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ABSTRACT

Numerous diffusion models have recently been applied to image synthesis and
editing. However, editing 3D scenes is still in its early stages. It poses vari-
ous challenges, such as the requirement to design specific methods for different
editing types, retraining new models for various 3D scenes, and the absence of
convenient human interaction during editing. To tackle these issues, we introduce
a text-driven editing method, termed DN2N, which allows for the direct acquisi-
tion of a NeRF model with universal editing capabilities, eliminating the require-
ment for retraining. Our method employs off-the-shelf text-based editing models
of 2D images to modify the 3D scene images, followed by a filtering process to
discard poorly edited images that disrupt 3D consistency. We then consider the
remaining inconsistency as a problem of removing noise perturbation, which can
be solved by generating data with similar perturbation characteristics for training.
We propose cross-view regularization terms to help the DN2N model mitigate
these perturbations. Our text-driven method allows users to edit a 3D scene with
their desired description, which is more friendly, intuitive, and practical than prior
works. Empirical results show that our method achieves multiple editing types, in-
cluding but not limited to appearance editing, weather transition, object changing,
and style transfer. Most significantly, our method exhibits strong generalization of
editing capabilities, eliminating the need to customize or retrain editing models for
specific scenes or editing types. While reducing editing time and memory over-
head, our approach realizes visual outcomes on par with or exceeding previous
techniques needing iterative optimization.

1 INTRODUCTION

Significant advances in neural radiance field (NeRF) techniques (Mildenhall et al., 2020; Yu et al.,
2021; Müller et al., 2022; Barron et al., 2021; Zhang et al., 2020; Wang et al., 2021; Lin et al., 2021;
Chen et al., 2022) have been modeled for a variety of vision tasks including novel view synthesis and
editing. Numerous NeRF-based methods have been developed to achieve specific types of 3D ma-
nipulating, such as appearance editing (Wang et al., 2022a; Martin-Brualla et al., 2021; Kobayashi
et al., 2022), scene composition (Tang et al., 2022; Tancik et al., 2022), weather transformation (Li
et al., 2022b), multiple editing (Fang et al., 2022; 2023), and style transfer (Huang et al., 2022; Gu
et al., 2022; Nguyen-Phuoc et al., 2022; Fan et al., 2022). Recently, a few attempts have been made
to leverage multi-modal techniques to design text-guided 3D editing methods (Zhang et al., 2022;
Haque et al., 2023). Despite the demonstrated success, several challenges remain. 1) existing meth-
ods typically rely on known editing types in advance, resulting in limited modification capabilities;
2) retraining an editing model is required for each particular 3D scene, leading to computational and
memory overhead; 3) these techniques are often less user-friendly.

In this work, we propose a novel 3D scene editing method to tackle the challenges above. We
consider designing a text-driven and generalized method that involves editing the images of a 3D
scene using the off-the-shelf 2D image editing models (Saharia et al., 2022; Rombach et al., 2022;
Hertz et al., 2022; Brooks et al., 2022; Mokady et al., 2022), followed by reconstructing the edited
scene using a generalizable NeRF model. Nonetheless, creating such an editing pipeline presents
several challenges. For example, applying 2D-image editing directly makes it challenging to achieve
3D consistency, and the degree of 3D inconsistency may vary depending on the scene and editing
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a group of green leaves … in Der Kuss style Wassily Kandins painting of …

Van Gogh painting of a lamp hanging on the roof a lamp hanging on the roof in the Pop Art stylea lamp hanging on the roof

a golden sculpture of a woman in the park an ice sculpture of a woman in the parka statue of a woman in the park

Van Gogh painting of a hat on the fur
a red origami flower with green leaves a transparent ice sculpture flower with green leavesa red flower with green leaves

a red truck on the sea a red truck on the snow-covered roada red truck on the road

input views edited novel views

a grey fortress on the table a red strawberry on the table an orange pineapple on the table

Figure 1: Visualization of editing results. The proposed DN2N method enables users to obtain
realistic and 3D consistent novel views that match the text caption without retraining a new model.

type. Furthermore, creating a generalized model that does not require retraining for different scenes
and editing types necessitates abundant task-specific 3D scene data (see Figure 1).

To address the aforementioned issues, we initially utilize a 2D editing model to perform the prelimi-
nary editing on the images of a 3D scene. We subsequently apply a designed content filter to remove
images with poor editing results that cause significant 3D inconsistency. However, the remaining
images may still contain inconsistent 3D results, in which we consider them as noisy perturbations
to the consistently edited images due to the inherent stochastic and diverse nature of the 2D editing
model. To tackle this issue, we leverage the perturbation characteristic to create training data pairs
by generating image captions through the BLIP model (Li et al., 2022a; 2023) and target captions
via GPT (Brown et al., 2020a), then applying minor perturbations associated with these captions to
a 3D scene. Therefore, these perturbations can be viewed as noise, as well as unedited images as
pseudo ground truth. We further introduce two cross-view regularization terms during training, in-
cluding the self and neighboring views, to improve the 3D editing consistency. The former requires
the NeRF model to generate consistent results for the same target view that is derived from two
different source views, while the latter enforces the overlapping pixel values between the target and
adjacent views to be approximately close. Finally, both the perturbation dataset and regularization
terms are incorporated into our generalizable NeRF model training to facilitate its 3D consistency.

The main contributions of this work are:

• We develop a versatile text-driven 3D scene editing framework named DN2N that employs
off-the-shelf 2D editing models for 3D scene manipulation, where the induced 3D incon-
sistency is modeled as noise perturbation and addressed by generating training data with
similar perturbation characteristics for optimization.

• We design a generalizable NeRF model architecture and integrate cross-view regularization
terms into the training process to enhance the 3D consistency in edited novel views.

• We conduct extensive experiments of different editing types on multiple datasets. Com-
pared with other approaches, DN2N offers diverse editing capabilities within a shorter
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time and lower memory overhead, as well as eliminating the necessity for customizing or
retraining a model for different scenes and editing types.

