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Abstract

Sharing sensitive time series data in domains such as finance, healthcare, and energy con-
sumption—such as patient records or investment accounts—is often restricted due to privacy
concerns. Privacy-aware synthetic time series generation addresses this challenge by enforc-
ing noise during training, inherently introducing a trade-off between privacy and utility.
In many cases, sensitive sequences is correlated with publicly available, non-sensitive con-
textual metadata (e.g., household electricity consumption may be influenced by weather
conditions and electricity prices). However, existing privacy-aware data generation methods
often overlook this opportunity, resulting in suboptimal privacy-utility trade-offs. In this
paper, we present Pub2Priv, a novel framework for generating private time series data by
leveraging heterogeneous public knowledge. Our model employs a self-attention mechanism
to encode public data into temporal and feature embeddings, which serve as conditional
inputs for a diffusion model to generate synthetic private sequences. Additionally, we in-
troduce a practical metric to assess privacy by evaluating the identifiability of the synthetic
data. Experimental results show that Pub2Priv consistently outperforms state-of-the-art
benchmarks in improving the privacy-utility trade-off across finance, energy, and commod-
ity trading domains.

1 Introduction

Synthetic data generation has emerged as a powerful approach for mitigating the risks associated with sharing
sensitive real-world data, leading to the development of numerous learning-based models designed for this
purpose Figueira & Vaz (2022); Lu et al. (2023); Sezer et al. (2020); Potluru et al. (2023). A de facto standard
for ensuring data privacy during training is differentially private stochastic gradient descent (DP-SGD) Abadi
et al. (2016), which provides strong privacy guarantees for individual data points by introducing gradient
noise and normalization. Accordingly, various efforts have been made to integrate differential privacy (DP)
into generative models Xie et al. (2018); Papernot et al. (2018). These approaches inherently involve a
privacy-utility trade-off, where stronger privacy protection often reduces the usefulness of the generated
data for downstream tasks.

Researchers have explored methods to alleviate this trade-off by leveraging additional information that does
not compromise privacy. Semi-private learning, for example, integrates publicly available and non-sensitive
auxiliary datasets to enhance the privacy-utility trade-off Pinto et al. (2024). Previous work such as Wang
& Zhou (2020) utilized small amounts of public information to adjust parameters in DP-SGD and fine-tune
results using model reuse. Additionally, studies by Alon et al. (2019); Lowy et al. (2024) demonstrate that
differential private learning can significantly benefit from auxiliary public data, even unlabeled. Although
these methods enhance the model’s generative capabilities, they are mainly effective under the assumption
that public and private data originate from the same source and share similar distributions. However, this
assumption rarely holds in real-world synthetic time series generation scenarios since homogeneous public
data are often limited in availability and contain fewer samples than their private counterparts Jordon et al.
(2018).

1



Under review as submission to TMLR

Figure 1: Pub2Priv generates private time series from heterogeneous public knowledge. The model generates
realistic electricity consumption based on non-secret temperature and electricity price information. House-
hold private data is protected by DP-SGD during training.

A critical but often overlooked aspect in privacy-preserving data generation is the heterogeneous contextual
metadata Narasimhan et al. (2024), which can be closely connected to sensitive time series data of interest but
does not raise any privacy concerns. For instance, local weather and energy pricing data can serve as valuable
public signals for modeling household electricity consumption time series while maintaining the anonymity
of individual usage patterns and household-specific information. Similarly, while investment portfolios and
personal trading activities are confidential, they exhibit correlations with publicly available stock market
indices such as the S&P 500 and Nasdaq Composite. Furthermore, recent studies have highlighted the
potential capability of using empirical knowledge embedded in large language models (LLMs) to identify
auxiliary datasets Zhu et al. (2024), thereby exploring and collecting public knowledge that can enhance
the privacy-utility trade-off for synthetic data generation. Motivated by this opportunity, we explore a new
perspective on privacy-aware data generation by leveraging publicly available contextual knowledge. Through
our novel problem formulation, we seek to examine how public knowledge can enhance the privacy-utility
trade-off across diverse real-world scenarios and domains.

