
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING SYSTEM DYNAMICS WITHOUT FORGETTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Observation-based trajectory prediction for systems with unknown dynamics is
essential in fields such as physics and biology. Most existing approaches are limited
to learning within a single system with fixed dynamics patterns. However, many
real-world applications require learning across systems with evolving dynamics
patterns, a challenge that has been largely overlooked. To address this, we systemat-
ically investigate the problem of Continual Dynamics Learning (CDL), examining
task configurations and evaluating the applicability of existing techniques, while
identifying key challenges. In response, we propose the Mode-switching Graph
ODE (MS-GODE) model, which integrates the strengths LG-ODE and sub-network
learning with a mode-switching module, enabling efficient learning over varying
dynamics. Moreover, we construct a novel benchmark of biological dynamic sys-
tems for CDL, Bio-CDL, featuring diverse systems with disparate dynamics and
significantly enriching the research field of machine learning for dynamic systems.
Our code and benchmark datasets will be publicly available.

1 INTRODUCTION

Figure 1: Illustration of the key components of one biological cellular sys-
tem studied in our work: the RAN-regulated nucleocytoplasmic transport
(Moore, 2013). Briefly speaking, this model depicts the translocation of
cargo proteins (Exportin) via nuclear pores with the assistance of RAN
proteins. RAN is first activated (denoted as RAN*) and then binds to cargo
molecules (Exportin) forming a complex containing RAN* and Exportin.
Next, the complex is translocated across the nuclear membrane into the
cytoplasm with the assistance of RAN. Finally, RAN and Exportin are dis-
sociated after the translocation. Such systems contain multiple interacting
objects, e.g. the proteins and their interactions, and multiple factors could
change and alter the entire dynamics.

Scientific research often in-
volves systems composed of
interacting objects, such as
multi-body systems in physics
and cellular systems in biology,
with their evolution governed
by underlying dynamic rules.
However, due to potentially un-
known or incomplete dynamic
rules or incomplete observa-
tions, deriving explicit equa-
tions to simulate system evolu-
tion can be extremely challeng-
ing. As a result, data-driven
approaches based on machine
learning have emerged as a
promising solution for predict-
ing the future trajectories of
system states purely from ob-
servational data. For instance,
the Interaction Network (IN)
model (Battaglia et al., 2016)
explicitly learns interactions between pairs of objects and has demonstrated superior performance in
simulated physics systems, showcasing the potential of machine learning in studying physical system
dynamics. IN has inspired many subsequent works (Kipf et al., 2018; Sanchez-Gonzalez et al., 2019;
Huang et al., 2022; Liu et al., 2024). Later, to enable the modeling of incomplete and temporarily
irregular system observations, ODE-based models (Huang et al., 2020; 2021) were proposed to learn
the continuous dynamics of the systems.

Despite the success of these methods, existing approaches are often limited to learning within a single
system with a fixed type of dynamics. However, in many real-world scenarios, system dynamics
are subject to change over time. For example, in cellular systems (Figure 1), the dynamics of a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

set of variables are subject to change when the kinetic factors are altered. Besides, as a widely
adopted task in the field, predicting the trajectories of n-body physical systems (Huang et al., 2020;
Battaglia et al., 2016) may also require a model to learn over systems governed by different dynamics
factors including interaction types (e.g., elastic force or electrostatic force) and interaction strengths
(e.g., different amounts of charges on charged objects), as illustrated in Figure 7. In this work, we
term these learning scenarios as continual dynamics learning (CDL), and for the first time formally
formulate the setting of CDL. In CDL, continually learning from systems with varying dynamics may
overwrite a model’s knowledge encoded in the model weights and trigger the catastrophic forgetting
problem. In other words, the model may only accurately predict the most recently observed system
dynamics while failing on earlier systems. This phenomenon is empirically verified and reported
in Section 4.6. Moreover, many real-world systems exhibit repeated dynamics, and mitigating the
forgetting is actually crucial in a broad range of scenarios. For example, dynamics of many physics
systems are controlled by environmental factors, e.g. temperatures (Huang et al., 2023). The values
of these factors like temperatures typically oscillate within a certain range, therefore the dynamics of
the systems will also repeat. This is also true in biological systems. Moreover, biological cellular
systems also go through different phases of cell cycle. Catastrophic forgetting phenomenon has also
been observed in other fields like computer vision (Van de Ven & Tolias, 2019; Wang et al., 2024)
and graph learning (Zhang et al., 2024), and different approaches have been proposed to facilitate
the models in the continual learning setting. However, as demonstrated in our experiments (Section
4.3), most existing continual techniques, which are based on regularization or memory-replay (Yoon
et al., 2017; Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017), are designed to accommodate
the patterns of different tasks 1 within one set of model weights and fail to effectively alleviate the
forgetting issue in the context of dynamics learning, especially when the consecutive systems contain
different number of objects and exhibit significantly different dynamics patterns.

Targeting the challenge, we turn to the parameter-isolation based continual learning techniques,
and propose a novel mode-switching graph ODE (MS-GODE) model, which can continually learn
over varying system dynamics and automatically switch to the optimal mode during the test stage.
MS-GODE consists of three major components: a prediction network serving as the backbone, a
sub-network learning module for encoding the observed dynamics into masks, and a mode-switching
module for switching the sub-network mode based on the observation. To support irregular and
incomplete observational data in the practical scenario studied in our work, our backbone network is
built based on LG-ODE model (Huang et al., 2020), which has a Variational AutoEncoder (VAE)
(Kingma & Welling, 2013) structure facilitated by ODE-based prediction (Rubanova et al., 2019).
The basic workflow of MS-GODE is as follow: Given the observational data, an encoder network
first encodes the data into latent states, upon which an ODE-based generator predicts the future
system trajectories within the latent space. Finally, a decoder network maps the predicted latent
states back into the data space. Upon this framework , we adopt the sub-network learning strategy
(Wortsman et al., 2020; Ramanujan et al., 2020; Zhou et al., 2019), which fixes the model weights
after initialization and optimize a unique binary mask over the parameters for each system during
training. In this way, unlike standard training strategy that encodes data patterns solely in one set
of model weights, MS-GODE encodes different types of dynamics in different sub-networks by the
collaboration between the binary masks and the fixed-weight backbone network. In the test stage,
the model will be switched to the optimal mode by the switching module via selecting the the most
suitable mask that can most accurately reconstruct the given observation. Moreover, targeting that the
existing entropy-based mask selection technique is only applicable to classification tasks, we further
develop the novel observation reconstruction based mask selection strategy in the mode-switching
module. In this way, despite the significant difference between consecutive systems, catastrophic
forgetting is avoided.

Besides innovatively formulating the CDL setting and the technical contribution of an effective model
in CDL scenario, we have also created a novel dynamic system benchmark, Bio-CDL consisting of
biological cellular systems based on the VCell platform (Schaff et al., 1997; Cowan et al., 2012;
Blinov et al., 2017). Compared to the widely adopted simulated physics systems, cellular systems
contain heterogeneous objects and interactions, offering richer and more challenging patterns of
system dynamics. Therefore, Bio-CDL will significantly enhance the research of machine learning-
based system dynamics prediction. In experiments, we thoroughly investigate the influence of the

1In our work, a task refers to a system with a specific dynamics patterns. While in other fields, e.g. Computer
Vision, a task could refer to certain categories of images.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

system sequence configuration on model performance in CDL with both the widely adopted physics
systems and our newly constructed BioCDL, which demonstrates the advantage of MS-GODE over
existing state-of-the-art techniques.

2 RELATED WORKS

2.1 LEARNING BASED DYNAMIC SYSTEM PREDICTION

Figure 2: A molecule system may enter dif-
ferent phases and exhibit different dynamics
as environmental factors (e.g. temperature)
change. Molecules in solid state can only vi-
brate at fixed locations because of the strong
interaction between them. Upon entering
the liquid state, the interaction strength de-
creases and molecules can move around. In
gas state, molecules move more freely with
little molecule-wise interaction.