2 RELATED WORK

NeRF-based novel view synthesis. Novel view synthesis based on NeRF has recently gained sig-
nificant attention in the vision and graphics communities (Mildenhall et al., 2020; Fridovich-Keil
et al., 2022; Müller et al., 2022; Chen et al., 2022; Lin et al., 2021; Fang et al., 2023). NeRF rep-
resents the structure and appearance of a 3D scene by using a neural network that takes the spatial
location and view direction as input and outputs the corresponding color and opacity at each pixel.
Subsequent works have improved NeRF, such as speeding up the training process (Müller et al.,
2022; Chen et al., 2022), designing better sampling strategies (Barron et al., 2021), and enhancing
generalization ability (Wang et al., 2021; Johari et al., 2022; Liu et al., 2022; Chen et al., 2021).

Diffusion-based image editing. Diffusion-based models have been widely used in image genera-
tion (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021; Ho et al., 2020; Saharia et al., 2022;
Ramesh et al., 2022; Rombach et al., 2022; Song et al., 2021a;b). Numerous text-based image
editing methods have recently been developed, such as GLIDE (Nichol et al., 2022) and Stable Dif-
fusion (Rombach et al., 2022). Imagic (Kawar et al., 2022) finetunes images according to text de-
scriptions, and Prompt-to-prompt (Hertz et al., 2022) preserves unedited regions by utilizing cross-
attention information. Pix2pix-zero (Parmar et al., 2023) employs embedding vector mechanisms
to establish controllable editing directions for images. InstructPix2Pix (Brooks et al., 2022) trains
a model by generating a large number of text-editing image pairs using GPT (Brown et al., 2020b)
and Stable Diffusion. Null-text inversion (Mokady et al., 2022) proposes a more accurate diffusion
inversion process to enhance image-controlled editing capabilities.

3D scene editing. Numerous 3D scene editing approaches have been developed based on point
cloud representations (Huang et al., 2021; Mu et al., 2022a), and scene texture mapping based on
triangle meshes (Zhou & Koltun, 2014; Höllein et al., 2022; Han et al., 2021). However, these
methods are limited by the inherent scene representations, which restrict scalability and editing
capability. Recently, NeRF-based methods have been used for 3D scene editing, including appear-
ance editing (Boss et al., 2021a;b; Li et al., 2022c; Rudnev et al., 2021; Kobayashi et al., 2022;
Tschernezki et al., 2022), scene combining (Fridovich-Keil et al., 2022; Tang et al., 2022), weather
simulation (Li et al., 2022b), assemble editing (Fang et al., 2022; 2023), and style transfer (Chiang
et al., 2022; Huang et al., 2022; Gu et al., 2022; Mu et al., 2022b; Wang et al., 2022b; Zhang et al.,
2022). However, several aspects of existing 3D editing methods based on NeRF are limited. For
instance, they are usually restricted to performing a single editing task, necessitating separate model
structures and training approaches for each editing capability. To overcome this limitation, PVD-
AL (Fang et al., 2023) employs distillation to achieve multiple editing capabilities in one model,
although with lower efficiency. Instruct-N2N (Haque et al., 2023) enables controllable editing of
3D scenes by pre-editing 2D images using InstructPix2Pix (Brooks et al., 2022). However, Instruct-
N2N has two notable drawbacks. First, retraining is necessary for each new editing direction, result-
ing in significant computation and memory overhead. Second, the method generates new training
data and updates model parameters during training, which is time-consuming and has high memory
overhead. In contrast, our method overcomes these two problems by requiring only the target text
to obtain the corresponding 3D scene editing, using the same model for any editing types without
retraining, thereby reducing model storage consumption and training time.

3 PROPOSED METHOD

Figure 2 shows the overall framework of our method. At the training stage, we first utilize BLIP (Li
et al., 2023) and GPT (Brown et al., 2020a) models to generate the input and target captions of
a scene. We then use a 2D image editing model (Mokady et al., 2022) to apply minor editing
perturbations to the scene based on these captions to obtain training data pairs, while the training
objective of our model is to remove these perturbations (see Eq. 4). We use two sets of independent
source views to render the same target view, resulting in Tgta and Tgtb, respectively, and generate
a neighboring view around the target view to obtain Nbr. Then, we impose a consistency loss (see
Eq. 5 and Eq. 6) on the three rendered results. At the inference stage, we begin by applying standard
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Method
(a) Training stage. We generate training data by applying subtle perturbations to 3D scenes using the BLIP (Li
et al., 2023), GPT (Brown et al., 2020a), and 2D editing models (Mokady et al., 2022). Subsequently, we train
the generalized NeRF model G by incorporating cross-view regularization terms, ℓself and ℓnbr .

Method

(b) Inference stage. We devise a content filter to eliminate the images with subpar editing results and compro-
mised consistency. Then, we utilize the well-trained model to obtain the edited novel views.

Figure 2: Illustration of the DN2N framework. See Sec 3 for the detailed description.

magnitude editing to the 3D scene. Subsequently, we filter out images with poor editing effects and
those inducing significant disruptions to the 3D consistency (see Eq. 9). Finally, we feed the filtered
images into the generalizable NeRF model to obtain edited novel views directly.

Optimization objectives. A 3D scene training data consists of N images and their corresponding
camera parameters: {Ii, Pi}Ni=1. To obtain the pre-edited image Ĩi for each Ii, we employ the 2D
image editing model, which is defined as:

Ĩi = F(Ii, C
i
in, C

i
tgt, θ), (1)

where Ci
in is input caption for the unedited image Ii, Ci

tgt is target caption for the edited image
Ĩi, and θ is the hyper-parameters of model F . After filtering out the poorly edited images, the
resulting data is denoted as {Ĩm, Pm}Mm=1, where M < N . Then the generalized NeRF model G
with parameter Θ predicts the target view Îm using K source views {Ĩk, Pk}Kk=1:

Îm = G(Ĩk, Pk,Θ | k = 1, . . . ,K, Pk ̸= Pm). (2)

Assuming that the ground truth of edited images with 3D consistency is denoted as Ĭm, our
optimization objective can be expressed as:

argmin
Θ

M∑
m=1

∥∥∥Ĭm − Îm

∥∥∥2 = argmin
Θ

M∑
m=1

∥∥∥Ĭm −G(Ĩk, Pk,Θ | k = 1, . . . ,K, Pk ̸= Pm)
∥∥∥2 . (3)

