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Abstract

Novel view synthesis techniques predominantly utilize
RGB cameras, inheriting their limitations such as the need
for sufficient lighting, susceptibility to motion blur, and re-
stricted dynamic range. In contrast, event cameras are sig-
nificantly more resilient to these limitations but have been
less explored in this domain, particularly in large-scale
settings. Current methodologies primarily focus on front-
facing or object-oriented (360-degree view) scenarios. For
the first time, we introduce 3D Gaussians for event-based
novel view synthesis. Our method reconstructs large and
unbounded scenes with high visual quality. We contribute
the first real and synthetic event datasets tailored for this
setting. Our method demonstrates superior novel view syn-
thesis and consistently outperforms the baseline EventNeRF
by a margin of 11—25% in PSNR (dB) while being orders
of magnitude faster in reconstruction and rendering.

1. Introduction

Novel view synthesis offers a fundamental approach to vi-
sualizing complex scenes by generating new perspectives
from existing imagery. This has many potential applica-
tions, including virtual reality, movie production and archi-
tectural visualization [27]. An emerging alternative to the
common RGB sensors are event cameras, which are bio-
inspired visual sensors recording events, i.e. asynchronous
per-pixel signals of changes in brightness or color intensity.

Event streams have very high temporal resolution and are
inherently sparse, as they only happen when changes in the
scene are observed. Due to their working principle, event
cameras bring several advantages, especially in challenging
cases: they excel at handling high-speed motions and have a
substantially higher dynamic range of the supported signal
measurements than conventional RGB cameras. Moreover,
they have lower power consumption and require varied stor-
age volumes for captured data that are often smaller than
those required for synchronous RGB cameras [5, 19].

The ability to handle high-speed motions is crucial in
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static scenes as well, particularly with handheld moving

cameras, as it helps avoid the common problem of motion

blur. It is, therefore, not surprising that event-based novel
view synthesis has gained attention, although color values
are not directly observed. Notably, because of the substan-
tial difference between the formats, RGB- and event-based
approaches require fundamentally different design choices.

The first solutions to event-based novel view synthe-
sis introduced in the literature demonstrate promising re-
sults [12, 25] and outperform non-event-based alternatives
for novel view synthesis in many challenging scenarios.

Among them, EventNeRF [25] enables novel-view synthe-

sis in the RGB space by assuming events associated with

three color channels as inputs. Due to its NeRF-based ar-
chitecture [17], it can handle single objects with complete
observations from roughly equal distances to the camera. It
furthermore has limitations in training and rendering speed:
the MLP used to represent the scene requires long training
time and can only handle very limited scene extents or oth-
erwise rendering quality will deteriorate. Hence, the quality
of synthesized novel views will degrade for larger scenes.

We present Event-3DGS (E-3DGS), i.e., a new method
for novel-view synthesis from event streams using 3D Gaus-
sians [9] demonstrating fast reconstruction and rendering as
well as handling of unbounded scenes. The technical con-
tributions of this paper are as follows:

* With E-3DGS, we introduce the first approach for novel
view synthesis from a color event camera that combines
3D Gaussians with event-based supervision.

* We present frustum-based initialization, adaptive event
windows, isotropic 3D Gaussian regularization and 3D
camera pose refinement, and demonstrate that high-
quality results can be obtained.

* Finally, we introduce new synthetic and real event
datasets for large scenes to the community to study novel
view synthesis in this new problem setting.

Our experiments demonstrate systematically superior re-

sults compared to EventNeRF [25] and other baselines. The

source code and dataset of E-3DGS are released’.

https://4dgv.mpi-inf.mpg.de/E3DGS/
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2. Related Work
2.1. Novel View Synthesis from RGB Inputs

Novel view synthesis of rigid scenes is predominantly han-
dled assuming RGB inputs. A widely used approach to this
problem is to learn coordinate-based neural scene represen-
tations allowing rendering novel views at test time. Ear-
lier works such as Neural Radiance Fields (NeRF) and its
direct follow-ups [17, 27] used implicit neural represen-
tations in combination with volume rendering. They are
based on expensive-to-optimize Multi-Layer Perceptrons
(MLPs) and are slow at training and evaluation while requir-
ing a relatively low amount of storage space once they are
trained. Their stochastic ray sampling requires many sam-
ples to obtain an accurate scene approximation, and shoot-
ing rays through empty space constitutes unnecessary over-
head. Most of these approaches focus on single objects or
bounded scenes. Recent techniques accelerate neural MLP-
based representations or ray sampling [20, 24] or avoid
MLPs [2, 4, 26] by using voxel grids. Some techniques [3]
support unbounded scenes by employing radial basis func-
tions, thereby overcoming the limitations of voxel-grid-
based methods. Several ray tracing-based methods sup-
port large-scale scenes and uncontrolled camera trajectories
thanks to progressive NeRF optimization [16, 29]. Instant-
NGPs [20] are neural feature volumes with a hash grid that
can be learned and evaluated quickly at test time. They can
also handle multi-scale training scenarios efficiently.

A promising recent development is the shift from ray
tracing to rasterization, marked by the introduction of 3D
Gaussian Splatting (3DGS) [9]. This approach presents
an alternative paradigm for 3D reconstruction and novel
view synthesis using differentiable rasterization with 3D
Gaussians as geometric primitives. Since GPU technol-
ogy and algorithmic research have evolved over several
decades to provide high performance for rasterization ap-
plications, 3DGS trains substantially quicker and provides
much higher rendering throughput than NeRF. Moreover,
since it explicitly represents the geometry, it can scale eas-
ily as the scene size increases with no special handling re-
quired for unbounded scenes. Our approach adopts the 3D
Gaussian representation and presents its application to the
supervision from event streams. It inherits thereby the ad-
vantages of event streams and 3DGS for view synthesis.

