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Abstract

While knowledge graphs contain rich seman-
tic knowledge about various entities and the
relational information among them, temporal
knowledge graphs (TKGs) describe and model
the interactions of the entities over time. In
this context, automatic temporal knowledge
graph completion (TKGC) has gained great in-
terest. Recent TKGC methods aim to integrate
advanced deep learning techniques, e.g., Trans-
formers, to boost model performance. How-
ever, we find that instead of adopting various
kinds of complex modules, it is more beneficial
to capture more extensive temporal information.
In this paper, we propose a simple but powerful
graph encoder for TKGC, namely, TARGCN.
TARGCN is parameter-efficient, and it exten-
sively utilizes the information from the whole
temporal context. We perform experiments
on three benchmark datasets. Our model can
achieve a more than 46% relative improvement
on the GDELT dataset compared with state-of-
the-art models. Meanwhile, it outperforms the
strongest baseline on the ICEWS05-15 dataset
with around 18% fewer parameters.

1 Introduction

A Knowledge Graph (KG) is a graph-structured
Knowledge Base (KB) that stores relational facts.
KGs have drawn increasing research interest since
they serve as key drivers for a wide range of down-
stream tasks in artificial intelligence, e.g., ques-
tion answering (Zhang et al., 2018), commonsense
reasoning (Xing et al., 2021), and recommender
systems (Wang et al., 2019). A fact in a KG is
described as a triplet (s, 7, 0), e.g., (Joe Biden, is
president of, USA), where s, o, r denote the subject
entity, the object entity, and the relation between
s and o. While KGs contain rich semantic knowl-
edge about entities and the relational information
among them, they do not consider the nature of
ever-evolving relational facts over time. For ex-
ample, consider a KG triplet (Donald Trump, is

president of, USA). According to world knowledge,
this triplet is valid only before Joe Biden took the
place of Donald Trump as the president of the USA.
This implies a shortcoming of KGs and calls for
the introduction of Temporal Knowledge Graphs
(TKGs). In TKGs, every fact is augmented with a
specific timestamp ¢ such that it can be described
with a quadruple (s, , 0,t). In this way, every fact
in TKGs has its own time validity and this enables
TKGs to capture the factual information in a time-
varying context.

Temporal Knowledge Graph Completion
(TKGC) is a task aiming to infer the missing
facts in TKGs. There exist two lines of TKGC
methods. (1) A lot of prior methods attempt to
incorporate temporal information into the existing
KG reasoning scoring models and build novel
time-aware score functions for TKGs (Leblay
and Chekol, 2018; Garcia-Durdn et al., 2018;
Ma et al., 2019; Lacroix et al., 2020; Messner
et al., 2021). (2) Another line of models take
advantage of the recent progress of Graph Neural
Networks (GNNs) (Niepert et al., 2016; Kipf and
Welling, 2017) and develop time-aware relational
graph encoders for TKGC (Wu et al., 2020; Jung
et al.,, 2021). Experimental results show that
time-aware relational graph encoders help to
achieve state-of-the-art performance on the TKGC
task. However, employing an additional graph
encoder on top of the existing KG score functions
normally leads to a higher number of model
parameters. The parameter consumption increases
even more when these models are equipped with
advanced deep learning structures, e.g., attention
mechanisms and Transformers (Vaswani et al.,
2017).

In this paper, we follow the trend of the sec-
ond line of methods and propose a time-aware re-
lational graph encoder: Time-aware Relational
Graph Convolutional Network (TARGCN). We
find that our light-weighted time-aware relational



graph encoder performs well on the TKGC task,
and it requires relatively few parameters. The con-
tribution of our work can be summarized as fol-
lows:

* We propose a novel time-aware relational
graph encoder: Time-aware Relational Graph
Convolutional Network (TARGCN) for the
TKGC task. TARGCN extensively utilizes
all available information in the temporal con-
text and generates time-aware graph repre-
sentations. Instead of directly learning rep-
resentations restricted to specific timestamps,
it learns temporal information by modeling
time differences among entities appearing at
different time with a functional time encoder.

* TARGCN serves as a light-weighted,
parameter-efficient, and robust TKG reason-
ing model. To achieve the same performance,
our model requires much fewer parameters
compared with two recently proposed
GNN-based TKG reasoning models, TeMP
(Wu et al., 2020) and T-GAP (Jung et al.,
2021). Additionally, TARGCN achieves
superior performance in link inference on
irregular timestamped data, and generalizes
well to unseen timestamps, thus showing its
robustness.

* We evaluate our model on three benchmark
datasets of TKGC. Our model achieves state-
of-the-art performance on all datasets. On the
GDELT (Leetaru and Schrodt, 2013) dataset,
it achieves a more than 46% relative improve-
ment compared with the best baseline.

2 Preliminaries and Related Work

2.1 Knowledge Graph Embedding Models

Knowledge graph embedding (KGE) models have
shown great success in KG reasoning tasks. TransE
(Bordes et al., 2013) is the first KGE model that
introduces translational embeddings into KG repre-
sentation learning. Many further works (Lin et al.,
2015; Sun et al., 2019; Abboud et al., 2020) are
inspired and extend the relational translations in
different spaces to capture complex relational infor-
mation. Another line of KGE methods are tensor
factorization-based models (Nickel et al., 2011;
Yang et al., 2015; Balazevic et al., 2019). They en-
code entity and relation embeddings as vectors and

then use bilinear functions to compute the plausibil-
ity scores for KG facts. Apart from these two main-
stream types of KGE models, neural-based rela-
tional graph encoders have been rapidly developed
and have shown great power in capturing struc-
tural information of KGs. R-GCN (Schlichtkrull
et al., 2018) incorporates relation information into
a Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) to enable relational reasoning on
KGs. Recently, CompGCN (Vashishth et al., 2020)
extends this idea and leverages a variety of compo-
sition operations between KG entities and relations.
It shows great effectiveness on KG reasoning tasks.