In recent years, graph neural networks (GNNs) have been
proven to be promising in modeling and predicting the
complex evolution of systems consisting of interacting
objects (Battaglia et al., 2016; Kipf et al., 2018; Sanchez-
Gonzalez et al., 2019; Huang et al., 2022; Liu et al., 2024).
This was firstly demonstrated by (Battaglia et al., 2016)
with Interaction Network (IN), which iteratively infers the
effects of the pair-wise interactions within a system and
predicts the changes of the system states. Following IN,
(Kipf et al., 2018) proposed neural relational inference
(NRI) to predict systems consisting of objects with un-
known relationships. (Mrowca et al., 2018) proposed the
Hierarchical Relation Network (HRN) that extends the
predictions to systems consisting of deformable objects.
(Sanchez-Gonzalez et al., 2019) proposed the Hamiltonian
ODE graph network (HOGN), which injects Hamiltonian
mechanics into the model as a physically informed induc-
tive bias. Later, to better consider the intrinsic symmetry
of the target systems, GNNs with different invariance and equivariance are proposed (Satorras et al.,
2021; Huang et al., 2022; Han et al., 2022; Brandstetter et al., 2021; Wu et al., 2023; Liu et al.,
2024). To better capture the complex system interactions, High-order graph ODE (HOPE) (Luo et al.,
2023) innovatively incorporates information from high-order spatial neighborhood and high-order
derivatives into dynamical system modeling. Considering that the observation of real-world systems
may be incomplete and irregular samples, (Huang et al., 2020) proposed LG-ODE, which is capa-
ble of generating continuous system dynamics based on the latent ordinary differential equations.
Later, Coupled Graph ODE (CG-ODE) (Huang et al., 2021) was proposed to apply ODE-based
modeling to both node features and interactions. Similar ideas are also adopted in other time series
research (Rubanova et al., 2019). By separating the commonalities intrinsic to the systems and the
environmental factors causing the dynamics shift, Generalized Graph Ordinary Differential Equations
(GG-ODE) (Huang et al., 2023) improves the generalization across systems in different environments.
Similarly, Prototypical Graph ODE (PGODE) (Luo et al.) disentangles object states and system
states to independently model their influence and improve the generalization capability. Disentangled
Intervention-based Dynamic graph Attention networks (DIDA) (Zhang et al., 2022b) disentangles
the invariant and variant patterns in dynamic graphs, and leverages the invariant patterns to ensure a
stable prediction performance under spatio-temporal distribution shift. Context-attended Graph ODE
(CARE) (Luo et al., 2024) models the continuously varying environmental factors with a context
variable, which is leveraged to better predict the system evolution with temporal environmental
variation. Online Relational Inference (ORI) (Kang et al., 2024) models the relationship among
the system components as trainable parameters, which is accompanied with the novel AdaRelation
technique for quick relational inference in the online setting. Despite the substantial contributions
these methods have made to dynamic system prediction, they have been limited to learning a single
system with fixed dynamics. As one of the two major components of our MS-GODE, the backbone
model for dynamics system prediction is mainly built upon the LG-ODE framework (Huang et al.,
2020). Different from the other approaches that are typically limited to data with regular intervals or
complete observation at each time stamp, LG-ODE supports irregular and incomplete observations,
which is essential to the applications studied in our work.

2.2 CONTINUAL LEARNING & MASKED NETWORKS

Existing continual learning methods can be categorized into three types (Parisi et al., 2019; Van de
Ven & Tolias, 2019; De Lange et al., 2021; Zhang et al., 2022a; Konishi et al., 2023). Regularization-
based methods slow down the adaption of important model parameters via regularization terms,
so that the forgetting problem is alleviated (Wu et al., 2024; Goswami et al., 2023). For example,
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Memory Aware Synapses (MAS)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(Aljundi et al., 2018) estimate the importance of the model parameters to the learned tasks, and add
penalty terms to slow down the update rate of the parameters that are important to the previously
learned tasks. Second, experience replay-based methods replay the representative data stored from
previous tasks to the model when learning new tasks to prevent forgetting (Liang & Li, 2023; Rolnick
et al., 2019; Rebuffi et al., 2017; Prabhu et al., 2020). For example, Gradient Episodic Memory
(GEM) (Lopez-Paz & Ranzato, 2017) leverages the gradients computed based on the buffered data to
modify the gradients for learning the current task and avoid the negative interference between learning
different tasks. Finally, parameter isolation-based methods gradually introduce new parameters to
the model for new tasks to prevent the parameters that are important to previous tasks (Qiao et al.,
2023; Yoon et al., 2017). For example, Progressive Neural Network (PNN) (Rusu et al., 2016)
allocates new network branches for new tasks, such that the learning on new tasks does not modify
the parameters encoding knowledge of the old tasks. Our proposed MS-GODE also belongs to the
parameter isolation-based methods, and is related to subnetwork-based ones (Wortsman et al., 2020;
Kang et al., 2022; Zhou et al., 2019) and the edge-popup algorithm (Ramanujan et al., 2020). SupSup
studies continual learning for classification tasks with an output entropy-based mask selection, which
is not applicable to our task. Edge-popup algorithm provides a simple yet efficient strategy to select
a sub-network from the original network, and is adopted by us to optimize the binary masks over
the model parameters. As far as we are concerned, existing continual learning works have not
been applied to the dynamic system prediction targeted by this paper. Therefore, by customizing
the representative continual learning techniques to our task as baselines, we also contribute to the
community by extending the applicable areas of the existing methods and by demonstrating the
advantages and disadvantages of different methods on a new task.

3 LEARNING SYSTEM DYNAMICS WITHOUT FORGETTING

3.1 PRELIMINARIES

In CDL, a model is required to sequentially learn on multiple systems. A system is composed of
multiple interacting objects, and is naturally represented as a graph G = {V,E}. {V is the node set
denoting the objects of the system, and E is the edge set containing the information of the relation
and interaction between the objects. Based on E, the spatial neighbors of a node v is defined as
Ns(v) = {u|eu,v ∈ E}. Each object node v is accompanied by observational data containing the
observed states at certain time steps Xv = {xt

v|t ∈ Tv}, i.e. the trajectory of the system evolution.
With a system structured as a graph, its trajectory is naturally a spatial-temporal graph, in which each
node is an observed state xt

v . In the following, we will refer to xt
v as a ‘state’. In a multi-body system,

the trajectory records the 3D locations of the particles over time. While in other systems, e.g. cellular
systems, a state could be the amount of a certain substance instead of locations, and a trajectory
records the states at different time stamps. The set Tv contains the time steps (real numbers) when the
states of v are observed and can vary across different objects. For the prediction task, the observations
lie within a certain period, i.e.

⋃
v∈V Tv ∈[t0, t1], and the task is to predict the system states at future

time steps beyond t1. We denote the future time steps to predict for an object v as Tpred
v . In CDL,

different systems in a sequence may exhibit different dynamics and contain different objects (i.e. V).

3.2 FRAMEWORK OVERVIEW

In this subsection, we provide a high-level introduction to the workflow of MS-GODE (Figure 3),
while the details of each component are provided in the following subsections.

Overall, MS-GODE consists of three core components: 1) The backbone network; 2) The sub-
network learning module; 3) The mode switching module. The backbone network consists of: 1)
an encoder network Enc(·; θE) parameterized by the parameters θE for encoding the trajectories
into the latent space; 2) An ODE-based generator Gen(·; θG) parameterized by θG for predicting
the future trajectories within the latent space; 3) A decoder network Dec(·; θD) parameterized by
θD for transforming the predicted latent states back into the data space. Within a standard learning
scheme, the model will be trained by updating the parameters {θE , θG, θD}. However, as introduced
above, when continually training the model on multiple systems with different dynamics, this learning
scheme will bias the model towards the most recently observed system, causing the catastrophic
forgetting problem. In this work, inspired by the recent advances in sub-network learning (Ramanujan
et al., 2020; Wortsman et al., 2020), we propose to avoid direct optimization of the parameters
{θE , θG, θD}. Instead, we train the model by optimizing the connection topology of the backbone
model and encode the dynamics of each system into a sub-network. This is equivalent to encoding
each system-specific dynamics pattern into a binary mask overlaying the shared parameters with fixed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: The upper part illustrates the workflow of MS-GODE during mask selection and inference, which are
denoted by dashed and solid lines. During mask selection, the observation is split into two parts, and the first part
is fed into the model for selecting the mask that can best predict the second part (simulated prediction). During
inference, the entire observation is fed into the model to predict the unknown future states. The lower part
demonstrates the structure of the masked encoder, masked generator, and masked decoder. Different components
fetch their corresponding mask from the mask pool and apply the mask onto the parameters.

values. In this way, the interference between learning on different systems with different dynamics,
i.e. the forgetting problem, can be avoided. Moreover, this approach is also memory efficient since
the space for storing the binary masks is negligible. With the system-specific masks, the three model
components are formulated as:

Enc(·; θE ⊙Ms
E); Gen(·; θG ⊙Ms

G); Dec(·; θD ⊙Ms
D), (1)

where the superscript s is the system index. The details of the binary mask optimization during
training and mask selection during testing are provided in Section 3.5. In the following subsections,
all parameters are subsets of θE , θG, or θD and are controlled by the corresponding masks. For
example, Wmsg in Section 3.3 is part of the encoder parameters θE and is under the control of Ms

E .

