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Abstract

Although Counterfactual Explanation Methods
(CEMs) are popular approaches to explain ML
classifiers, they are less widespread in NLP. A
counterfactual explanation encodes the small-
est changes required in a target document to
modify the classifier’s output. Most CEMs find
those explanations by iteratively perturbing the
document until it is classified differently by the
black box. We identified two main families of
approaches for CEMs in the literature, namely,
(a) transparent methods that perturb the tar-
get by adding, removing, or replacing words,
and (b) opaque approaches that project the tar-
get document onto a latent, non-interpretable
space where the perturbation is carried out sub-
sequently. This article offers a comparative
study of the performance of these two families
of methods on three classical NLP tasks. Our
empirical evidence shows that opaque CEMs
can be overkill for downstream applications
such as fake news detection or sentiment analy-
sis since they add an additional level of opaque-
ness with no significant performance gain.

1 Introduction

The latest advances in Machine Learning (ML)
have revolutionized many downstream NLP tasks
such as fake news detection or sentiment analy-
sis. However, the boost in accuracy achieved by
modern ML algorithms comes at the expense of
transparency and interpretability. This reliance on
black-box models has, in turn, raised an increasing
interest in ML explainability, the task of providing
appropriate explanations for the answers of ML
algorithms. Unless the method relies on an inher-
ently white-box model, explaining the outcomes of
an ML agent requires the deployment of an expla-
nation layer that opens the black box a posteriori.
This is known as post-hoc explainability.

There are several ways to explain the outcomes
of an ML model. Among the different approaches,
counterfactual explanations (CEMs) have gained

notable popularity in the last 5 years. Consider
a classifier for sentiment analysis applied to the
book review “This is a really interesting book”,
which is classified as positive. A counterfactual
explanation is a counter-example that is similar to
the original text, but that elicits an opposite out-
come in the black box. In this toy example, a
counterfactual could be the phrase “This is a re-
ally boring book”. Through this explanation, the
CEM is conveying that the adjective “interesting”
was the main reason this sentence was classified
as positive, and changing the polarity of that adjec-
tive may change the classifier’s response. CEMs
in the literature compute counterfactual explana-
tions by increasingly perturbing the target text until
the classifier’s answer changes. These methods lie
in a spectrum spanning from fully transparent to
fully opaque methods. On one side of the spec-
trum, transparent methods perturb the target text
by adding, removing, or changing words and syn-
tactic groups (Martens and Provost, 2014) in the
original target text. On the opposite side, a more
recent line of opaque methods embed the target text
in a latent space on which perturbations are carried
out subsequently (Robeer et al., 2021). This latent
space is a compressed representation of the classi-
fier’s training data, which filters noise and focuses
on the essential information for classification.

While one may think that latent-based CEMs
outperform transparent methods, the empirical evi-
dence provided in this paper suggests that, for some
downstream NLP tasks such as spam detection, de-
tection of fake news, or sentiment analysis, learn-
ing a compressed representation can be an overkill.
More precisely, our experimental evaluation shows
that opaque methods often produce non-intuitive
counterfactual explanations, i.e., counter-example
texts that do not resemble at all the target. That
does not only contradict the main point of counter-
factual explanations, but also raises the question of
how much transparency we are actually gaining by



explaining a black box with another black box.

Before elaborating on our experimental setup
and findings in Section 3, we first survey the differ-
ent CEMs in the literature in Section 2.

