
A Simple But Powerful Graph Encoder for Temporal Knowledge Graph
Completion

Anonymous ACL submission

Abstract

While knowledge graphs contain rich seman-001
tic knowledge about various entities and the002
relational information among them, temporal003
knowledge graphs (TKGs) describe and model004
the interactions of the entities over time. In005
this context, automatic temporal knowledge006
graph completion (TKGC) has gained great in-007
terest. Recent TKGC methods aim to integrate008
advanced deep learning techniques, e.g., Trans-009
formers, to boost model performance. How-010
ever, we find that instead of adopting various011
kinds of complex modules, it is more beneficial012
to capture more extensive temporal information.013
In this paper, we propose a simple but powerful014
graph encoder for TKGC, namely, TARGCN.015
TARGCN is parameter-efficient, and it exten-016
sively utilizes the information from the whole017
temporal context. We perform experiments018
on three benchmark datasets. Our model can019
achieve a more than 46% relative improvement020
on the GDELT dataset compared with state-of-021
the-art models. Meanwhile, it outperforms the022
strongest baseline on the ICEWS05-15 dataset023
with around 18% fewer parameters.024

1 Introduction025

A Knowledge Graph (KG) is a graph-structured026

Knowledge Base (KB) that stores relational facts.027

KGs have drawn increasing research interest since028

they serve as key drivers for a wide range of down-029

stream tasks in artificial intelligence, e.g., ques-030

tion answering (Zhang et al., 2018), commonsense031

reasoning (Xing et al., 2021), and recommender032

systems (Wang et al., 2019). A fact in a KG is033

described as a triplet (s, r, o), e.g., (Joe Biden, is034

president of, USA), where s, o, r denote the subject035

entity, the object entity, and the relation between036

s and o. While KGs contain rich semantic knowl-037

edge about entities and the relational information038

among them, they do not consider the nature of039

ever-evolving relational facts over time. For ex-040

ample, consider a KG triplet (Donald Trump, is041

president of, USA). According to world knowledge, 042

this triplet is valid only before Joe Biden took the 043

place of Donald Trump as the president of the USA. 044

This implies a shortcoming of KGs and calls for 045

the introduction of Temporal Knowledge Graphs 046

(TKGs). In TKGs, every fact is augmented with a 047

specific timestamp t such that it can be described 048

with a quadruple (s, r, o, t). In this way, every fact 049

in TKGs has its own time validity and this enables 050

TKGs to capture the factual information in a time- 051

varying context. 052

Temporal Knowledge Graph Completion 053

(TKGC) is a task aiming to infer the missing 054

facts in TKGs. There exist two lines of TKGC 055

methods. (1) A lot of prior methods attempt to 056

incorporate temporal information into the existing 057

KG reasoning scoring models and build novel 058

time-aware score functions for TKGs (Leblay 059

and Chekol, 2018; García-Durán et al., 2018; 060

Ma et al., 2019; Lacroix et al., 2020; Messner 061

et al., 2021). (2) Another line of models take 062

advantage of the recent progress of Graph Neural 063

Networks (GNNs) (Niepert et al., 2016; Kipf and 064

Welling, 2017) and develop time-aware relational 065

graph encoders for TKGC (Wu et al., 2020; Jung 066

et al., 2021). Experimental results show that 067

time-aware relational graph encoders help to 068

achieve state-of-the-art performance on the TKGC 069

task. However, employing an additional graph 070

encoder on top of the existing KG score functions 071

normally leads to a higher number of model 072

parameters. The parameter consumption increases 073

even more when these models are equipped with 074

advanced deep learning structures, e.g., attention 075

mechanisms and Transformers (Vaswani et al., 076

2017). 077

In this paper, we follow the trend of the sec- 078

ond line of methods and propose a time-aware re- 079

lational graph encoder: Time-aware Relational 080

Graph Convolutional Network (TARGCN). We 081

find that our light-weighted time-aware relational 082
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graph encoder performs well on the TKGC task,083