3.3 MASKED ENCODER NETWORK

As the first component of the model, the masked encoder network serves to encode the dynamics
pattern in the observational data into the latent space. As introduced in Section 3.1, the trajectory
of a system is a spatial-temporal graph. Therefore, the encoder is constructed as an attention-based
spatial-temporal graph neural network framework (ST-GNN) (Huang et al., 2020; Hu et al., 2022;
Huang et al., 2021; Zhang et al., 2020). Originally, the graph attention network (GAT) (Veličković
et al., 2017) is designed to aggregate information over the spatially neighboring nodes. On spatial-
temporal graphs, the information aggregation is extended to both spatial and temporal neighboring
nodes. Such a spatial-temporal neighborhood of a state xt

v is defined as the states of the spatially
connected nodes within a specified temporal window δwindow,

Nst(x
t
v) := {xq

w|eu,v ∈ E and |q − t| < δwindow}. (2)

Then, iterative message passing is conducted over the spatial-temporal edges to update the represen-
tation of each state. The update of the hidden representation of a state xt

v at the l-the layer of the
ST-GNN is formulated as,

hl
v,t = hl−1

v,t + σ(
∑

xq
u∈Nst(xt

v)

a(hl−1
v,t ,h

l−1
u,q , q − t) ·Wmsg ·msg(hl−1

u,t , q − t)), (3)

where a(·, ·) calculates the attention score between a pair of states, and msg(·, ·) is the message
function commonly adopted in GNNs (Gilmer et al., 2017). However, different from the message

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

function in typical GNNs, the temporal relationship between the states is a crucial part to understand
the system dynamics. Therefore, we follow the strategy in LG-ODE (Huang et al., 2020) to incorporate
the temporal distance between the states in the message function and attention function,

msg(hl−1
u,t , q − t)) := σ(Wtmp · concat(hl−1

u,t , q − t)) + TE(q − t), (4)

a(hl−1
v,t ,h

l−1
u,q , q − t) :=

exp(msg(hl−1
u,q , q − t))T · hl−1

v,t)∑
xp
w∈Nst(xt

v)
exp(msg(hl−1

w,p , p− t))T · hl−1
v,t)

, (5)

where TE(·) is a temporal position encoding developed based on the position encoding in Transformer
(Vaswani et al., 2017) for incorporating the temporal information into the representation. Finally, for
subsequent state prediction, the state representations are averaged over the temporal dimension,

hv
final =

1

|Tv|
∑
t∈Tv

σ(h̄T
v ·msg(hL

v,t)) ·msg(hL
v,t, t− t0), (6)

where t0 denotes the starting time of all states in the observational data (Section 3.1), and the average
term h̄v of each node v is a weighted summation over the representations at all time steps,

h̄v = σ(
1

|Tv|
∑
t∈Tv

msg(hL
v,t, t− t0) ·Wavg). (7)

3.4 MASKED ODE-BASED GENERATOR

ODE-based generator (Huang et al., 2020; Chen et al., 2018; Rubanova et al., 2019) ensures that the
model can handle observations with irregular temporal intervals and incomplete states, as well as
predict future states at any time denoted by real numbers. Specifically, the trajectory prediction is
formulated as solving an ODE initial value problem (IVP), where the initial values of the objects
({zt1v |v ∈ V}) are generated from the final representation of the states ({hv

final|v ∈ V}, Section 3.3).
Mathematically, the procedure of predicting the future trajectory of a system s is formulated as,

zt1v ∼ p(zt1v), v ∈ V (8)

{zτv |v ∈ V, τ ∈ Tpred
v } = Gen({zt1v |v ∈ V}, {Tpred

v |v ∈ V}; θG ⊙Ms
G)), (9)

To estimate the posterior distribution q({zt1v |v ∈ V}|{Xv|v ∈ V}) based on the observation (i.e.
{Xv|v ∈ V}), the distribution is assumed to be Gaussian. Then the mean µv and standard deviation
σv are generated from {hv

final|v ∈ V} with a multi-layer perceptron (MLP),

q(zt1v |{Xv|v ∈ V}) = N (µv, σv) = N (mlp(hv
final; θG ⊙Ms

G)), v ∈ V. (10)

As noted in Section 3.2, the parameters of mlp(·) and Fint(·) are part of θG and controlled by Ms
G.

Based on the approximate posterior distribution q({zt1v |v ∈ V}|{Xv|v ∈ V}), we sample an initial
state for each object, upon which the ODE solver will be applied for generating the predicted states
in the latent space. The dynamics of each object in the system are governed by its interaction with
all the other objects. Therefore, the core part of the ODE-based generator is a trainable interaction
network that encodes the dynamics in the form of the derivative of each zv ,

dzv
dt

|t=t′ = Fint({zt
′

u |u ∈ Ns(v)}; θG ⊙MG), (11)

where the function Fint(·) parameterized by θI predicts the dynamics (derivative) of each object v
based on all the other objects interacting with v (i.e. Ns(v) defined in Section 3.1), and t′ denotes
any possible future time. Note that Ns(v) only contains the spatial neighbors and is different from
Nst(·), because the object-wise interaction at a certain time t′ is not dependent on system states at
other times. For example, in a charged particle system governed by electrostatic force, the force
between a pair of particles at t′ is solely determined by the relative positions (i.e. the states) of the
particles (Figure 7) at t′. In our work, we adopt the Neural Relational Inference (NRI) (Kipf et al.,
2018) as the function Fint(·). Based on Fint(·), the future state of the system at an arbitrary future
time t2 can be obtained via an integration

zt2v = zt1v +

∫ t2

t1

dzv
dt

dt = zt1v +

∫ t2

t1

Fint({ztu|u ∈ Ns(v)}; θG ⊙MG)dt, (12)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which can be solved numerically by mature ODE solvers, e.g. Runge-Kutta method. After obtaining
the latent representations of the states at the future time steps ({ztv|t ∈ Tfuture, v ∈ V}), the
predictions are generated via a masked decoder network that projects the latent representations back
into the data space

yt
v = Dec(ztv; θD ⊙MD), t ∈ Tfuture, v ∈ V. (13)

In our work, Dec(·; θD) is instantiated as a multi-layer perceptron (MLP).

3.5 SUB-NETWORK LEARNING

MS-GODE is trained by maximizing the Evidence Lower Bound (ELBO). Denoting the concatenation
of all the initial latent states ({zt1v |v ∈ V}) as Zt1

V , the ELBO is formulated as

ELBO(Ms) = E
Z

t1
V ∼q(z

t1
v |{Xv|v∈V})[log(p({x

t
v|t ∈ Tfuture, v ∈ V}))] (14)

−KL[q(Zt1
V |{Xv|v ∈ V}))||p(Zt1

V)]. (15)

where p(Zt1
V) denotes the prior distribution of Zt1

V , which is typically chosen as standard Gaus-
sian. Ms denotes the union of all masks over different modules of the framework (i.e. Ms =
{Ms

E ,M
s
I ,M

s
P }). In our model, the parameters (θE ,θI , and θP) will be fixed, and the ELBO will

be maximized by optimizing the binary masks Ms overlaying the parameters via the Edge-popup
algorithm (Ramanujan et al., 2020). After learning each system, the obtained mask is added into a
mask pool M to be used in testing.