2 Related Works

CEMs compute contrastive explanations for ML
black-box algorithms by providing examples that
resemble a target instance but that lead to a different
answer in the black box. These counterfactual ex-
planations convey the minimum changes in the in-
put that would change the model’s outcome. When
it comes to NLP tasks, a good counterfactual ex-
planation should be sparse, i.e., look like the target
instance, and be plausible, i.e., read like something
someone would say. As discussed by Wachter et al.
(2018), counterfactual instances are particularly
useful for applications in computational law.
Counterfactual explanations have gained pop-
ularity in the last few years. As illustrated by
the surveys, first by Bodria et al. (2021) and later
by Guidotti (2022), around 50 additional CEMs
appeared in a one-year time span. Despite this
surge of interest in counterfactual explanations,
their study for NLP applications remains underde-
veloped. In the following, we elaborate on the exist-
ing CEMs applied to textual data along a spectrum
that spans from transparent to opaque approaches.
Transparent Approaches. Given an ML classifier
and a target text (also called a document), trans-
parent CEMs compute counterfactual explanations
in a binary space, where each dimension repre-
sents the absence or presence of a word from a
given vocabulary. Hence, to perturb a document,
these methods toggle on and off 0’s and 1’s, which
is tantamount to adding, removing, or replacing
words until the classifier yields a different answer.
Search for Explanations for Document Classifica-
tion —SEDC— (Martens and Provost, 2014), and
Plausible Counterfactual Instances Generation —
PCIG— (Yang et al., 2020) are examples of trans-
parent CEMs. These methods remove the words
for which the classifier exhibits the highest sensi-
tivity. These are words whose removal from the
target document reduces the classifier’s probability
on the class of the original document — in favor
of other classes. To do so both SEDC and PCIG
assume that the classifier provides class probabil-
ities for documents. Unlike SEDC, PCIG can also
replace words from the target text with highly sen-
sitive words that, when present, push the classi-

fier’s prediction toward other classes. Moreover,
PCIG resorts a pre-trained masked language model
to evaluate whether the perturbed documents are
grammatically plausible. This language model is
tailored for the financial domain —specifically for
mergers and acquisitions. For this reason, we omit
PCIG from our evaluation and propose two novel
transparent CEMs instead.

Opaque Methods. Approaches such as XSPELLS
(S. Punla et al., 2022) or CFGAN (Robeer et al.,
2021) generate counterfactual explanations by per-
turbing the input text in a latent space defined by
vectors of real numbers. These methods operate in
three phases. First, they embed the target instance
onto the latent space, learned through a Variational
AutoEncoder (VAE) in the case of XSPELLS, and
a pre-trained language model (LM) for CFGAN.
Second, while the classifier’s decision boundary
is not traversed, these methods perturb the latent
representation of the target phrase. This is done
by adding Gaussian noise in the case of XSPELLS,
whereas CFGAN resorts to a Conditional Genera-
tive Adversarial Network. Finally, a decoding stage
generates sentences from the latent representation
of the perturbed documents.

Unlike pure word-based perturbation methods,
latent representations are good at preserving se-
mantic closeness for small perturbations. That said,
these methods are not free of pitfalls. Besides the
obvious loss in transparency and simplicity, exist-
ing latent-based approaches do not seem optimized
for sparse counterfactual explanations, as our eval-
uation next suggests.

3 Comparative Study

In this section, we conduct a comparison be-
tween different types of CEMs spanning from
fully transparent techniques such as SEDC (Martens
and Provost, 2014) to fully opaque approaches,
namely XSPELLS (S. Punla et al., 2022) and CF-
GAN (Robeer et al., 2021). We fill the middle
ground with two novel methods, inspired on SEDC
and PCIG, that perturb the target sentence while
taking semantics into account. This is achieved
through either a knowledge graph or a language
model (LM). Our new methods are called Grow-
ing Net and Growing Language and lie halfway
between the fully transparent and the fully latent
approaches discussed in the previous section. This
idea is illustrated in Figure 1.
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Figure 1: A complexity scale for CEMs that goes from
the most transparent method on the left SEDC to the most
opaque methods cfGAN, and XSPELLS, passing by our
methods Growing Net and Growing Language. Trans-
parent methods perturb documents in a binary space;
opaque methods do it in a latent space.

3.1 Proposed Methods

Similarly to SEDC, Growing Net and Growing Lan-
guage search for counterfactuals by iteratively in-
creasing the number of words modified in the target
text. SEDC modifies the target by removing words,
which often leads to non-sensical candidate coun-
terfactual explanations. In contrast, our proposed
methods replace words with other words that are
syntactically and semantically meaningful. For in-
stance in the phrase “This is an interesting book”,
the candidate substitutes for the word “interesting”
should be adjectives that are pertinent qualifiers for
books. Hence, for each word in the target sentence,
our new methods generate a set of potential replace-
ment words with the same part-of-speech tagging
of the original word. Once the syntactic group of
the replacements is defined, we rely on external
knowledge to restrict further our list of candidate
words. Growing Net exploits the tree structure of
WordNet (Fellbaum, 1998), a lexical database of se-
mantic relations, to consider synonyms, antonyms,
and hyponyms for each word in the original text.
Conversely, Growing Language relies on the Spacy
language model to provide candidate words whose
similarity with the original word — as defined by
Spacy — is smaller than a given threshold. We high-
light that in our categorization (Figure 1) Growing
Language is deemed less transparent than Growing
Net because the former relies on a latent represen-
tation of words to filter candidates — even if the
underlying exploration method is still conducted in
the space of words.