and it requires relatively few parameters. The con-084

tribution of our work can be summarized as fol-085

lows:086

• We propose a novel time-aware relational087

graph encoder: Time-aware Relational Graph088

Convolutional Network (TARGCN) for the089

TKGC task. TARGCN extensively utilizes090

all available information in the temporal con-091

text and generates time-aware graph repre-092

sentations. Instead of directly learning rep-093

resentations restricted to specific timestamps,094

it learns temporal information by modeling095

time differences among entities appearing at096

different time with a functional time encoder.097

• TARGCN serves as a light-weighted,098

parameter-efficient, and robust TKG reason-099

ing model. To achieve the same performance,100

our model requires much fewer parameters101

compared with two recently proposed102

GNN-based TKG reasoning models, TeMP103

(Wu et al., 2020) and T-GAP (Jung et al.,104

2021). Additionally, TARGCN achieves105

superior performance in link inference on106

irregular timestamped data, and generalizes107

well to unseen timestamps, thus showing its108

robustness.109

• We evaluate our model on three benchmark110

datasets of TKGC. Our model achieves state-111

of-the-art performance on all datasets. On the112

GDELT (Leetaru and Schrodt, 2013) dataset,113

it achieves a more than 46% relative improve-114

ment compared with the best baseline.115

2 Preliminaries and Related Work116

2.1 Knowledge Graph Embedding Models117

Knowledge graph embedding (KGE) models have118

shown great success in KG reasoning tasks. TransE119

(Bordes et al., 2013) is the first KGE model that120

introduces translational embeddings into KG repre-121

sentation learning. Many further works (Lin et al.,122

2015; Sun et al., 2019; Abboud et al., 2020) are123

inspired and extend the relational translations in124

different spaces to capture complex relational infor-125

mation. Another line of KGE methods are tensor126

factorization-based models (Nickel et al., 2011;127

Yang et al., 2015; Balazevic et al., 2019). They en-128

code entity and relation embeddings as vectors and129

then use bilinear functions to compute the plausibil- 130

ity scores for KG facts. Apart from these two main- 131

stream types of KGE models, neural-based rela- 132

tional graph encoders have been rapidly developed 133

and have shown great power in capturing struc- 134

tural information of KGs. R-GCN (Schlichtkrull 135

et al., 2018) incorporates relation information into 136

a Graph Convolutional Network (GCN) (Kipf and 137

Welling, 2017) to enable relational reasoning on 138

KGs. Recently, CompGCN (Vashishth et al., 2020) 139

extends this idea and leverages a variety of compo- 140

sition operations between KG entities and relations. 141

It shows great effectiveness on KG reasoning tasks. 142

2.2 Temporal Knowledge Graph Embedding 143

Models 144

Temporal knowledge graph embedding (TKGE) 145

models can be categorized into several classes ac- 146

cording to their temporal information encoding 147

techniques. A series of models treat every times- 148

tamp separately and assign a high-dimensional vec- 149

tor as its embedding (Tresp et al., 2017; Leblay and 150

Chekol, 2018; Lacroix et al., 2020). The assigned 151

timestamp embeddings lie in the same space as 152

entity and relation embeddings. Another series of 153

models assume that every entity has a time-aware 154

embedding that evolves over time (Xu et al., 2020a; 155

Goel et al., 2020). To achieve time-aware prop- 156

erty, an entity together with a timestamp are in- 157

put into a function (or neural network) to yield a 158

time-aware entity representation at this timestamp. 159

Besides, García-Durán et al. jointly encode en- 160

tity, relation and time information with Recurrent 161

Neural Network (RNN) to learn time-aware graph 162

representations (García-Durán et al., 2018). Instead 163

of modeling timestamp information, some recent 164

models attempt to model time difference, i.e., time 165

displacement, between the query event and known 166

events (Wu et al., 2020; Jung et al., 2021). It turns 167

out that time displacement modeling can contribute 168

to superior performance on TKG reasoning tasks. 169

2.2.1 Temporal Knowledge Graph 170

Completion 171

Let E , R and T denote a finite set of entities, re- 172

lations and timestamps, respectively. A temporal 173

knowledge graph G is a graph which represents 174

the evolution of interactions among entities over 175

time. At any timestamp t ∈ T , G(t) is called 176

the TKG snapshot at t, and it can be taken as 177

a static KG containing the facts valid at t. Any 178

fact, i.e., event, can be described with a quadru- 179
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ple (s, r, o, t), where s ∈ E represents the subject,180

o ∈ E represents the object, r ∈ R represents181

the relation between s and o, and t ∈ T indi-182

cates the timestamp when this fact is valid. There-183

fore, at t, the TKG snapshot can be summarized184

as a finite set of all the valid facts at this times-185

tamp t, i.e., G(t) = {(s, r, o, t)|s, o ∈ E , r ∈ R}.186

We denote a TKG as a sequence of TKG snap-187

shots G = {G(1), ...,G(T )}, where T = |T |188

is the number of timestamps. Similarly, we can189

also denote a TKG as a finite set of all valid190

facts which happen at any timestamp t ∈ T , i.e.,191

G = {(s, r, o, t)|s, o ∈ E , r ∈ R, t ∈ T }.192

We define the TKGC task as follows. For193

every snapshot G(t) in an observed TKG G =194

{G(1), ...,G(T )}, it contains all the observed facts195

at t. Let Ḡ(t) denote the set of all the true facts at t196

such that G(t) ∈ Ḡ(t). TKGC aims to predict the197

ground truth object (or subject) entities of queries198

(s, r, ?, t) (or (?, r, o, t)), where (s, r, o, t) ∈ Ḡ(t)199

but (s, r, o, t) /∈ G(t), given any t ∈ T .200

TKGC has recently gained increasing interest.201

Researchers have paid great attention to better mod-202

eling the temporal information brought by the na-203

ture of TKGs. As fancier techniques and advanced204

deep learning methods, e.g., attention mechanisms205

and Transformers (Vaswani et al., 2017), being ex-206

tensively studied, recent TKG reasoning models207

(Wu et al., 2020; Jung et al., 2021) benefit from208

them and show great performance on TKGC.209

3 Our Method210

Figure 1: The encoding process in TARGCN for the
query (Angela Merkel, Express intent to meet or negoti-
ate, ?, 2014-10-15). The color darkness on each node
implies its probability of being sampled as an input at
the aggregation step (the darker the higher).

To solve the TKGC task, our relational graph211

encoder TARGCN extensively collects information212

from the whole temporal context and updates the213

time-aware representations of entities. For every214

link prediction query (sq, rq, ?, tq), TARGCN first215

creates a subgraph for the subject sq, according to216

its temporal associated neighbors. Then it derives 217

time-aware representations for the neighbors from 218

the temporal neighborhood, and performs aggre- 219

gation. After sq’s time-aware representation is up- 220

dated, a knowledge graph decoder (score function) 221

is utilized to compute scores for every candidate 222

object, which yields the plausibility of every candi- 223

date object being the ground truth object in the link 224

prediction query (sq, rq, ?, tq). Note that we only 225

consider object prediction queries (sq, rq, ?, tq) in 226

our work since we add reciprocal relations for ev- 227

ery quadruple , i.e., adding (o, r−1, s, t) for every 228

(s, r, o, t). The restriction to only predict object 229

entities does not lead to a loss of generality. An ex- 230

ample is presented in Figure 1 which shows the 231

encoding process of our model. For the query 232

subject Angela Merkel appearing at 2014-10-15, 233

TARGCN selects its temporal neighbors with a 234

time difference-dependent probability. Node aggre- 235

gation is then performed to learn a contextualized 236

representation h(sq ,tq), where sq, tq correspond to 237

Angela Merkel and 2014-10-15, respectively. 238

3.1 Subgraph Sampling in Temporal 239

Neighborhood 240

Given a TKGC query (sq, rq, ?, tq), TARGCN aims 241

to learn a contextualized representation for the sub- 242

ject entity sq. Inspired by the inference graph pro- 243

posed in (Han et al., 2021), we sample a Temporal 244

Neighboring Graph (TNG) for (sq, tq) in TKGC 245

context, where (sq, tq) is the node representing 246

sq at tq. We first find out all the temporal neigh- 247

bors of (sq, tq), which can be described as a set 248

N(sq ,tq) = {(e, t)|(e, r, sq, t) ∈ G; e ∈ E , t ∈ 249

T , r ∈ R}. The entity e of a temporal neigh- 250

bor (e, t) forms a link with sq at timestamp t and 251

sq bears an incoming edge derived from the tem- 252

poral associated quadruple (e, r, sq, t). Note that 253

in TKGC, though we cannot observe all the true 254

quadruples, we still can observe part of true quadru- 255

ples at every timestamp. This enables TARGCN to 256

search for the temporal neighbors of (sq, tq) along 257

the whole time axis. Then we employ weighted 258

sampling strategy according to the absolute time 259

difference |tq − t| between (sq, tq) and the cor- 260

responding temporal neighbor (e, t). For every 261

temporal neighbor (e, t), the probability of it be- 262

ing sampled into (sq, tq)’s TNG is computed by: 263

exp(−|tq − t|)/Σ(e,t′)∈N(sq,tq)
exp(−|tq − t′|). In 264

this way, higher probabilities are assigned to the 265

temporal neighbors who are closer to (sq, tq) along 266
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the time axis. We adopt this sampling strategy267