3.6 MODE-SWITCHING

During testing, MS-GODE will be evaluated on a sequence of systems exhibiting diverse dynamics
patterns, and it will automatically switch to the optimal mode that ensures the highest accuracy. This
is achieved by applying the most suitable mask based on the performance of reconstructing part of
the given observations. To obtain the most suitable mask, a given observation from [t0,t1] is first split
it into two periods [t0, t0+t1

2] and [t0+t1
2 ,t1]. Then, the first half is fed into the model and the correct

mask can be chosen by selecting the one that can reconstruct the second half with the lowest error.

4 EXPERIMENTS

In this section, we aim to answer the following questions. 1. How to properly configure MS-GODE
for optimal performance? 2. How would the configuration of the system sequence influence the
performance? 3. How is the performance of the existing CL techniques? 4. Can MS-GODE
outperform the baselines?

4.1 EXPERIMENTAL SYSTEMS

In experiments, we adopt physics and biological cellular systems. A detailed introduction to the
system sequence construction is provided in Appendix A.1.

Simulated physics systems are commonly adopted to evaluate the machine learning models in the
task of learning system dynamics (Liu et al., 2024; Battaglia et al., 2016; Huang et al., 2020). The
physics systems adopted in this work include spring-connected particles and charged particles (Figure
7). We carefully adjust the system configuration and construct 3 system sequences with different
levels of dynamics shift (Appendix A.1).

Biological cellular systems are innovatively introduced in this work based on Virtual Cell plat-
form (Schaff et al., 1997; Cowan et al., 2012; Blinov et al., 2017). Currently, Bio-CDL includes two
types of cellular models. The first one is rule-based model of EGFR receptor interaction with two
adapter proteins Grb2 and Shc. The second is a compartmental rule based model of translocation
through the nuclear pore of a cargo protein based on the Ran protein (GTPase). In experiments, we
adjust the coefficients of the models to construct a sequence containing 2 EGFR and 2 Ran systems
interleaved with each other (EGFR1 → Ran1 → EGFR2 → Ran2). Full details are provided in
Appendix A.1.2.

4.2 EXPERIMENTAL SETUPS & EVALUATION

Model evaluation in CDL. The models in this work learn sequentially on multiple systems under
the continual learning setting, thus the evaluation is significantly different from standard learning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Performance comparison among different strategies to binarize the mask values. (a) Comparison over
the cellular system sequence EGFR1 → Ran1 → EGFR2 → Ran2. (b)(c)(d) Comparison over different
physics system sequences. Blue line denotes the performance of top-k selection with different thresholds. Red
line demonstrates the performance of using fast selection.

settings. After learning each new task, the model is tested on all learned tasks and the results form a
performance matrix Mp ∈ RN×N , where Mp

i,j denotes the performance on the j-system after learning
from the 1-st to the i-th system, and N is the number of systems in the sequence. In our experiments,
each entry of Mp is a mean square error (MSE) evaluating the performance on a single system. To
evaluate the performance over all systems, average performance (AP) can be calculated. For example,∑N

j=1 Mp
N,j

N is the average performance after learning the entire sequence with N tasks. Similarly,

average forgetting (AF) can be calculated as
∑N−1

j=1 Mp
N,j−Mp

j,j

N−1 . More details on model evaluation can
be found in Appendix A.4. The baseline are configured by combining existing continual learning
techniques with the LG-ODE (Huang et al., 2020) model. Other dynamics learning models were
excluded because they typically don’t support the practical setting with irregular and incomplete
observation studied in this work. All experiments are repeated 5 times on a Nvidia Titan Xp GPU.
The results are reported with average and standard deviations.

Baselines & model settings. We adopt state-of-the-art baselines including the performance upper
(joint training) and lower bounds (fine-tune) in experiments. The state-of-the-art baselines adopted
in this work include Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) based on regu-
larization, Learning without Forgetting (LwF) (Li & Hoiem, 2017) based on knowledge distillation,
Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) based on both memory replay
and regularization, Bias-Correction (Chrysakis & Moens, 2023) based Memory Replay (BCMR)
that integrates the idea of data sampling bias correction into memory replay, and Scheduled Data
Prior (SDP) (Koh et al., 2023) that adopts a data-driven approach to balance the contribution of
past and current data. Besides, joint training and fine-tuning are commonly adopted in continual
learning works. Joint training trains the model jointly over all systems, which does not follow the
continual learning setting. Fine-tune directly trains the model incrementally on new systems without
any continual learning technique. As revealed by Ramanujan et al. (2020), for learning subnetworks,
pre-trained models are the most suitable for serving as the backbone. However, unlike the Computer
Vision (CV) tasks studied by Ramanujan et al. (2020), pre-trained models are not readily available in
the context of dynamics system modeling. For example, Seifner et al. (2024) provides a promising
pre-trained model with valuable insights into pre-training for dynamical systems, but the model is
still limited to interpolation tasks. However, we will investigate how to adapt the provided model
to extrapolation tasks once their code and model are released. Therefore, we adopt the random
initialization strategy, which is shown by Ramanujan et al. (2020) to be less effective but could be
comparable to pre-trained models with a proper ratio of remaining parameters, which is thoroughly
investigated in our experiments reported in Section 4.3 (Figure 4). More details of experimental
settings and baselines and experimental settings are provided in Appendix A.1 A.3.

4.3 MODEL CONFIGURATION AND PERFORMANCE (RQ1)

When optimizing the system-specific masks using the edge-popup algorithm (Ramanujan et al., 2020)
(Appendix A.2), each entry of the mask is assigned with a continuous value for gradient descent after
backpropagation. During inference, different strategies can be adopted to transform the continuous
scores into binary values. In our experiments, we tested both ‘fast selection’ and ‘top-k selection’
with different thresholds. ‘Fast selection’ sets all entries with positive score values into ‘1’s and the
other entries into ‘0’s. ‘Top-k selection’ first ranks the score values and sets a specified ratio of entries
with the largest values into ‘1’s. In Figure 4, we show the performance of different strategies. Overall,
‘top-k selection’ is inferior to ‘fast selection’. This is potentially because ‘fast selection’ does not

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance comparisons on physics system sequences (↓ lower means better).

Method Seq1: Low-level dynamics shift Seq2: Mid-level dynamics shift Seq3: High-level dynamics shift
AP ↓ AF ↓ AP ↓ AF /% ↓ AP ↓ AF /% ↓

Fine-tune 0.369±0.027 0.115±0.016 0.391±0.044 0.314±0.030 0.258±0.025 0.086±0.037
EWC 2017 0.208±0.015 -0.007±0.019 0.227±0.038 0.008±0.022 0.148±0.011 0.008±0.017
GEM 2017 0.251±0.037 0.079±0.020 0.379±0.023 0.302±0.030 0.163±0.037 -0.091±0.033
LwF 2017 0.258±0.011 0.104±0.042 0.363±0.039 0.312±0.042 0.130±0.025 0.016±0.032

BCMR 2023 0.284±0.017 -0.006±0.031 0.298±0.028 -0.001±0.033 0.233±0.017 0.027±0.023
SDP 2023 0.352±0.021 0.121±0.018 0.303±0.026 0.352±0.058 0.213±0.035 0.024±0.045

Joint 0.194±0.006 - 0.186±0.015 - 0.116±0.009 -

Ours 0.200±0.003 0.002±0.004 0.204±0.005 -0.001±0.001 0.113±0.001 -0.000±0.000

limit the number of selected entries, therefore allowing more flexibility for optimization. We also
observe that the performance of ‘top-k’ selection is more sensitive on the cellular systems compared
to the physics systems, indicating that the cellular systems have higher optimization difficulty for
sub-network (binary mask) learning over system sequences.

Figure 5: AP (a) and AF (b) of MS-GODE with different
dropout rate.

Second, sub-network learning will deactivate
some neurons in the model, which resem-
bles the dropout mechanism widely adopted
in machine learning models and may cause
the model to be over-sparsified. Therefore,
we investigate the influence of dropout rate
in MS-GODE. From Figure 5, we can see
that a smaller dropout rate results in lower
error (better performance). This corroborates
our hypothesis that the mask selection mech-
anism and dropout complement each other,
and the dropout rate should be decreased when the masking strategy is adopted.