3.2 Results

We compared the different CEMs of Figure 1 in five
rounds of experiments organized in two categories.
First, we evaluate the quality of the generated coun-
terfactual explanations based on the criteria of (i)
minimality and (ii) outlierness. Second, we evalu-

ate the methods themselves based on (iii) recall, (iv)
stability, and (v) runtime. Our evaluation is based
on three popular NLP classification tasks: spam
detection, polarity review, and fake news detection.
For each task we deployed a neural network (more
specifically a multi-layered perceptron) and a ran-
dom forest classifier. For each dataset, black box
classifier, and CEM, we computed counterfactual
explanations for 100 target texts. This serves as
input to our evaluation. Details of the implementa-
tion and the experimental datasets are provided in
the appendix. Code and datasets will be released
on GitHub upon acceptance.

Counterfactual Quality. By definition (Guidotti,
2022), a good textual counterfactual explanation is
an alternative phrase classified differently by the
black box such that: (i) it incurs minimal changes,
i.e., it looks like the target text, (ii) it is not an out-
lier, i.e., it looks like other phrases in the classifier’s
training/testing set, and it is linguistically plausible,
i.e., itreads like something someone actually would
write or say. Minimality can be quantified through
the similarity between the counterfactual and the
target sentence. Similarly, outlierness can be opera-
tionalized as the similarity of the counterfactual to
the “manifold” defined by a set of instances. Con-
versely, linguistic plausibility is subjective, thus it
needs user studies for a proper evaluation.

Figure 2 shows the similarity of the counterfac-
tuals to the target texts for our studied CEMs. Sev-
eral ways to compute such similarity exist in the
literature, e.g., scores based on LMs, L0, and co-
sine similarity. We show the aggregated results
across the different datasets with the Spacy’s LM
similarity score since the language models capture
the semantics better. The results for the LO and
cosine similarities are in the appendix. We first
observe that middle-ground methods, in particular
Growing Language, perform quite well compared
to latent approaches. We note that XSPELLS incurs
the biggest changes in the target phrase. While
XSPELLS makes small perturbations to the target
instance, those perturbations happen in a latent
space learned through a VAE. Nothing guarantees,
however, that such small changes in the latent space
translate into visually small changes when the re-
sulting phrase is brought back to the original space.

Figure 3 depicts the outlierness for our studied
CEMs. This is computed as the average similar-
ity between the computed counterfactual and the
test instances of our experimental datasets — hence
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Figure 2: Minimality as the similarity between the clos-
est counterfactual and the target target document.

the higher the better. We observe that XSPELLS
achieves the best performance for this criterion,
again due to its reliance on VAEs, which are de-
signed to compute a compressed representation of
a dataset. At the other extreme, SEDC achieves
the worst results since removing words randomly
from the target can easily lead to outliers. Finally,
we highlight that both Growing Net and Growing
Language compare to CFGAN in terms of outlier-
ness, in spite of not relying extensively on heavy
NN-based machinery.

1.0

0.8
) ] '
5 °° U
— .
£ ! 0 D ! .
v 0.4
' ¢ I sedc
mmm Growing Net
0.2 I Growing Language
m cfGAN
I xSPELLS
0.0
DNN RF

black box

Figure 3: Outlierness as the similarity between the gen-
erated counterfactuals and the instances in the test set.

Method Quality. We now compare our CEMs
in terms of (iii) recall, i.e., how often they can
compute a counterfactual explanation, (iv) stability,
i.e., how frequently the answer is stable across
(five) different runs on the method on the same
inputs, and (v) runtime.