However, the edited ground truth Ĭm is not at our disposal. Thus, we express the result of Eq. 1
as Ĩm = Ĭm + △Im. This implies that the images edited by model F can be perceived as edited
ground truth images with minor perturbations caused by noise. In this work, the perturbations
mainly stem from the lack of consistency in the training dataset after 2D image editing by model
F . Hence, we can apply similar random minor perturbations △Ii to the clean images {Ii}Ni=1 by
controlling the parameters θ in F , resulting in {Ĩi}Ni=1. We use the {Ii}Ni=1 as pseudo ground truth
to train the model G. As such, the objective function constructed for model training is:
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argmin
Θ

N∑
i=1

∥∥∥Ii −G(Ĩk, Pk,Θ | k = 1, . . . ,K, Pk ̸= Pi)
∥∥∥2 . (4)

Generate training data. To generate training data pairs as shown in Figure 2, we first select an
image from a scene at random and feed it into the BLIP (Li et al., 2023) model to obtain its input
caption, such as “a man with open eyes.” Subsequently, we use GPT (Brown et al., 2020a) to
generate the target caption, such as “a man with closed eyes.” For each image of a scene, we apply
minor perturbations randomly using Eq. 1 by controlling the hyper-parameters θ. More details of
the generation process are available in the supplementary material.

Self-view robustness. We use a training approach similar to that in the generalizable NeRF
models (Wang et al., 2021; Liu et al., 2022; Johari et al., 2022), which involves predicting the target
view based on several source views. When the training data of a 3D scene is consistent, predicting
the same target view with different source views typically yields consistent results. However, this
may not hold for the scene pre-edited by a 2D-editing model. To address this, we perform two
independent predictions, labeled A and B. For A, we use source views {Src1a, Src2a, ...} and predict
the target view as Tgta. In addition, for B, we use source views {Src1b , Src2b , ...} and predict the
same target view as Tgtb. We calculate the L2 loss to ensure consistency between two predictions:

ℓself = ∥Tgta − Tgtb∥2 . (5)

Neighboring view consistency. Empirically, there are often noticeable texture or color discontinu-
ities between adjacent views when rendering along a smooth camera path. To tackle this issue, we
enforce a smooth transition between adjacent views. Specifically, we slightly perturb the pose cor-
responding to the target view and generate a neighboring view Tgtnbr based on the perturbed pose.
We project the pixel points from the target view onto the neighboring view using depth and calcu-
late the following loss to minimize the image discontinuities caused by changes in the viewing angle:

ℓnbr = ∥M(Tgta − Tgtnbr)∥2 + ∥M(Tgtb − Tgtnbr)∥2 , (6)

where M refers to a mask, which indicates that only the loss between overlapping regions is
calculated. In addition, we note that the weights wi of some sampled points on the rays are
distributed along the rays. This can lead to distortions such as floating objects in the predicted target
view, which may affect the accuracy of the target view to neighboring view projection. Similar
to (Kim et al., 2022), we introduce an entropy loss for the weights of the sampling points:

ℓen = −
∑

wi logwi = −
∑

Ti(1− exp(−σiδi) log (Ti(1− exp(−σiδi)), (7)

where σi is the density of the spatial points sampled along a ray. δi denotes the distance between
adjacent sample points. Please refer to the supplementary material for the definition of Ti.

Network structure. The generalized NeRF model G in Figure 2 is developed based on the IBR-
Net (Wang et al., 2021). We extend it by incorporating multi-viewpoint aggregation, cross-view
mappings, and integration of unedited image information to render consistent results. More details
regarding the generalized NeRF model G are described in the supplementary material.

Loss function. During training, the model cannot render a complete image in a single forward pass
due to GPU memory limitations. Thus, the model predicts image patches at each training step, and
the loss is computed on a patch level. The total loss function employed in this work is:

ℓ = ℓrec + λ1ℓself + λ2ℓnbr + λ3ℓen + λ4ℓtv, (8)

where ℓrec =
∥∥∥Ii − Îi

∥∥∥2, and ℓtv is the total variation regularization term (Rudin & Osher, 1994).

Content filter. During the inference phase, we design a content filter to remove poorly edited
images and those that cause significant inconsistency. The remaining perturbations caused by 2D
editing are then removed using the trained model. Our content filter is designed based on four tuples:

{SSIM(Ii, Ĩi), CLIP(Ii, Ĩi), CLIP(Ĩi, Ctgt), CLIP(Ii, Ĩi)− CLIP(Cin, Ctgt)}Ni=1. (9)
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Fauvism painting of a man
is in front of the wall

The Vincent Van Gogh 
is in front of the wall

Input caption:
a man is in 

front of the wall

Ours

Vincent Van Gogh

Fauvism

NeRF-Art

Make him look like 
Vincent Van Gogh

Make him look like a 
Fauvism painting

Instruct-N2N

Figure 3: Comparison with other text-driven editing methods. DN2N strikes a better balance
between preserving image content and aligning with textual descriptions. More importantly, it is not
necessary to retrain our model for different editing types.

Ours: a television ... à a green television …

Clip-NeRF: yellow flowers

DFF: green television

Ours: a red flower ... à a yellow flower …

Ours: a television ... à a green television …

Clip-NeRF: A pink lego excavator

DFF: green television

Ours: a yellow lego ... à a pink lego …

Figure 4: Comparison with other methods for editing appearance. DN2N achieves higher accu-
racy in matching target captions while effectively preserving information in non-edited areas.

We calculate these four groups of values for all the edited images, sort each set of results, and discard
the top 10% or bottom 10% of the data. This content filter significantly reduces the 3D inconsistency
among the edited images. More implementation details are presented in the supplementary material.

4 EXPERIMENTS AND ANALYSIS

The datasets used to train our model are Google Scanned Objects (Downs et al., 2022), NeRF-
Synthetic (Mildenhall et al., 2020), Spaces (Flynn et al., 2019), IBRNet-collect (Wang et al., 2021),
LLFF (Mildenhall et al., 2019) and NeRF-Art (Wang et al., 2022b). The default 2D-image editing
model is Null-text (Mokady et al., 2022). We implement our method with PyTorch (Paszke et al.,
2019), train the model on 8 NVIDIA V100 GPUs, and use one single V100 GPU for inference.
More implementation details and results are presented in the supplementary material.