2.2. Novel View Synthesis from Event Streams

Event-aided sparse odometry and simultaneous localization
and mapping approaches are distantly related to our setting,
as they do not allow photo-realistic and dense rendering of
novel views [7, 10, 13, 22].

As previously discussed, event cameras represent an al-
ternative to RGB sensors for dense novel view synthesis,
and some initial work was done on learning 3D scene rep-

resentations from event streams only. EventNeRF [25] is
a seminal framework for training MLP-based implicit 3D
representations (see Sec. 2.1) using frames of accumulated
color events. While it demonstrates impressive results, it
is restricted to camera trajectories with uniform motion and
the assumption that the background is a constant color (trig-
gering no events). E-NeRF [12] is another work that re-
sembles the training methodology of EventNeRF for single-
channel (intensity) event cameras and allows training a col-
ored 3D representation from a combination of blurry RGB
images and grayscale events. Robust E-NeRF by Low and
Lee [14] is a model aiming to reduce the issues caused by
uncontrolled camera motion. They introduce the refractory
period to the event generation model, i.e. the time during
which a pixel is inactive after an event firing. Supervi-
sion happens on the level of individual events, and they re-
formulate the event loss to handle intra-pixel variances of
the contrast threshold optimized during training. All these
methods adopt ray tracing and can be primarily applied on
360° object-centric datasets or front-facing trajectories.

Our approach differs from previous event-based methods
in that it demonstrates that rasterization can be efficiently
combined with event-based supervision instead of ray trac-
ing. The main design choices of our method are tailored
to 3D Gaussians. As a result, our method inherits the pri-
mary advantages of 3DGS [9], such as fast training and in-
ference. Similar to EventNeRF [25], our method supports
color. However, in contrast, it is not limited to single objects
and can handle large-scale scenes.

3. Preliminaries
3.1. 3D Gaussians

3D Gaussian Splatting [9] is a high-quality and efficient
scene representation. The Gaussians are defined by a 3D
covariance matrix X; centered around a point f,:

Gile) e (~g(e - )= @) )
and their overlay models the geometry at scene location x.
Each Gaussian is additionally associated with an opacity o,
and spherical harmonics that model view-dependent color.
For rendering purposes, the means p; and covariance ma-
trices 3J; are transformed into image coordinates. The pro-
jected matrix X, can be obtained by applying the viewing
transformation W and the Jacobian J of the affine approx-
imation of the projective transformation:

S =Jgwz,wljt. )

The third row and column of X/ are dropped to obtain a
2D matrix. Using Equation 1, one can then evaluate the
different Gaussians ¢ that overlap with an image pixel x and
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Figure 1. Overview of our E-3DGS Method. We use 3D Gaussians [9] as the scene representation and assume that initial noisy camera
poses are available. We randomly initialize the scene with our frustum-based initialization (Sec. 4.2) and then optimize the Gaussians and
the camera poses jointly (Sec. 4.5). To obtain a high-quality reconstruction of both, low-frequency structure and high-frequency detail,
we propose a strategy using a large event window from ¢, to ¢ and a small one from ¢, to ¢ (Sec. 4.3). We then define the 1oss Liccon
(Sec. 4.6) between renderings from our model at the current time ¢ (indicated green) and previous times t,, (indicated orange) and t,.,
(indicated red), and the accumulated incoming events E(ts,,t) and E(ts,,t). We regularize the 3D Gaussians with the loss Liso (Sec. 4.4).

obtain alpha values as «; ; = 0;G}(x). The Gaussians are
then sorted according to their depth, and alpha blending for
every pixel is performed by combining the view-dependent
colors ¢; using the following equation:

N
Ca: = Z E,zai,zci ) (3)
=1

where T} , = 2;11 (1—ag ) represents the transmittance.

3.2. Event Formation Model

Event cameras generate a continuous stream of events de-
noted as e = (x,p, ), where x are the pixel coordinates
at which an event is triggered at time 7, and p € {—1,+1}
signifies the polarity of the event, indicating an increase or
decrease in the logarithmic intensity by the predefined con-
trast threshold A. Thus, the relationship between the trig-
gered event and the logarithmic image intensity reads:

Ly(7) = L (7") = pA, “4)

where 7PV is the time when the previous event for the
pixel was triggered. This concept can then be generalized to

apply for an accumulation of events within a time interval
(11, 72)|T1 < T2 for a pixel location x as follows:

Ly(m2) — Lg(m1) = Z ptAdéwa(thQ% (@)

T1<Tt<T2

where t1, to index the sequence of events closest to 7, To.

4. The E-3DGS Method

Our aim is to learn a 3D representation of a static scene
using only a color event stream, where each pixel ob-
serves changes in brightness corresponding to one of the
red, green, or blue channels according to a Bayer pattern,
with known camera intrinsics K; € R3*3, and noisy ini-
tial poses P; € R3*4, at reasonably high-frequency time
steps indexed by ¢. Following 3DGS [9], we represent our
scene by anisotropic 3D Gaussians. Our methodology com-
prises a technique to initialize Gaussians in the absence of
a Structure from Motion (SfM) point cloud, adaptive event
frame supervision of 3DGS, and a pose refinement module.
An overview of our method is provided in Fig. 1.

Our E-3DGS method is not restricted to scenes of a
certain size and can handle unbounded environments. It



does not rely on any assumptions regarding the background
color, type of camera motion, or speed. Thus, it ensures
robust performance across a wide range of scenarios.

