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Abstract

Although Counterfactual Explanation Methods001
(CEMs) are popular approaches to explain ML002
classifiers, they are less widespread in NLP. A003
counterfactual explanation encodes the small-004
est changes required in a target document to005
modify the classifier’s output. Most CEMs find006
those explanations by iteratively perturbing the007
document until it is classified differently by the008
black box. We identified two main families of009
approaches for CEMs in the literature, namely,010
(a) transparent methods that perturb the tar-011
get by adding, removing, or replacing words,012
and (b) opaque approaches that project the tar-013
get document onto a latent, non-interpretable014
space where the perturbation is carried out sub-015
sequently. This article offers a comparative016
study of the performance of these two families017
of methods on three classical NLP tasks. Our018
empirical evidence shows that opaque CEMs019
can be overkill for downstream applications020
such as fake news detection or sentiment analy-021
sis since they add an additional level of opaque-022
ness with no significant performance gain.023

1 Introduction024

The latest advances in Machine Learning (ML)025

have revolutionized many downstream NLP tasks026

such as fake news detection or sentiment analy-027

sis. However, the boost in accuracy achieved by028

modern ML algorithms comes at the expense of029

transparency and interpretability. This reliance on030

black-box models has, in turn, raised an increasing031

interest in ML explainability, the task of providing032

appropriate explanations for the answers of ML033

algorithms. Unless the method relies on an inher-034

ently white-box model, explaining the outcomes of035

an ML agent requires the deployment of an expla-036

nation layer that opens the black box a posteriori.037

This is known as post-hoc explainability.038

There are several ways to explain the outcomes039

of an ML model. Among the different approaches,040

counterfactual explanations (CEMs) have gained041

notable popularity in the last 5 years. Consider 042

a classifier for sentiment analysis applied to the 043

book review “This is a really interesting book”, 044

which is classified as positive. A counterfactual 045

explanation is a counter-example that is similar to 046

the original text, but that elicits an opposite out- 047

come in the black box. In this toy example, a 048

counterfactual could be the phrase “This is a re- 049

ally boring book”. Through this explanation, the 050

CEM is conveying that the adjective “interesting” 051

was the main reason this sentence was classified 052

as positive, and changing the polarity of that adjec- 053

tive may change the classifier’s response. CEMs 054

in the literature compute counterfactual explana- 055

tions by increasingly perturbing the target text until 056

the classifier’s answer changes. These methods lie 057

in a spectrum spanning from fully transparent to 058

fully opaque methods. On one side of the spec- 059

trum, transparent methods perturb the target text 060

by adding, removing, or changing words and syn- 061

tactic groups (Martens and Provost, 2014) in the 062

original target text. On the opposite side, a more 063

recent line of opaque methods embed the target text 064

in a latent space on which perturbations are carried 065

out subsequently (Robeer et al., 2021). This latent 066

space is a compressed representation of the classi- 067

fier’s training data, which filters noise and focuses 068

on the essential information for classification. 069

While one may think that latent-based CEMs 070

outperform transparent methods, the empirical evi- 071

dence provided in this paper suggests that, for some 072

downstream NLP tasks such as spam detection, de- 073

tection of fake news, or sentiment analysis, learn- 074

ing a compressed representation can be an overkill. 075

More precisely, our experimental evaluation shows 076

that opaque methods often produce non-intuitive 077

counterfactual explanations, i.e., counter-example 078

texts that do not resemble at all the target. That 079

does not only contradict the main point of counter- 080

factual explanations, but also raises the question of 081

how much transparency we are actually gaining by 082
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explaining a black box with another black box.083