4.1 QUALITATIVE RESULTS

As illustrated in Figure 1, our approach demonstrates its ability to achieve various challenging edit-
ing types without retraining while maintaining 3D consistency and conforming to the text descrip-
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Ours: … à … in the Starry Night styleLearning-to-Stylize 

Ours: … à ink wash painting …ARF

Figure 5: Comparison with other methods for editing scene styles. DN2N can more accurately
transfer colors and brush strokes while preserving more original image content.

tion. More editing results are presented in the supplementary material. To further assess the effec-
tiveness of our approach, we conduct comparative studies against state-of-the-art methods.

Text-driven 3D scene editing. We compare our approach to other text-driven editing methods,
as shown in Figure 3. NeRF-Art utilizes multiple loss functions to retrain a model corresponding
to given words, with limitations in achieving complex and precise editing effects. Instruct-N2N
initially edits 2D images according to instruction and trains a model using these edited images, then
generates new images by the model, which are further edited again to train the model iteratively
until it produces images that comply with the instructions. In contrast, the scene editing results by
our DN2N are directly inferred by the model after the given text without any intervening training
process, whereas NeRF-Art and Instruct-N2N require retraining a model for each scene and each
editing type. In addition, the editing results by DN2N are more realistic and retain more areas
unrelated to the target caption, as shown in Figure 3, making it easier to achieve cascading multiple
edits (see the supplementary material for more editing results).

Appearance editing. Two steps are involved in editing the appearance of an object in a scene:
determining the target area and editing the appearance of that area. As illustrated in Figure 4, our
method accurately locates the target area and applies appearance editing consistent with the target
description without requiring training. While Clip-NeRF uses CLIP Similarity to limit the novel
view to the target words, it cannot accurately locate the target area or transfer visual appearance.
DFF uses DINO or Lseg to inject label information into points in space, ensuring precise editing
area localization. However, its appearance editing requires manual operations, such as specifying
the RGB value of the editing area. Furthermore, both methods require training separate models for
each scene, making them less efficient than DN2N.

Style transfer. Figure 5 presents visual comparisons rendered by DN2N and other 3D scene style
transfer techniques. As depicted, the Learning-to-Stylize method tends to imitate the color infor-
mation of the reference image, but it often overlooks curved strokes. On the other hand, ARF
excessively imitates curved strokes of the reference image, resulting in less pleasing visual effects
and loss of information in the original scene. In contrast, our approach synthesizes the scenes by
capturing both the color and stroke of the target style. Furthermore, both evaluated methods neces-
sitate selecting a reference image first and then training an editing model, whereas our approach is
text-driven and user-friendly, without retraining. As such, our method reduces training requirements
and model storage, thereby offering friendly image editing capabilities.

4.2 QUANTITATIVE RESULTS

Ability to resist perturbations. Our method is specifically designed for scene editing, capable of
maintaining 3D consistency under minor editing perturbations. To demonstrate this, we compare our
approach to commonly used generalization models in 8 scenes on the LLFF dataset. Table 1 shows
the results of two types of comparisons: one on unedited scenes (LLFF) and the other on scenes
with minor editing perturbations (LLFF∗) that result in some inconsistency. It can be seen that our
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Table 1: Comparison of mean
PSNR with other generalizable
NeRF models on the LLFF
dataset. * indicates random mi-
nor perturbations to the scenes.

LLFF LLFF∗

PixelNeRF 18.66 11.03
MVSNeRF 21.18 16.74

IBRNet 25.17 20.05
Neuray 25.35 19.31
DN2N 23.81 22.42

MVSNeRF IBRNet Neuray Ours

no 
editing

m
inor

editing
norm

al
editing

compare generalize models

consistence

MVSNeRF IBRNet Neuray Ours

Z
er

o
M

in
or

N
or

m
al

consistence

Figure 6: Comparison with other generalizable NeRF models
on the fern scene. Our approach can maintain 3D consistency
across novel views under different editing degrees.

Table 2: Comparison of model capabilities, runtime, and model size for editing the flower
scene. ’TC’ and ’SC’ are Time and Space Complexity, respectively.

Capabilities

Methods

Time (minute)

TC Size(MB) SC
generalizable

text object appearance weather style
train edit totaldriven editing editing transfer transfer

✓ ARF 21.7 3.4 25.1 O(n) 558 O(n)
✓ DFF 20.6 5.2 25.8 O(n) 144 O(n)

✓ ✓ ✓ Clip-NeRF 524.4 349.7 874.1 O(n) 29.4 O(n)
✓ ✓ ✓ NeRF-Art 1545.6 780.6 2326.2 O(n) 18.3 O(n)
✓ ✓ ✓ ✓ ✓ Instruct-N2N 19.2 62.1 81.3 O(n) 484 O(n)

✓ ✓ ✓ ✓ ✓ ✓ Ours 0 22.3 22.3 O(n) 103 O(1)

approach outperforms other models on scenes with minor inconsistencies resulting from 2D editing.
Figure 6 also illustrates that our method can achieve superior 3D consistency in editing outcomes.
These demonstrate our method is more suitable for the 3D scene editing task.

Model efficiency. Our generalizable model precludes retraining and has a variety of editing capa-
bilities, which is more efficient and practical. A comparison of model capabilities and efficiency
has been incorporated, and the results, as presented in Table 2, show substantial advantages of the
proposed DN2N over previous techniques in capability, runtime, and model storage. In terms of
runtime, our approach does not require training time for new scenes or new types of edits, only ne-
cessitating inference time for editing. Thus, our method is more efficient than alternative techniques.
Regarding model storage, our model, which is applicable across all scenes and types of edits, entails
a constant space complexity of O(1). In contrast, other methods need to retrain a model for each
different scene or type of edit, leading to space complexity of O(n). Thus, these methods consume
significantly more storage than our model when there are numerous editing scenes or editing types.