To the best of our knowledge, no prior work has explored the use of public contextual information for
time series generation with differential privacy (DP) guarantees. Moreover, it remains unclear how such
information can be leveraged to enhance time series generation performance without incurring additional
privacy loss. To address this gap, we introduce Pub2Priv, a diffusion model designed to generate sensitive
time series using public knowledge. Our approach utilizes a pre-trained transformer to extract embeddings
from multi-dimensional public metadata, which are then used as conditional inputs for a diffusion model
to generate synthetic private data. To ensure privacy protection, we train our model using DP-SGD under
a specific privacy budget. We also propose a practical metric to evaluate the privacy of our framework
by measuring the identifiability of synthetic data. Through experiments across multiple domains, including
finance, energy, and commodity trading, we comprehensively evaluate the privacy and utility of the synthetic
time series generated by Pub2Priv. Our key contributions are summarized as follows.

• We introduce a novel problem formulation of privacy-aware time series generation by considering
publicly available heterogeneous metadata.

• We develop Pub2Priv, a conditional diffusion model framework to utilize public domain knowledge
with no additional privacy cost. Our model utilizes self-attention layers to capture temporal and
feature correlations in multidimensional contextual metadata, enabling realistic private time series
synthesis.

• We introduce a new practical privacy evaluation metric based on the identifiability of the synthetic
data, which serves as a more interpretable tool to assess and configure privacy guarantees in gener-
ation models.
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2 Related Works

2.1 Synthetic Data Generation Models

Synthetic data generation has been an active area of research, with a broad range of models proposed
to capture and reproduce the statistical characteristics of real-world datasets Dankar & Ibrahim (2021);
Raghunathan (2021); Assefa et al. (2020). Early efforts focused on Generative Adversarial Networks (GANs)
Goodfellow et al. (2020) for image data. This framework has been extended to various data modalities,
including tabular, text, and time series Zhang et al. (2017); Xu et al. (2019); Li et al. (2022). For tabular
data, methods such as CTGAN use conditional generators to capture complex interactions among categorical
and continuous variables. Language models based on transformers have been widely used in text generation
and successfully generated high-fidelity sentences or even entire documents Achiam et al. (2023). Similarly,
diffusion models have recently emerged as powerful generative models in various tasks via the interactive
denoising process Ho et al. (2020).

A significant body of work also focuses on time series data generation. For example, Esteban et al. (2017)
proposed RCGAN to produce realistic real-valued multi-dimensional time series based on recurrent neural
networks (RNNs) and generative adversarial networks (GANs). Yoon et al. (2019) presented TimeGAN,
which combines the strengths of unsupervised GANs and supervised autoregressive models for controlling
temporal dynamics. Desai et al. (2021) further contributed to this field by introducing TimeVAE, a Vari-
ational Auto-Encoder (VAE), to generate multivariate time series with good interpretability. Alaa et al.
(2021) presented a novel approach to time series generation by focusing on the frequency domain instead of
the time domain. In parallel, recent autoregressive modeling advances leverage large language models and
structured narratives for improved sequence modeling and forecasting Liu et al. (2024b;a); while primarily
targeted at forecasting rather than unconditional generation, these approaches are closely related to learning
temporal dependencies.

More recently, diffusion models Ho et al. (2020); Song et al. (2020) have emerged as a promising approach
for time series generation. Tashiro et al. (2021) introduced the CSDI model for time series imputation,
showcasing the potential of diffusion models in handling missing data within temporal sequences. Building
on this, Narasimhan et al. (2024) developed TIME WEAVER, a model specifically tailored for time series
generation that leverages metadata to enhance the generative process. These diffusion-based approaches
highlight the evolving landscape of time series generation, where models increasingly incorporate context
and external information to generate realistic and useful synthetic data.