Before elaborating on our experimental setup084

and findings in Section 3, we first survey the differ-085

ent CEMs in the literature in Section 2.086

2 Related Works087

CEMs compute contrastive explanations for ML088

black-box algorithms by providing examples that089

resemble a target instance but that lead to a different090

answer in the black box. These counterfactual ex-091

planations convey the minimum changes in the in-092

put that would change the model’s outcome. When093

it comes to NLP tasks, a good counterfactual ex-094

planation should be sparse, i.e., look like the target095

instance, and be plausible, i.e., read like something096

someone would say. As discussed by Wachter et al.097

(2018), counterfactual instances are particularly098

useful for applications in computational law.099

Counterfactual explanations have gained pop-100

ularity in the last few years. As illustrated by101

the surveys, first by Bodria et al. (2021) and later102

by Guidotti (2022), around 50 additional CEMs103

appeared in a one-year time span. Despite this104

surge of interest in counterfactual explanations,105

their study for NLP applications remains underde-106

veloped. In the following, we elaborate on the exist-107

ing CEMs applied to textual data along a spectrum108

that spans from transparent to opaque approaches.109

Transparent Approaches. Given an ML classifier110

and a target text (also called a document), trans-111

parent CEMs compute counterfactual explanations112

in a binary space, where each dimension repre-113

sents the absence or presence of a word from a114

given vocabulary. Hence, to perturb a document,115

these methods toggle on and off 0’s and 1’s, which116

is tantamount to adding, removing, or replacing117

words until the classifier yields a different answer.118

Search for Explanations for Document Classifica-119

tion –SEDC– (Martens and Provost, 2014), and120

Plausible Counterfactual Instances Generation –121

PCIG– (Yang et al., 2020) are examples of trans-122

parent CEMs. These methods remove the words123

for which the classifier exhibits the highest sensi-124

tivity. These are words whose removal from the125

target document reduces the classifier’s probability126

on the class of the original document – in favor127

of other classes. To do so both SEDC and PCIG128

assume that the classifier provides class probabil-129

ities for documents. Unlike SEDC, PCIG can also130

replace words from the target text with highly sen-131

sitive words that, when present, push the classi-132

fier’s prediction toward other classes. Moreover, 133

PCIG resorts a pre-trained masked language model 134

to evaluate whether the perturbed documents are 135

grammatically plausible. This language model is 136

tailored for the financial domain –specifically for 137

mergers and acquisitions. For this reason, we omit 138

PCIG from our evaluation and propose two novel 139

transparent CEMs instead. 140

Opaque Methods. Approaches such as XSPELLS 141

(S. Punla et al., 2022) or CFGAN (Robeer et al., 142

2021) generate counterfactual explanations by per- 143

turbing the input text in a latent space defined by 144

vectors of real numbers. These methods operate in 145

three phases. First, they embed the target instance 146

onto the latent space, learned through a Variational 147

AutoEncoder (VAE) in the case of XSPELLS, and 148

a pre-trained language model (LM) for CFGAN. 149

Second, while the classifier’s decision boundary 150

is not traversed, these methods perturb the latent 151

representation of the target phrase. This is done 152

by adding Gaussian noise in the case of XSPELLS, 153

whereas CFGAN resorts to a Conditional Genera- 154

tive Adversarial Network. Finally, a decoding stage 155

generates sentences from the latent representation 156

of the perturbed documents. 157

Unlike pure word-based perturbation methods, 158

latent representations are good at preserving se- 159

mantic closeness for small perturbations. That said, 160

these methods are not free of pitfalls. Besides the 161

obvious loss in transparency and simplicity, exist- 162

ing latent-based approaches do not seem optimized 163

for sparse counterfactual explanations, as our eval- 164

uation next suggests. 165

3 Comparative Study 166

In this section, we conduct a comparison be- 167

tween different types of CEMs spanning from 168

fully transparent techniques such as SEDC (Martens 169

and Provost, 2014) to fully opaque approaches, 170

namely XSPELLS (S. Punla et al., 2022) and CF- 171

GAN (Robeer et al., 2021). We fill the middle 172

ground with two novel methods, inspired on SEDC 173

and PCIG, that perturb the target sentence while 174

taking semantics into account. This is achieved 175

through either a knowledge graph or a language 176

model (LM). Our new methods are called Grow- 177

ing Net and Growing Language and lie halfway 178

between the fully transparent and the fully latent 179

approaches discussed in the previous section. This 180

idea is illustrated in Figure 1. 181
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Figure 1: A complexity scale for CEMs that goes from
the most transparent method on the left SEDC to the most
opaque methods cfGAN, and XSPELLS, passing by our
methods Growing Net and Growing Language. Trans-
parent methods perturb documents in a binary space;
opaque methods do it in a latent space.