4.3 USER STUDY

Since scene editing is a subjective task, we perform a user study to provide a more generalized
evaluation of the editing results of the DN2N method against state-of-the-art approaches. The study
yields 1700 votes in total for three evaluation metrics: 3D consistency, preservation of the original
scene content, and faithfulness to the text description. The results are depicted in Figure 7, which
shows that the proposed method is favored in terms of these evaluation metrics. The implementation
details of the user study can be found in the supplementary materials.

4.4 ABLATION STUDIES

We demonstrate the contribution of each component in our method in Figure 8. We find that omit-
ting the data generation process during training would significantly affect the model performance on
edited results. Furthermore, removing the self and neighboring view components leads to 3D incon-
sistency. Upon testing the content filter during network inference, we find that its absence results in
significant image distortion. This can be attributed to the fact that editing 2D images directly results
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(a) 3D consistency (b) preservation of the content (c) faithfulness to the text description

(a) 3D consistency, (b) preservation of the content, and (c) 
faithfulness to the text description.}

Figure 7: User study. The proposed DN2N method performs well against other state-of-the-art
approaches in terms of comprehensive performance across three evaluation criteria.

w/o Filter Full

w/o data generation

w/o 𝑙!"#

w/o 𝑙$%&'unedited image

Figure 8: Qualitative ablation studies for key com-
ponents in editing the ‘open eyes’ to ‘closed eyes’.

Table 3: PSNR results of ablation studies.
Experiments are conducted by applying vary-
ing minor perturbations to the scene in Fig-
ure 8. DG denotes data generation.

w/o DG w/o lself w/o lnbr Full

exp1 17.24 19.89 21.05 21.76
exp2 18.98 21.5 21.92 23.11
exp3 18.73 21.16 22.39 24.21
exp4 18.97 20.53 22.19 22.27

in a significant 3D inconsistency between different views, making it difficult for the model to solve
these inconsistencies without the content filter. Table 3 shows the quantitative ablation results by as-
sessing the model resistance to disturbance by applying minor perturbations to the scene in Figure 8.
It is evident that training the generalization model with perturbed images is crucial. Furthermore,
enforcing cross-view consistency can also enhance the model’s overall performance.

4.5 LIMITATIONS

a red flower with green leaves

Target caption: a red flower with blue leaves

a red flower with green leavesA
tt

en
ti

on
m

ap
s

DN2NInstruct-N2NOriginal view

a red flower with blue leavescolor the leaves blue

Limitation

Figure 9: Failed editing cases.

Similar to the limitations encountered by the
InstructN2N method (Haque et al., 2023), our
outcome of the 3D editing is also affected by
the 2D image pre-editing process. As illus-
trated in Figure 9, the 2D editing model may not
always achieve reliable editing results, leading
to failures in editing 3D scenes.

5 CONCLUSION

In this work, we propose a text-driven method for editing 3D scenes that exhibits strong gener-
alization capabilities and enables realistic novel view editing without additional training for each
modification task. Our approach leverages existing 2D editing models to perform initial editing of
3D scene images based on textual descriptions. We then filter out poorly edited images that dis-
rupt 3D consistency significantly, treating the remaining inconsistency as noise perturbation on top
of consistently edited results. We provide several approaches to train our model to eliminate this
perturbation, including creating training data and strengthening cross-view robustness. Our exper-
imental results demonstrate the effectiveness of our approach, which offers significant advantages
over conventional methods. Specifically, our method is more user-friendly for editing, supports mul-
tiple editing capabilities, and exhibits strong generalization. It eliminates the need for training on
new scenes or editing types, resulting in a shorter editing time and lower memory overhead.
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A BACKGROUND OF NEURAL RADIANCE FIELDS AND DIFFUSION MODELS.

Neural radiance fields. NeRF utilizes an implicit function to represent scenes, which maps the
spatial point x = (x, y, z) and view direction d = (θ, ϕ) to the density σ and color c. Typically,
the implicit function is represented by an MLP network, denoted as FΘ : (x,d) −→ (σ, c), where
Θ represents the weights of the network. For a ray r originating at o with direction d, the RGB
value Ĉ(r) of the corresponding pixel is estimated through numerical quadrature of the color ci and
density σi of the spatial points sampled along the ray:

Ĉ(r) =

N∑
i

Ti(1− exp(−σiδi))ci, (10)

where N is the number of sample points, δi denotes the distance between adjacent sample points,
and Ti = exp(−

∑j=i−1
j=1 σjδj). Here Ti(1 − exp(−σiδi)) is used to calculate the entropy loss as

defined in Eq. 7 in the main text.

Text-guided diffusion models. Text-guided diffusion models aim to generate an output image z0
from a random noise vector zt under a textual condition P . To achieve sequential denoising, the
model ϵθ is trained to predict artificial noise, minimizing the objective:

min
θ
Ez0,ϵ∼N(0,I),t∼Uniform(1,T ) ∥ϵ− ϵθ(zt, t, C)∥22 , (11)

where C = ψ(P) denotes the embedding of the text condition, and zt is a noised sample according
to the timestamp t. During the inference process, given a noise vector zT , its noise is gradually
removed by sequential prediction using a trained network for T steps, which can be achieved
by the DDIM sampling strategy (Song et al., 2021a). Amplifying the effect induced by the
conditioned text is a significant challenge in a text-guided generation. To address this issue, Ho et
al. (Ho & Salimans, 2022) propose a guidance technique that eliminates the need for a classifier in
unconditional prediction and extends it to conditioned prediction scenarios. With the introduced
concept of a null text embedding, denoted as ∅ = ψ(””), and a guidance scale parameter w, then
the guidance prediction is given by:

ϵ̃θ(zt, t, C,∅) = w · ϵθ(zt, t, C) + (1− w) · ϵθ(zt, t,∅). (12)

In our experiments, we primarily control the degree of image editing by adjusting the parameter
guidance scale parameter w and inversion steps T .

a blue chair with black 
legs and arms

a black computer keyboard 
with a mouse attached to it

two stuffed animals sitting 
on top of a white box

a yellow lego 
construction vehicle

a house with a large rock 
wall on the side of it

a bunch of apples on display

the brooks running shoe 
is red and yellow

yellow roses in the garden

Figure 10: Generate input captions by BLIP. For each 3D scene, we randomly select one image
to generate its input caption using the BLIP-2 model.
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Table 4: Generate target captions by GPT. Given the input caption S for a 3D scene, we utilize
GPT to generate a target caption O. For instance, if S is 'yellow roses in the garden ', the target
captions can be 'Leonardo da Vinci painting of yellow roses in the garden ', 'yellow roses in the
garden in the Rococo style', 'pink roses in the garden ', to name a few.