since we assume that for the inference of a fact at268

tq, it is more likely to find clues from the factual269

information at nearer timestamps. Besides, we use270

a hyperparameter to limit the maximum number of271

the temporal neighbors included in (sq, tq)’s TNG272

to prevent over sampling less-concerned tempo-273

ral neighbors. An example illustrating (sq, tq)’s274

temporal neighborhood is shown in Appendix A.275

3.2 Time-aware Relational Aggregation276

After sampling TNG for the subject entity sq, we277

then attempt to learn its contextualized representa-278

tion through neighborhood aggregation. Since we279

have access to temporal neighbors from the whole280

timeline, we implicitly incorporate temporal infor-281

mation. For every temporal neighbor, we employ282

the functional time encoding method proposed in283

(Xu et al., 2020b) to learn a time-aware node rep-284

resentation. In this way, we are able to distinguish285

the temporal neighbors, (e, t) and (e, t′), who root286

from the same entity e but emerge at different times-287

tamps t and t′. The time-aware node representation288

is computed as:289

h(e,t) = f(he∥Φ(t, tq)), (1)290

where he ∈ Rde denotes the time-invariant entity-291

specific representation of the entity e. Φ(·, ·) is a292

time difference encoder, mapping t− tq to a finite293

dimensional functional space Rdt . We concate-294

nate the time-invariant entity representation with295

its corresponding time difference representation,296

and learn a combined representation of them with a297

layer of feed-forward neural network f . Note that298

the sign of t− tq will affect the output of the time299

difference encoding module. The complete form300

of Φ(·, ·) is stated in Appendix F.301

We aggregate the information from (sq, tq)’s302

temporal neighbors with a relational graph aggre-303

gator:304

h(sq ,tq) =
1

|N̄(sq ,tq)|
∑

(e,t)∈N̄(sq,tq)

W(h(e,t)∥hr).

(2)305

N̄(sq ,tq) denotes a finite set of temporal neighbors306

sampled from (sq, tq)’s temporal neighborhood,307

i.e., all the neighbors in (sq, tq)’s TNG. r is the rela-308

tion appearing in the temporal associated quadruple309

(e, r, sq, t) where temporal neighbor (e, t) is sam-310

pled. We assume that relation representations are311

time-invariant and we incorporate relational infor-312

mation into the graph encoder by concatenating313

time-aware node representations with them. Our 314

graph encoder outputs the time-aware representa- 315

tion of sq at query time tq, by combining not only 316

the raw entity representation he but also the im- 317

plicit time difference information from its temporal 318

neighbors. The prior work T-GAP also pays at- 319

tention to modeling time displacement, i.e., time 320

difference, to better learn time-aware entity rep- 321

resentations. However, T-GAP explicitly models 322

time displacement with a discretized embedding, 323

and it includes three different weight matrices in 324

their graph encoder for the facts happening in the 325

past, at present, or in the future, thus increasing 326

parameter consumption. We will discuss this later 327

and compare its efficiency with our model’s.

Figure 2: Inference process of TARGCN + Distmult.
Htq is the embedding matrix containing time-aware
representations of all candidates at tq. For a TKGC
query (sq, rq, ?, tq), we first sample a TNG rooting from
(sq, tq) (marked with dashed line square). Then we
employ TARGCN encoder to compute an aggregated
representation h(sq,tq) for (sq, tq). We provide Distmult
with time-aware representations of all candidates for
score computation. The candidate producing the highest
score is selected as the predicted answer.

328

3.3 Learning and Inference 329

Figure 2 illustrates how TARGCN, together with 330

a KG score function, i.e., Distmult (Yang et al., 331

2015), predicts the ground truth missing object for 332

the TKGC query (sq, rq, ?, tq). Given sq, we use 333

the sampling strategy and our time-aware relational 334

graph encoder to compute a time dependent node 335

representation for (sq, tq). Then we use a simple 336

KG score function Distmult to compute the plau- 337

sibility of every candidate entity. We choose Dist- 338

mult because it does not introduce additional pa- 339

rameters, which encounters our flavor of building a 340

simple and parameter-efficient TKGC model. Note 341

that for the candidate entities, we do not sample 342

TNG for them to avoid huge time consumption dur- 343

ing inference. Instead, for every candidate entity 344

o′, we simply derive its time-aware representation 345

4



by computing h(o′,tq) = f(ho′∥Φ(tq, tq)). The346

temporal encoder Φ(·, ·) will also return a unique347

representation when time difference equals zero.348

We employ cross-entropy loss for parameter349

learning:350

L =
∑

(s,r,o,t)∈G
−log

(
score(h(s,t),hr,h(o,t))

Σo′∈Escore(h(s,t),hr,h(o′,t))