4.1. Event Stream Supervision

There are two main categories of approaches to learning 3D
scene representations from event streams. Some apply the
loss to single events [14] based on Eq. (4). Others use the
sum of events Fy(t1,t2) from Eq. (5). We choose the sec-
ond approach, as rasterization in 3DGS is well suited to ef-
ficiently render entire images rather than individual pixels.

To optimize our Gaussian scene representation using
event data, we can make a logical equivalence between the
observed event stream and the scene renderings. To do so,
we replace the true logarithmic intensities L, in Eq. (5)
with the rendered logarithmic intensities ﬁm from our scene,
and the times 7 with the camera poses P, that were used
to render the scene at the respective time steps. Follow-
ing the approach used in [25], the log difference is then
point-wise multiplied with a Bayer filter F' to obtain the
respective color channel. We can finally calculate the error
between the logarithmic change from our model and the ac-
tual change observed from the event stream, and define the
following per-pixel loss:

Ly (t1,t2) =

HFQ (im(PtQ) - Em(Ptl)) —FOE, (tl’tQ)Hlv (6)

where “®” denotes pixelwise multiplication.
4.2. Frustum-Based Initialization

In the original 3DGS [9], the Gaussians are initialized us-
ing a point cloud obtained from applying SfM on the input
images. The authors also experimented with initializing the
Gaussians at random locations within a cube. While this
worked for them with a slight performance drop, it requires
an assumption about the extent of the scene.

Applying SfM directly to event streams is more chal-
lenging than RGB inputs [10] and exploring this aspect is
not the primary focus of this paper. In the absence of an
SfM point cloud, we use the randomly initialized Gaussians
and extend this approach to unbounded scenes. To this end,
we initialize a specified number of Gaussians (on the or-
der of 10%) in the frustum of each camera. This gives two
benefits: 1) All the initialized Gaussians are within the ob-
servable area, and 2) We only need one loose assumption
about the scene, which is the maximum depth z,,.

4.3. Adaptive Event Window

Rudnev et al. [25] demonstrated in EventNeRF that using
a fixed event window duration results in suboptimal recon-
struction. They find that larger windows are essential for
capturing low-frequency color and structure, and smaller

ones are essential for optimization of finer high-frequency
details. While they randomly sampled the event window
duration, a drawback is that it does not consider the camera
speed and event rate, thus the sampled windows may con-
tain too many or too few events. As our dataset features
variable camera speeds, we improve upon this by sampling
the number of events rather than the window duration. To
achieve this, for each time step we randomly sample a tar-
get number of events from within the range [Npin, Nmax)-
Given a time step ¢, we search for a previous time step ¢,
such that the number of events in the event frame F(¢,t)
is approximately equal to the desired number.

When determining Ny,.x, we find that for values where
details and low-frequency structure are optimal, 3DGS
tends to get unstable and sometimes prunes away Gaus-
sians in homogeneous areas. While this can be mitigated by
choosing a much larger N,,,x, this again deteriorates the de-
tails. Therefore, we propose a strategy to incorporate both,
small and large windows. For each ¢, we choose two earlier
time steps ts, and t,,. The ranges for sampling the event
counts for both are empirically chosen to be [N max N, o]

10

and [Mmee Nmax] We then render frames from our model

at times ¢, 5, and t,,, and use two concurrent losses for the
event windows Ey, (ts,,t) and Ey, (ts,,t).

4.4. As-Isotropic-As-Possible Regularization

In 3DGS, Gaussians are unconstrained in the direction per-
pendicular to the image plane. This lack of constraint can
result in elongated and overfitted Gaussians. And while
they may appear correct from the training views, they intro-
duce significant artifacts when rendered from novel views
by manifesting as floaters and distortions of object surfaces.
We also observe that the lack of multi-view consistency and
tendency to overfit destabilize the pose refinement.

To mitigate these issues, we draw inspiration from Gaus-
sian Splatting SLAM [15] and SplaTAM [8], and apply
isotropic regularization:

1 _
Aciso:@ZHSg_Sng ’ (7
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where G is the set of Gaussians visible in the image. Eq. (7)
imposes a soft constraint on the Gaussians to be as isotropic
as possible. We find that it helps to improve pose refine-
ment, minimizes floaters and enhances generalizability.

4.5. Pose Refinement

To obtain the most accurate results, we allow the poses to
be refined during optimization by modeling the refined pose
as P/ = PfP;, where Pf is an error correction transform.
Instead of directly optimizing Py as a 3 X 3 matrix, follow-
ing Hempel et al. [6] we represent it as [r 7o T'], where
r1 and ro represent two rotation vectors of the rotation ma-
trix R = [ry ro 73], while T is the translation. We can then



obtain the Pf matrix from the representation using Gram-
Schmidt orthogonalization (see details in Supplement II),
hence ensuring that during optimization, our error correc-
tion transform always represents a valid transformation ma-
trix. P is initialized to be the identity transform. Since the
loss function from Eq. (6) depends on the camera pose as
well, it allows us to use the same loss to backpropagate and
obtain gradients for pose refinement.

As our goal is to refine the estimated noisy poses rather
than perform SLAM, this training signal is sufficient for our
needs. Moreover, we observe that poses tend to diverge with
3DGS due to the periodic opacity reset. To combat this, we
impose a soft constraint with an additional pose regulariza-
tion, that encourages the matrices Py to stay close to the
identity matrix I:

Lpose = 1P, = Il + ([P, = Illa +[[1PF = 1]z, (8)
with all terms weighted equally.