2.2 Temporal Knowledge Graph Embedding
Models

Temporal knowledge graph embedding (TKGE)
models can be categorized into several classes ac-
cording to their temporal information encoding
techniques. A series of models treat every times-
tamp separately and assign a high-dimensional vec-
tor as its embedding (Tresp et al., 2017; Leblay and
Chekol, 2018; Lacroix et al., 2020). The assigned
timestamp embeddings lie in the same space as
entity and relation embeddings. Another series of
models assume that every entity has a time-aware
embedding that evolves over time (Xu et al., 2020a;
Goel et al., 2020). To achieve time-aware prop-
erty, an entity together with a timestamp are in-
put into a function (or neural network) to yield a
time-aware entity representation at this timestamp.
Besides, Garcia-Duran et al. jointly encode en-
tity, relation and time information with Recurrent
Neural Network (RNN) to learn time-aware graph
representations (Garcia-Durdn et al., 2018). Instead
of modeling timestamp information, some recent
models attempt to model time difference, i.e., time
displacement, between the query event and known
events (Wu et al., 2020; Jung et al., 2021). It turns
out that time displacement modeling can contribute
to superior performance on TKG reasoning tasks.

2.2.1 Temporal Knowledge Graph
Completion

Let £, R and T denote a finite set of entities, re-
lations and timestamps, respectively. A temporal
knowledge graph G is a graph which represents
the evolution of interactions among entities over
time. At any timestamp t € T, G(t) is called
the TKG snapshot at ¢, and it can be taken as
a static KG containing the facts valid at £. Any
fact, i.e., event, can be described with a quadru-



ple (s,r,0,t), where s € £ represents the subject,
o € & represents the object, r € R represents
the relation between s and o, and ¢ € 7T indi-
cates the timestamp when this fact is valid. There-
fore, at £, the TKG snapshot can be summarized
as a finite set of all the valid facts at this times-
tamp ¢, i.e., G(t) = {(s,7r,0,t)|s,0 € E,r € R}.
We denote a TKG as a sequence of TKG snap-
shots G = {G(1),...,G(T)}, where T = |T|
is the number of timestamps. Similarly, we can
also denote a TKG as a finite set of all valid
facts which happen at any timestamp ¢t € 7T, i.e.,
G ={(s,r,0,t)|s,0€ E,r € R, t €T}

We define the TKGC task as follows. For
every snapshot G(t) in an observed TKG G =
{G(1),...,G(T)}, it contains all the observed facts
att. Let G(t) denote the set of all the true facts at t
such that G(t) € G(t). TKGC aims to predict the
ground truth object (or subject) entities of queries
(s,7,7,t) (or (2,7,0,t)), where (s,7,0,t) € G(t)
but (s,r,0,t) ¢ G(t), givenany t € T.

TKGC has recently gained increasing interest.
Researchers have paid great attention to better mod-
eling the temporal information brought by the na-
ture of TKGs. As fancier techniques and advanced
deep learning methods, e.g., attention mechanisms
and Transformers (Vaswani et al., 2017), being ex-
tensively studied, recent TKG reasoning models
(Wu et al., 2020; Jung et al., 2021) benefit from
them and show great performance on TKGC.

3 Our Method
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Figure 1: The encoding process in TARGCN for the
query (Angela Merkel, Express intent to meet or negoti-
ate, 7, 2014-10-15). The color darkness on each node
implies its probability of being sampled as an input at
the aggregation step (the darker the higher).

To solve the TKGC task, our relational graph
encoder TARGCN extensively collects information
from the whole temporal context and updates the
time-aware representations of entities. For every
link prediction query (sq, rq, 7, t;), TARGCN first
creates a subgraph for the subject s, according to

its temporal associated neighbors. Then it derives
time-aware representations for the neighbors from
the temporal neighborhood, and performs aggre-
gation. After s,’s time-aware representation is up-
dated, a knowledge graph decoder (score function)
is utilized to compute scores for every candidate
object, which yields the plausibility of every candi-
date object being the ground truth object in the link
prediction query (s, 7, 7, t,). Note that we only
consider object prediction queries (sg4, rq, 7, ;) in
our work since we add reciprocal relations for ev-
ery quadruple , i.e., adding (0,771, s,t) for every
(s,r,0,t). The restriction to only predict object
entities does not lead to a loss of generality. An ex-
ample is presented in Figure 1 which shows the
encoding process of our model. For the query
subject Angela Merkel appearing at 2014-10-15,
TARGCN selects its temporal neighbors with a
time difference-dependent probability. Node aggre-
gation is then performed to learn a contextualized
representation h_; ), where s, ¢, correspond to
Angela Merkel and 2014-10-15, respectively.

3.1 Subgraph Sampling in Temporal
Neighborhood

Given a TKGC query (sq,7q, 7, tq), TARGCN aims
to learn a contextualized representation for the sub-
ject entity s,. Inspired by the inference graph pro-
posed in (Han et al., 2021), we sample a Temporal
Neighboring Graph (TNG) for (sg,t,) in TKGC
context, where (sq,?,) is the node representing
sq at t,. We first find out all the temporal neigh-
bors of (sq,t,), which can be described as a set
Nty = test)l(e,r,s4,t) € Gie € E,t €
T,r € R}. The entity e of a temporal neigh-
bor (e, t) forms a link with s, at timestamp ¢ and
54 bears an incoming edge derived from the tem-
poral associated quadruple (e, r, s4,t). Note that
in TKGC, though we cannot observe all the true
quadruples, we still can observe part of true quadru-
ples at every timestamp. This enables TARGCN to
search for the temporal neighbors of (s4,?,) along
the whole time axis. Then we employ weighted
sampling strategy according to the absolute time
difference |t, — t| between (s4,t,) and the cor-
responding temporal neighbor (e, t). For every
temporal neighbor (e, t), the probability of it be-
ing sampled into (sq,?4)’s TNG is computed by:
exp(—lty — /S (een,, oy eoP(—ltg — ). In
this way, higher probablhtles are assigned to the
temporal neighbors who are closer to (s4,t,) along



the time axis. We adopt this sampling strategy
since we assume that for the inference of a fact at
tg, it is more likely to find clues from the factual
information at nearer timestamps. Besides, we use
a hyperparameter to limit the maximum number of
the temporal neighbors included in (s4, t;)’s TNG
to prevent over sampling less-concerned tempo-
ral neighbors. An example illustrating (sq,%,)’s
temporal neighborhood is shown in Appendix A.