4.4 SEQUENCE CONFIGURATION AND PERFORMANCE (RQ2)
In this subsection, we investigate the influence of system sequence configuration on the learning
difficulty and model performance. Specifically, we construct 3 physics system sequences with
increasing level of dynamics shift (Details are provided in Appendix A.1.1). Sequence 1 (low-level
dynamics shift) consists of 8 spring connected particle systems, in which consecutive systems are
only different in one system coefficient. Sequence 2 (mid-level dynamics shift) is constructed to have
a higher level of dynamics shift by simultaneously varying 2 system coefficients. Finally, sequence
3 (high-level dynamics shift) is constructed by interleaving spring-connected particle systems and
charged particle systems with disparate dynamics. As shown in Table 1, in terms of both AP and AF,
most methods, including MS-GODE, obtain similar performance over Sequence 1 and 2, and obtain
better performance on Sequence 3. For MS-GODE, since the systems with more diverse dynamics
are easier to distinguish for selecting the masks during inference. For all the methods in general,
two possible cases are: 1. The model is not well trained on any system (it has not encoded much
information), therefore it has nothing to forget. 2. The model is well trained and can maintain enough
information from each system. However, the lower AP (low MSE) obtained on the system sequence
with high-level dynamics shift indicates that the model has well adapted to each system, i,e, case
1 is not true. When case 2 holds, it indicates that the model’s parameters are sufficiently updated
to fit each system. When learning on one system, two possible cases are: 1. All parameters are
modified uniformly. 2. A subset of parameters are modified more than the others. When the baseline
is Fine-tune, if all the parameters are uniformly modified, it would be almost impossible to maintain
the performance on previous systems. Therefore, the potential case is that each system relies more on
a subset of the parameters, and systems with larger difference in dynamics may lead to less overlap in
the subsets of parameters they rely on.

4.5 COMPARISONS WITH STATE-OF-THE-ARTS (RQ3,4)
In this subsection, we compare MS-GODE with multiple state-of-the-arts methods including the joint
training, which is typically regarded as the upper bound on the performance in continual learning
research. The experiments are conducted on both physics systems (Table 1) and cellular systems

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of performance matrices. (a), (b), (c), (d) corresponds to MS-GODE, fine-tune, EWC,
and LwF on the cellular system sequence. (e), (f), (g), (h) are the performance of MS-GODE, EWC, fine-tune,
and GEM, on the physics systems. Lower values indicate better performance.

(Table 2), which demonstrate that MS-GODE outperforms the baselines in both cellular systems and
physics systems with different configurations. Besides, by comparing the results across different
sequences in the two tables, we could find that the sequences with gradual dynamics shift (Sequence
1,2 of physics systems) are more difficult to learn than the sequences with abrupt dynamics shift
(Sequence 3 of the physics systems and the cellular system).The advantages of MS-GODE over the
baselines mainly come from two perspectives. First, since the learning of the subnetworks are learned
in a completely independent manner, the plasticity when learning new systems is guaranteed. Second,
the independency of the subnetworks also eliminates the forgetting issue and protect the performance
stability on previously learned systems.
4.6 IN-DEPTH INVESTIGATION ON THE LEARNING DYNAMICS (RQ3,4)

Table 2: Performance comparisons on biological cellu-
lar systems (↓ lower means better).

Method EGFR1 → Ran1 → EGFR2 → Ran2

AP ↓ AF ↓

Fine-tune 0.355±0.089 0.226±0.037
EWC 2017 0.312±0.028 -0.013±0.019
GEM 2017 0.316±0.083 0.352±0.109
LwF 2017 0.330±0.036 0.349±0.046

BCMR 2023 0.149±0.025 0.013±0.044
SDP 2023 0.197±0.025 0.167±0.045

Joint 0.055±<0.001 -

Ours 0.144±0.012 -0.003±0.036

Table 1 and 2 provide the overall perfor-
mance, which is convenient to compare dif-
ferent methods. However, as introduced in
Section 4.2, to obtain an in-depth under-
standing of the performance of different
methods, we have to seek help from the
most thorough metric, i.e. the performance
matrix. In Figure 6, we visualize the perfor-
mance matrices of different methods after
learning different system sequences. The
i-th column demonstrates the performance
of the i-th task when learning sequentially
over the systems. Comparing MS-GODE
((a) and (e)) and the other methods, we
find that MS-GODE could maintain a much
more stable performance of each system when learning over the sequence. EWC ((c) and (f)) also
maintains a relatively stable performance of each system based on its regularization strategy. However,
compared to MS-GODE, the model becomes less and less adaptive to new systems (the columns
become increasingly darker from left to right). This is because the regularization is applied to more
parameters when proceeding to each new task. Fine-tune ((b) and (g)) is not limited by regularization,
therefore is more adaptive on new systems but less capable of preserving the performance on previous
systems compared to EWC. LwF (d), although based on knowledge distillation, does not directly
limit the adaptation of the parameters like EWC. Finally, based on memory and gradient modification,
GEM (h) maintains the performance better than fine-tune (g), and is more adaptive to new tasks than
EWC (f). More details on the performance matrices are provided in Appendix A.5.

5 CONCLUSION

In this paper, we systematically study the problem of continual dynamics learning (CDL) from differ-
ent perspectives, including investigating the influence of task configuration on model performance
and evaluating the performance of existing continual learning techniques in CDL. Based on the
findings, we propose an effective method, Mode-switching Graph ODE (MS-GODE), for CDL. Addi-
tionally, we also construct a novel benchmark, Bio-CDL, consisting of biological cellular systems
and significantly enriching the research field of machine learning on system dynamics. Finally, we
conduct comprehensive experiments on both physics and cellular system sequences, which not only
demonstrate the effectiveness of MS-GODE, but also provide insights into the problem of machine
learning over system sequences with dynamics shift.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 139–154, 2018.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Michael L Blinov, James C Schaff, Dan Vasilescu, Ion I Moraru, Judy E Bloom, and Leslie M Loew.
Compartmental and spatial rule-based modeling with virtual cell. Biophysical journal, 113(7):
1365–1372, 2017.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Ge-
ometric and physical quantities improve e (3) equivariant message passing. arXiv preprint
arXiv:2110.02905, 2021.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), pp. 532–547, 2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Aristotelis Chrysakis and Marie-Francine Moens. Online bias correction for task-free continual
learning. ICLR 2023 at OpenReview, 2023.

Ann E Cowan, Ion I Moraru, James C Schaff, Boris M Slepchenko, and Leslie M Loew. Spatial
modeling of cell signaling networks. In Methods in cell biology, volume 110, pp. 195–221. Elsevier,
2012.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272. PMLR, 2017.

Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost van de Weijer. Fecam: Exploiting
the heterogeneity of class distributions in exemplar-free continual learning. Advances in Neural
Information Processing Systems, 36, 2023.

Jiaqi Han, Wenbing Huang, Tingyang Xu, and Yu Rong. Equivariant graph hierarchy-based neural
networks. Advances in Neural Information Processing Systems, 35:9176–9187, 2022.

Lianyu Hu, Shenglan Liu, and Wei Feng. Spatial temporal graph attention network for skeleton-based
action recognition. arXiv preprint arXiv:2208.08599, 2022.

Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equivariant
graph mechanics networks with constraints. arXiv preprint arXiv:2203.06442, 2022.

Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from irregularly-
sampled partial observations. Advances in Neural Information Processing Systems, 33:16177–
16187, 2020.

Zijie Huang, Yizhou Sun, and Wei Wang. Coupled graph ode for learning interacting system dynamics.
In KDD, pp. 705–715, 2021.

Zijie Huang, Yizhou Sun, and Wei Wang. Generalizing graph ode for learning complex system dy-
namics across environments. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 798–809, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Beomseok Kang, Priyabrata Saha, Sudarshan Sharma, Biswadeep Chakraborty, and Saibal Mukhopad-
hyay. Online relational inference for evolving multi-agent interacting systems. arXiv preprint
arXiv:2411.01442, 2024.

Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark
Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with
winning subnetworks. In International Conference on Machine Learning, pp. 10734–10750.
PMLR, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International Conference on Machine Learning, pp. 2688–
2697. PMLR, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
(13):3521–3526, 2017.