3.1 Proposed Methods182

Similarly to SEDC, Growing Net and Growing Lan-183

guage search for counterfactuals by iteratively in-184

creasing the number of words modified in the target185

text. SEDC modifies the target by removing words,186

which often leads to non-sensical candidate coun-187

terfactual explanations. In contrast, our proposed188

methods replace words with other words that are189

syntactically and semantically meaningful. For in-190

stance in the phrase “This is an interesting book”,191

the candidate substitutes for the word “interesting”192

should be adjectives that are pertinent qualifiers for193

books. Hence, for each word in the target sentence,194

our new methods generate a set of potential replace-195

ment words with the same part-of-speech tagging196

of the original word. Once the syntactic group of197

the replacements is defined, we rely on external198

knowledge to restrict further our list of candidate199

words. Growing Net exploits the tree structure of200

WordNet (Fellbaum, 1998), a lexical database of se-201

mantic relations, to consider synonyms, antonyms,202

and hyponyms for each word in the original text.203

Conversely, Growing Language relies on the Spacy204

language model to provide candidate words whose205

similarity with the original word – as defined by206

Spacy – is smaller than a given threshold. We high-207

light that in our categorization (Figure 1) Growing208

Language is deemed less transparent than Growing209

Net because the former relies on a latent represen-210

tation of words to filter candidates – even if the211

underlying exploration method is still conducted in212

the space of words.213

3.2 Results214

We compared the different CEMs of Figure 1 in five215

rounds of experiments organized in two categories.216

First, we evaluate the quality of the generated coun-217

terfactual explanations based on the criteria of (i)218

minimality and (ii) outlierness. Second, we evalu-219

ate the methods themselves based on (iii) recall, (iv) 220

stability, and (v) runtime. Our evaluation is based 221

on three popular NLP classification tasks: spam 222

detection, polarity review, and fake news detection. 223

For each task we deployed a neural network (more 224

specifically a multi-layered perceptron) and a ran- 225

dom forest classifier. For each dataset, black box 226

classifier, and CEM, we computed counterfactual 227

explanations for 100 target texts. This serves as 228

input to our evaluation. Details of the implementa- 229

tion and the experimental datasets are provided in 230

the appendix. Code and datasets will be released 231

on GitHub upon acceptance. 232

Counterfactual Quality. By definition (Guidotti, 233

2022), a good textual counterfactual explanation is 234

an alternative phrase classified differently by the 235

black box such that: (i) it incurs minimal changes, 236

i.e., it looks like the target text, (ii) it is not an out- 237

lier, i.e., it looks like other phrases in the classifier’s 238

training/testing set, and it is linguistically plausible, 239

i.e., it reads like something someone actually would 240

write or say. Minimality can be quantified through 241

the similarity between the counterfactual and the 242

target sentence. Similarly, outlierness can be opera- 243

tionalized as the similarity of the counterfactual to 244

the “manifold” defined by a set of instances. Con- 245

versely, linguistic plausibility is subjective, thus it 246

needs user studies for a proper evaluation. 247

Figure 2 shows the similarity of the counterfac- 248

tuals to the target texts for our studied CEMs. Sev- 249

eral ways to compute such similarity exist in the 250

literature, e.g., scores based on LMs, L0, and co- 251

sine similarity. We show the aggregated results 252

across the different datasets with the Spacy’s LM 253

similarity score since the language models capture 254

the semantics better. The results for the L0 and 255

cosine similarities are in the appendix. We first 256

observe that middle-ground methods, in particular 257

Growing Language, perform quite well compared 258

to latent approaches. We note that XSPELLS incurs 259

the biggest changes in the target phrase. While 260

XSPELLS makes small perturbations to the target 261

instance, those perturbations happen in a latent 262

space learned through a VAE. Nothing guarantees, 263

however, that such small changes in the latent space 264

translate into visually small changes when the re- 265

sulting phrase is brought back to the original space. 266

Figure 3 depicts the outlierness for our studied 267

CEMs. This is computed as the average similar- 268

ity between the computed counterfactual and the 269

test instances of our experimental datasets – hence 270
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Figure 2: Minimality as the similarity between the clos-
est counterfactual and the target target document.