)
,

(3)351

where o′ denotes all candidate entities and we sum352

over all observed quadruples in G. Note that our353

TARGCN encoder can be equipped with any KG354

score functions since our encoder returns time-355

aware representations for entities. In our work,356

score(h(s,t),hr,h(o′,t)) =< h(s,t),hr,h(o′,t) >.357

4 Experiments358

We evaluate our model on three TKGC benchmark359

datasets. We compare our model with several exist-360

ing TKGC methods. To further show the parameter361

efficiency of our model, we do an analysis of pa-362

rameter usage on TARGCN, compared with two363

recently proposed powerful TKGC models TeMP364

(Wu et al., 2020) and T-GAP (Jung et al., 2021). We365

then prove the robustness of TARGCN and present366

ablation studies in Section 4.4 and Section 4.5.367

4.1 Experimental Setup368

4.1.1 Datasets369

We perform evaluation on three TKGC benchmark370

datasets: (1) ICEWS14 (García-Durán et al., 2018)371

(2) ICEWS05-15 (García-Durán et al., 2018) (3)372

GDELT (Leetaru and Schrodt, 2013). ICEWS14373

and ICEWS05-15 are two subsets of Integrated374

Crisis Early Warning System (ICEWS) database.375

ICEWS14 contains timestamped political facts hap-376

pening in 2014, while the timestamps of factual377

events in ICEWS05-15 span from 2005 to 2015.378

We follow (Wu et al., 2020) and use the GDELT379

subset proposed by (Trivedi et al., 2017). It con-380

tains global social facts from April 1, 2015 to381

March 31, 2016. The detailed dataset statistics382

are presented in Table 5 in Appendix B.383

4.1.2 Evaluation Metrics384

We employ two evaluation metrics for all exper-385

iments, i.e., Hits@1/3/10 and Mean Reciprocal386

Rank (MRR). For every test fact (sq, rq, oq, tq) ∈ Ḡ387

((sq, rq, oq, tq) /∈ G), we derive an associated388

TKGC query (sq, rq, ?, tq). We let models compute389

the rank of the ground truth entity oq among all the390

candidates. Hits@1/3/10 are the proportions of the391

test facts where ground truth entities are ranked as 392

top 1, top 3, top 10, respectively. MRR computes 393

the mean of the reciprocal ranks of ground truth 394

entities. We follow the filtered setting proposed by 395

(Bordes et al., 2013) to achieve fairer evaluation. 396

4.1.3 Baseline Methods 397

We take fifteen methods as baseline models. The 398

first four baselines are static KG reasoning meth- 399

ods, i.e., TransE (Bordes et al., 2013), Distmult 400

(Yang et al., 2015), ComplEx (Trouillon et al., 401

2016) and SimplE (Kazemi and Poole, 2018). The 402

other methods are developed to solve TKGC, in- 403

cluding TTransE (Leblay and Chekol, 2018), TA- 404

Distmult (García-Durán et al., 2018), HyTE (Das- 405

gupta et al., 2018), DE-SimplE (Goel et al., 2020), 406

ATiSE (Xu et al., 2020a), TNTComplEx (Lacroix 407

et al., 2020), ChronoR (Sadeghian et al., 2021), 408

TeLM (Xu et al., 2021), BoxTE (Messner et al., 409

2021), TeMP (Wu et al., 2020) and T-GAP (Jung 410

et al., 2021). Among all baselines, only TeMP and 411

T-GAP employ GNNs as graph encoders, similar 412

to our TARGCN setting. Therefore, we further 413

compare the parameter efficiency among them. 414

4.2 Experimental Results 415

Table 1 reports the experimental results of all meth- 416

ods on three benchmark datasets. We can observe 417

that TARGCN outperforms all baselines on all 418

datasets. The margin is particularly huge on the 419

GDELT dataset. TARGCN achieves an over 46% 420

relative improvement on MRR (0.163 absolute im- 421

provement) compared with the strongest baseline 422

BoxTE. TARGCN also leads in Hits metrics greatly. 423

It improves Hits@1/3/10 by 57.25%, 47.75%, and 424

34.83%, respectively. On ICEWS datasets, though 425

TARGCN does not take a huge step forward, it still 426

achieves the best results on MRR. TARGCN also 427

shows particularly strong performance on Hits@1, 428

which can be taken as the main contribution to its 429

superior results on MRR. 430

We argue that the performance gap varies be- 431

cause of the characteristics of different datasets. 432

While ICEWS datasets are sparse, GDELT is much 433

denser. As discussed in (Wu et al., 2020; Mess- 434

ner et al., 2021), the temporal sparsity issue on 435

ICEWS is much more severe than it on GDELT. 436

This implies that GDELT contains substantially 437

more temporal patterns, while ICEWS datasets are 438

more prone to be biased by a large number of iso- 439

lated events which are mainly dominated by sparse 440

entities and relations. Hence, we argue that reason- 441
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Datasets ICEWS14 ICEWS05-15 GDELT

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [▼] 0.326 0.154 0.43 0.644 0.330 0.152 0.440 0.660 0.155 0.060 0.178 0.335
Distmult ▼ 0.441 0.325 0.498 0.668 0.457 0.338 0.515 0.691 0.210 0.133 0.224 0.365
ComplEx [▼] 0.442 0.400 0.430 0.664 0.464 0.347 0.524 0.696 0.213 0.133 0.225 0.366
SimplE [▼] 0.458 0.341 0.516 0.687 0.478 0.359 0.539 0.708 0.206 0.124 0.220 0.366

TTransE [▼] 0.255 0.074 - 0.601 0.271 0.084 - 0.616 0.115 0.000 0.160 0.318
TA-DistMult [▼] 0.477 0.363 - 0.686 0.474 0.346 - 0.728 0.206 0.124 0.219 0.365
HyTE [▼] 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681 0.118 0.000 0.165 0.326
DE-SimplE [▼] 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403
ATiSE [▼] 0.571 0.465 0.643 0.755 0.484 0.350 0.558 0.749 - - - -
TNTComplEx [▼] 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810 - - - -
ChronoR [⋆] 0.625 0.547 0.669 0.773 0.675 0.596 0.723 0.820 - - - -
TeLM [⋆] 0.625 0.545 0.673 0.774 0.678 0.599 0.728 0.823 - - - -
BoxTE [⋆] 0.613 0.528 0.664 0.763 0.667 0.582 0.719 0.820 0.352 0.269 0.377 0.511

TeMP-GRU [▼] 0.601 0.478 0.681 0.828 0.691 0.566 0.782 0.917 0.275 0.191 0.297 0.437
TeMP-SA [▼] 0.607 0.484 0.684 0.840 0.680 0.553 0.769 0.913 0.232 0.152 0.245 0.377
T-GAP [♡] 0.610 0.509 0.677 0.790 0.670 0.568 0.743 0.845 - - - -