Hyunseo Koh, Minhyuk Seo, Jihwan Bang, Hwanjun Song, Deokki Hong, Seulki Park, Jung-Woo
Ha, and Jonghyun Choi. Online boundary-free continual learning by scheduled data prior. In The
Eleventh International Conference on Learning Representations, 2023.

Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu. Parameter-
level soft-masking for continual learning. In International Conference on Machine Learning, pp.
17492–17505. PMLR, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. Advances in
Neural Information Processing Systems, 36, 2023.

Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 8653–
8661, 2021.

Yang Liu, Jiashun Cheng, Haihong Zhao, Tingyang Xu, Peilin Zhao, Fugee Tsung, Jia Li, and
Yu Rong. SEGNO: Generalizing equivariant graph neural networks with physical inductive
biases. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=3oTPsORaDH.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Xiao Luo, Yiyang Gu, Huiyu Jiang, Hang Zhou, Jinsheng Huang, Wei Ju, Zhiping Xiao, Ming
Zhang, and Yizhou Sun. Pgode: Towards high-quality system dynamics modeling. In Forty-first
International Conference on Machine Learning.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In International Conference
on Machine Learning, pp. 23124–23139. PMLR, 2023.

Xiao Luo, Haixin Wang, Zijie Huang, Huiyu Jiang, Abhijeet Gangan, Song Jiang, and Yizhou Sun.
Care: Modeling interacting dynamics under temporal environmental variation. Advances in Neural
Information Processing Systems, 36, 2024.

Jonathan D Moore. In the wrong place at the wrong time: does cyclin mislocalization drive oncogenic
transformation? Nature Reviews Cancer, 13(3):201–208, 2013.

12

https://openreview.net/forum?id=3oTPsORaDH

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and
Daniel L Yamins. Flexible neural representation for physics prediction. Advances in neural
information processing systems, 31, 2018.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In European conference on computer vision, pp. 524–540.
Springer, 2020.

Jingyang Qiao, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, Yuan Xie, et al. Prompt gra-
dient projection for continual learning. In The Twelfth International Conference on Learning
Representations, 2023.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11893–11902, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ode integrators. arXiv preprint arXiv:1909.12790, 2019.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

James Schaff, Charles C Fink, Boris Slepchenko, John H Carson, and Leslie M Loew. A general
computational framework for modeling cellular structure and function. Biophysical journal, 73(3):
1135–1146, 1997.

Patrick Seifner, Kostadin Cvejoski, Antonia Körner, and Ramsés J Sánchez. Foundational inference
models for dynamical systems. arXiv preprint arXiv:2402.07594, 2024.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. arXiv preprint arXiv:2006.14769,
2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Liming Wu, Zhichao Hou, Jirui Yuan, Yu Rong, and Wenbing Huang. Equivariant spatio-temporal
attentive graph networks to simulate physical dynamics. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
35nFSbEBks.

Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta continual learning
revisited: Implicitly enhancing online hessian approximation via variance reduction. In The Twelfth
International Conference on Learning Representations, 2024.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Xikun Zhang, Chang Xu, and Dacheng Tao. Context aware graph convolution for skeleton-based
action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14333–14342, 2020.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Cglb: Benchmark tasks for continual graph learning.
In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022a.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Hierarchical prototype networks for continual graph
representation learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):
4622–4636, 2023. doi: 10.1109/TPAMI.2022.3186909.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Continual learning on graphs: Challenges, solutions,
and opportunities. arXiv preprint arXiv:2402.11565, 2024.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
graph neural networks under spatio-temporal distribution shift. Advances in neural information
processing systems, 35:6074–6089, 2022b.

Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks with
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 4714–4722, 2021.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. Advances in neural information processing systems, 32, 2019.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 SYSTEM SEQUENCE CONFIGURATION

A.1.1 PHYSICS SYSTEM SEQUENCE

Simulated physics systems are commonly adopted to evaluate the machine learning models in the task
of learning system dynamics (Liu et al., 2024; Battaglia et al., 2016; Huang et al., 2020). The physics
systems adopted in this work include spring connected particles and charged particles (Figure 7)
with disparate dynamics, therefore are ideal for constructing system sequences to evaluate a model’s
continual learning capability under severe significant dynamics shift. Besides, the configuration
of each system type is also adjustable. For the spring connected particles, the number of particles,
strength of the springs, and the size of the box containing the particles are adjustable. For the charged
particles, the number of particles, charge sign, and the size of box are adjustable. In our experiments,
we constructed multiple systems with different configurations, which are aligned into sequences for
the model to learn.

The physics system sequences are constructed to have different types of dynamics changes. System
sequence 1 is composed of 8 spring connected particle systems. Each system contains 5 particles,
and some pairs of particles are connected by springs. An illustration is given in Figure 7. For
each system, besides the number of particles, the size of the box containing the particles and the
strength of spring are adjustable. In Sequence 1, the first 4 systems have constant spring strength
and decreasing box size. From the 5-th system, the box size is fixed, and the spring strength is

14

https://openreview.net/forum?id=35nFSbEBks
https://openreview.net/forum?id=35nFSbEBks

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

System S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Type Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring

particles 5 5 5 5 5 5 5 5 5 5

Box size 10.0 5.0 3.0 1.0 0.5 0.5 0.5 0.5 3.0 1.0

Interaction strength 0.01 0.01 0.01 0.01 0.01 0.1 0.5 1.0 0.1 0.5

Table 3: Spring connected system configurations.

System C1 C2 C3 C4

Type Charge Charge Charge Charge

particles 5 5 5 5

Box size 10.0 3.0 1.0 0.5

Interaction strength 0.01 0.1 0.5 1.0

Table 4: Charged particle system configurations.

gradually increased. Sequence 2 also contains 8 systems of spring connected particles and is designed
to posses more severe dynamics shift. Specifically, both the box size and spring strength vary from
the first to the last system, and the values are randomly aligned instead of monotonically increasing
or decreasing. Sequence 3 is designed to posses more significant dynamics shift than Sequence 2
by incorporating the charged particle systems in the sequence. Specifically, Sequence 3 contains 4
spring connected particle systems and 4 charged particle systems, which are aligned alternatively.
The box size gradually decreases and the interaction strength (spring strength or amount of charge
on the particles) gradually increases. In a charged particle system, the particles could carry either
positive or negative charge, and the system dynamics is governed by electrostatic force, which is
significantly different from the spring connected particle system.

Figure 7: Illustration of the continual learning over different
physics systems with different dynamics. The factors deter-
mining the dynamics shown in this figure include the type
and strength of the interactions.

Specifically, we list the configurations
of the systems in Table 3 and 4. Then
the three sequences can be precisely
represented as:

1. Sequence 1: S1 → S2 →
S3 → S4 → S5 → S6 →
S7 → S8

2. Sequence 2: S1 → S8 →
S2 → S7 → S3 → S6 →
S5 → S5

3. Sequence 3: S1 → C1 →
S9 → C2 → S10 → C3 →
S8 → C4

For each system, the simulation runs
for 6,000 steps, and the observation is
sampled every 100 steps, resulting in
a 60-step series. During training, the
first 60% part of the trajectory of each
system is fed to the model to generate
prediction for the remaining 40%. For each system sequence, 1,000 sequences are used for training,
and another 1,000 sequences are used for testing.

A.1.2 BIOLOGICAL CELLULAR SYSTEM

In this paper, we build a novel benchmark, Bio-CDL, containing biological cellular dynamic systems
based on Virtual Cell (Schaff et al., 1997; Cowan et al., 2012; Blinov et al., 2017) with different

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

system configurations and variable selection. Currently, Bio-CDL is built based on two types of
cellular models. The first one is rule-based model of EGFR receptor interaction with two adapter
proteins Grb2 and Shc. The second is a compartmental rule based model of translocation through the
nuclear pore of a cargo protein based on the Ran protein (GTPase). An illustration of the Ran system
is provided in Figure 8.

Figure 8: Illustration of the RAN-regulated nucleocy-
toplasmic transport (Moore, 2013). Briefly speaking,
this model depicts the translocation of cargo proteins
(Exportin 1) via nuclear pores with the assistance of
RAN proteins. RAN-GDP is first activated into RAN-
GTP) and then binds to cargo molecules (Exportin 1)
forming a complex containing RAN-GTP and Exportin
1. Next, the complex is translocated across the nuclear
membrane into the cytoplasm with the assistance of
RAN. Finally, RAN and Exportin 1 are dissociated after
the translocation.