4.6. Optimization

Eq. (6) defines the reconstruction loss per pixel for a single
event frame. However, naively averaging these per-pixel
losses over whole images leads to problems. For small event
windows, most pixels have no events, which are not very
informative but will then make up the majority of the loss.
To address this, we compute separate averages of the losses
for pixels with events X.ys and pixels without events X oeys-
These averages are then scaled by the hyperparameter o« =
0.3 to obtain the complete weighted reconstruction loss:

£recon(t57t) |X | (Z E ts,t>
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To obtain the final loss, we take a weighted sum of the re-
construction losses for the two event windows from Sec. 4.3
along with the isotropic and pose regularization:

L= /\1£recon (tsl P t) + /\2£recon (tszv t) (10)
+ )\isoﬁiso + )\poseﬁpose 7
where A1, A2 and )i, are hyper-parameters. In our experi-

ments, we use \; = Ao = 0.65, and ), is set to 10 initially
and reduced to 1 after 10* iterations.

5. Experimental Evaluation

5.1. Implementation details

We provide the full implementation details in the supple-
mental material. Running our method on a scene takes one
to two hours (depending on the scene size) with a single
NVIDIA GeForce RTX 3090.

(b)

Figure 2. Two different views of the scene with inanimate objects
assembled in the multi-view studio of MPI for Informatics.

5.2. Datasets

We next describe the new event datasets we provide to ana-
lyze large-scale scenes, along with the existing datasets that
we use in the experiments.

E-3DGS-Real. Our real dataset was captured within a stu-
dio environment. The scene consists of a diverse set of ob-
jects, as shown in Fig. 2. We used a DAVIS346C color event
camera to capture our scene with a resolution of 346 x 260.
The contrast threshold settings were kept at their default
values, which are symmetric. We capture multiple clips of
the scene, each roughly 60—120s long with varying motion
characteristics and levels of scene coverage. The captured
data consists of the event stream and RGB images at 2.5
frames per second. The studio is equipped with 115 tra-
ditional cameras distributed uniformly across the walls and
capturing 4K footage at 50 FPS. Similar to the approach
of Millerdurai et al. and annotation of the EE3D-R (Real)
dataset [18], we use these cameras to estimate and track the
camera pose by detecting a checkerboard mounted to the
event camera rig, providing tracking data at a frequency of
up to 50 Hz. Note that in some timestamps the checker-
board is not detected due to occlusions and thus the 50 Hz
is only the best case. The data from the external cameras is
relevant for camera pose estimation, but cannot be used as
ground truth because of the significantly different perspec-
tives from the training views.

E-3DGS-Synthetic. For creating the synthetic dataset, we
choose three scenes of UnrealEgo [1]. We rendered 60s
clips of each scene at 1000 FPS. The scenes contain large-
scale environments and exhibit various types of surfaces,
including reflections. We noticed that a few of the small
highly reflective objects (e.g., metallic rods) cause unnatu-
ral aliasing in the renders, so we changed them to use dif-
fuse materials. The event generation model from Sec. 4 was
used to simulate event data from these high-fidelity frames.
While we had access to pose data 1000 Hz, we downsam-
pled it to 50 Hz to simulate a real-world setting in which the
poses are estimated from externally captured RGB images.
E-3DGS-Synthetic-Hard. This dataset is designed specif-
ically to highlight and rigorously evaluate the key contribu-



tions of our method during the ablation study. To assess the
significance of our pose refinement module—which cannot
be quantitatively evaluated on the E-3DGS-Real dataset—
we introduce artificial noise into the E-3DGS-Synthetic
dataset, which is carefully matched to the one observed in
real data (see Supplement III for details). This allows us to
assess the performance of our pose refinement module ef-
fectively. In addition to introducing noise, we also address
the issue of camera speed variation. While the camera speed
in the E-3DGS-Synthetic dataset generally stays within a
narrow range, this does not fully test the capabilities of our
adaptive event windows. To create a more challenging sce-
nario, we varied the camera speed sinusoidally, with a ratio
between its maximum and minimum speed of 100. This
modification enables a more comprehensive evaluation of
our adaptive event windows.

TUM-VIE. This dataset consists of recordings from a
Prophesee Gen4 sensor [11]. RGB views from an ex-
ternally calibrated camera are also provided. The cam-
era extrinsics are tracked at 120 Hz. Two of the record-
ings have been used in Robust E-NeRF [14]; we train our
method on these recordings, namely mocap—-1d-trans
and mocap-desk2 to compare with Robust E-NeRF.
However, as also argued in Low and Lee [14], these record-
ings are not well suited for novel view synthesis since the
captures are predominantly front-facing, with some small
displacements either in circles or from side to side.

EventNeRF Datasets. EventNeRF [25] provides 360°
object-centric event data, which we use to show that
our method also outperforms previous methods on object-
centric data. To be consistent with the original work, we
evaluate our method on poses that are a part of the training
trajectory instead of novel views, for our evaluation metrics
to be comparable to theirs. We train our method on the syn-
thetic sequences to perform the quantitative comparison. In
these experiments, the background color is set to 159/255,
following the original paper [25].

5.3. Evaluation Metrics

For E-3DGS-Real dataset, the RGB frames are of too low
quality to be used for evaluation purposes, and, therefore,
we only perform qualitative comparisons. With TUM-VIE,
as suggested in Robust E-NeRF [14], it is not trivial to do
the tone mapping correctly. Therefore, we do quantitative
evaluation only with the synthetic datasets. For the evalu-
ation on synthetic data, keeping in line with the previous
literature, we adopt the following evaluation metrics:

* Peak Signal-to-Noise Ratio (PSNR);
* Learned Perceptual Image Patch Similarity (LPIPS) [31];
e Structural Similarity Index Measure (SSIM).