TARGCN 0.636 0.576 0.672 0.746 0.702 0.635 0.743 0.823 0.515 0.423 0.557 0.689

Table 1: Temporal knowledge graph completion results on three benchmark datasets. Evaluation metrics are filtered
MRR and Hits@1/3/10. The best results are marked in bold. Results marked with [▼], [♡], [⋆] are taken from (Wu
et al., 2020), (Jung et al., 2021), (Messner et al., 2021), respectively.

ing on GDELT requires much stronger techniques.442

And this can also be deduced by the performance of443

TKGC models. From Table 1, we can observe that444

for prior methods, though several TKGC methods445

outperform static methods on GDELT, the improve-446

ments are not substantial. However, on GDELT,447

TARGCN achieves a more than 141% relative im-448

provement on MRR, compared with the strongest449

static KG baseline ComplEx. This shows the supe-450

rior effectiveness of our graph encoder in capturing451

various temporal patterns. For ICEWS datasets,452

our model can also achieve state-of-the-art perfor-453

mance. This demonstrates its strong ability in cap-454

turing the temporal KG information brought by455

sparse entities and relations.456

4.3 Parameter Efficiency Analysis457
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Figure 3: Filtered MRR on ICEWS14 achieved by
TARGCN, T-GAP and TeMP-SA, with varied number
of parameters. More details in Appendix G.

While TARGCN serves as a strong TKGC458

model, it also keeps a quite low parameter cost. In 459

this section, we compare the parameter efficiency 460

among TARGCN and two recently proposed GNN- 461

based TKGC models, i.e., TeMP and T-GAP. 462

On ICEWS14, for all three models, we adjust 463

the embedding size of both entities and relations to 464

adjust the number of parameters. We do not change 465

model structures and other optimal hyperparame- 466

ter settings. In Figure 3, we show that TARGCN 467

performs better as we increase model parameters. 468

More importantly, even with much fewer parame- 469

ters, TARGCN still outperforms TeMP and T-GAP. 470

For ICEWS05-15 and GDELT, we summarize 471

the number of parameters as well as performance 472

difference in Table 2. We compare across the mod- 473

els with parameter settings that lead to the exper- 474

imental results shown in Table 1. On ICEWS05- 475

15, T-GAP uses 30.89% more parameters than our 476

model, but its performance drops by 4.56%. TeMP- 477

GRU achieves almost the same result as TARGCN 478

on ICEWS05-15, however, it uses 18.45% more 479

parameters than our model. Fewer parameters are 480

used in TeMP-SA, but it also leads to worse per- 481

formance. On GDELT, we observe that though 482

TeMP-GRU employs 50.07% more parameters than 483

TARGCN, its performance is 46.60% lower than 484

our model. TeMP-SA shows the worst performance 485

(with a 54.95% performance drop), although it has 486

even 5.19% fewer parameters than TARGCN. To 487

this end, we argue that our model is extremely 488

parameter-efficient. 489

We attribute such high parameter efficiency to 490
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Datasets ICEWS05-15 GDELT

Model # Parameters MRR Parameter ↑ MRR ↓ # Parameters MRR Parameter ↑ MRR ↓
TARGCN 2359200 0.702 - - 269200 0.515 - -
T-GAP 3088000 0.670 30.89% 4.56% - - - -
TeMP-SA 2645760 0.680 12.15% 3.13% 255232 0.232 -5.19% 54.95%
TeMP-GRU 2794528 0.691 18.45% 1.57% 404000 0.275 50.07 % 46.60%

Table 2: Parameter efficiency comparison on ICEWS05-
15 and GDELT. We adopt relative change to define the
increase in parameter numbers and the drop in MRR.
Due to memory problem, we cannot train T-GAP on
GDELT even when batch size equals 1.

our simple but powerful time-aware relational491

graph encoder. Note that in the TNG sampling492

process, we explicitly force our model to choose493

the temporal neighbors who are nearer to the source494

node (sq, tq) on the time axis, by assigning higher495

sampling probabilities to them. This can also be496

interpreted as a "hard-coded attentional process".497

Models like TeMP and T-GAP explicitly employ498

self-attention modules to let models choose their at-499

tention themselves through parameter learning. We500

argue that even if such modules are powerful, they501

can be simplified in the context of TKGC. In our502

model, we force our TNG sampler to focus on the503

facts happening at the timestamps that are closer504

to the query timestamp, i.e., pay more "attention"505

to the nearer facts. Our TNG sampling process506

does not include any additional parameters, while507

self-attention modules normally increase parame-508

ters and bring heavier burdens for parameter opti-509

mization. Another crucial point is that, compared510

with TeMP who encodes temporal information only511

from a fixed short time span of 2τ , our TNG sam-512

pling range spans across the whole timeline. This513

means that even if a temporal neighbor is derived514

from a sparse entity and it appears only at faraway515

timestamps from the query timestamp, our sam-516

pler still has the ability to include it into the TNG517

and enables information aggregation. Similar to518

TARGCN, T-GAP, with the help of its Preliminary519

GNN (PGNN), is able to find any temporal associ-520

ated quadruples related to any entity appearing at521

any time. However, in its PGNN, it employs three522

weight matrices, i.e., Wpast, Wpresent, Wfuture,523

together with discretized time displacement embed-524

dings h|∆t| to fully express the supporting informa-525

tion coming from the past, the present and the fu-526

ture. We find it redundant to model time difference527

in this way. In TARGCN, we do not use separate528

weight matrices during aggregation since our func-529

tional time encoder naturally distinguishes the sign530

of time difference itself. Besides, instead of learn-531

ing different discretized embeddings to represent532

different |∆t|, our model computes the representa- 533

tion of any time difference with shared parameters, 534

thus cutting parameter consumption. 535

4.4 Generalization to Unseen Timestamps and 536

Irregular Timestamped Data 537

To prove the robustness of our model, we follow 538

(Goel et al., 2020) to test its ability to predict the 539

links at unseen timestamps. We exclude every 540

quadruple appearing on the 5th, 15th, and 25th day 541

of each month in ICEWS14 to construct a new train- 542

ing set. We randomly split the excluded quadruples 543

into validation and test sets. We compare TARGCN 544

with several recently proposed baselines on this 545

new dataset ICEWS14-unseen, and the results (Ta- 546

ble 3) indicate the strong robustness of our model 547

on timestamp generalization. TARGCN greatly 548

outperforms all baseline methods, especially in 549

Hits@1. We attribute this to our strong temporal 550

neighborhood searching mechanism which exten- 551

sively utilizes information from the whole timeline. 552

Besides, we construct another new dataset 553

ICEWS14-irregular to validate whether TKGC 554

models can generalize well to the TKG data col- 555

lected at irregular-spaced timestamps. We ran- 556

domly sample the snapshots in ICEWS14 and keep 557

the time interval between every two of the sampled 558

neighboring snapshots not greater than 4. We per- 559

form TKGC on ICEWS14-irregular and experimen- 560

tal results in Table 3 show that TARGCN is superior 561

in handling data with irregular timestamps. Mod- 562

eling temporal data with time differences enables 563

TARGCN to distinguish irregular time intervals.

