous
one, except for the number of output chanels; in this case we have out channels=64.
Again the convolutional layer is followed by an activation function and a pooling
layer (same as the first layer). The parameters of the pooling layer in this case are
i.e. m = 4 (kernel size), stride=4. The processed signal is then connected with a
weights layer to the output layer.

– CNN-B: We also consider a second CNN architecture deeper than CNN-A. Specifically
starting from the input layer:

* we start with a sequence of five convolutional layers (each followed by an activation
function and pooling layer). Except for the number of output channels the rest of
the parameters are fixed the same for each of these layers, in particular we have for
the convolutional layer = 5, stride=1, padding=4. For the pooling layer, however,
m = 5, stride=1. Finally, the number of output channels for the various layers is
[16, 32, 32, 64, 32].

* This is followed by an additional convolutional layer defined by the following
parameters: out channels=16, m = 5, stride=1, padding=2. This is accompanied by
the activation function and a Pooling layer whose parameters are: m = 2, stride=2.

* Finally, a last sequence of convolutional layers, activation function and pooling
layer precedes the output layer. The only parameter that differs from the sequence
that precedes it is the kernel size of the pooling layer; specifically in this case
m = 4. The processed signal is then connected with a weights layer to the output
layer.

– ResNet: We propose ResNet34 (ResNet), introduced in He et al. (2016) as an example
of an architecture equipped with skip connections.

– Vision Transformer: We propose ViT (ViT), introduced in Dosovitskiy et al. (2020)
as an example of an architecture equipped with skip connections.

Note that in both the CNN architectures we use, the final convolutional layer is directly connected to
the output, without any additional fully-connected hidden layer (as the ones described by our theory).
This indicates that the observed IGB is also also a feature of CNNs independently of the presence of
fully-connected hidden layers at the end of the network (which as we proved would also cause IGB).

J LIMITATIONS AND ETHICS

Limitations We can identify the following limitations to our work:

• Our work focuses on systems simple enough to clearly show the main aspects of the
phenomenon and at the same time complex enough to investigate non-trivial effects induced,
for example, by network depth. A comprehensive picture emerges that clarifies the effect of
some particular elements of the architecture and their connection with IGB. On the other
hand, the observation of IGB is not restricted to the subset of networks/datasets considered
in the study. Although the treatment of more articulated setups is outside the scope of the
study, whose main goal is to present the phenomenon (which to the best of our knowledge
has never been reported in the literature) in a clear manner, the characterization of IGB for
more realistic systems remains an interesting question.
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• Our analysis suggests that some forms of regularization (e.g., batch normalization) might be
effective in mitigating IGB. To draw conclusions in this regard, however, an in-depth study
comparing different kinds of normalization is needed: note how such regularizations are not
included in our simulations.
If architectural elements such as batch normalization help suppressing IGB, this would be
a further step towards an aware choice of the architectures, allowing to choose whether to
have initial conditions with IGB or not.

Ethics By informing model selection, data preparation and initial conditions, our results can
improve the training of machine learning models. Better-performing machine learning models
allow to better address wide ranges of problems, but can also be adapted for potentially harmful
applications (Hutson, 2021; Qadeer & Millar, 2021).

The CIFAR datasets, are subsets of the 80 million tiny images, which are formally withdrawn since
it contains some derogatory terms as categories and offensive images (http://groups.csail.
mit.edu/vision/TinyImages/). However, note that none of the experiments described in
the paper was performed on the overall tiny images dataset: the said derogatory images are not
present in CIFAR10 nor CIFAR100.
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