3.2 Time-aware Relational Aggregation

After sampling TNG for the subject entity s,, we
then attempt to learn its contextualized representa-
tion through neighborhood aggregation. Since we
have access to temporal neighbors from the whole
timeline, we implicitly incorporate temporal infor-
mation. For every temporal neighbor, we employ
the functional time encoding method proposed in
(Xu et al., 2020b) to learn a time-aware node rep-
resentation. In this way, we are able to distinguish
the temporal neighbors, (e, t) and (e, t'), who root
from the same entity e but emerge at different times-
tamps ¢ and ¢’. The time-aware node representation
is computed as:

h(eyt) - f(h(iH@(tatq))a (D

where h, € R% denotes the time-invariant entity-
specific representation of the entity e. ®(-,-) is a
time difference encoder, mapping ¢ — ¢, to a finite
dimensional functional space R%. We concate-
nate the time-invariant entity representation with
its corresponding time difference representation,
and learn a combined representation of them with a
layer of feed-forward neural network f. Note that
the sign of ¢ — ¢, will affect the output of the time
difference encoding module. The complete form
of ®(-,-) is stated in Appendix F.

We aggregate the information from (sg,1,)’s
temporal neighbors with a relational graph aggre-
gator:

Bo, 1) = ‘1| S Wik,
(sq5tq) (th)G/\’[(qutw

) @)
qu,tq) denotes a finite set of temporal neighbors
sampled from (sq,t,)’s temporal neighborhood,
i.e., all the neighbors in (sq, t4)’s TNG. r is the rela-
tion appearing in the temporal associated quadruple
(e,r, sq,t) where temporal neighbor (e, t) is sam-
pled. We assume that relation representations are
time-invariant and we incorporate relational infor-
mation into the graph encoder by concatenating

time-aware node representations with them. Our
graph encoder outputs the time-aware representa-
tion of s, at query time 74, by combining not only
the raw entity representation h, but also the im-
plicit time difference information from its temporal
neighbors. The prior work T-GAP also pays at-
tention to modeling time displacement, i.e., time
difference, to better learn time-aware entity rep-
resentations. However, T-GAP explicitly models
time displacement with a discretized embedding,
and it includes three different weight matrices in
their graph encoder for the facts happening in the
past, at present, or in the future, thus increasing
parameter consumption. We will discuss this later
and compare its efficiency with our model’s.
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Figure 2: Inference process of TARGCN + Distmult.
H;, is the embedding matrix containing time-aware
representations of all candidates at ¢,. For a TKGC
query (sq,7q, 7, tq), we first sample a TNG rooting from
(sq,tq) (marked with dashed line square). Then we
employ TARGCN encoder to compute an aggregated
representation h,_ 4 for (sy,t,). We provide Distmult
with time-aware representations of all candidates for
score computation. The candidate producing the highest
score is selected as the predicted answer.

3.3 Learning and Inference

Figure 2 illustrates how TARGCN, together with
a KG score function, i.e., Distmult (Yang et al.,
2015), predicts the ground truth missing object for
the TKGC query (s4,74, 7, tq). Given s,, we use
the sampling strategy and our time-aware relational
graph encoder to compute a time dependent node
representation for (sg,t,). Then we use a simple
KG score function Distmult to compute the plau-
sibility of every candidate entity. We choose Dist-
mult because it does not introduce additional pa-
rameters, which encounters our flavor of building a
simple and parameter-efficient TKGC model. Note
that for the candidate entities, we do not sample
TNG for them to avoid huge time consumption dur-
ing inference. Instead, for every candidate entity
o', we simply derive its time-aware representation



by computing h(, ;) = f(hy|®(ty,1;)). The
temporal encoder ®(-, -) will also return a unique
representation when time difference equals zero.

We employ cross-entropy loss for parameter
learning:

hee by by 1)
L= —lo ( score(hs 1), hr ho,1) )
(s,r,%)eg & Zoregscore(bis,hrhi ) )7
(3)

where o’ denotes all candidate entities and we sum
over all observed quadruples in G. Note that our
TARGCN encoder can be equipped with any KG
score functions since our encoder returns time-
aware representations for entities. In our work,
SCOTe(h(&t), h,, h(o’,t)) =< h(&t), h,, h(o’,t) >.

4 Experiments

We evaluate our model on three TKGC benchmark
datasets. We compare our model with several exist-
ing TKGC methods. To further show the parameter
efficiency of our model, we do an analysis of pa-
rameter usage on TARGCN, compared with two
recently proposed powerful TKGC models TeMP
(Wuetal., 2020) and T-GAP (Jung et al., 2021). We
then prove the robustness of TARGCN and present
ablation studies in Section 4.4 and Section 4.5.