Prompts List 100 famous
painters

List 50 famous
painting schools

List 100 famous
paintings

Replace, add or delete partial
words in the following
sentences: S1, S2, ...

GPT
outputs

(O)

Leonardo da Vinci
Vincent van Gogh

Pablo Picasso
Sam Francis
Max Ernst

.

.
Henri Matisse
Eva Hesse
Carl Andre
Cy Twombly
Jan van Eyck

Baroque
Realism

Impressionism
Op Art
Fauvism

.

.
Tonalism

Ashcan School
Rococo

Symbolism
Outsider Art

Mona Lisa
The Last Supper

The Scream
The Starry Night

Guernica
.
.

The Fifer
The Kiss

The Hay Wagon
Olympia
Sunflowers

pink roses in the garden
red roses in the garden

white roses in the garden
orange roses in the garden
purple roses in the garden

.

.
a green couch with gold trim
a green chair with silver trim
a green chair with no trim
a blue chair with gold trim
a white chair with gold paint

Target
captions

O painting of S
or

S in the O style

O painting of S
or

S in the O style
S in the O style O

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 PROCESS OF GENERATING TRAINING DATA

Generate input and target captions. During the training phase, we utilized a total of 1246 scenes.
For each scene, we randomly select one image to generate an input caption using the BLIP model (Li
et al., 2023) with 2.7 billion parameters 1. A subset of the generated captions is shown in Figure 10.
Then we utilize the GPT model (Brown et al., 2020a) to generate target captions. As shown in
Table 4, the four instruction prompts for GPT are:

(1). List 100 famous painters.

(2). List 50 famous painting schools.

(3). List 100 famous paintings.

(4). Replace, add, or delete partial words in the following sentences: X. (X is the input caption from
BLIP.)

During training, we select one of the above (1)-(4) following a 2:2:2:4 ratio to generate the target
caption. For (1), a chosen painter like ”Van Gogh” could transform the caption ”a red flower” into
”Van Gogh painting of a red flower”. Similar procedures apply to (2) and (3). For (4), GPT might
change ”a red flower” to ”a red apple”. Thus, each scene incorporates 405 target captions.

Minor perturbations for training. We generate the training data by applying minor random pertur-
bations to the 3D scene using the 2D editing model Null-text 2. The random ranges for the relevant
parameters are set as follows: 100 to 300 for the iteration number T and 0.5 to 3.5 for the text
guidance scale w.

Normal perturbations for inference. For normal-scale edits, we follow the recommended settings
from the Null-Text paper, with w=7.5 and T=500.

The effects of applying random minor and normal editing to the images are depicted in Figure 11.

1https://huggingface.co/Salesforce/blip2-opt-2.7b
2https://null-text-inversion.github.io
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yellow roses

pink roses … in the Fauvism style … in the Guernica style

(a) random minor perturbation for training

(b) normal perturbation for inference

Figure 11: Visualization of random minor perturbations and normal perturbations. After ap-
plying 2D editing to the scene, the images exhibit various types of distortions in color or structure,
thereby compromising the consistency among them. To simulate this 3D inconsistency, we intro-
duce minor perturbations to the clean scene and optimize our model to remove them.

B.2 TRAINING AND INFERENCE

Training phase. In the training process, the input caption for the current scene can be directly
retrieved from a pre-stored file. As for the target caption, it is generated randomly based on Table 4.
To be specific, we employ a weight of 2:2:2:4 to randomly choose one column from the four columns
in Table 4 and then select its target caption for the current scene.

Our method is implemented using the PyTorch framework (Paszke et al., 2019). We employ the
Adam optimizer (Kingma & Ba, 2014) with initial learning rates of 1e-4 for the CNN and 5e-4
for the MLP. The training process runs for 300K steps with a batch size of 500 rays. The initial
values for the loss weight in Eq. 8 in the main text of lself , lnbr, len, and ltv , are set as λ1=1e-3,
λ2=1e-3, λ3=1e-3, and λ4=2e-3, respectively. The calculation of lnbr is only performed after the
iteration count exceeds 10K. During the training phase, we randomly select a variable number of
source views ranging from 6 to 15, while using 15 source views during inference. The number of
sampled points on a ray is set to 64.

Inference phase. After completing the training process, given a scene and its corresponding textual
description, we apply normal-level editing to the images of the scene using the 2D editing model.
Following that, we employ a content filter to select the edited results, removing the lowest and
highest 10% of values for each of the four metrics defined in Eq. 9 in the main text.

Implementation details of the content filter. The main idea behind the content filter is to main-
tain the degree of editing consistent across various perspectives. To achieve this, we consider the
following two situations:

(1). A smaller degree of editing implies fewer changes in the edited image relative to the original,
while a larger discrepancy with the target text.

(2). Conversely, a higher degree of editing denotes more significant changes in the edited image
compared to the original, bringing it closer to the target text.

Therefore, the evaluation metrics used in the content filter can be measured through the relation-
ship between the original image, edited image, original text description, and target text description.
Specifically, given an original image Ii and its captionCin, as well as its corresponding edited image
Ĩi and its caption Ctgt, we calculate the following four measurements based on SSIM similarity and
CLIP similarity during the filtering process:

(a). SSIM(Ii, Ĩi)

(b). CLIP(Ii, Ĩi)
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(c). CLIP(Ĩi, Ctgt)

(d). CLIP(Ii, Ĩi)− CLIP(Cin − Ctgt)

Here, the metrics (a) and (b) assess the similarity between the image before and after editing. The
metric (c) gauges the similarity between the edited image and the target caption, while the metric
(d) evaluates the relative offset between the text and the image. These indicators assess the editing
results on different dimensions. The role of our content filter is to eliminate extreme values (top
10% and bottom 10% of them) from these metrics, ensuring that the remaining images tend toward
consistent editing results.