Table 1 presents the recall results for each of the
experimental datasets and classifiers. We note that
except for spam detection with neural networks,
XSPELLS achieves the highest recall. We also re-
mark that the transparent methods perform better
than CFGAN on the polarity review and spam de-
tection tasks. In particular, Growing Net performs
well for polarity analysis showing that replacement

dataset  method DNN RF
SEDC 0.57 0.55
Grow. Net 0.36 0.35
spam Grow. Lang. 0.65  0.49
cfGAN 0.57 0.57
XSPELLS 0.34 0.61
SEDC 0.90 0.98
Grow. Net 0.79 0.59
fake Grow. Lang. 0.86  0.86
cfGAN 1 1
XSPELLS 1 1
SEDC 0.95 0.92
Grow. Net 1 0.85
polarity ~ Grow. Lang.  0.93 0.93
cfGAN 0.65 0.65
XSPELLS 1 1

Table 1: Average recall per dataset and black box of the
five counterfactual methods.

with antonyms is effective to find counterfactuals.
We point out that both Growing Net and Growing
Language can be parameterized to run a more ex-
haustive search — e.g., by lowering the similarity
threshold or by adding further terms from the tree
structure. This would increase recall at the expense
of longer runtimes. Our results on stability sug-
gest that transparent methods are less sensitive to
random seeding than methods based on NN learn-
ing. Finally, our runtime experiments show that
methods such as Growing Net are fast enough to be
used for the real-time generation of counterfactuals.
This stands in sharp contrast to XSPELLS which is
two orders of magnitude slower — due its decoding
stage. The results are provided in Appendixes C.1
and C.2.

4 Conclusion

The empirical evaluation shows that when it comes
to generating counterfactual explanations for down-
stream NLP tasks, complex methods based on NNs
and latent spaces are not necessarily the most sen-
sible alternatives. Our results show that simpler
approaches based on a systematic and judicious re-
placement of words in the target sentence can still
provide satisfactory results in all quality dimen-
sions. We leave to the reader the interpretation of
our results, e.g., as an argument for either develop-
ing self-explainable approaches, or better post-hoc
explanation layers. That said, for scenarios when
post-hoc explainability is the only alternative, we
believe that explaining a black box using another
black box may be perceived as paradoxical if it
does not come with further benefits.



5 Limitations

We remind the reader that the evaluation was con-
ducted on three well-studied downstream applica-
tions, namely polarity analysis, fake news detec-
tion, and spam detection. Our results might there-
fore not generalize to other NLP tasks in special-
ized domains. While this work puts transparent
approaches in the spotlight, our results suggest that
plausible counterfactual examples need external
domain-adapted knowledge either in the form of
language models or knowledge graphs. These may
not always be available though. Finally, our evalu-
ation was based on popular criteria and metrics for
counterfactual explanations. Specialized applica-
tions may still take into account additional criteria
such as diversity or actionability.
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A Proposed Methods

We present further in detail the two methods we
introduced, namely Growing Language and Grow-
ing Net. These methods generate counterfactuals
to explain the prediction made by any ML model
for a given text document. Both of these meth-
ods replace words from the target text with similar
words.

A.1 Growing Language

Growing Language is a method employing a lan-
guage model to generate a set of similar words for
each word from the target text. Growing Language
is composed of three phases:

1. Generates a set of similar words for each word
from the target document based on a language
model.

2. Replaces randomly words from the target by
word from its corresponding set of similar
words generated in the first step.

3. Tests whether counterfactuals are present, if
yes, returns the closest one, otherwise goes
to the first phase and reduces the similarity
threshold of the words selected.

During the first phase, Growing Language em-
ploys the language model Spacy (Honnibal and
Montani, 2017) to generate a set of similar words.
The similarity is computed by the language model
and we fixed the initial similarity threshold at 0.8
since initializing with a high similarity threshold in-
duces a longer runtime. We also restrict the choice
of similar words to words with the same part-of-
speech tagger —i.e: verb, noun, determinant, etc...
However, it is worth mentioning that any language
model able to generate words and compute the
distance between words could be used. Given an
example of a complex model classifying the senti-
ment of a review and a target document x: "This
is a good article"” classified as positive, Growing
Language produces sets for each word of the target.
For instance, Growing Language generates five sets
{s1, ..., s5} containing similar words with their as-
sociated similarity to each word {This, is, a, good,
article} as follows:

This: {These (0.90); There(0.85)}
is: {Exist (0.9); Happen (0.85); Occur (0.8)}
0
good: {nice (0.95); poor (0.85); bad (0.80); evil (0.80)}
article: {paper (0.95); movie (0.85); work (0.80)}

In the second phase, Growing Language ran-
domly substitutes words from the target document
with words from their corresponding set and gener-
ates artificial documents such as:

Artificial Document Classification
there is a good article
this is a nice article
this is a poor article X
this is an evil article X
this is a bad word X

where replaced words are highlighted in bold.
Finally, Growing Language employs the predic-
tion of the black-box model to identify whether
some artificial documents are classified differently
or not. If there is more than one enemy, Growing
Language returns the one with the least number of
modified words to the target document. Otherwise,
Growing Language goes back to the first step and
extends each set of similar words by reducing the
threshold by two times the step which is initialized
at 0.01. Hence, sets are bigger but composed of
less similar words.