2.2 Privacy-Aware Learning

Privacy-aware learning has gained significant attention in recent years, particularly in protecting sensitive
information while training machine learning models. Abadi et al. (2016) introduced Differentially Private
Stochastic Gradient Descent (DP-SGD), a method that has since become a standard for training models with
privacy guarantees. DP-SGD works by applying gradient clipping and adding noise to the gradients during
training, ensuring that the privacy of individual data points is preserved. Similarly, Yu et al. (2021) proposed
gradient embedding perturbation techniques, which project gradients into a lower-dimensional space before
applying noise, reducing the dimensionality of perturbations and improving model utility while maintaining
privacy.

Semi-private learning has emerged as an effective approach to leverage both public and private data for
training models with enhanced accuracy Pinto et al. (2024). Alon et al. (2019); Wang & Zhou (2020)
explored the limits and potentials of semi-private learning, demonstrating that public data can be effectively
used to adjust model parameters and improve the outcomes of differentially private learning. Lowy et al.
(2024) further extended this by proposing optimal strategies for model training with public data, while
Amid et al. (2022) discussed the benefits of using in-distribution versus out-of-distribution public data
in privacy-preserving machine learning. Another notable approach is the Private Aggregation of Teacher
Ensembles (PATE) framework proposed by Papernot et al. (2016; 2018), where teacher models trained on
sensitive data transfer knowledge to a student model trained on public data, effectively balancing privacy
and utility. While semi-private learning approaches provide an opportunity to utilize public data in private
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data generation, most existing studies treat public information as an additional dataset rather than as
heterogeneous contextual signals. In time series specifically, work under differential privacy has centered on
forecasting Arcolezi et al. (2022); Schuchardt et al. (2025) or on non-DP signal-processing style anonymization
via multivariate all-pass filtering Hore et al. (2024), whereas the DP time-series generators are usually
unconditional DP-GAN without external context Frigerio et al. (2019). This leaves the use of heterogeneous
public context for generation under DP largely unexplored.

Despite these advancements, the application of privacy-aware learning techniques to synthetic data gener-
ation, particularly in complex domains such as images and time series, remains a challenging task. Early
attempts, such as Xie et al. (2018), incorporated DP-SGD into the GAN framework, while Jordon et al.
(2018) developed a GAN model based on the PATE framework. For time-series data specifically, Frigerio
et al. (2019) proposed a DP-GAN with an RNN-based generator to release synthetic sequences, but without
conditioning on public metadata. More recently, Dockhorn et al. (2022) extended this line of research by
applying DP-SGD to diffusion models, showcasing the adaptability of differential privacy across different
generative paradigms.

An alternative approach to privacy-aware data generation is ADS-GAN, proposed by Yoon et al. (2020),
which aims to generate synthetic data while minimizing patient identifiability. However, this method is
more aligned with data anonymization rather than true data generation, as it requires real data as input
to produce synthetic outputs. The focus of our work is on developing methods for data generation rather
than data anonymization or obfuscation. Specifically, we aim to address the gap in existing research by
introducing a model that generates synthetic time series data using heterogeneous public data, offering a
novel approach to privacy-preserving data generation that leverages external information.

In parallel, another line of research focuses on generating synthetic data for query release by preserving
marginal statistics. Notable examples include GEM Liu et al. (2021), which optimizes generative neural
networks using the exponential mechanism, AIM McKenna et al. (2022), which iteratively selects queries
in a workload-adaptive manner, and Private-GSD Liu et al. (2023), a zeroth-order optimization approach
based on genetic algorithms. These methods aim to ensure high-fidelity answers to statistical queries under
differential privacy constraints, offering strong empirical performance in structured data domains.

3 Preliminaries

3.1 Differential Privacy

In this study, we aim to protect the privacy of individual data x ∈ Dx, such that given the data generated
by our model Dx′ = G(DX), an attacker can not identify any data point in the original data (i.e., can not
certainly tell whether x ∈ Dx). One way to provide a strong guarantee of individual privacy is Differential
Privacy (DP), which is defined as follows.