Datasets ICEWS14-unseen ICEWS14-irregular

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TComplEx 0.461 0.365 0.513 0.644 0.509 0.421 0.558 0.678
TNTComplEx 0.474 0.373 0.524 0.665 0.512 0.429 0.558 0.665
TeMP-SA 1 - - - - 0.521 0.408 0.583 0.741
T-GAP 0.474 0.362 0.532 0.689 0.526 0.428 0.588 0.719
TARGCN 0.578 0.518 0.607 0.692 0.552 0.496 0.583 0.667

Table 3: Performance comparison of generalization to
unseen timestamps and irregular timestamped data. The
best results are marked in bold. Dataset creation process
and more discussions are presented in Appendix E.

564

4.5 Ablation Study 565

To validate the effectiveness of different model 566

components, we conduct several ablation studies 567

on ICEWS14 and GDELT. We first change the time 568

difference encoding module into an absolute time 569

encoder, e.g., for a (sq, tq) and a temporal neigh- 570

bor (e, t), we learn a representation for t instead 571

1TeMP-SA can not generalize to unseen timestamps.
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of t− tq. From Table 4, we observe performance572

drops on both datasets. This proves the effective-573

ness of time difference modeling. Next, we adopt574

random sample in TNG sampling process, which575

means we do not impose higher probabilities on the576

temporal neighbors nearer to (sq, tq) on the time577

axis. The performance drops on both datasets (es-578

pecially on GDELT), indicating that by sampling579

more neighbors nearer in the temporal context, our580

model benefits more in learning better representa-581

tions. Additionally, we conduct another experiment582

by including all temporal neighbors instead of sam-583

pled ones during aggregation. We observe huge584

performance drops on both datasets, which proves585

that our sampling strategy helps to exclude noisy586

information from less-concerned neighbors.587

Apart from the first three experiments, we fur-588

ther study how the performance is affected if we589

constrain the search range of our model in the tem-590

poral neighbor sampling process. We constrain591

the search range to 15, same as the optimal length592

of temporal snapshots τ used in (Wu et al., 2020)593

for encoding, and allow our model only to sample594

temporal neighbors who appear not farther than595

15 snapshots away. The performance drops on596

both datasets (the drop is considerably huge on597

ICEWS14), and this concludes that our model’s598

performance is closely connected to the amount of599

temporal information it can utilize. Further details600

of ablation studies are discussed in Appendix H601

Datasets ICEWS14 GDELT

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Absolute Time 0.622 0.556 0.660 0.739 0.502 0.408 0.545 0.678
Random Sample 0.618 0.551 0.656 0.735 0.433 0.312 0.502 0.640
Whole Neighborhood 0.481 0.433 0.501 0.568 0.431 0.312 0.497 0.633
Constrain Search Range 0.420 0.374 0.448 0.498 0.496 0.401 0.541 0.675
TARGCN 0.636 0.576 0.672 0.746 0.515 0.423 0.557 0.689

Table 4: Ablation studies of TARGCN variants on
ICEWS14 and GDELT. The best results are marked
in bold.

4.5.1 Temporal Neighborhood Exploration602

From Table 4, we observe that if we constrain the603

search range of TARGCN in the temporal neighbor-604

hood sampling process, the performance is strongly605

affected. Therefore, we further conduct an exper-606

iment to study how TARGCN performs while the607

search range varies. We report our model’s perfor-608

mance on ICEWS14 with different search range,609

namely, 15, 50, 100, 200, 300, and 365 (whole time-610

line), in Figure 4. For all the metrics, our model’s611

performance improves greatly and constantly as612

the search range increases. This proves that the613

effectiveness of TARGCN mainly comes from its 614

superiority in utilizing temporal information. The 615

amount of available temporal information is deci- 616

sive for our simple-structured model. Compared 617

with the models that only make use of graph snap- 618

shots near to the query timestamp tq, e.g., TeMP, 619

we simplify the model structure but take advantage 620

of as much temporal information as we can. Ex- 621

perimental results in Table 1 show that it is more 622

beneficial in TKGC to utilize temporal information 623

more extensively, instead of designing complex 624

modules. 625
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Figure 4: Temporal neighborhood exploration analysis
on ICEWS14. Evaluation metrics are filtered MRR and
Hits@1/3/10.

5 Conclusion 626

We propose a simple but powerful time-aware re- 627

lational graph encoder TARGCN for Temporal 628

Knowledge Graph Completion (TKGC). TARGCN 629

employs a Temporal Neighboring Graph (TNG) 630

sampling strategy, which enables it to extensively 631

utilize the information from the whole temporal 632

context. Experimental results show that TARGCN 633

achieves state-of-the-art performance on three 634

benchmark TKGC datasets. Besides, TARGCN 635

enjoys an extremely high parameter efficiency. It 636

beats two recently proposed strong GNN-based 637

TKGC methods, i.e., TeMP and T-GAP, with much 638

fewer parameters. Thanks to its time difference 639

learning module and temporal neighbor sampler, 640

TARGCN also shows strong robustness to inferring 641

links on irregular timestamped data or at unseen 642

timestamps. We find that it is not always necessary 643

to incorporate complex modules, e.g., Transform- 644

ers, into TKG reasoning models. Instead, develop- 645

ing methods to capture more extensive temporal 646

information is more beneficial. 647
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Appendix900