A.2 GROWING NET

Our second method: Growing Net, employs the tree
structure of WordNet (Fellbaum, 1998) to generate
each set of close words. Hence, similarly to Grow-
ing language, Growing Net first generates sets of
similar words for each term in the target document.
The words added to the set associated with each
target term share the same part-of-speech tagging.
Moreover, they are close to the target word in the
tree structure of WordNet. WordNet allows Grow-
ing Net to generate for each word, a set composed
of its closest synonyms, antonyms, hyponyms, and
hypernyms. Hyponyms and hypernyms are words
or phrases that are respectively more specific and
general than ;. Going back to our running exam-
ple of the target review "This is a good article”,
classified as positive. Growing Net generates five
sets of close words as follows:

This: {}
is: {be; follow; live; exist}
a: {the; A}
good: {safe; bad; respectable; serious; effective}

article:  {paper; news article; magazine article}



Growing Net then randomly replaces words in
the target document with words from its corre-
sponding set of similar terms. Similarly to Growing
Language and SEDC, Growing Net iteratively in-
creases the distance between artificial instance and
x. Hence, at each round, Growing Net increases
the number of words modified. For instance, in
the first round, Growing Net replaces randomly
one word in the target sentence with words from
its corresponding set. Thus, at round k&, Growing
Net replaces k£ words. The number k increases
until Growing Net finds the closest counterfactual.
Given once again our example of the commentary,
Growing Net generates in the first round:

Artificial Text Classification
this be a good article
this is a safe article
this is a good news article
this is A good article
this is a poor article

Then, in the next round, GROWING NET substi-
tutes two words as follows:

Artificial Document Classification
this be a safe article
this is a safe magazine article
this follow a good news article
this is A poor article X
this live a serious article X

Since in the second round Growing Net ob-
tains instances classified differently by the com-
plex model, it returns the counterfactual with the
smallest wup distance (Wei and Ngo, 2007) as an
explanation.

In contrast to Growing Language which com-
putes similarity in a latent space, Growing Net
employs the tree structure of WordNet (Fellbaum,
1998) which is more interpretable. Hence, we rep-
resent in Figure 1 Growing Net closer to the trans-
parent CEMs.

B Experimental Information

We present in this section information about the
datasets, the classifiers, and the metrics employed
in the experiments as well as in Appendix C.

Nb Words

Name Instances
Total Average STD

Spam 15587 18.5 10.6 8559

Polarity 11646 20.8 9.3 10660

Fake 1 19419 11.8 3.2 4025

Table 2: Information about the experimental datasets. t
indicates generated datasets. The three columns under
"Nb Words" represent respectively (a) the total number
of distinct words in the whole dataset, (b) the average
number of words per sentence, and (c) the standard
deviation. The last column indicates the number of text
documents per dataset.

B.1 Datasets

We employed three datasets, (a) spam detection
from messages, (b) sentiment analysis, and (c) the
detection of fake news in newspaper article titles.
All datasets define two target classes and comprised
between 4000 and 10660 textual documents. The
average number of words in each document is com-
prised between 11.8 and 20.8 as reported in Table 2.
We generated the fake news detection based on true
titles from a newspapers dataset ' and fake titles
from a fake news dataset 2. These datasets will be
available on GitHub upon acceptance.

B.2 Black-box Classifiers

We evaluate our counterfactual methods on two
classifiers of different architectures implemented
in scikit-learn and already employed in (S. Punla
et al., 2022). These black boxes are (i) a Random
Forest (RF) with 500 tree estimators, and (ii) a sim-
ple neural network (DNN) with the same amount of
neurons as there are words in the dataset. In addi-
tion to the class prediction associated with a textual
document, the classifiers provide the probabilities
prediction. The classifiers were trained on 70% of
the dataset and their accuracy as well as the target
instance to explain were tested on the remaining
30%. The average accuracy of the two classifiers
for each dataset ranges from 67% to 100%. The
detailed results are presented in Table 3.