Definition 3.1 (ε, δ−Differential Privacy). Dwork et al. (2006) A randomized mechanism M : D → R
with domain D and range R is (ε, δ)− differentially private if for any two neighboring datasets D, D′ ∈ D
that differ by at most one element, and for any subset of output S ⊆ R, it holds that,

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ

DP offers strong privacy guarantees by ensuring that the inclusion or exclusion of a single data point does
not significantly affect the model’s output. In the equation, ε is the privacy budget and δ denotes the
probability of a privacy breach (in practice, δ is typically set to be smaller than 1/|D|)). The level of
privacy is controlled by the two positive parameters ε and δ; smaller values of these parameters correspond
to stronger privacy protection. DP is also known for its particularly useful properties. (1) Post-processing:
Any mapping or operation applied to the output of a differentially private mechanism will not compromise
the privacy guarantees; (2) Composability: if all the components of a mechanism are differentially private,
then their composition is also differentially private.
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Figure 2: Pub2Priv architecture. Given the original data sample x0, we gradually add noise through forward
process q(xt|xt−1). In the reverse process, we use self-attention layers θT to create temporal and feature
embedding of the metadata c, which is passed to the conditional denoiser θDM to reconstruct the original
sample.

3.2 Diffusion Models

Diffusion models (DMs) are latent variable models trained to generate samples by gradually removing noise
from data corrupted by Gaussian noise. The model learns a distribution pθ(x0) that approximates a data
distribution q(x0). Diffusion models consist of two steps: the forward process and the reverse process. Let
X = {x(n)

0 }N
n=1 denote the empirical training set, and x0 ∼ X as shorthand for sampling from its empirical

distribution. The forward process gradually adds noise to the clean data sample x0 ∼ X, defined by the
following Markov chain:

q(x1, . . . , xT | x0) =
T∏

t=1
q(xt | xt−1), (1)

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI). (2)

which is determined by a fixed noise variance schedule {β1, . . . , βT }, where βt ∈ [0, 1] and T is the total
number of diffusion steps. The generation is performed by the reverse process, defined as the following
Markov chain:

pθ(x0:T ) := p(xT )
T∏

t=1
pθ(xt−1 | xt), (3)

pθ(xt−1 | xt) := N (xt−1; µθ(xt, t), σθ(xt, t)). (4)

where p(xT ) = N (xT ; 0, I). We parameterize µθ(xt, t) and σθ(xt, t)) following the formulation of Ho et al.
(2020). A deep neural network θ is trained to approximate the denoising function ϵθ that predicts the noise
ϵ from xt, using the following loss function (where xt ∼ q(xt | x0) via the forward process in equation 2):

Lθ = Ex0∼X, ϵ∼N (0,I),t

[
∥ϵ− ϵθ(xt, t)∥2

]
(5)

4 Problem Formulation

We consider each private multivariate time series as x ∈ RL×F , where L is the sequence length (horizon)
and F is the number of channels. Each times series sample represents a private entity, which is paired with
conditional metadata c representing public knowledge. While c can be categorical or continuous in general,
in this work we take c to be time-varying metadata c ∈ RL×K .
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Let Dx,c = (xi, ci)n
i=1 be a dataset consisting of n independent and identically distributed samples, where each

sample (xi, ci) comprises a private multivariate time series xi ∈ RL×F and its public metadata ci ∈ RL×K

(time points and channels within each xi are not i.i.d.). Our goal is to learn a conditional generation model
G, which generates data Dx′ = {x′|x′ = G(c)} such that p(x′|c) ≈ p(x|c), and G is ε, δ−differentially private
with respect to the sensitive component Dx.

5 Methodology

Here we propose Pub2Priv, a privacy-aware conditional diffusion framework for generating private data
using public knowledge. Our model is trained with strong differential privacy (DP) guarantees through the
application of DP-SGD Abadi et al. (2016). While DP-SGD is a well-established method for deep learning
with differential privacy, our goal is not to re-invent it. Instead, the novelty of our work lies in problem
formulation itself and leveraging heterogeneous public data within the privacy-aware generation framework.
Our model is composed of two main components, as illustrated in Figure 2: a conditional diffusion model
θDM that generates private time series data x, and a knowledge transformer θT that creates temporal and
feature embedding of public metadata c.