5.3.1 Color Correction

As our method only learns logarithmic differences rather
than absolute color intensities, there is an ambiguity in the
reconstructed color balance and illumination of the scene.
Hence, color needs to be adjusted, as otherwise, the evalu-
ation metrics will be less meaningful. We correct predicted
images using the following equation:

L. =L+ (E[L] - E[L]), (11)

where L/, is the color corrected logarithmic image and
“E[-]” is the expectation operator. Eq. (11) is applied sep-
arately to each color channel, which effectively aligns the
per-channel logarithmic means of the predicted images with
the ground-truth ones. Since in the synthetic setting, we al-
ready know the exact contrast threshold, there is no need for
correcting the scale of the image as done in some previous
works [14, 25]. Since we lack reference images for the real
dataset, neither evaluation nor color correction is applicable
to it. However, some minor color and contrast adjustments
are manually made for better visualization.

5.4. Comparisons to Related Methods

RGB-Based Methods. We train Deblur-GS [28] on blurry
RGB images from our E-3DGS-Real dataset to establish
a reference using RGB inputs. We also convert the event
stream to images using E2VID [23] and apply 3DGS (re-
ferred to as “E2VID + 3DGS”). This method is evaluated
on all E-3DGS datasets. To train both methods, we interpo-
late the camera poses at discrete time steps provided by the
external tracking system, which is necessary because the
pose timestamps do not align with the frame timestamps.
We use Spherical Linear Interpolation (SLERP) for the ro-
tations and Linear Interpolation (LERP) for the translations
to obtain the camera poses for the images.

Event-Based Methods. For comparison with event-based
methods, we train EventNeRF [25] on all E-3DGS datasets.
To adapt it for our datasets, we normalize the camera poses
within a unit sphere and following NeRF++ [30] added a
background network to model areas outside the sphere, as
the scene extent is unknown. Furthermore, the maximum
event window length is increased by the factor of 10 to aid
convergence (up to one second). We do not train our method
on the synthetic dataset provided by Robust E-NeRF [14],
as it is designed for extremely long refractory periods that
are not observed in other datasets. However, we compare
their method to ours on two sequences from TUM-VIE in
Fig. 3, namely mocap—-1d-trans and mocap—-desk?2.

5.4.1 Observations

The results of all evaluations are reported in Tables 1-2 and
Figs. 3—6. As visible, our method consistently outperforms
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Figure 3. Comparison of E-3DGS against the baselines and ablation study on the E-3DGS-Real dataset. Deblur-GS, E2VID + 3DGS and
EventNeRF suffer from various issues including blurring, floaters, and noise. In contrast, our method delivers clear details, such as the

intricate structure of the sculpture’s face.

Method Company ScienceLab Subway Average

TPSNR  |[LPIPS 1SSIM | tPSNR  |LPIPS 1SSIM | 1PSNR |LPIPS 1SSIM || tPSNR |LPIPS 1SSIM
EventNeRF [25] 19.59 0.41 0.65 17.22 0.46 0.60 18.71 0.34 0.67 16.80 0.50 0.61
E2VID [23] + 3DGS [9] 9.79 0.37 0.48 11.86 0.38 0.54 9.79 0.40 0.43 10.48 0.38 0.49
E-3DGS (ours) 20.78 0.29 0.72 | 18.41 0.28 0.73 | 19.92 0.20 0.74 19.70 0.26 0.73

Table 1. Comparison of several methods on the E-3DGS-Synthetic dataset: We outperform the baselines by a large margin in all cases.
Furthermore, E2VID + 3DGS shows lower PSNR but achieves better LPIPS than EventNeRF due to E2VID’s frame reconstruction, which
has poor color consistency but an adequate level of edge details (see Fig. 6). Green and yellow are the best and the second-best, respectively.

Scene EventNeRF [25] E-3DGS (ours)
1PSNR |LPIPS 1SSIM | 1PSNR |LPIPS 1SSIM
Chair 30.62 0.05 0.94 | 30.42 0.03 0.95
Drums 27.43 0.07 0.91 | 31.07 0.03 0.95
Ficus 31.94 0.05 0.94 | 34.08 0.02 0.96
Hotdog 30.26 0.04 0.94 | 30.79 0.03 0.96
Lego 25.84 0.13 0.89 | 30.74 0.04 0.94
Materials 24.10 0.07 0.94 | 33.73 0.02 0.97
Mic 31.78 0.03 0.96 | 35.87 0.02 0.98
Average 28.85 0.06 0.93 | 32.39 0.03 0.96

Table 2. Comparisons on the synthetic EventNeRF dataset. Our
method demonstrates significant improvements over EventNeRF
across all evaluation metrics.

the baselines both on synthetic and real data. In the Event-
NeRF object-centric datasets, our method shows clear supe-
riority across almost all evaluation metrics. The only excep-
tion is a marginally lower PSNR score on the “Chair” scene,
as detailed in Table 2. The general performance advantage
is further backed by the qualitative results in Fig. 4, where
our method produces more accurate reconstructions.
Similarly, on the E-3DGS-Synthetic dataset, E-3DGS
significantly surpasses both EventNeRF and E2VID+3DGS

by a wide margin; see Table 1. The qualitative results
on the E-3DGS-Real dataset, highlighted in Fig. 3, further
demonstrate our method’s superior performance: Deblur-
GS struggles with excessive blur; EventNeRF suffers from
noise due to ray sampling and memory constraints, and
E2VID+3DGS exhibits noisy Gaussians and floaters.