A Example of Temporal Neighborhood901

Figure 5 shows an example of the temporal neigh-902

borhood of (sq, tq), generated from a TKGC903

query (sq, rq, ?, tq). We can represent it as904

N(sq ,tq) = {(e1, tq − 1), (e2, tq + 1), (e3, tq −905

3), (e4, t1), (e5, tT − 1)}. The probability of each906

temporal neighbor being sampled into (sq, tq)’s907

TNG is determined according to the time differ-908

ence between tq and the timestamp of this temporal909

neighbor (the darker the temporal neighbor shows,910

the higher the probability).911

B Dataset Statistics912

Table 5 contains the dataset statistics of all three913

benchmark datasets and two newly created datasets,914

i.e., ICEWS14-unseen and ICEWS14-irregular.915

The data creation process of ICEWS14-unseen and916

ICEWS14-irregular is discussed in Appendix E.917

Dataset Ntrain Nvalid Ntest |E| |R| |T |
ICEWS14 72, 826 8, 941 8, 963 7, 128 230 365

ICEWS05-15 386, 962 46, 275 46, 092 10, 488 251 4, 017
GDELT 2, 735, 685 341, 961 341, 961 500 20 366

ICEWS14-unseen 65, 679 3, 420 3, 420 6, 601 230 365
ICEWS14-irregular 29, 102 3, 555 3, 607 5, 093 210 146

Table 5: Dataset statistics. Ntrain, Nvalid, Ntest represent
the number of quadruples in the training set, validation
set, and test set, respectively. |T | denotes the number
of timestamps, where we take a snapshot of a TKG at
each timestamp. All facts in all datasets are denoted in
English.

C Implementation Details 918

We implement all experiments with PyTorch 919

(Paszke et al., 2019) and use a single NVIDIA Tesla 920

T4 for computation. We allow TARGCN to search 921

for neighbors along the whole timeline. The hy- 922

perparameter searching strategies are reported in 923

Table 6 and the hyperparameter settings producing 924

the reported experimental results (in Table 1) are 925

presented in Table 7. We use the official imple- 926

mentation of TComplEx, TNTComplEx 2, TeMP 927
3 and T-GAP 4. We find that T-GAP has an ex- 928

tremely high memory demand. Training GDELT 929

with T-GAP on a 16GB NVIDIA Tesla T4 causes 930

out-of-memory error even when we set batch size 931

to 1. This is due to its PGNN which constructs a 932

huge temporal associative graph for every entity in 933

training examples. 934

The training time and the memory usage of 935

TARGCN are reported in Table 8. The training 936

time of TARGCN scales with the number of train- 937

ing quadruples in each dataset. Sampling tempo- 938

ral neighbors for every query subject requires rel- 939

atively long computation time. This may cause 940

timeout problems during the training process when 941

TARGCN is used to train large-scale datasets (even 942

much larger than GDELT). However, the memory 943

usage of our model remains quite low, which en- 944

ables training on smaller GPUs. 945

Table 6: Hyperparameter searching strategy.

Datasets ICEWS14 ICEWS05-15 GDELT

Hyperparameter

Embedding Size {150, 200, 300} {150, 200, 300} {150, 200, 300}
# Aggregation Step {1, 2} {1, 2} {1, 2}
Activation Function {Tanh, ReLU} {Tanh, ReLU} {Tanh, ReLU}
Search Range {15, 100, 200, 300, 365} {100, 500, 1000, 4017} {100, 200, 366}
# Temporal Neighbor {50, 100, 500} {50, 100, 500} {50, 100, 500}

Table 7: Best hyperparameter settings on each dataset.

Datasets ICEWS14 ICEWS05-15 GDELT

Hyperparameter

Embedding Size 300 200 200
# Aggregation Step 1 1 1
Activation Function Tanh Tanh Tanh
Search Range 365 4017 366
# Temporal Neighbor 100 100 100

2https://github.com/facebookresearch/tkbc
3https://github.com/JiapengWu/TeMP
4https://github.com/sharkmir1/T-GAP
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Figure 5: Temporal neighborhood of (sq, tq) derived from an object prediction query (sq, rq, ?, tq). We use a
dashed line (labeled with relation type) to denote a temporal associated link connecting sq with its temporal neighbor,
e.g., the dashed line labeled with r4 corresponds to the temporal associated quadruple (e4, r4, sq, t1). A temporal
neighbor with darker color is assigned a higher probability to be sampled into (sq, tq)’s TNG. Since (e1, tq − 1) and
(e2, tq + 1) has the same temporal distance from tq , they are assigned with the same sampling probability (denoted
with the same color darkness).

Table 8: Computational budget of TARGCN on bench-
mark datasets.

Datasets ICEWS14 ICEWS05-15 GDELT

GPU Memory Usage (MB) 1,375 1,385 1,261
Train Time/ Epoch (s) 405 9,900 145,200
# Train Epochs 100 100 10