5.1 Public Knowledge Embedding

CSDI-style encoder. The first component of our model is a pre-trained transformer that produces em-
beddings from heterogeneous public metadata c. Following Tashiro et al. (2021); Narasimhan et al. (2024),
we adopt a two-dimensional self-attention architecture that alternates attention along the temporal and
feature axes to jointly model dynamics over time and dependencies across channels. Let c ∈ Rk×L denote k
public signals observed over L time steps. We first applies a temporal Transformer encoder to every channel
independently (self-attention over {t = 1, . . . , L} at fixed i), and then a feature Transformer encoder to
every time step independently (self-attention over {i = 1, . . . , k} at fixed t). This dual-axis factorization
captures long-range temporal structure and inter-signal correlations while remaining memory-efficient for
multivariate sequences. Variable-length sequences and missing entries are handled with attention masks as
in Tashiro et al. (2021). The encoder output is a per-time embedding

z = θT(c) ∈ RL×dmeta ,

which conditions the downstream diffusion model.

Positional encodings. We use 2D positional signals to distinguish order in time and features. In partic-
ular, we add a sinusoidal temporal position pt ∈ Rd, and a learned feature embedding fi ∈ Rd to c before
providing it as input to θT . The temporal encoder attends over {ci,1, . . . , ci,L} at fixed i, while the feature
encoder attends over {c1,t, . . . , ck,t} at fixed t. For padding or irregular sampling, we supply a binary mask
mi,t to both attention passes so that padded/missing positions neither attend nor are attended to.

Pretraining objective for θT. We pretrain θT on publicly available time series data including stock
prices and weather from Yahoo Finance and NCEI, using a masked reconstruction objective that encourages
the encoder to capture both temporal and cross-channel structure. Let M ∈ {0, 1}k×L (with 1 indicating a
masked entry) and let c̃ = c⊙ (1−M) be the masked input. We use a one-layer decoder gϕ to map encoder
states to reconstructions ĉ = gϕ(θT(c̃)). We minimize the per-feature normalized mean-squared error on the
masked set Ω = {(i, t) : Mi,t = 1}:

LθT
= 1
|Ω|

∑
(i,t)∈Ω

∥∥ĉi,t − ci,t

∥∥2
2

σ2
i + ϵ

,

where σ2
i is the variance of feature i estimated on the public corpus (stabilized by ϵ > 0). During pretraining

we apply zero-padding and attention masking for variable-length sequences, with the same masks passed to
both temporal and feature attention. After pretraining, θT is fixed and its outputs z ∈ RL×dmeta serve as
the conditioning signal for our diffusion model.
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Algorithm 1 Training Algorithm for Differentially Private Generator θDM

1: Initialize θDM randomly
2: for τ = 1 to N do
3: Sample mini-batch Bτ with probability B

n
4: for each i ∈ Bτ do
5: gDM(xi, ci)← ∇θDMLθDM(xi, ci)
6: Gradient clipping:
7: ḡDM(xi, ci)← gDM(xi, ci)/ max

(
1, ∥gDM(xi,ci)∥2

C

)
8: Adding noise:
9: g̃DM ← 1

B (
∑

i∈Bτ
ḡDM(xi, ci) +N (0, σ2C2I))

10: Model update:
11: θDM ← θDM − η · g̃DM

Remark. This design is inspired by CSDI and TimeWeaver of factorize attention along time and features
to efficiently encode multivariate sequences Tashiro et al. (2021); Narasimhan et al. (2024), while tailoring
the objective to produce reusable public-context embeddings for conditioning.

5.2 Conditional Diffusion Model trained using DP-SGD

We employ the diffusion model as the backbone of Pub2Priv to provide generative capability. To utilize
both private data x and metadata embedding z, we condition the diffusion model on the public knowledge
embedding to generate private time series data. Following the recent work on conditional diffusion mod-
els Tashiro et al. (2021), we maintain the same forward process as in eq. (2), and define the reverse process
as follows:

pθ(xt−1|xt, z) := N (xt−1; µθ(xt, t|z), σθ(xt, t|z)) (6)

This formulation provides the knowledge embedding during each diffusion step t without any added noise.
Given the denoiser θDM and the knowledge transformer θT, Pub2Priv minimize the following modified loss
function:

LθDM,θT = Ex∼X,ϵ∼N (0,I),t

[
∥ϵ− θDM(xt, t|θT(c))∥2]

. (7)

We employ DP-SGD to protect the private data during training, which consists of two major procedures:
gradient clipping and gradient noise addition. As illustrated in algorithm 1, DP-SGD randomly samples
mini-batches Bτ from the training data with probability B

n and computes the gradients (where B). To bind
the influence of each individual data point on model parameters, the gradients are clipped according to their
ℓ2 norm and the clipping threshold C (we explore C ∈ {0.1, 0.5, 1.0, 1.5, 2.0} and select the one with lowest
validation loss). After clipping, Gaussian noise N (0, σ2C2I) is added to the averaged gradient to protect
privacy, and the model parameters are updated using the noisy gradients. The overall privacy loss is tracked
throughout the training process using techniques such as the moments’ accountant or Rényi Differential
Privacy (RDP), ensuring that the cumulative privacy budget remains within ε and δ.

5.3 Privacy Analysis

According to Abadi et al. (2016), the generator θDM is differentially private for Dx with the protection from
gradeint noise and norms. Since θT is a pre-trained model that have no access the private data, it does not
bring any privacy loss to the model. Therefore, (ε, δ)−DP holds for our model (detail proof included in the
appendix B).
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6 Experiments

In this section, we assess the performance of Pub2Priv by analyzing the privacy-utility trade-off in comparison
to state-of-the-art baselines across multiple domains.

6.1 Baselines

Since there are no existing privacy-aware data generation model utilizing heterogeneous metadata, we adapt
state-of-the-art DP generation models to incorporate metadata conditions alongside private inputs. In par-
ticular, we consider DP-GAN Xie et al. (2018), which incorporates DP-SGD into the discriminator of the
GAN framework, and PATE-GAN Jordon et al. (2018), a GAN model leveraging Private Aggregation of
Teacher Ensembles (PATE). These models are widely recognized as state-of-the-art approaches for integrat-
ing differential privacy into deep generative frameworks, focusing on minimizing per-sample reconstruction
loss. In addition, we consider other leading methods for synthetic data generation that preserve marginal
statistics, particularly for query release purposes. These include GEM Liu et al. (2021), AIM McKenna et al.
(2022), and Private-GSD Liu et al. (2023). Implementation details and model parameters of the baselines
are shown in appendix E.

6.2 Datasets

While our model is broadly applicable to various data modalities, in this study we focus on three time series
datasets from the finance, energy, and international trade domains.

6.2.1 Investment portfolios.

One of the most important secrets in financial activities is the investment portfolio, which represents the
number of assets possessed by an investor. The changes in portfolios over time reveal private information
of clients and their strategies. We consider the private data, which contains 1260 portfolio time series, each
representing the daily holding positions of four unknown stock according to the contrarian strategy Sharpe
(2010) or momentum strategy Jegadeesh & Titman (1993). We use the corresponding S&P500, Dow Jones
industrial index, and common stock prices as public knowledge of the market (more information of the
dataset can be found in section 6.2).

6.2.2 Electricity usage.

The private data contains the daily electricity consumption of 370 users in Évora, Portugal Bessa et al.
(2015); Trindade (2015) from 2011 to 2014. We utilize the daily average temperature and the monthly
electricity price as public knowledge.

6.2.3 Semiconductor trading.

We also collected international trading data from the UN Comtrade dataset 1. Specifically, we selected
ten representative countries and collected their monthly import values in the electronic integrated circuit
category from the year 2010 to 2023 as the private dataset. We collected the corresponding Philadelphia
semiconductor sector index (SOX) time series, using Yahoo Finance Python API 2, as the public data since
the index values are highly correlated to the semiconductor import volume.