4.1 Experimental Setup

4.1.1 Datasets

We perform evaluation on three TKGC benchmark
datasets: (1) ICEWS14 (Garcia-Duran et al., 2018)
(2) ICEWSO05-15 (Garcia-Duran et al., 2018) (3)
GDELT (Leetaru and Schrodt, 2013). ICEWS14
and ICEWSO05-15 are two subsets of Integrated
Crisis Early Warning System (ICEWS) database.
ICEWS14 contains timestamped political facts hap-
pening in 2014, while the timestamps of factual
events in ICEWSO05-15 span from 2005 to 2015.
We follow (Wu et al., 2020) and use the GDELT
subset proposed by (Trivedi et al., 2017). It con-
tains global social facts from April 1, 2015 to
March 31, 2016. The detailed dataset statistics
are presented in Table 5 in Appendix B.

4.1.2 Evaluation Metrics

We employ two evaluation metrics for all exper-
iments, i.e., Hits@1/3/10 and Mean Reciprocal
Rank (MRR). For every test fact (s4, 74, 04, t4) € G
((8g,7q;04,tq) ¢ G), we derive an associated
TKGC query (54,74, 7, tq). We let models compute
the rank of the ground truth entity o, among all the
candidates. Hits@1/3/10 are the proportions of the

test facts where ground truth entities are ranked as
top 1, top 3, top 10, respectively. MRR computes
the mean of the reciprocal ranks of ground truth
entities. We follow the filtered setting proposed by
(Bordes et al., 2013) to achieve fairer evaluation.

4.1.3 Baseline Methods

We take fifteen methods as baseline models. The
first four baselines are static KG reasoning meth-
ods, i.e., TransE (Bordes et al., 2013), Distmult
(Yang et al., 2015), ComplEx (Trouillon et al.,
2016) and SimplE (Kazemi and Poole, 2018). The
other methods are developed to solve TKGC, in-
cluding TTransE (Leblay and Chekol, 2018), TA-
Distmult (Garcia-Durén et al., 2018), HyTE (Das-
gupta et al., 2018), DE-SimplE (Goel et al., 2020),
ATiSE (Xu et al., 2020a), TNTComplEx (Lacroix
et al., 2020), ChronoR (Sadeghian et al., 2021),
TeLM (Xu et al., 2021), BoxTE (Messner et al.,
2021), TeMP (Wu et al., 2020) and T-GAP (Jung
et al., 2021). Among all baselines, only TeMP and
T-GAP employ GNNs as graph encoders, similar
to our TARGCN setting. Therefore, we further
compare the parameter efficiency among them.

4.2 Experimental Results

Table 1 reports the experimental results of all meth-
ods on three benchmark datasets. We can observe
that TARGCN outperforms all baselines on all
datasets. The margin is particularly huge on the
GDELT dataset. TARGCN achieves an over 46%
relative improvement on MRR (0.163 absolute im-
provement) compared with the strongest baseline
BoxTE. TARGCN also leads in Hits metrics greatly.
It improves Hits@1/3/10 by 57.25%, 47.75%, and
34.83%, respectively. On ICEWS datasets, though
TARGCN does not take a huge step forward, it still
achieves the best results on MRR. TARGCN also
shows particularly strong performance on Hits@1,
which can be taken as the main contribution to its
superior results on MRR.

We argue that the performance gap varies be-
cause of the characteristics of different datasets.
While ICEWS datasets are sparse, GDELT is much
denser. As discussed in (Wu et al., 2020; Mess-
ner et al., 2021), the temporal sparsity issue on
ICEWS is much more severe than it on GDELT.
This implies that GDELT contains substantially
more temporal patterns, while ICEWS datasets are
more prone to be biased by a large number of iso-
lated events which are mainly dominated by sparse
entities and relations. Hence, we argue that reason-



| Datasets \ ICEWS14 \ ICEWS05-15 \ GDELT \

| Model | MRR Hits@! Hits@3 Hits@10 | MRR Hits@! Hits@3 Hits@10 | MRR Hits@! Hits@3 Hits@10 |
TransE [V] 0326 0.54 043 0644 [0330 0.152 0440  0.660 [0.155 0060 0.178  0.335
Distmult v 0441 0325 0498  0.668 |0457 0338 0515 0691 |0210 0.33 0224  0.365
ComplEx [] 0442 0400 0430  0.664 |0464 0347 0524 0696 |0213 033 0225 0366
SimplE [v] 0458 0341 0516 0687 |0478 0359 0539 0708 |0206 0.124 0220 0366
TTransE [V] 0255 0074 - 0.601 |0271 0084 - 0.616 |0.115 0000 0.160 0318
TA-DistMult [v] | 0477 0363 - 0.686 | 0474 0346 - 0728 |0.206 0.124 0219 0365
HyTE [v] 0297 0.108 0416 0655 |0316 0.16 0445 0681 |0.118 0000 0.165 0326
DE-SimplE[v] |0526 0418 0592 0725 |0513 0392 0578 0748 | 0230 0.141 0248  0.403
ATiSE [v] 0.571 0465 0.643 0755 |0484 0350 0558 0749 | - - - -
TNTComplEx [v] | 0.620 0520  0.660 0760 |0.670 0590 0710 0810 | - - - -
ChronoR [%] 0.625 0547 0669 0773 |0.675 059 0723 0820 | - - - -
TeLM [%] 0.625 0545 0673 0774 |0678 0599 0728 0823 | - - - -
BoxTE [] 0.613 0528 0664 0763 |0.667 0582 0719 0820 |0352 0269 0377 0511
TeMP-GRU [¥] |0.601 0478  0.681 0828 [0.691 0566 0782 0917 [0275 0.191 0297 0437
TeMP-SA [V] 0.607 0484 0.684 0840 [0680 0553 0769 0913 [0232 0152 0245 0377
T-GAP ] 0.610 0509 0677 079 |0.670 0568 0743 0845 | - - - -

| TARGCN 10636 0576 0672 0746 |0.702 0.635 0743 0823 |0515 0423 0557  0.689 |

Table 1: Temporal knowledge graph completion results on three benchmark datasets. Evaluation metrics are filtered
MRR and Hits@1/3/10. The best results are marked in bold. Results marked with [¥], [¥], [%] are taken from (Wu

et al., 2020), (Jung et al., 2021), (Messner et al., 2021), respectively.

ing on GDELT requires much stronger techniques.
And this can also be deduced by the performance of
TKGC models. From Table 1, we can observe that
for prior methods, though several TKGC methods
outperform static methods on GDELT, the improve-
ments are not substantial. However, on GDELT,
TARGCN achieves a more than 141% relative im-
provement on MRR, compared with the strongest
static KG baseline ComplEx. This shows the supe-
rior effectiveness of our graph encoder in capturing
various temporal patterns. For ICEWS datasets,
our model can also achieve state-of-the-art perfor-
mance. This demonstrates its strong ability in cap-
turing the temporal KG information brought by
sparse entities and relations.