D Validation Results946

In Table 9, we report the experimental results of947

TARGCN on validation sets on all three benchmark948

datasets. The results are produced by the same949

trained models reported in Table 1.950

E Further Details of Generalization to951

Unseen Timestamps and Irregular952

Timestamped Data953

We choose four strong baselines to compare with954

TARGCN, namely, TComplEx (Lacroix et al.,955

2020), TNTComplEx (Lacroix et al., 2020), TeMP-956

SA (Wu et al., 2020), and T-GAP (Jung et al., 2021).957

We choose TeMP-SA since it is reported with better958

results on ICEWS14 (newly created datasets are959

based on ICEWS14). We can not perform unseen960

timestamps generalization with TeMP-SA since961

it requires the unavailable KG snapshot G(tq) for962

every link prediction query (sq, rq, ?, tq).963

E.1 Unseen Timestamps Generalization964

We do not use the same unseen timestamps gener-965

alization datasets proposed in (Goel et al., 2020)966

and (Jung et al., 2021), since they do not release967

their dataset. We follow (Goel et al., 2020) and968

create ICEWS14-unseen by ourselves. We exclude969

every quadruple appearing on the 5th, 15th, and970

25th day of each month in ICEWS14 to construct 971

a new training set. We randomly split the excluded 972

quadruples into validation and test sets. We make 973

sure that every entity appearing in the validation 974

and test sets is seen in the training set. 975

By comparing the results in Table 1 and Table 3, 976

we observe that the performance improvement of 977

TARGCN becomes even much larger on ICEWS14- 978

unseen than on the original dataset. TARGCN 979

achieves a relative improvement of 21.94% on 980

MRR compared with T-GAP and TNTComplEx. 981

More surprisingly, it also achieves a relative im- 982

provement of 43.09% on Hits@1 compared with 983

the strongest baseline T-GAP on unseen times- 984

tamps generalization. This proves the extremely 985

strong robustness of our model to link inference at 986

unseen timestamps. 987

E.2 Performance on Irregular Timestamped 988

Data 989

We sample the KG snapshots from the original 990

ICEWS14 dataset. The value of the time interval 991

between every two neighboring snapshots can be 992

randomly assigned either to 1, 2, 3, or 4. In this 993

way, we create a dataset simulating that the TKG 994

data is observed and collected at irregular-spaced 995

timestamps. 996

TARGCN enlarges the performance gap between 997

itself and other baselines, compared with the results 998

regarding TKGC on the original dataset reported 999

in Table 1. Besides, we observe that TeMP-SA and 1000

T-GAP outperform TNTComplEx on ICEWS14- 1001

irregular, while they perform worse on the original 1002

dataset. This is due to their time displacement 1003

temporal encoders which learn different tempo- 1004
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Datasets ICEWS14 ICEWS05-15 GDELT

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TARGCN 0.647 0.591 0.679 0.748 0.705 0.641 0.742 0.821 0.510 0.418 0.552 0.685

Table 9: Temporal knowledge graph completion results on the validation sets of three benchmark datasets. Evaluation
metrics are filtered MRR and Hits@1/3/10.

ral embeddings for different time intervals. For1005

TARGCN, it employs a time difference temporal1006

encoder that maps time-aware entity representa-1007

tions with the explicit value of time differences,1008

thus being able to capture accurate temporal infor-1009

mation provided by irregular timestamped data.1010

F Functional Time Encoder Details1011

For a TKGC query (sq, rq, ?, tq), to compute the1012

time-aware representation of a sampled temporal1013

neighbor (e, t), we employ the time encoder fol-1014

lowing (Xu et al., 2020b) to generate the time dif-1015

ference representation ht−tq :1016

ht−tq =Φ(t, tq)

=

√
1

dt
[cos(ω1(t− tq) + ϕ1), ...,

cos(ωdt(t− tq) + ϕdt))],

(4)1017

where ω1 to ωdt are frequency components, ϕ11018

to ϕdt are phase components, and dt denotes the1019

embedding size of time difference representations.1020

The frequency components and phase components1021

are learnable and shared in representation compu-1022

tation for all time differences. For more details1023

please refer to (Xu et al., 2020b).1024

G Parameter Efficiency Analysis Details1025

Datasets ICEWS14

Model # Parameters MRR Parameter ↑ MRR ↓
TARGCN 1229100 0.627 - -
T-GAP 1912350 0.610 55.59% 2.71%
TeMP-SA 1264640 0.607 2.89% 3.19%
TeMP-GRU 1413408 0.601 15.00% 4.15%

Table 10: Parameter efficiency comparison on
ICEWS14. We adopt relative change to define the in-
crease in parameter numbers and the drop in MRR.

Similar to Table 2, Table 10 summarizes the1026

number of parameters as well as performance dif-1027

ference on ICEWS14. For TARGCN, the model1028

producing results in Table 1 has more parameters1029

than T-GAP and TeMP. Therefore, we decrease the1030

embedding size of TARGCN to 150 so that its pa- 1031

rameter number becomes the smallest among all 1032

models. We keep T-GAP and TeMP with their op- 1033

timal parameter settings and compare them with 1034

TARGCN. From Table 1 and Table 10, we observe 1035

that even when we decrease the embedding size 1036

of TARGCN from 300 to 150, our model still per- 1037

forms well (MRR drops from 0.635 to 0.627), and 1038

it still outperforms T-GAP and TeMP on ICEWS14. 1039

TeMP variants show the worst performance, even 1040

when they have more parameters than TARGCN. T- 1041

GAP performs better than TeMP variants. However, 1042

it uses 55.59% more parameters than TARGCN, 1043

while it is beaten with a 2.71% performance drop. 1044

All the points in Figure 3 are based on the results 1045

in Table 11. Note that we control the number of 1046

parameters only by changing embedding size, with- 1047

out changing any other hyperparameters or model 1048

structures. 1049

Datasets ICEWS14

Model Embedding Size # Parameters MRR

TARGCN 100 799400 0.605
150 1229100 0.627
200 1678800 0.629
300 2638200 0.636

T-GAP 50 928675 0.582
100 1912350 0.610
200 2951025 0.596

TeMP-SA 64 611840 0.595
128 1264640 0.607
256 2928640 0.618

Table 11: Experimental results as well as the number of
parameters that lead to Figure 3. Underlined results are
taken from Table 1.

H Ablation Study Details 1050

Although in all ablation studies, both ICEWS14 1051

and GDELT witness the same tendency in perfor- 1052

mance drops, the sensitivity of different model com- 1053

ponents are different. We find that the absolute 1054

time encoder and the whole temporal neighbor- 1055

hood aggregation bring similar influences on the 1056
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performance on both datasets. However, random1057

sample in TNG imposes a much larger impact on1058

the performance on GDELT than it on ICEWS14,1059

while constraining search range affects ICEWS141060

more greatly. This can also be explained with1061

the dataset characteristics discussed in Section 4.2.1062

ICEWS14 is much sparser, which implies that in a1063

small search range around the query timestamp, we1064

might not be able to find most supporting temporal1065

neighbors. However, for GDELT, its dense nature1066

leads to the fact that almost all supporting temporal1067

neighbors can be found in this small search range.1068

And if we allow the model to randomly sample1069

temporal neighbors from the whole timeline, the1070

gain brought by the increasing number of meaning-1071

ful temporal neighbors helps the model to perform1072

much better on ICEWS14. On the contrary, for1073

GDELT, sampling too many temporal neighbors1074

far from the query timestamp incurs huge noise,1075

thus leading to degenerated performance.1076
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