While Robust E-NeRF achieves higher local contrast, it
struggles with global brightness consistency due to single-
event training; see Fig. 5. Our E-3DGS maintains consistent
brightness across the scene, with only a slight reduction in
local contrast. Note that we can observe some holes and
floaters near the outer peripheries in Figs. 3 and 5. These
effects are due to out-of-bound areas at the edges of the ob-
servations that occur as a result of the undistortion of the
event stream.

5.5. Ablation Studies

To evaluate the effects of individual contributions, we do
extensive qualitative and quantitative ablation studies. We
primarily train different variants of our method on the E-
3DGS-Real and E-3DGS-Synthetic-Hard datasets, focusing
on the effects of four key components: Lz, Lpose, Pose
Refinement (PR), and the Adaptive Event Window (AW).
For the ablation experiments without adaptive window,



Company ScienceLab Subway Average
TPSNR  |LPIPS 1SSIM | +PSNR  |[LPIPS 1SSIM | tPSNR |[LPIPS 1 SSIM TPSNR  |LPIPS  1SSIM
v 20.742 0.404 0.661 18.823 0.414 0.677 18.923 0.436 0.619 19.496 0.418 0.652

v/ v/ v/ 20.519 0.434 0.631 18.099 0.454 0.631 19.401 0.475 0.601 19.340 0.454 0.621
v T /1 20229 0.539 0.606 17.646 0.587 0.601 18.746 0.620 0.569 18.874 0.582 0.592
B2 20.667 0.427 0.642 18.354 0.440 0.657 18.742 0.440 0.606 19.254 0.436 0.635
A 20.845 0.441 0.623 17.792 0.472 0.616 19.475 0.469 0.600 19.371 0.460 0.613

v v 19.834 0.537 0.583 17.317 0.577 0.571 18.111 0.605 0.532 18.421 0.573 0.562

Components

Table 3. Ablation study on the E-3DGS-Synthetic-Hard dataset. The overall tendency is that the performance declines when one of the
components is removed, confirming their contribution to the overall performance. Notably, E-3DGS without AW consistently ranks second,
while omitting Lis, often results in third place or close. (PR: Pose Refinement, AW: Adaptive Event Window). Green, yellow, and orange

indicate the best, second-best, and third-best results, respectively.

Chair Ficus

Lego Materials

E-3DGS EventNeRF

Ground-Truth

Figure 4. Comparison of E-3DGS vs. EventNeRF on the synthetic
EventNeRF dataset. EventNeRF struggles with noise in the Drums
sequence, blurriness in Ficus, and background artifacts in Lego
and Materials sequences, while E-3DGS handles these issues well.

Robust E-NeRF E-3DGS Ground-Truth

mocap-1d-trans

mocap-desk2

Figure 5. Comparison of E-3DGS vs. Robust E-NeRF on the
TUM-VIE dataset. While Robust E-NeRF achieves higher local
contrast, it suffers from globally inconsistent brightness. E-3DGS
produces consistent brightness across the scene, albeit with some
detail loss (e.g., in the table texture of the mocap-desk2 sequence).

we use a maximum time interval T, instead of maximum
events Ny.x to sample the event windows. The value of
Thax 1s computed from Ny, such that the average event

EventNeRF E-3DGS Ground-Truth

E2VID + 3DGS

ScienceLab Company

Subway

Figure 6. Comparison of E-3DGS vs. baselines on the E-3DGS-
Synthetic dataset. E2VID + 3DGS struggles with poor color re-
construction but captures edges and structure reasonably well.
EventNeRF suffers from noise and a lack of sharpness. In con-
trast, our method delivers clear details and accurate colors, with
only minor issues in certain areas (such as the coat on a chair in
the ScienceLab sequence. Best viewed with zoom.

window size remains approximately similar.

The results are reported in Table 3 and Figs. 3 and 6.
Removing L;,, results in a noticeable performance drop,
but removing L;,, and L, jointly leads to a much more
significant decline. This is likely because L, prevents
pose divergence in unstable conditions, while removal of
L;s, causes instability due to overfitting. Similar effects
could occur when combining L;,, with pose refinement.

6. Conclusion

We show that E-3DGS effectively combines the strengths
of 3D Gaussian splatting and event-based supervision for
3D reconstruction and novel view synthesis of large-scale
scenes. It significantly outperforms the baselines quanti-
tatively and qualitatively, while being orders of magnitude
faster. One aspect beyond the scope of this paper is lift-
ing the requirement for camera pose initialization through
an external process. We believe this work paves the way
for robust and scalable large-scale scene reconstruction uti-
lizing the advantages of event cameras to capture details in
challenging conditions, such as low light and fast motion.
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E-3DGS: Event-Based Novel View Rendering of Large-Scale Scenes
Using 3D Gaussian Splatting

Supplementary Material

This supplement provides additional details and insights
into the methods and experiments discussed in the main pa-
per. In Sec. I, we elaborate on our frustum-based initial-
ization, explaining the sampling strategy and how it ensures
effective Gaussian placement in the scene. Sec. II provides
further details on our pose refinement, specifically the use
of Gram-Schmidt orthogonalization to maintain valid trans-
formations during optimization. In Sec. III, we analyze the
camera pose noise in the E-3DGS-Real dataset and describe
the process we use to simulate realistic pose perturbations
for the E-3DGS-Synthetic-Hard dataset. Sec. IV outlines
the implementation details, including adjustments to the
original 3DGS training schedule to improve convergence.
Sec. V covers our evaluation, highlighting the measures we
take to ensure reliable results, particularly for the ablation
studies. Finally, we present a comprehensive comparison in
Sec. VI showcasing additional visual results and ablation
studies on the E-3DGS-Real, E-3DGS-Synthetic, and E-
3DGS-Synthetic-Hard datasets. These experiments expand
on the results from the main paper and further demonstrate
the effectiveness of our method across different scenarios.