the higher the better. We observe that XSPELLS271

achieves the best performance for this criterion,272

again due to its reliance on VAEs, which are de-273

signed to compute a compressed representation of274

a dataset. At the other extreme, SEDC achieves275

the worst results since removing words randomly276

from the target can easily lead to outliers. Finally,277

we highlight that both Growing Net and Growing278

Language compare to CFGAN in terms of outlier-279

ness, in spite of not relying extensively on heavy280

NN-based machinery.281

Figure 3: Outlierness as the similarity between the gen-
erated counterfactuals and the instances in the test set.

Method Quality. We now compare our CEMs282

in terms of (iii) recall, i.e., how often they can283

compute a counterfactual explanation, (iv) stability,284

i.e., how frequently the answer is stable across285

(five) different runs on the method on the same286

inputs, and (v) runtime.287

Table 1 presents the recall results for each of the288

experimental datasets and classifiers. We note that289

except for spam detection with neural networks,290

XSPELLS achieves the highest recall. We also re-291

mark that the transparent methods perform better292

than CFGAN on the polarity review and spam de-293

tection tasks. In particular, Growing Net performs294

well for polarity analysis showing that replacement295

dataset method DNN RF

spam

SEDC 0.57 0.55
Grow. Net 0.36 0.35
Grow. Lang. 0.65 0.49
cfGAN 0.57 0.57
XSPELLS 0.34 0.61

fake

SEDC 0.90 0.98
Grow. Net 0.79 0.59
Grow. Lang. 0.86 0.86
cfGAN 1 1
XSPELLS 1 1

polarity

SEDC 0.95 0.92
Grow. Net 1 0.85
Grow. Lang. 0.93 0.93
cfGAN 0.65 0.65
XSPELLS 1 1

Table 1: Average recall per dataset and black box of the
five counterfactual methods.

with antonyms is effective to find counterfactuals. 296

We point out that both Growing Net and Growing 297

Language can be parameterized to run a more ex- 298

haustive search – e.g., by lowering the similarity 299

threshold or by adding further terms from the tree 300

structure. This would increase recall at the expense 301

of longer runtimes. Our results on stability sug- 302

gest that transparent methods are less sensitive to 303

random seeding than methods based on NN learn- 304

ing. Finally, our runtime experiments show that 305

methods such as Growing Net are fast enough to be 306

used for the real-time generation of counterfactuals. 307

This stands in sharp contrast to XSPELLS which is 308

two orders of magnitude slower – due its decoding 309

stage. The results are provided in Appendixes C.1 310

and C.2. 311

4 Conclusion 312

The empirical evaluation shows that when it comes 313

to generating counterfactual explanations for down- 314

stream NLP tasks, complex methods based on NNs 315

and latent spaces are not necessarily the most sen- 316

sible alternatives. Our results show that simpler 317

approaches based on a systematic and judicious re- 318

placement of words in the target sentence can still 319

provide satisfactory results in all quality dimen- 320

sions. We leave to the reader the interpretation of 321

our results, e.g., as an argument for either develop- 322

ing self-explainable approaches, or better post-hoc 323

explanation layers. That said, for scenarios when 324

post-hoc explainability is the only alternative, we 325

believe that explaining a black box using another 326

black box may be perceived as paradoxical if it 327

does not come with further benefits. 328
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5 Limitations329