4.3 Parameter Efficiency Analysis
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Figure 3: Filtered MRR on ICEWS14 achieved by
TARGCN, T-GAP and TeMP-SA, with varied number
of parameters. More details in Appendix G.

While TARGCN serves as a strong TKGC

model, it also keeps a quite low parameter cost. In
this section, we compare the parameter efficiency
among TARGCN and two recently proposed GNN-
based TKGC models, i.e., TeMP and T-GAP.

On ICEWS14, for all three models, we adjust
the embedding size of both entities and relations to
adjust the number of parameters. We do not change
model structures and other optimal hyperparame-
ter settings. In Figure 3, we show that TARGCN
performs better as we increase model parameters.
More importantly, even with much fewer parame-
ters, TARGCN still outperforms TeMP and T-GAP.

For ICEWSO05-15 and GDELT, we summarize
the number of parameters as well as performance
difference in Table 2. We compare across the mod-
els with parameter settings that lead to the exper-
imental results shown in Table 1. On ICEWSO05-
15, T-GAP uses 30.89% more parameters than our
model, but its performance drops by 4.56%. TeMP-
GRU achieves almost the same result as TARGCN
on ICEWS05-15, howeyver, it uses 18.45% more
parameters than our model. Fewer parameters are
used in TeMP-SA, but it also leads to worse per-
formance. On GDELT, we observe that though
TeMP-GRU employs 50.07% more parameters than
TARGCN, its performance is 46.60% lower than
our model. TeMP-SA shows the worst performance
(with a 54.95% performance drop), although it has
even 5.19% fewer parameters than TARGCN. To
this end, we argue that our model is extremely
parameter-efficient.

We attribute such high parameter efficiency to



| Datasets | ICEWS05-15 | GDELT |
| Model | # Parameters MRR  Parameter MRR | | # Parameters MRR Parameter T MRR | |
TARGCN 2359200 0.702 - 269200 0.515

T-GAP 3088000  0.670  30.89%  4.56% - - - -
TeMP-SA 2645760 0.680  12.15%  3.13% | 255232 0232 -5.19%  54.95%
TeMP-GRU | 2794528  0.691  18.45%  1.57% | 404000 0275 50.07%  46.60%

Table 2: Parameter efficiency comparison on ICEWS05-
15 and GDELT. We adopt relative change to define the
increase in parameter numbers and the drop in MRR.
Due to memory problem, we cannot train T-GAP on
GDELT even when batch size equals 1.

our simple but powerful time-aware relational
graph encoder. Note that in the TNG sampling
process, we explicitly force our model to choose
the temporal neighbors who are nearer to the source
node (s4, t4) on the time axis, by assigning higher
sampling probabilities to them. This can also be
interpreted as a "hard-coded attentional process".
Models like TeMP and T-GAP explicitly employ
self-attention modules to let models choose their at-
tention themselves through parameter learning. We
argue that even if such modules are powerful, they
can be simplified in the context of TKGC. In our
model, we force our TNG sampler to focus on the
facts happening at the timestamps that are closer
to the query timestamp, i.e., pay more "attention"
to the nearer facts. Our TNG sampling process
does not include any additional parameters, while
self-attention modules normally increase parame-
ters and bring heavier burdens for parameter opti-
mization. Another crucial point is that, compared
with TeMP who encodes temporal information only
from a fixed short time span of 27, our TNG sam-
pling range spans across the whole timeline. This
means that even if a temporal neighbor is derived
from a sparse entity and it appears only at faraway
timestamps from the query timestamp, our sam-
pler still has the ability to include it into the TNG
and enables information aggregation. Similar to
TARGCN, T-GAP, with the help of its Preliminary
GNN (PGNN), is able to find any temporal associ-
ated quadruples related to any entity appearing at
any time. However, in its PGNN, it employs three
weight matrices, i.€., Wpast, Wpresents W futures
together with discretized time displacement embed-
dings hy 5 to fully express the supporting informa-
tion coming from the past, the present and the fu-
ture. We find it redundant to model time difference
in this way. In TARGCN, we do not use separate
weight matrices during aggregation since our func-
tional time encoder naturally distinguishes the sign
of time difference itself. Besides, instead of learn-
ing different discretized embeddings to represent

different | At|, our model computes the representa-
tion of any time difference with shared parameters,
thus cutting parameter consumption.

4.4 Generalization to Unseen Timestamps and
Irregular Timestamped Data

To prove the robustness of our model, we follow
(Goel et al., 2020) to test its ability to predict the
links at unseen timestamps. We exclude every
quadruple appearing on the Sth, 15th, and 25th day
of each month in ICEWS 14 to construct a new train-
ing set. We randomly split the excluded quadruples
into validation and test sets. We compare TARGCN
with several recently proposed baselines on this
new dataset ICEWS14-unseen, and the results (Ta-
ble 3) indicate the strong robustness of our model
on timestamp generalization. TARGCN greatly
outperforms all baseline methods, especially in
Hits@1. We attribute this to our strong temporal
neighborhood searching mechanism which exten-
sively utilizes information from the whole timeline.
Besides, we construct another new dataset
ICEWS14-irregular to validate whether TKGC
models can generalize well to the TKG data col-
lected at irregular-spaced timestamps. We ran-
domly sample the snapshots in ICEWS14 and keep
the time interval between every two of the sampled
neighboring snapshots not greater than 4. We per-
form TKGC on ICEWS 14-irregular and experimen-
tal results in Table 3 show that TARGCN is superior
in handling data with irregular timestamps. Mod-
eling temporal data with time differences enables
TARGCN to distinguish irregular time intervals.