"https://www.kaggle.com/datasets/
rmisra/news-category-dataset

https://www.kaggle.com/competitions/
fake-news/overview
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Model

Dataset

Neural Network Random Forest
Spam 100% 100%
Polarity 72% 67%
Fake 84% 84%

Table 3: Average accuracy of the two classifiers for each
dataset.

B.3 Maetrics

We evaluated in Figure 2 the minimality of a coun-
terfactual by measuring its similarity to the target
document. Similarly, Figure 3 shows the outlier-
ness distance from each counterfactual generated
to the manifold. Here, the manifold is represented
by the similarity to the closest text document from
the test set sharing the counterfactual’s classifica-
tion. Hence, these two metrics require measuring
the similarity between two texts, which is a hot
topic in NLP. Employing a specific metric involves
a specific purpose, for instance, the 10 similarity
represents the sparsity of the explanation while a
language model similarity measures the general
meaning similarity. Thus, we compute the simi-
larity between two text documents ¢; and to, by
employing three different metrics:

e L0: Computes the ratio between the number

of words in ¢; that are in t2 by the number of
|t1 n t2|2

words from ¢, present in ¢;: TTalft2]

* Cosine Similarity: Measures the similarity
between two vectors of an inner product space.
Here the two vectors correspond to a bag of
words representation of ¢1 and %».

* Language Model: We employ SpaCy (Hon-
nibal and Montani, 2017) as the reference lan-
guage model and its similarity method as a
reference for the language model similarity.
SpaCy compresses words onto a latent rep-
resentation of 300 dimensions and averages
each word representation in a document to
generate the document’s latent representation.

Since stop words may influence the similarity
computation while not impacting the classification
or overall sense, we employ the natural language
toolkit library 3 to remove every stop word before

*https://www.nltk.org/

computing any similarity. We chose the language
model similarity in the paper, but present results
with additional similarities metrics in Section C.

C Additional Results

In this section, we introduce new findings as well
as disaggregated results. We first show the stability
and runtime of each of the five CEMs. Finally, we
present the minimality and outlierness results per
dataset with different metrics.

C.1 Stability

For each of the five CEMs, we iterate five times
over the same target document and measure the
average similarity measure between each of the
five counterfactuals generated. This similarity is
computed five times for 100 different instances on
two black boxes, per dataset and aggregated. We
compute the similarity of two counterfactuals based
on the language model metric.
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Figure 4: Stability score of the five CEMs for two black
boxes. Results are aggregated over three datasets.

Figure 4 shows that both Growing Language
and Growing Net are the most robust to uncer-
tainty. These methods obtain almost a stability
maximal of one while opaque methods and espe-
cially xSPELLS have a wide variability between
different runs. We expect these results to be im-
pacted by the training of the latent module such as
the VAE or the GAN. Indeed, Growing Language
and Growing Net are general methods, therefore
the sets of similar words are the same over succes-
sive generations. Our results also present better
stability with SEDC compared to the two opaque
methods, but wider variance on the Neural Network
classifier. We note that the high stability of Grow-
ing Language, Growing Net, and SEDC is due to the


https://www.nltk.org/

iterative mechanism of extending the perturbation
by increasing the number of words modified.

C.2 Runtime

dataset  method DNN RF
SEDC 21.45 (12.57) 15.8 (9.36)
Grow. Net 0.97 (1.0) 0.74 (0.8)
spam Grow. Lang.  60.21 (15.55) 56.9 (13.84)
cfGAN 1.4 (0.02) 1.43 (0.03)
XSPELLS 219.45 (16.78) 197.63 (16.26)
SEDC 30.7 (14.34) 13.02 (6.15)
Grow. Net 1.54 (1.4) 1.03 (0.76)
fake Grow. Lang.  54.81 (28.11) 54,66 (12,16)
cfGAN 1.03 (0.18) 1.0 (0.13)
XSPELLS 84.11 (6.47) 85.63 (7.0)
SEDC 12.91 (9.77) 12.39 (9.41)
Grow. Net 0.69 (0.91) 0.63 (0.83)
polarity  Grow. Lang. 74.7 (33.3) 73.56 (32.44)
cfGAN 1.27 (0.23) 1.29 (0.25)
XSPELLS 135.69 (19.32) 115.94 (10.9)

Table 4: Average runtime in seconds for an instance per
dataset and black box of the five counterfactual methods.
Note that the time for cfGAN does not take into account
the time to train it on a given dataset. It takes around
6755, 4300, and 5770 seconds for respectively spam,
fake, and polarity dataset.