We remind the reader that the evaluation was con-330

ducted on three well-studied downstream applica-331

tions, namely polarity analysis, fake news detec-332

tion, and spam detection. Our results might there-333

fore not generalize to other NLP tasks in special-334

ized domains. While this work puts transparent335

approaches in the spotlight, our results suggest that336

plausible counterfactual examples need external337

domain-adapted knowledge either in the form of338

language models or knowledge graphs. These may339

not always be available though. Finally, our evalu-340

ation was based on popular criteria and metrics for341

counterfactual explanations. Specialized applica-342

tions may still take into account additional criteria343

such as diversity or actionability.344
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A Proposed Methods397

We present further in detail the two methods we398

introduced, namely Growing Language and Grow-399

ing Net. These methods generate counterfactuals400

to explain the prediction made by any ML model401

for a given text document. Both of these meth-402

ods replace words from the target text with similar403

words.404

A.1 Growing Language405

Growing Language is a method employing a lan-406

guage model to generate a set of similar words for407

each word from the target text. Growing Language408

is composed of three phases:409

1. Generates a set of similar words for each word410

from the target document based on a language411

model.412

2. Replaces randomly words from the target by413

word from its corresponding set of similar414

words generated in the first step.415

3. Tests whether counterfactuals are present, if416

yes, returns the closest one, otherwise goes417

to the first phase and reduces the similarity418

threshold of the words selected.419

During the first phase, Growing Language em-420

ploys the language model Spacy (Honnibal and421

Montani, 2017) to generate a set of similar words.422

The similarity is computed by the language model423

and we fixed the initial similarity threshold at 0.8424

since initializing with a high similarity threshold in-425

duces a longer runtime. We also restrict the choice426

of similar words to words with the same part-of-427

speech tagger –i.e: verb, noun, determinant, etc...428

However, it is worth mentioning that any language429

model able to generate words and compute the430

distance between words could be used. Given an431

example of a complex model classifying the senti-432

ment of a review and a target document x: "This433

is a good article" classified as positive, Growing434

Language produces sets for each word of the target.435

For instance, Growing Language generates five sets436

{s1, ..., s5} containing similar words with their as-437

sociated similarity to each word {This, is, a, good,438

article} as follows:439

This: {These (0.90); There(0.85)}440

is: {Exist (0.9); Happen (0.85); Occur (0.8)}441

a: {}442

good: {nice (0.95); poor (0.85); bad (0.80); evil (0.80)}443

article: {paper (0.95); movie (0.85); work (0.80)}444

In the second phase, Growing Language ran- 445

domly substitutes words from the target document 446

with words from their corresponding set and gener- 447

ates artificial documents such as: 448

Artificial Document Classification 449

there is a good article O 450

this is a nice article O 451

this is a poor article X 452

this is an evil article X 453

this is a bad word X 454

where replaced words are highlighted in bold. 455

Finally, Growing Language employs the predic- 456

tion of the black-box model to identify whether 457

some artificial documents are classified differently 458

or not. If there is more than one enemy, Growing 459

Language returns the one with the least number of 460

modified words to the target document. Otherwise, 461

Growing Language goes back to the first step and 462

extends each set of similar words by reducing the 463

threshold by two times the step which is initialized 464

at 0.01. Hence, sets are bigger but composed of 465

less similar words. 466

A.2 GROWING NET 467

Our second method: Growing Net, employs the tree 468

structure of WordNet (Fellbaum, 1998) to generate 469

each set of close words. Hence, similarly to Grow- 470

ing language, Growing Net first generates sets of 471

similar words for each term in the target document. 472

The words added to the set associated with each 473

target term share the same part-of-speech tagging. 474

Moreover, they are close to the target word in the 475

tree structure of WordNet. WordNet allows Grow- 476

ing Net to generate for each word, a set composed 477

of its closest synonyms, antonyms, hyponyms, and 478

hypernyms. Hyponyms and hypernyms are words 479

or phrases that are respectively more specific and 480

general than xi. Going back to our running exam- 481

ple of the target review "This is a good article", 482

classified as positive. Growing Net generates five 483

sets of close words as follows: 484

This: {} 485

is: {be; follow; live; exist} 486

a: {the;A} 487

good: {safe; bad; respectable; serious; effective} 488

article: {paper; news article; magazine article} 489

490
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Growing Net then randomly replaces words in491