‘ Datasets ‘ ICEWS14-unseen ‘ ICEWS14-irregular ‘
| Model | MRR Hits@! Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10 |
TComplEx 0461 0365 0513 0.644 | 0.509 0421 0.558 0.678

TNTComplEx | 0.474  0.373 0.524 0.665 | 0.512 0.429 0.558 0.665
TeMP-SA ! 0.521  0.408 0.583 0.741
0526 0.428 0.588 0.719
0552 0.496 0.583 0.667

0.474 0362  0.532 0.689
0.578 0.518  0.607 0.692

T-GAP
TARGCN

Table 3: Performance comparison of generalization to
unseen timestamps and irregular timestamped data. The
best results are marked in bold. Dataset creation process
and more discussions are presented in Appendix E.

4.5 Ablation Study

To validate the effectiveness of different model
components, we conduct several ablation studies
on ICEWS 14 and GDELT. We first change the time
difference encoding module into an absolute time
encoder, e.g., for a (sg,t,) and a temporal neigh-
bor (e, t), we learn a representation for ¢ instead

'TeMP-SA can not generalize to unseen timestamps.



of t — t,. From Table 4, we observe performance
drops on both datasets. This proves the effective-
ness of time difference modeling. Next, we adopt
random sample in TNG sampling process, which
means we do not impose higher probabilities on the
temporal neighbors nearer to (sg,t,) on the time
axis. The performance drops on both datasets (es-
pecially on GDELT), indicating that by sampling
more neighbors nearer in the temporal context, our
model benefits more in learning better representa-
tions. Additionally, we conduct another experiment
by including all temporal neighbors instead of sam-
pled ones during aggregation. We observe huge
performance drops on both datasets, which proves
that our sampling strategy helps to exclude noisy
information from less-concerned neighbors.

Apart from the first three experiments, we fur-
ther study how the performance is affected if we
constrain the search range of our model in the tem-
poral neighbor sampling process. We constrain
the search range to 15, same as the optimal length
of temporal snapshots 7 used in (Wu et al., 2020)
for encoding, and allow our model only to sample
temporal neighbors who appear not farther than
15 snapshots away. The performance drops on
both datasets (the drop is considerably huge on
ICEWS14), and this concludes that our model’s
performance is closely connected to the amount of
temporal information it can utilize. Further details
of ablation studies are discussed in Appendix H

| Datasets

| Model

Absolute Time
Random Sample
‘Whole Neighborhood
Constrain Search Range
TARGCN

| ICEWS14 | GDELT |
| MRR Hits@l Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10 |
0622 0556 0660 0739 |0.502 0408 0545  0.678

0.618  0.551 0.656 0.735
0481 0433 0.501 0.568
0420 0374 0448 0.498
0.636  0.576  0.672 0.746

0433 0312 0502 0.640
0431 0312 0497 0.633
0.496  0.401 0.541 0.675
0515  0.423  0.557 0.689

Table 4: Ablation studies of TARGCN variants on
ICEWS14 and GDELT. The best results are marked
in bold.

4.5.1 Temporal Neighborhood Exploration

From Table 4, we observe that if we constrain the
search range of TARGCN in the temporal neighbor-
hood sampling process, the performance is strongly
affected. Therefore, we further conduct an exper-
iment to study how TARGCN performs while the
search range varies. We report our model’s perfor-
mance on ICEWS14 with different search range,
namely, 15, 50, 100, 200, 300, and 365 (whole time-
line), in Figure 4. For all the metrics, our model’s
performance improves greatly and constantly as
the search range increases. This proves that the

effectiveness of TARGCN mainly comes from its
superiority in utilizing temporal information. The
amount of available temporal information is deci-
sive for our simple-structured model. Compared
with the models that only make use of graph snap-
shots near to the query timestamp ¢4, e.g., TeMP,
we simplify the model structure but take advantage
of as much temporal information as we can. Ex-
perimental results in Table 1 show that it is more
beneficial in TKGC to utilize temporal information
more extensively, instead of designing complex
modules.

0.7

o
>

Metrics Results

o
2%

“= MRR
" —= Hits@1
n —= Hils@3
04 —a—Hits@10 |

I I I I T T
50 100 150 200 250 300 350 400
Search Range

Figure 4: Temporal neighborhood exploration analysis
on ICEWS14. Evaluation metrics are filtered MRR and
Hits@1/3/10.

5 Conclusion

We propose a simple but powerful time-aware re-
lational graph encoder TARGCN for Temporal
Knowledge Graph Completion (TKGC). TARGCN
employs a Temporal Neighboring Graph (TNG)
sampling strategy, which enables it to extensively
utilize the information from the whole temporal
context. Experimental results show that TARGCN
achieves state-of-the-art performance on three
benchmark TKGC datasets. Besides, TARGCN
enjoys an extremely high parameter efficiency. It
beats two recently proposed strong GNN-based
TKGC methods, i.e., TeMP and T-GAP, with much
fewer parameters. Thanks to its time difference
learning module and temporal neighbor sampler,
TARGCN also shows strong robustness to inferring
links on irregular timestamped data or at unseen
timestamps. We find that it is not always necessary
to incorporate complex modules, e.g., Transform-
ers, into TKG reasoning models. Instead, develop-
ing methods to capture more extensive temporal
information is more beneficial.
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Appendix
A Example of Temporal Neighborhood

Figure 5 shows an example of the temporal neigh-
borhood of (sg4,t,), generated from a TKGC
query (Sq,7q,7,tq). We can represent it as
M.sq,tq) {(61’tq - 1)7(62>tq + 1)7(63’tq -
3), (e4,t1), (es,t7 — 1)}. The probability of each
temporal neighbor being sampled into (sq,%,)’s
TNG is determined according to the time differ-
ence between ¢, and the timestamp of this temporal
neighbor (the darker the temporal neighbor shows,
the higher the probability).