I. Frustum-Based Initialization

As described in Sec. 4.2 of the main paper, our approach
involves initializing a fixed number of Gaussians, denoted
as Ng. If we have N, camera poses, we distribute the
Gaussians across these poses, resulting in N, /N, Gaussians
being initialized for each pose. The initialization process
begins by sampling points within the camera frustum in
normalized device coordinates (NDC). However, instead of
uniformly sampling all three coordinates (x,y, z) in NDC,
we adopt a different strategy for depth (z-axis).

We observe that when depth was sampled directly in
NDC, most Gaussians would cluster very close to the near
plane (zye,r), leading to poor scene coverage. To address
this, we sample the depth uniformly in camera coordinates
between zpear and zg,,.. This ensures a more even distribu-
tion of Gaussians across the entire depth range.

Once the depth is sampled in camera coordinates, it is
converted into NDC. Next, the x and y coordinates are sam-
pled uniformly in NDC. With z, y, and z values now in
NDC, we un-project them back into the world coordinates.
This conversion gives us the final positions for the Gaus-
sians in the 3D scene. Next, the entire process is repeated
for each camera frustum associated with the given poses
P,, ensuring a comprehensive initialization across all views.
Therefore, the distribution of Gaussians is effectively tied to
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the observable scene regions.

II. Pose Refinement and Gram-Schmidt Or-
thogonalization

In Sec. 4.5 of the main paper, we introduce our approach to
pose refinement, where the refined pose P/ is modeled as
P/ = PgP,, with P? being an error correction transform.
Rather than directly optimizing Py as a 3x3 matrix, we
represent it using two rotation vectors 1 and 75 and a trans-
lation vector 7', following the method of Hempel et al. [6].
This representation allows us to ensure that P remains a
valid transformation matrix during optimization.

To maintain the orthogonality of the rotation matrix, we
apply Gram-Schmidt orthogonalization to r; and 75 to com-
pute the final rotation matrix R = [r}, 7%, r5]. The process
is as follows:

p=
Pl

— /- /
Té— ro — (1] - 1T2)7]

GRS

rh =r] x r), and (12)

Here, 7] is the normalized version of r;, and 7} is ob-
tained by subtracting the projection of 5 onto ] and nor-
malizing the result. The third vector 74 is calculated as the
cross product of 7 and r4, ensuring that the resulting rota-
tion matrix is orthogonal. The final error correction matrix
P¢ is then constructed using these orthogonal vectors and
the translation vector 7'.

This approach guarantees that the pose refinement re-
mains valid throughout the optimization process, contribut-
ing to the stability and accuracy of our method.

ITI. Pose Perturbation in E-3DGS-Synthetic-
Hard

As described in Sec. 5.2 of the main paper, we provide the
E-3DGS-Synthetic-Hard dataset that differs from E-3DGS-
Synthetic in two aspects: 1) The camera speed is highly
varied and 2) the camera extrinsics exhibit noise similar in
characteristics to the noise observed in the real data. To
quantify the camera pose noise in the E-3DGS-Real dataset,
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(b) Larger translation errors are applied to E-3DGS-Synthetic-Hard, compared to those in E-3DGS-Real, to account for the
larger scene size and ensure a sufficiently challenging difficulty level for meaningful ablation studies.

Figure 1. Comparison of estimated pose errors in the E-3DGS-Real dataset versus the synthetically introduced errors in the E-3DGS-
Synthetic-Hard dataset. The synthetic perturbations are generated using an Ornstein—Uhlenbeck process to match the time-correlated

nature and variance of the real data.

we compare the refined training camera trajectories with the
initial trajectories. Our analysis reveals that these errors are
time-correlated. Based on this observation and by exam-
ining the scale of these errors, we introduce synthetic per-
turbations in the E-3DGS-Synthetic dataset using a random
walk with decay, specifically the Ornstein—Uhlenbeck pro-
cess [21], which ensures the perturbations have zero mean
while remaining time-correlated.

We calibrate the variance of the synthetic perturbations
to match the rotation errors observed in the real data. For
translation, we apply a higher level of perturbation, given
that the synthetic scenes are significantly larger in scale than
the real data. This adjustment ensures that translation errors
are proportionally scaled, creating a comparable difficulty
level for the ablation studies. The noise patterns are illus-
trated in Fig. L.

IV. Implementation Details

Our codebase is based on 3DGS [9]. We train the method
for 6 - 10* instead of 3 - 10*iterations, allowing the
pose refinement to converge. The original paper performs
both, densification and opacity resets of the Gaussians until
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1.5 - 10%iterations. In our case, we perform opacity re-
sets until 3 - 10* and densification until 5 - 10* iterations.
From our analysis—while opacity resets are important to
remove floaters—they also hamper the reconstruction qual-
ity. Therefore, once the scene is reasonably converged, we
stop resetting opacity and only densify the scene to get bet-
ter reconstruction.

Furthermore, 3DGS uses the fixed threshold value 2 -
10~* to decide whether a Gaussian should be split up dur-
ing the densification. We start the optimization with the
same value, however, we linearly decrease it to 4- 1075 over
4 - 10* iterations. First, this allows our method to refine the
poses with larger Gaussians, providing more support, and
second, reduce the threshold in later stages to obtain a more
detailed reconstruction. We initialize N, = 5 - 10* Gaus-
sians in all our trainings.