the target document with words from its corre-492

sponding set of similar terms. Similarly to Growing493

Language and SEDC, Growing Net iteratively in-494

creases the distance between artificial instance and495

x. Hence, at each round, Growing Net increases496

the number of words modified. For instance, in497

the first round, Growing Net replaces randomly498

one word in the target sentence with words from499

its corresponding set. Thus, at round k, Growing500

Net replaces k words. The number k increases501

until Growing Net finds the closest counterfactual.502

Given once again our example of the commentary,503

Growing Net generates in the first round:504

Artificial Text Classification505

this be a good article O506

this is a safe article O507

this is a good news article O508

this is A good article O509

this is a poor article O510

Then, in the next round, GROWING NET substi-511

tutes two words as follows:512

Artificial Document Classification513

this be a safe article O514

this is a safe magazine article O515

this follow a good news article O516

this is A poor article X517

this live a serious article X518

519

Since in the second round Growing Net ob-520

tains instances classified differently by the com-521

plex model, it returns the counterfactual with the522

smallest wup distance (Wei and Ngo, 2007) as an523

explanation.524

In contrast to Growing Language which com-525

putes similarity in a latent space, Growing Net526

employs the tree structure of WordNet (Fellbaum,527

1998) which is more interpretable. Hence, we rep-528

resent in Figure 1 Growing Net closer to the trans-529

parent CEMs.530

B Experimental Information531

We present in this section information about the532

datasets, the classifiers, and the metrics employed533

in the experiments as well as in Appendix C.534

Name
Nb Words

Instances
Total Average STD

Spam 15587 18.5 10.6 8559
Polarity 11646 20.8 9.3 10660
Fake † 19419 11.8 3.2 4025

Table 2: Information about the experimental datasets. †
indicates generated datasets. The three columns under
"Nb Words" represent respectively (a) the total number
of distinct words in the whole dataset, (b) the average
number of words per sentence, and (c) the standard
deviation. The last column indicates the number of text
documents per dataset.

B.1 Datasets 535

We employed three datasets, (a) spam detection 536

from messages, (b) sentiment analysis, and (c) the 537

detection of fake news in newspaper article titles. 538

All datasets define two target classes and comprised 539

between 4000 and 10660 textual documents. The 540

average number of words in each document is com- 541

prised between 11.8 and 20.8 as reported in Table 2. 542

We generated the fake news detection based on true 543

titles from a newspapers dataset 1 and fake titles 544

from a fake news dataset 2. These datasets will be 545

available on GitHub upon acceptance. 546

B.2 Black-box Classifiers 547

We evaluate our counterfactual methods on two 548

classifiers of different architectures implemented 549

in scikit-learn and already employed in (S. Punla 550

et al., 2022). These black boxes are (i) a Random 551

Forest (RF) with 500 tree estimators, and (ii) a sim- 552

ple neural network (DNN) with the same amount of 553

neurons as there are words in the dataset. In addi- 554

tion to the class prediction associated with a textual 555

document, the classifiers provide the probabilities 556

prediction. The classifiers were trained on 70% of 557

the dataset and their accuracy as well as the target 558

instance to explain were tested on the remaining 559

30%. The average accuracy of the two classifiers 560

for each dataset ranges from 67% to 100%. The 561

detailed results are presented in Table 3. 562

1https://www.kaggle.com/datasets/
rmisra/news-category-dataset

2https://www.kaggle.com/competitions/
fake-news/overview
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Dataset
Model

Neural Network Random Forest

Spam 100% 100%
Polarity 72% 67%
Fake 84% 84%

Table 3: Average accuracy of the two classifiers for each
dataset.