In Figure 12, we provide the maximum, minimum, and median values for each of the aforementioned
metrics, along with their corresponding original and edited images. Figure 12 shows that the editing
results with maximal and minimal metric values exhibit larger image discrepancies. These will pose
greater challenges for subsequent 3D consistency. Our content filter, by eliminating these extreme
editing results, facilitates superior 3D editing outcomes.

Filter数值说明 + 2D结果的多样性及解决方案

𝐶!": a man is in front of the wall 𝐶#$# : Fauvism painting of a man is …

𝑆𝑆𝐼𝑀(𝐼! , &𝐼!) 𝐶𝐿𝐼𝑃(𝐼! , &𝐼!) 𝐶𝐿𝐼𝑃(𝐶#$# , &𝐼!) 𝐶𝐿𝐼𝑃 𝐼! , &𝐼! − 𝐶𝐿𝐼𝑃 𝐶!" , 𝐶#$#

𝐼! ∶ unedited image

m
in

m
ax

%𝐼! : edited image by 2D editing model

0.874

0.568 50.78

77.44 31.11

24.52 2.19

24.41

0.742 58.78 28.64 14.43

m
ed

ia
n

Figure 12: Visualize the editing results of the 2D editing model, as well as the maximum, mini-
mum, and median values for each metric of the content filter. The images that correspond to the
minimum and maximum values often exhibit either low or excessive editing degrees. By excluding
them, we can enhance the 3D consistency among the remaining images.

C NETWORK ARCHITECTURE

Initially, we utilize a UNet-like network with the ResNet34 (He et al., 2016) backbone to extract
features from both the unedited and edited source views. These feature maps are then concatenated
and inputted into subsequent CNN networks to derive the final feature maps. When estimating the
color c and density σ of sampled points along the rays, we primarily employ the MLP networks to
integrate, extract, and interpret information from the edited images, feature maps, and viewing direc-
tions. For density prediction, we adopt a design of transformer networks inspired by IBRNet (Wang
et al., 2021). Regarding the color estimation, we incorporate additional pixel difference information
among source views to capture the extent of editing across different perspectives, aiding the network
in improved learning. The detailed network architecture and data propagation process are depicted
in Figure 13.
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Figure 13: Network architecture. P is the number of sample points on a ray, and K is the number
of source views.

Table 5: Quantitative comparison of CLIP Directional Score (CDS) and CLIP Consistency
Score (CCS). CDS∗ indicates using a different caption from CDS. CCS∗ means our result at the
minimum editing degree. The displayed values are multiplied by 100.

Van Gogh Fauvism

CDS CDS* CCS CCS* CDS CDS* CCS CCS*
NeRF-Art 13.07 10.21 2.06 2.06 17.38 12.74 1.38 1.38
Instruct-N2N 11.21 10.39 9.24 9.24 16.62 13.18 4.11 4.11
Ours 8.83 11.76 4.89 100 14.06 14.93 2.29 100

D ADDITIONAL QUANTITATIVE COMPARISON

Although the evaluation of the editing results is subjective, we follow the descriptions and imple-
mentation codes of CLIP Directional score (CDS) and CLIP Consistency score (CCS) as outlined
by Instruct-N2N (Haque et al., 2023) to quantitatively evaluate the editing results shown in Figure 3
of the main text. The quantitative results are presented in Table 5. It is clear that, under different
settings, there are large variances in these metrics.

The CDS measures how much the change in text captions agrees with the change in images. When
using CDS, a text description of the edited scene needs to be provided. Different descriptions yield
varying results, as shown by CDS and CDS* in Table 5. This is mainly because the prompts used
in training vary across different methods. For example, NeRF-Art just uses target words like “Van
Gogh”, and incorporates the CDS into the loss function (as in Equation 4 of the NeRF-Art paper),
while Instruct-N2N employs instructional prompts such as “Make him look like Vincent Van Gogh”.
Our method, on the other hand, provides a target description like “Vincent Van Gogh is in front of
the wall.” Thus, providing an equitable text description for comparing CDS presents a challenge.
With the description ”Portrait of Van Gogh”, NeRF-Art has higher CDS but worse visual results, as
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presented in Figure 3. When “Vincent Van Gogh is in front of the wall” is provided, our method
performs the best. Therefore, CDS may not fully evaluate image editing performance effectively.

The CCS measures the cosine similarity of the CLIP embeddings of each pair of adjacent frames in
a novel camera path. This metric heavily depends on the degree of editing. In extreme cases where
the edited result is identical to the unedited one, the CCS has a maximum value of 1. However, under
such conditions, the editing effect is not achieved. Therefore, the CCS also has certain limitations.

Due to these considerations, although our method and Instruct-N2N have both visually compared
with other text-driven editing methods, neither uses CDS and CCS for performance evaluation.
Effective quantitative metrics for editing results remain challenging, so existing methods still opt for
subjective evaluations, for instance, by conducting user studies to aggregate subjective evaluation
results from multiple individuals in order to reflect the quality of the editing results.

E ADDITIONAL ABLATION STUDIES

w/ 𝑓𝑖𝑙𝑡𝑒𝑟

w/o 𝑓𝑖𝑙𝑡𝑒𝑟

w/ data generation

w/o data generation

Figure 14: Ablation study on data generation. When training our generalization model, without
incorporating data augmentation involving minor perturbations, the rendered novel views may ex-
hibit noticeable inconsistencies in terms of glossiness and color.

w/ 𝑓𝑖𝑙𝑡𝑒𝑟

w/o 𝑓𝑖𝑙𝑡𝑒𝑟

w/ data generation

w/o data generation

Figure 15: Ablation study on content filter. Removing the content filter component, the poorly
edited images can detrimentally impact the final edited novel views, resulting in significant color
inconsistencies, among other issues.