Detailed description of these
two systems can be found via
https://vcell.org/webstart/
VCell_Tutorials/VCell6.1_
Rule-Based_Tutorial.pdf and
https://vcell.org/webstart/
VCell_Tutorials/VCell6.1_
Rule-Based_Ran_Transport_
Tutorial.pdf. Based on these 2 types
of models, we construct multiple systems,
which are aligned into different system
sequences. Details are provided below.

Our new benchmark contains 1,200 system
sequences constructed based on the EGFR
receptor interaction model and Ran trans-
portation model. These sequences fall into
12 different types, each of which contains
different combinations of systems in dif-
ferent orders to creat different levels of dy-
namics shift. Denoting the basic systems as
EGFR_i and Ran_i
(i=1,2,3), the sequence types are listed be-
low. The length of the observation ranges
from 250 to 550 time steps for EGFR sys-
tems and 40 to 150 time steps for Ran sys-
tems.

1. EGFR1 → EGFR2 → EGFR3 →
EGFR4 (Low-level dynamics shift) 1.
Ran1 → Ran2 → Ran3 → Ran4 (Low-level dynamics shift) 1. EGFR1 → Ran1 → EGFR2 →
Ran2 (High-level dynamics shift) 1. Ran1 → EGFR1 → Ran2 → EGFR2 (High-level dynamics
shift)

1. EGFR1 → EGFR2 → EGFR3 → EGFR4 → EGFR5 → EGFR6 (Low-level dynamics
shift) 1. Ran1 → Ran2 → Ran3 → Ran4 → Ran5 → Ran6 (Low-level dynamics shift) 1.
EGFR1 → Ran1 → EGFR2 → Ran2 → EGFR3 → Ran3 (High-level dynamics shift) 1. Ran1

→ EGFR1 → Ran2 → EGFR2 → Ran3 → EGFR3 (High-level dynamics shift)

1. EGFR1 → EGFR2 → EGFR3 → EGFR4 → EGFR5 → EGFR6 → EGFR7 → EGFR8

(Low-level dynamics shift) 1. Ran1 → Ran2 → Ran3 → Ran4 → Ran5 → Ran6 → Ran7 →
Ran8 (Low-level dynamics shift) 1. EGFR1 → Ran1 → EGFR2 → Ran2 → EGFR3 → Ran3

→ EGFR4 → Ran4 (High-level dynamics shift) 1. Ran1 → EGFR1 → Ran2 → EGFR2 →
Ran3 → EGFR3 → Ran4 → EGFR4 (High-level dynamics shift)

Since we haven’t figured out a proper to anonymously release the large-size dataset online, we provide
below the details of data generation, and will release our generated data later. The code for generating
the configuration files for the simulations is contained in

VCell_config_gen.py.

We have restricted the model coefficients to a specific range to ensure the simulations remain stable.
After generating the configuration files, they should be uploaded into the VCell platform for generating
the simulations. The specific steps are listed below.

16

https://vcell.org/webstart/VCell_Tutorials/VCell6.1_Rule-Based_Tutorial.pdf
https://vcell.org/webstart/VCell_Tutorials/VCell6.1_Rule-Based_Tutorial.pdf
https://vcell.org/webstart/VCell_Tutorials/VCell6.1_Rule-Based_Tutorial.pdf
https://vcell.org/webstart/VCell_Tutorials/VCell6.1_Rule-Based_Ran_Transport_Tutorial.pdf
https://vcell.org/webstart/VCell_Tutorials/VCell6.1_Rule-Based_Ran_Transport_Tutorial.pdf
https://vcell.org/webstart/VCell_Tutorials/VCell6.1_Rule-Based_Ran_Transport_Tutorial.pdf
https://vcell.org/webstart/VCell_Tutorials/VCell6.1_Rule-Based_Ran_Transport_Tutorial.pdf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9

Figure 10

1. Download the VCell client through https://vcell.org/run-vcell-software, create
a free account and log in. 2. Select the ’BioModel’ tab, in the ’Search’ box, locate and load the
models ’Rule-based_egfr_tutorial’ or ’rule-based_Ran_transport’ under the ’Tutorials’ directory for
the EGFR model or Ran model, respectively (Figure 9).

4. In the upper left part of the window, click the ’Applications’, then click the ’Simulations’ under
the ’network_determ’ tab (Figure 10).

4. In the main window on the upper right, select the ’Simulations’ tab and click the first icon under
the ’Simulations’ tab to create a new simulation (Figure 11).

5. Click to select the created simulation, then click the icon with a blue arrow and a gear to load the
previously generated simulations. 6. After the simulations are done, select all the simulations and
click the icon with a green arrow and a gear to export all the simulation results into a specified folder.
7. Specify the

data_store_path

and run

generate_dataset.py

to obtain the data files that can be loaded and used by the MS-GODE model.

This implementation of MS-GODE is based on [Pytorch Geometric]https://github.com/
rusty1s/pytorch_geometric API.

Figure 11

17

https://vcell.org/run-vcell-software
https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Example command for running the experiments with MS-GODE:

python run_models.py --cut_num 20 \
--nepos 20 \
--device 5 \
--n_iters_to_viz 10 \
--thresholding ’fast’ \
--mask True \
--dropout_mask ’0.0’ \
--batch-size 10 \
--mode "ex" \
--normalizeVCellfeat ’universal’ \
--system ’VCell’ \
--repeats 5 \
--overwrite_results ’False’ \
--fix_random_seed ’False’ \
--save_results True

Example scripts for data generation of cellular/physics systems:

python ./data/generate_dataset.py --simulation VCell \
--num-train 3000 \
--num-test 3000 \
--n-balls 5

The generation of cellular simulation data requires first obtaining simulation data from VCell platform,
which is introduced in the Appendix A.1.2 of the submission.

python ./data/generate_dataset.py --simulation simulation \
--num-train 3000 \
--num-test 3000 \
--n-balls 5

Setup

The mdoel implementation is based on the following packages:

- [Python 3.6.10](https://www.python.org/)

- [Pytorch 1.4.0](https://pytorch.org/)

- [pytorch_geometric 1.4.3](https://pytorch-geometric.readthedocs.io/)

- torch-cluster==1.5.3 - torch-scatter==2.0.4 - torch-sparse==0.6.1

- [torchdiffeq](https://github.com/rtqichen/torchdiffeq)

- [numpy 1.16.1](https://numpy.org/)

In our experiments, we adjust the parameter configurations of these two types of models to construct
multiple systems with different dynamics, which are aligned into a sequence for the experiments.
We generate simulated data using the Virtual Cell platform (VCell) and pre-process the data. In
experiments, we adopt a 4-system sequence using the simulated data by alternatively align 2 EGFR
systems and 2 Ran systems. EGFR system is rule-based model of EGFR receptor interaction with
two adapter proteins Grb2 and Shc. Ran system is a compartmental rule based model of translocation
through the nuclear pore of a cargo protein based on the Ran protein (GTPase).

Using the code for generating cellular system data requires the following steps.

1. Using the script contained in our provided code ‘MS-GODE/VCell_config_gen’ to generate
the configuration files for VCell simulation. Users can freely adjust the configurations in the
script.

2. Download the VCell application from https://vcell.org/.

18

https://vcell.org/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

3. Load the generated configuration files into the VCell platform.
4. Generate simulation results. Instruction of using this script is also provided in the ReadMe

file of our code.
5. Using the script ‘MS-GODE/data/generate_dataset.py’ for processing the simulation results.

After this step, the data can be used for experiments.

Since the entire dataset is much larger than the 100 MB limit, we cannot provide the data in
the supplementary materials. But we have provided all code and instruction for generating the
data, and will release the complete Bio-CDL benchmark to the public later. Besides the sequence
EGFR1 → Ran1 → EGFR2 → Ran2 adopted in the experiments, the complete Bio-CDL also
contain more different system configurations and sequence configurations. Moreover, we are also
working on enriching Bio-CDL with more diverse system types and system sequences.