B Dataset Statistics

Table 5 contains the dataset statistics of all three
benchmark datasets and two newly created datasets,
i.e., ICEWS14-unseen and ICEWS14-irregular.
The data creation process of ICEWS14-unseen and
ICEWS14-irregular is discussed in Appendix E.

Dataset Niain Nualid Nest €] Rl |T]
ICEWS14 72,826 8,941 8,963 7,128 230 365
ICEWSO05-15 386,962 46,275 46,092 10,488 251 4,017
GDELT 2,735,685 341,961 341,961 500 20 366
ICEWS14-unseen 65,679 3,420 3,420 6,601 230 365
ICEWS 14-irregular 29,102 3,555 3,607 5,093 210 146

Table 5: Dataset statistics. Niain, Vvalid> NVtest TEpPresent
the number of quadruples in the training set, validation
set, and test set, respectively. |7| denotes the number
of timestamps, where we take a snapshot of a TKG at
each timestamp. All facts in all datasets are denoted in
English.
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C Implementation Details

We implement all experiments with PyTorch
(Paszke et al., 2019) and use a single NVIDIA Tesla
T4 for computation. We allow TARGCN to search
for neighbors along the whole timeline. The hy-
perparameter searching strategies are reported in
Table 6 and the hyperparameter settings producing
the reported experimental results (in Table 1) are
presented in Table 7. We use the official imple-
mentation of TComplEx, TNTComplEx 2, TeMP
3 and T-GAP *. We find that T-GAP has an ex-
tremely high memory demand. Training GDELT
with T-GAP on a 16GB NVIDIA Tesla T4 causes
out-of-memory error even when we set batch size
to 1. This is due to its PGNN which constructs a
huge temporal associative graph for every entity in
training examples.

The training time and the memory usage of
TARGCN are reported in Table 8. The training
time of TARGCN scales with the number of train-
ing quadruples in each dataset. Sampling tempo-
ral neighbors for every query subject requires rel-
atively long computation time. This may cause
timeout problems during the training process when
TARGCN is used to train large-scale datasets (even
much larger than GDELT). However, the memory
usage of our model remains quite low, which en-
ables training on smaller GPUs.

Table 6: Hyperparameter searching strategy.

Datasets ICEWS14 ICEWS05-15 GDELT

Hyperparameter

{150, 200, 300}
{1,2}
{Tanh, ReLU}
{100, 200, 366}
{50. 100, 500}

Embedding Size

# Aggregation Step
Activation Function
Search Range

# Temporal Neighbor

{150, 200, 300}
(1,2}

{150, 200, 300}
(1,2}
{Tanh, ReLU}

{15, 100, 200, 300, 365}
{50. 100, 500}

{Tanh, ReLU}
{100, 500, 1000, 4017}
{50, 100, 500}

Table 7: Best hyperparameter settings on each dataset.

Datasets ICEWS14 ICEWSO05-15 GDELT
Hyperparameter

Embedding Size 300 200 200

# Aggregation Step 1 1 1
Activation Function Tanh Tanh Tanh
Search Range 365 4017 366

# Temporal Neighbor 100 100 100

Zhttps://github.com/facebookresearch/tkbe
3https://github.com/JiapengWu/TeMP
*https://github.com/sharkmirl/T-GAP
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Figure 5: Temporal neighborhood of (s, t,) derived from an object prediction query (sq,7,,?,t,). We use a
dashed line (labeled with relation type) to denote a temporal associated link connecting s, with its temporal neighbor,
e.g., the dashed line labeled with 74 corresponds to the temporal associated quadruple (e, 74, S¢,t1). A temporal
neighbor with darker color is assigned a higher probability to be sampled into (s4,t,)’s TNG. Since (eq,t, — 1) and
(e2,tq + 1) has the same temporal distance from ¢, they are assigned with the same sampling probability (denoted

with the same color darkness).

Table 8: Computational budget of TARGCN on bench-
mark datasets.

Datasets ICEWS14 ICEWS05-15 GDELT
GPU Memory Usage (MB) 1,375 1,385 1,261
Train Time/ Epoch (s) 405 9,900 145,200
# Train Epochs 100 100 10

D Validation Results

In Table 9, we report the experimental results of
TARGCN on validation sets on all three benchmark
datasets. The results are produced by the same
trained models reported in Table 1.

E Further Details of Generalization to
Unseen Timestamps and Irregular
Timestamped Data

We choose four strong baselines to compare with
TARGCN, namely, TComplEx (Lacroix et al.,
2020), TNTComplEx (Lacroix et al., 2020), TeMP-
SA (Wuetal., 2020), and T-GAP (Jung et al., 2021).
We choose TeMP-SA since it is reported with better
results on ICEWS14 (newly created datasets are
based on ICEWS14). We can not perform unseen
timestamps generalization with TeMP-SA since
it requires the unavailable KG snapshot G(¢,) for
every link prediction query (sq,7q,?,%,).

E.1 Unseen Timestamps Generalization

We do not use the same unseen timestamps gener-
alization datasets proposed in (Goel et al., 2020)
and (Jung et al., 2021), since they do not release
their dataset. We follow (Goel et al., 2020) and
create ICEWS14-unseen by ourselves. We exclude
every quadruple appearing on the 5th, 15th, and
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25th day of each month in ICEWS14 to construct
a new training set. We randomly split the excluded
quadruples into validation and test sets. We make
sure that every entity appearing in the validation
and test sets is seen in the training set.