In this section, we present additional visualization and ablation experiments related to the training
data generation, content filter, self-view (lself ), and neighboring-view (lnbr) regularization terms.
Specifically, we edit the flower scene in the LLFF dataset to a transparent ice sculpture flower.
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w/ 𝑙$%&'

w/o 𝑙$%&'

w/ 𝑙!"#

w/o 𝑙5"#

Figure 16: Ablation study on lself regularization term. The 3D consistency of the rendering
results under different source views is poor (inconsistent color). While the introduction of the lself
regularization term leads to a significant improvement in consistency.

w/ 𝑙$%&'

w/o 𝑙$%&'

w/ 𝑙!"#

w/o 𝑙5"#

Figure 17: Ablation study on lnbr regularization term. A slight inconsistency (inconsistent gloss)
exists among the results obtained from different neighboring views, which can be mitigated by
introducing the lnbr regularization term.

During the training of our generalization model, we introduced inconsistent noise perturbations
to the training data to encourage the model to learn the ability to remove inconsistencies. Upon
removing this step, we observed significant color and gloss discontinuities between different novel
views in the editing results as shown in Figure 14.

After training the model through data augmentation, it becomes capable of removing minor noise
perturbations, while in the case of images with substantial consistency disruption in 2D editing
results, this is mitigated by the content filter. Removing this filtering process leads to noticeable
inconsistencies in the results as depicted in Figure 15.

We also visualize the results obtained by rendering with different source views and the rendering
results of different neighboring views. The results are shown in Figure 16 and Figure 17. It can
be observed that there is poor 3D consistency and varying degrees of color distortion in the results
rendered under different source views. While after incorporating our designed lself regularization
term, this phenomenon is significantly alleviated.

Similarly, there is a slight inconsistency among the results from different neighboring views, which
is improved by introducing the lnbr regularization term.

F VISUALIZATION OF GEOMETRIC INFORMATION

We visualize the depth maps before and after scene editing, as shown in Figure 19. This is divided
into two cases. First, when only appearance is edited, the depth maps before and after exhibit negli-
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gible differences. Second, when the geometry of objects is altered, the depth maps correspondingly
exhibit changes as well, validating the 3D awareness of our editing approach.

G ADDITIONAL EDITING RESULTS

In this section, we present a collection of additional editing results that showcase the remarkable
editing capabilities and effects of our method. The results are shown as Figure 20, Figure 21,
Figure 22 and Figure 23. Additionally, in Figure 24, we delve into more complex cascaded editing
scenarios. These results demonstrate that our method can adapt to multiple types of datasets and has
diverse editing capabilities.

H USER STUDY DETAILS

We invited a total of 50 subjects (31 males and 19 females, aged 18 to 45) to participate in the user
study. Each participant is presented with videos or frames generated by various methods. They
are asked to select their preferred option based on three distinct criteria: 3D consistency, content
preservation, and faithfulness to the text description. The user study compared our method to others
across 4 scenes with 18 questions. We use 23 videos to evaluate 3D consistency in 9 questions, and
24 images in the remaining 9 questions to measure the match between text prompts, editing results,
and original image content preservation. Typical questions in the questionnaire are:
(1). What is the video with higher consistency?
(2). Please select an image that retains more of the original image content.
(3). Please select an image that more closely matches the text ”Elf.”

A screenshot of the questionnaire is available in Figure 18.

Figure 18: Example of questionnaire for user study.

21



Under review as a conference paper at ICLR 2024

a red flower with green leaves a red egg with green leaves

a grey fortress on the table an orange pineapple on the table

an alarm clock on the white box a wooden alarm clock on the white box

a brown bench next to the grass a yellow bench next to the grass

Van Gogh painting of a hat on the fura hat on the fur

Figure 19: Visualization of geometric information.
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a red flower with green leaves

… leaves covered with snow … leaves in the heavy rain

a red origami flower… a transparent ice sculpture flower …

… leaves in the ink and wash style Modigliani painting of a red…

a milky-white flower …a azure flower …

a red apple … a red egg …

Figure 20: More visual results on editing flower.
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a golden man sculpture is in 
front of the wall

a man is in front of the wall

a woman is in 
front of the wall

a wood man sculpture is in 
front of the wall

a child is in 
front of the wall

a man with closed eyes is in 
front of the wall

a man with glasses is in 
front of the wall

a silver man sculpture is in 
front of the wall

an old man is in 
front of the wall

a man with suit is in 
front of the wall

a saiyan is in 
front of the wall

a man with yellow hair is in 
front of the wall

The Tolkien Elf is in 
front of the wall

Figure 21: More visual results on editing portrait.
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syn + kitti + 360 OMMO

an aerial view of a town

an aerial view of a town covered by snow

an aerial view of a town at a beautiful dusk

Plants are grown in black pots

Plants are grown in 
black pots in the autumn

Plants are grown in white porcelain

(a) NeRF-Synthetic dataset (b) OMMO dataset

(c) KITTI dataset

a road with trees and houses on the sides

a road with trees and houses on the sides in the fauvism style

ink wash painting of a road with trees and houses on the sides

Figure 22: More visual results on NeRF-Synthetic, OMMO, and KITTI datasets. The NeRF-
Synthetic dataset (Mildenhall et al., 2020) is synthetic scenes. The OMMO dataset (Lu et al., 2023)
is 360◦ scenes captured by the drone camera. The KITTI dataset (Geiger et al., 2013) is the street
view scenes captured by the car camera.
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Expressionism painting of…

Cluaude Monet painting of …

…in the Edivard Munch style

a group of green leaves

…in Der Kuss style … in the Henri Matisse style

Jackson Pollock painting of … Mark Rothko painting of…

… in the Op Art style Paul Gauguin painting of…

Van Gogh painting of…

… in the Rembrandt style

… in the Surrealism style

Wassily Kandins painting of……in The Slave Ship style

Figure 23: More visual results on style transfer.
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a yellow flower with green
leaves coverd with snow

a red flower with green leaves

a yellow flower with green leaves

Jackson Pollock painting of a yellow flower
with green leaves coverd with snow

a woman with closed eyes

a man with open eyes

a woman with open eyes

a golden sculpture of a woman
with closed eyes

Figure 24: Cascade editing results. We begin by applying an edit to the original scene and generate
a new scene with the desired editing effect using DN2N. We repeat this process by applying another
edit to the new scene. In this figure, we showcase the consecutive results of three cascaded edits.
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