B.3 Metrics563

We evaluated in Figure 2 the minimality of a coun-564

terfactual by measuring its similarity to the target565

document. Similarly, Figure 3 shows the outlier-566

ness distance from each counterfactual generated567

to the manifold. Here, the manifold is represented568

by the similarity to the closest text document from569

the test set sharing the counterfactual’s classifica-570

tion. Hence, these two metrics require measuring571

the similarity between two texts, which is a hot572

topic in NLP. Employing a specific metric involves573

a specific purpose, for instance, the l0 similarity574

represents the sparsity of the explanation while a575

language model similarity measures the general576

meaning similarity. Thus, we compute the simi-577

larity between two text documents t1 and t2, by578

employing three different metrics:579

• L0: Computes the ratio between the number580

of words in t1 that are in t2 by the number of581

words from t2 present in t1: |t1 ∩ t2|2
|t1||t2|582

• Cosine Similarity: Measures the similarity583

between two vectors of an inner product space.584

Here the two vectors correspond to a bag of585

words representation of t1 and t2.586

• Language Model: We employ SpaCy (Hon-587

nibal and Montani, 2017) as the reference lan-588

guage model and its similarity method as a589

reference for the language model similarity.590

SpaCy compresses words onto a latent rep-591

resentation of 300 dimensions and averages592

each word representation in a document to593

generate the document’s latent representation.594

Since stop words may influence the similarity595

computation while not impacting the classification596

or overall sense, we employ the natural language597

toolkit library 3 to remove every stop word before598

3https://www.nltk.org/

computing any similarity. We chose the language 599

model similarity in the paper, but present results 600

with additional similarities metrics in Section C. 601

C Additional Results 602

In this section, we introduce new findings as well 603

as disaggregated results. We first show the stability 604

and runtime of each of the five CEMs. Finally, we 605

present the minimality and outlierness results per 606

dataset with different metrics. 607

C.1 Stability 608

For each of the five CEMs, we iterate five times 609

over the same target document and measure the 610

average similarity measure between each of the 611

five counterfactuals generated. This similarity is 612

computed five times for 100 different instances on 613

two black boxes, per dataset and aggregated. We 614

compute the similarity of two counterfactuals based 615

on the language model metric. 616

Figure 4: Stability score of the five CEMs for two black
boxes. Results are aggregated over three datasets.

Figure 4 shows that both Growing Language 617

and Growing Net are the most robust to uncer- 618

tainty. These methods obtain almost a stability 619

maximal of one while opaque methods and espe- 620

cially xSPELLS have a wide variability between 621

different runs. We expect these results to be im- 622

pacted by the training of the latent module such as 623

the VAE or the GAN. Indeed, Growing Language 624

and Growing Net are general methods, therefore 625

the sets of similar words are the same over succes- 626

sive generations. Our results also present better 627

stability with SEDC compared to the two opaque 628

methods, but wider variance on the Neural Network 629

classifier. We note that the high stability of Grow- 630

ing Language, Growing Net, and SEDC is due to the 631
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iterative mechanism of extending the perturbation632

by increasing the number of words modified.633

C.2 Runtime634

dataset method DNN RF

spam

SEDC 21.45 (12.57) 15.8 (9.36)
Grow. Net 0.97 (1.0) 0.74 (0.8)
Grow. Lang. 60.21 (15.55) 56.9 (13.84)
cfGAN 1.4 (0.02) 1.43 (0.03)
XSPELLS 219.45 (16.78) 197.63 (16.26)

fake

SEDC 30.7 (14.34) 13.02 (6.15)
Grow. Net 1.54 (1.4) 1.03 (0.76)
Grow. Lang. 54.81 (28.11) 54,66 (12,16)
cfGAN 1.03 (0.18) 1.0 (0.13)
XSPELLS 84.11 (6.47) 85.63 (7.0)

polarity

SEDC 12.91 (9.77) 12.39 (9.41)
Grow. Net 0.69 (0.91) 0.63 (0.83)
Grow. Lang. 74.7 (33.3) 73.56 (32.44)
cfGAN 1.27 (0.23) 1.29 (0.25)
XSPELLS 135.69 (19.32) 115.94 (10.9)

Table 4: Average runtime in seconds for an instance per
dataset and black box of the five counterfactual methods.
Note that the time for cfGAN does not take into account
the time to train it on a given dataset. It takes around
6755, 4300, and 5770 seconds for respectively spam,
fake, and polarity dataset.