Table 4 represents the average and standard de-
viation runtime of each CEM to generate a coun-
terfactual. Results are presented per dataset and
classifier. We note that Counterfactual GAN and
Growing Net are the fastest to generate a coun-
terfactual but Counterfactual GAN requires train-
ing the Variational AutoEncoder on every specific
dataset. This training time varies from 4300 sec-
onds on the fake news title detection to 6755 sec-
onds on the spam detection dataset. Moreover, we
observe that xSPELLS, as well as Growing Lan-
guage, are the slowest methods to generate coun-
terfactuals. Growing Language requires around 60
seconds to generate a counterfactual while the aver-
age runtime of XxSPELLS can vary up to three times
depending on the dataset. Concretely, since the two
opaque methods need a training step to adapt the
inner mechanisms to the dataset, we argue that our
two novel methods and SEDC are faster and less
effort-consuming to develop.

CJ3

We present in Figure 5 to 7, the minimality score
of the five CEMs over two classifiers for the three
datasets. For each CEM, dataset, and classifier, we
compute the minimality with the language model

Minimality

measure for 100 target documents and their corre-
sponding counterfactuals. Figure 5 to 7 show the
similarity over respectively fake news detection,
spam detection, and polarity review.
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Figure 5: Minimality score of the counterfactuals gener-
ated by the five CEMs over two classifiers and the fake
news detection dataset.
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Figure 6: Minimality score of the counterfactuals gener-
ated by the five CEMs over two classifiers and the spam
detection dataset.

We observe from these Figures that Growing
Language and Growing Net generate closer coun-
terfactuals to the target since the similarity is higher
for each dataset and classifier. Moreover, we note
that results are similar for the fake news detection
and the polarity review datasets while the spam de-
tection dataset induces lower similarity. The spam
detection dataset is the most difficult for the trans-
parent methods since messages are written for SMS.
Hence, it is not so well written — many spelling
mistakes are present, and replacing poorly writ-
ten words with error-free words affects the overall
closeness of the counterfactuals.

Figure 8 and 9 show the average minimality em-
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Figure 7: Minimality score of the counterfactuals gen-
erated by the five CEMs over two classifiers and the
polarity review dataset.

ploying two different similarity metrics: respec-
tively the LO and the cosine. First, results are
consistent with the language model metric since
both Growing Net and Growing Language obtain
the highest similarity. Second, we remark that the
opaque methods may generate counterfactuals com-
prising zero words in common with the target doc-

ument.
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Figure 8: Minimality score of the five CEMs over two
classifiers aggregated over three datasets. The similarity
is computed based on the LO metric.

C.4 Outlierness

We present in Figure 10 to 12 the outlierness score
of the five CEMs for respectively the fake news
detection, the spam detection, and the polarity re-
view datasets. The similarity is measured through
the language model metric and results are shown
by classifiers. We observe that for every dataset,
SEDC generates counterfactuals the farthest from
the domain. This makes sense since the generated

10

0.8
iy
s 0.6
E .
V0.4
I sedc
:- Grow. Net
0.2 ¢ Grow. Lang. ’
B CfGAN ¢
'- XSPELLS ! l
0.0 -
Neural Network Random Forest
black box

Figure 9: Minimality score of the five CEMs over two
classifiers aggregated over three datasets. The similarity
is computed based on the cosine metric.

counterfactuals are only subparts of the target docu-
ment with hidden parts. Conversely, we remark that
Growing Language and xSPELLS are the methods
obtaining the highest average outlierness score for
every dataset and classifier.
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Figure 10: Outlierness score of the five CEMs over
two classifiers for the fake news detection dataset. The
similarity is computed with the language model metric.
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Figure 11: Outlierness score of the five CEMs over two
classifiers for the spam detection dataset. The similarity
is computed with the language model metric.
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Figure 12: Outlierness score of the five CEMs over two
classifiers for the polarity review dataset. The similarity
is computed with the language model metric.
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