By comparing the results in Table 1 and Table 3,
we observe that the performance improvement of
TARGCN becomes even much larger on ICEWS14-
unseen than on the original dataset. TARGCN
achieves a relative improvement of 21.94% on
MRR compared with T-GAP and TNTComplEx.
More surprisingly, it also achieves a relative im-
provement of 43.09% on Hits@1 compared with
the strongest baseline T-GAP on unseen times-
tamps generalization. This proves the extremely
strong robustness of our model to link inference at
unseen timestamps.

E.2 Performance on Irregular Timestamped
Data

We sample the KG snapshots from the original
ICEWS14 dataset. The value of the time interval
between every two neighboring snapshots can be
randomly assigned either to 1, 2, 3, or 4. In this
way, we create a dataset simulating that the TKG
data is observed and collected at irregular-spaced
timestamps.

TARGCN enlarges the performance gap between
itself and other baselines, compared with the results
regarding TKGC on the original dataset reported
in Table 1. Besides, we observe that TeMP-SA and
T-GAP outperform TNTComplEx on ICEWS14-
irregular, while they perform worse on the original
dataset. This is due to their time displacement
temporal encoders which learn different tempo-



| Datasets | ICEWS14 | ICEWS05-15 | GDELT |
| Model | MRR Hits@l Hits@3 Hits@10 | MRR Hits@l Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10 |
| TARGCN | 0.647  0.591  0.679 0748 [0.705 0.641 0742 0821 [0510 0418 0552  0.685 |

Table 9: Temporal knowledge graph completion results on the validation sets of three benchmark datasets. Evaluation
metrics are filtered MRR and Hits@1/3/10.

ral embeddings for different time intervals. For = embedding size of TARGCN to 150 so that its pa-
TARGCN, it employs a time difference temporal ~ rameter number becomes the smallest among all
encoder that maps time-aware entity representa-  models. We keep T-GAP and TeMP with their op-
tions with the explicit value of time differences, timal parameter settings and compare them with
thus being able to capture accurate temporal infor- ~TARGCN. From Table 1 and Table 10, we observe

mation provided by irregular timestamped data. that even when we decrease the embedding size
of TARGCN from 300 to 150, our model still per-
F Functional Time Encoder Details forms well (MRR drops from 0.635 to 0.627), and

it still outperforms T-GAP and TeMP on ICEWS14.
TeMP variants show the worst performance, even
when they have more parameters than TARGCN. T-
GAP performs better than TeMP variants. However,
it uses 55.59% more parameters than TARGCN,
while it is beaten with a 2.71% performance drop.

For a TKGC query (sq,74,7,t4), to compute the
time-aware representation of a sampled temporal
neighbor (e, t), we employ the time encoder fol-
lowing (Xu et al., 2020b) to generate the time dif-
ference representation hy_;_:

hy_, =®(t t,) All the points in Figure 3 are based on the results
! ! in Table 11. Note that we control the number of
—./ dl[co s(wi(t —ty) + #1),..., (4)  parameters only by changing embedding size, with-
t out changing any other hyperparameters or model
cos(wa, (t — tq) + ¢a,))], structures.
where w; to wy, are frequency components, ¢; | Datasets | ICEWS14 |
to ¢4, are phase components, and d; denotes the | Model | Embedding Size # Parameters  MRR |
embedding size of time difference representations.
TARGCN 100 799400 0.605
The frequency components and phase components 150 1229100 0.627
are learnable and shared in representation compu- 200 1678800  0.629
tation for all time differences. For more details 300 2638200  0.636
please refer to (Xu et al., 2020b). T-GAP 50 928675 0.582
100 1912350 0.610
G Parameter Efficiency Analysis Details 200 2951025  0.596
TeMP-SA 64 611840 0.595
128 1264640 0.607
| Datasets | ICEWS14 | 256 2928640 0618
| Model | # Parameters MRR  Parameter 7 MRR | |
TARGCN 1229100 0.627

- Table 11: Experimental results as well as the number of

TGAP 1912350 0610  55.59% 271% parameters that lead to Figure 3. Underlined results are
TeMP-SA 1264640 0.607 2.89% 3.19%
taken from Table 1.

TeMP-GRU 1413408 0.601 15.00% 4.15%

Table 10: Parameter efficiency comparison on
ICEWS14. We adopt relative change to define the in- |  Ablation Study Details
crease in parameter numbers and the drop in MRR.

Although in all ablation studies, both ICEWS14

Similar to Table 2, Table 10 summarizes the = and GDELT witness the same tendency in perfor-
number of parameters as well as performance dif-  mance drops, the sensitivity of different model com-
ference on ICEWS14. For TARGCN, the model  ponents are different. We find that the absolute
producing results in Table 1 has more parameters  time encoder and the whole temporal neighbor-
than T-GAP and TeMP. Therefore, we decrease the  hood aggregation bring similar influences on the
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performance on both datasets. However, random
sample in TNG imposes a much larger impact on
the performance on GDELT than it on ICEWS14,
while constraining search range affects ICEWS14
more greatly. This can also be explained with
the dataset characteristics discussed in Section 4.2.
ICEWS14 is much sparser, which implies that in a
small search range around the query timestamp, we
might not be able to find most supporting temporal
neighbors. However, for GDELT, its dense nature
leads to the fact that almost all supporting temporal
neighbors can be found in this small search range.
And if we allow the model to randomly sample
temporal neighbors from the whole timeline, the
gain brought by the increasing number of meaning-
ful temporal neighbors helps the model to perform
much better on ICEWS14. On the contrary, for
GDELT, sampling too many temporal neighbors
far from the query timestamp incurs huge noise,
thus leading to degenerated performance.
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