Table 4 represents the average and standard de-635

viation runtime of each CEM to generate a coun-636

terfactual. Results are presented per dataset and637

classifier. We note that CounterfactualGAN and638

Growing Net are the fastest to generate a coun-639

terfactual but CounterfactualGAN requires train-640

ing the Variational AutoEncoder on every specific641

dataset. This training time varies from 4300 sec-642

onds on the fake news title detection to 6755 sec-643

onds on the spam detection dataset. Moreover, we644

observe that xSPELLS, as well as Growing Lan-645

guage, are the slowest methods to generate coun-646

terfactuals. Growing Language requires around 60647

seconds to generate a counterfactual while the aver-648

age runtime of xSPELLS can vary up to three times649

depending on the dataset. Concretely, since the two650

opaque methods need a training step to adapt the651

inner mechanisms to the dataset, we argue that our652

two novel methods and SEDC are faster and less653

effort-consuming to develop.654

C.3 Minimality655

We present in Figure 5 to 7, the minimality score656

of the five CEMs over two classifiers for the three657

datasets. For each CEM, dataset, and classifier, we658

compute the minimality with the language model659

measure for 100 target documents and their corre- 660

sponding counterfactuals. Figure 5 to 7 show the 661

similarity over respectively fake news detection, 662

spam detection, and polarity review. 663

Figure 5: Minimality score of the counterfactuals gener-
ated by the five CEMs over two classifiers and the fake
news detection dataset.

Figure 6: Minimality score of the counterfactuals gener-
ated by the five CEMs over two classifiers and the spam
detection dataset.

We observe from these Figures that Growing 664

Language and Growing Net generate closer coun- 665

terfactuals to the target since the similarity is higher 666

for each dataset and classifier. Moreover, we note 667

that results are similar for the fake news detection 668

and the polarity review datasets while the spam de- 669

tection dataset induces lower similarity. The spam 670

detection dataset is the most difficult for the trans- 671

parent methods since messages are written for SMS. 672

Hence, it is not so well written – many spelling 673

mistakes are present, and replacing poorly writ- 674

ten words with error-free words affects the overall 675

closeness of the counterfactuals. 676

Figure 8 and 9 show the average minimality em- 677
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Figure 7: Minimality score of the counterfactuals gen-
erated by the five CEMs over two classifiers and the
polarity review dataset.

ploying two different similarity metrics: respec-678

tively the L0 and the cosine. First, results are679

consistent with the language model metric since680

both Growing Net and Growing Language obtain681

the highest similarity. Second, we remark that the682

opaque methods may generate counterfactuals com-683

prising zero words in common with the target doc-684

ument.685

Figure 8: Minimality score of the five CEMs over two
classifiers aggregated over three datasets. The similarity
is computed based on the L0 metric.

C.4 Outlierness686

We present in Figure 10 to 12 the outlierness score687

of the five CEMs for respectively the fake news688

detection, the spam detection, and the polarity re-689

view datasets. The similarity is measured through690

the language model metric and results are shown691

by classifiers. We observe that for every dataset,692

SEDC generates counterfactuals the farthest from693

the domain. This makes sense since the generated694

Figure 9: Minimality score of the five CEMs over two
classifiers aggregated over three datasets. The similarity
is computed based on the cosine metric.

counterfactuals are only subparts of the target docu- 695

ment with hidden parts. Conversely, we remark that 696

Growing Language and xSPELLS are the methods 697

obtaining the highest average outlierness score for 698

every dataset and classifier. 699

Figure 10: Outlierness score of the five CEMs over
two classifiers for the fake news detection dataset. The
similarity is computed with the language model metric.
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Figure 11: Outlierness score of the five CEMs over two
classifiers for the spam detection dataset. The similarity
is computed with the language model metric.

Figure 12: Outlierness score of the five CEMs over two
classifiers for the polarity review dataset. The similarity
is computed with the language model metric.
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