For each cellular system, we generate 100 iterations of simulation using VCell. Different from the
physics systems, the temporal interval between two time steps of cellular system is not constant.
Similar to the physics systems, the first 60% part of the observation of each system simulation is fed
into the model to reconstruct the remaining 40% during training. For each system, we generate 20
systems for training and 20 systems for testing.

A.1.3 ADDITIONAL DETAILS OF EXPERIMENTAL SETTINGS

For the encoder network, the number of layers is 2, and the hidden dimension is 64. 1 head is used for
the attention mechanism. The interaction network of the generator is configured as 1-layer network,
and the number of hidden dimensions is 128. Finally, the decoder network is a fully-connected
layer. The model is trained for 20 epochs over each system in the given sequence. We adopt the
AdamW optimizer (Loshchilov & Hutter, 2017) and set the learning rate as 0.0005. In our work, task
boundaries are provided to the models during training.

A.1.4 ADDITIONAL DISCUSSION ON PERFORMANCE AND LOW-LEVEL DYNAMICS SHIFT

The performance of MS-GODE is mainly determined on two factors, including the performance on
each system and the forgetting issue. Therefore, to further improve the performance under gradual
dynamics shift, there are two promising approaches:

1. Enhancing the performance on each single system. As revealed in Ramanujan et al. (2020), the
larger the backbone network, the more probable the masked sub-network can reach the capacity of the
full backbone network. In other words, increasing the size of the model can improve the performance.

2. Reducing the performance decrease after learning new systems. Since MS-GODE completely
separate the masks for different dynamics, the forgetting issue has been eliminated. Therefore, the
performance decrease after learning new systems mainly comes from the incorrect mask selection.
The strategy above to increase model size can help improve the mask selection, because better fitting
to each system increases the difference between the masks. Furthermore, the mask selection can
also be improved by incorporating a mixture of selection criteria. Specifically, in our experiments,
the mode-switching module of MS-GODE selects the mask based on the error of reconstructing
the second 50% of the observation. This can be enhanced by incorporating different splitting ratios
and mixing the result. Since the correct mask tend to exhibit lower error with most splitting ratios,
selecting the one that succeeds in more splitting ratios could increase the possibility of finding the
correct one.

A.2 EDGE-POPUP ALGORITHM

In this work, we adopt the edge-popup algorithm (Ramanujan et al., 2020) for optimizing the binary
masks. The main idea is to optimize a continuous score value for each entry of the mask during
the backpropagation, and binarize the values into discrete binary values during forward propagation
(Appendix A.2). Accordingly, the strategy for binarizing the mask entry values is a crucial factor
influencing the performance. For convenience of the readers, we provide the details about this
algorithm in this subsection.

Given a fully connected layer, the input to a neuron v in the l-th layer can be formulated as a weighted
summation of the output of the neurons in the previous later,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Iv =
∑

uVl−1

wuvzu, (16)

where V l−1 denotes the nodes in the previous layer and zu refers to the output of neuron u.

With the edge-popup strategy, the output is reformulated as

Iv =
∑

uVl−1

wuvzuh(suv), (17)

where h(suv) is the binary value over the weight wuv denoting whether this weight is selected and
suv the continuous score used in gradient descent based optimization. During backpropagation, the
gradient will ignore h(·) and goes through it, therefore the gradient over suv is

gsuv
=

∂L
∂Iv

∂Iv
∂suv

=
∂L
∂Iv

wuvzu, (18)

where L denotes the loss function.

During forward propagation, h(·) can take different options as we mentioned and studied in Section
4.3. In our experiments 4.3, we tested both ‘fast selection’ and ‘top-k selection’ with different
thresholds. ‘Fast selection’ set all entries with positive values into ‘1’s and the other entries into ‘0’s.
‘Top-k selection’ will rank the entry values and set a specified ratio of entries with the largest values
into ‘1’s.

A.3 BASELINES

1. Fine-tune denotes using the backbone model without any continual learning technique.
2. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) applies a quadratic penalty

over the parameters of a model based on their importance to maintain its performance on
previous tasks.

3. Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) selects and stores
representative data in an episodic memory buffer. During training, GEM will modify the
gradients calculated based on the current task with the gradient calculated based on the
stored data to avoid updating the model into a direction that is detrimental to the performance
on previous tasks.

4. Learning without Forgetting (LwF) (Li & Hoiem, 2017) is a knowledge distillation based
method, which minimizes the discrepancy between the the old model output and the new
model output to preserve the knowledge learned from the old tasks.

5. Bias Correction based Memory Replay (BCMR) (Chrysakis & Moens, 2023). This
baseline is constructed by integrating the navie memory replay with the data sampling bias
correction strategy (Chrysakis & Moens, 2023). In other words, the method does not train
the data immediately after observing the data. Instead, it stores the observed data into a
memory buffer. Whenever testing is required, the model will be trained over all buffered
data.

6. Scheduled Data Prior (SDP) (Koh et al., 2023) considers that the importance of new and
old data is dependent on the specific characteristics of the given data, therefore balance the
contribution of new and old data based on a data-driven approach.

7. Joint Training (Joint) jointly trains a given model on all data instead of following the
sequential continual learning setting.

A.4 MODEL EVALUATION

Different from standard learning setting with only one task to learn and evaluate, in our setting,
the model will continually learn on a sequence of systems, therefore the setting and evaluation are
significantly different. In the model training stage, the model is trained over a system sequence.
In the testing stage, the model will be tested on all learned tasks. Therefore the model will have
multiple performance corresponding to different tasks, and the most thorough evaluation metric is the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

performance matrix Mp ∈ RN×N , where Mp
i,j denotes the performance on the j-system after learning

from the 1-st to the i-th system, and N is the number of systems in the sequence. In our experiments,
each entry of Mp is a mean square error (MSE) value. To evaluate the overall performance on a
sequence, the average performance (AP) over all learnt tasks after learning multiple tasks could

be calculated. For example, i.e.,
∑i

j=1 Mp
N,j

N corresponds to the average model performance after
learning the entire sequence with N tasks. Similarly, the average forgetting (AF) after N tasks

can be formulated as
∑N−1

j=1 Mp
N,j−Mp

j,j

N−1 . These metrics are widely adopted in continual learning
works (Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017; Liu et al., 2021; Zhang et al., 2023; Zhou
& Cao, 2021), although the names are different in different works.

For convenience, the performance matrix can be visualized as a color map (Figure 6). For example,
they are named as Average Accuracy (ACC) and Backwarde Transfer (BWT) in (Chaudhry et al.,
2018; Lopez-Paz & Ranzato, 2017), Average Performance (AP) and Average Forgetting (AF) in
(Liu et al., 2021), Accuracy Mean (AM) and Forgetting Mean (FM) in (Zhang et al., 2023), and
performance mean (PM) and forgetting mean (FM) in (Zhou & Cao, 2021).

A.5 PERFORMANCE MATRIX ANALYSIS

Given a visualized performance matrix, we should approach it from two different dimensions. First,
the i-th row of the matrix denotes the performance on each previously learned system after the
model has learned from the 1-st system to the i-th system. Second, to check the performance of a
specific system over the entire learning process, we check the corresponding column. For example, in
Figure 6 (e), each column maintains a stable color from the top to the bottom. This indicates that the
performance of each system is perfectly maintained with little forgetting. But if the color becomes
darker and darker from top to bottom (increasing MSE), it indicates that the corresponding method is
exhibiting obvious forgetting problem.

21

	Introduction
	Related Works
	Learning based dynamic System Prediction
	Continual Learning & Masked Networks

	Learning System Dynamics without Forgetting
	Preliminaries
	Framework Overview
	Masked Encoder Network
	Masked ODE-based Generator
	Sub-network Learning
	Mode-Switching

	Experiments
	Experimental Systems
	Experimental Setups & Evaluation
	Model Configuration and Performance (RQ1)
	Sequence Configuration and Performance (RQ2)
	Comparisons with State-of-the-Arts (RQ3,4)
	In-depth Investigation on the Learning Dynamics (RQ3,4)

	Conclusion
	Appendix / Supplemental material
	System Sequence Configuration
	Physics System Sequence
	Biological Cellular System
	Additional Details of Experimental Settings
	Additional discussion on performance and low-level dynamics shift

	Edge-popup Algorithm
	Baselines
	Model Evaluation
	Performance Matrix Analysis