In the experiments with pose refinement, we restrict the
number of spherical harmonics to one, as it allows for bet-
ter pose refinement [8, 15]. For the experiments with perfect
poses, we follow the original 3DGS approach and use three
spherical harmonics. In all experiments, except those con-
ducted with the EventNeRF dataset [25], we consistently
use Ny =108 events for the window size. As sequences of



the latter are very short and do not contain enough events
for such large windows, we use Ny =10° for them. Train-
ing the full method takes one to two hours with a single
NVIDIA GeForce RTX 3090, depending on the scene size.

V. Further Evaluation Details (Ablations)

To ensure the reliability of the results, all ablation studies
are conducted four times, with evaluation metrics averaged
to provide more accurate insights and minimize the effects
of coincidence. For the E-3DGS-Synthetic-Hard dataset,
where the camera poses are perturbed, direct evaluation is
not feasible due to slight misalignments between the learned
3D scene and the ground truth. To correct this, we first
freeze the Gaussians and then refine the test poses with
a small learning rate to ensure proper convergence. This
alignment process allows the test views to match the ground
truth accurately, enabling precise evaluation.

VI. Additional Comparisons and Ablations

In this section, we expand on the main paper experiments
by showing additional results on E-3DGS-Real, E-3DGS-
Synthetic, and E-3DGS-Synthetic-Hard datasets. Fig. II
demonstrates the performance of E-3DGS in comparison
to Deblur-GS [28], E2VID [23]+3DGS [9] and Event-
NeRF [25] on the E-3DGS-Real dataset. These baselines
exhibit severe artifacts such as blur, floaters and noise. In
the same figure, we also demonstrate the impact of the key
components of our method. Removing Ljs, leads to in-
creased amounts of floaters and other artifacts. As the cap-
tured camera poses contain noise, pose refinement (PR) is
crucial to achieve accurate results. Hence, without it, the
model cannot produce accurate predictions, resulting in se-
vere artifacts and blurriness. However, the model without
the adaptive windows (AW) shows similar performance to
the full model. That is likely due to the overall uniformity
of the camera speeds in the used dataset, which diminishes
the potential impact of adaptive event windows.

In Fig. I1I, we compare E-3DGS against EventNeRF [25]
and E2VID [23]4+3DGS [9] on E-3DGS-Synthetic dataset.
Both baselines perform poorly: While E2VID+3DGS cap-
tures the edges and the general structure, it struggles
with color representation, and EventNeRF reconstruction
is much noisier and blurrier compared to our method. In
contrast, our E-3DGS outperforms them, showing clear and
sharp novel views with accurate color representation. Some
issues are still observable but are mostly in less supervised
areas, e.g., on the roof in ScienceLab or Subway scenes.

Lastly, Fig. I'V visualizes results of the ablation study on
the E-3DGS-Synthetic-Hard dataset. In comparison to E-
3DGS-Synthetic, this dataset has artificially added camera
extrinsics noise, which we describe in Sec III, and drasti-
cally increased camera speed variation (Sec. 5.2). While
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these changes make obtaining high reconstruction quality
more difficult, our full method still works well, outperform-
ing all ablated models. As on the E-3DGS-Real, remov-
ing Lis results in severe artifacts (e.g., in the first view
of Company or in the second view of Subway). E-3DGS-
Synthetic-Hard dataset has camera pose noise, and, hence,
using pose refinement (PR) is important, as removing it
results in blurriness and artifacts. Removing the adaptive
event windows (AW) leads to deterioration; e.g., the method
without AW exhibits artifacts on the sofa in the first view
of the Company sequence that are absent in the results of
the full method. It is also noteworthy that while all ablated
models struggle with the second view of the Subway se-
quence, the full method, nevertheless, achieves a better re-
sult: The structure is clearer and more recognizable with
fewer artifacts.



Deblur-GS

E-3DGS
w/o AW & L, w/o AW w/o PR w/0 Liso Ours Full EventNeRF E2VID + 3DGS

& Liss

W/0 Lpose

Figure II. Comparison of E-3DGS against the baselines and ablation study on E-3DGS-Real. As observed in the main paper, Deblur-GS,
E2VID + 3DGS, and EventNeRF exhibit issues such as blurring, floaters and noise. Notably, the ablation study highlights the impact of
removing key components. Removing Li, leads to an increase in floaters and artifacts. In contrast, the experiment without adaptive event
windows (AW) shows little difference in performance. This is likely due to the relatively consistent camera speeds in this dataset that
reduce the potential benefits of AW.



E2VID + 3DGS EventNeRF E-3DGS Ground-Truth

Company

ScienceLab

Subway

Figure III. Comparison of E-3DGS vs. baselines on the E-3DGS-Synthetic dataset. As observed in the main paper, E2VID + 3DGS
struggles with poor color reconstruction but captures edges and structure reasonably well. EventNeRF suffers from noise and a lack of
sharpness. In contrast, our method delivers clear details and accurate colors, with issues mainly confined to less observed areas, such as

the roof. Best viewed with zoom.
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Company ScienceLab Subway

E-3DGS Full Ground-Truth

W/ o Liso

w/o AW & L, w/o AW w/o PR

W/0 Lyose & Liso

Figure IV. Ablation study of E-3DGS on the E-3DGS-Synthetic-Hard dataset. The increased difficulty of this dataset leads to overall
performance deterioration compared to E-3DGS-Synthetic, but our full method still performs well. The version without the adaptive event
window (AW) is closest to the full method but shows more artifacts. For example, in the first column of the Company sequence, the sofa
shows some artifacts in the AW-removed version that are absent in the full method. Similar minor artifacts are visible elsewhere. The
second column of the Subway sequence is interesting, as all versions struggle with reconstructing it. Even so, the full method demonstrates
a better structure and fewer artifacts than the others.
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