6.3 Utility Evaluation

6.3.1 Time series utility metrics

We consider five metrics for assessing the utility of generated time series: KSR and KSAR (Kol-
mogorov–Smirnov statistics of return and autocorrelation distributions, respectively); |Corrmeta|, the ab-
solute gap between real and synthetic metadata–data correlations; and two Train on Synthetic Test on Real

1UN Comtrade dataset: https://comtradeplus.un.org/
2yfinance Python package: https://pypi.org/project/yfinance/
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Table 1: Utility of Pub2Priv and the baseline models (ε = 1, δ = 1 × 10−5). For all metrics, smaller values
indicate better utility. The best performances among Pub2Priv and the baselines are marked in bold text,
excluding the ablation models.

Model KSR KSAR |Corrmeta| TSTR (discri.) TSTR (predic.)

Portfolio

Pub2Priv 0.28± 0.02 0.17± 0.05 0.18± 0.01 0.100± 0.08 0.003± 0.000
Pub2Priv(w/o c) 0.43± 0.04 0.42± 0.02 0.53± 0.00 0.210± 0.065 0.008± 0.001
Pub2Priv(w/o θT) 0.42± 0.04 0.44± 0.02 0.48± 0.03 0.220± 0.057 0.016± 0.003

DP-GAN 0.29± 0.01 0.26± 0.01 0.38± 0.05 0.262± 0.065 0.006± 0.000
PATE-GAN 0.46± 0.01 0.42± 0.02 0.52± 0.01 0.282± 0.160 0.054± 0.009

GEM 0.36± 0.00 0.56± 0.00 0.53± 0.00 0.481± 0.033 0.053± 0.010
AIM 0.40± 0.00 0.56± 0.01 0.53± 0.00 0.340± 0.163 0.008± 0.000

Private-GSD 0.46± 0.00 0.56± 0.00 0.53± 0.00 0.391± 0.011 0.063± 0.004

Electricity

Pub2Priv 0.26± 0.01 0.17± 0.02 0.08± 0.02 0.119± 0.066 0.007± 0.007
Pub2Priv(w/o c) 0.28± 0.01 0.32± 0.01 0.35± 0.00 0.155± 0.174 0.015± 0.001
Pub2Priv(w/o θT) 0.26± 0.01 0.18± 0.01 0.08± 0.02 0.121± 0.048 0.007± 0.005

DP-GAN 0.25± 0.01 0.18± 0.03 0.10± 0.03 0.111± 0.145 0.012± 0.001
PATE-GAN 0.29± 0.00 0.32± 0.01 0.35± 0.00 0.125± 0.161 0.042± 0.001

GEM 0.34± 0.00 0.32± 0.00 0.34± 0.00 0.152± 0.140 0.054± 0.006
AIM 0.25± 0.00 0.32± 0.00 0.34± 0.00 0.159± 0.204 0.049± 0.004

Private-GSD 0.34± 0.00 0.32± 0.00 0.35± 0.00 0.324± 0.087 0.051± 0.006

Comtrade

Pub2Priv 0.32± 0.03 0.77± 0.01 0.44± 0.05 0.113± 0.032 0.013± 0.001
Pub2Priv(w/o c) 0.37± 0.00 0.77± 0.01 0.68± 0.01 0.332± 0.045 0.015± 0.002
Pub2Priv(w/o θT) 0.33± 0.03 0.77± 0.00 0.48± 0.04 0.111± 0.038 0.011± 0.001

DP-GAN 0.32± 0.00 0.79± 0.00 0.59± 0.06 0.303± 0.117 0.013± 0.002
PATE-GAN 0.33± 0.00 0.79± 0.00 0.68± 0.01 0.290± 0.148 0.046± 0.005

GEM 0.19± 0.00 0.26± 0.00 0.33± 0.00 0.215± 0.145 0.073± 0.008
AIM 0.20± 0.00 0.25± 0.00 0.32± 0.00 0.350± 0.042 0.044± 0.003

Private-GSD 0.22± 0.00 0.26± 0.00 0.33± 0.01 0.275± 0.225 0.061± 0.009

scores TSTR discriminative and predictive. Formal definitions, aggregation rules, and implementation details
are provided in App. F.

The discriminative score measures how well an RNN-based discriminator can distinguish between original
and synthetic time series data samples. The original and synthetic data are evenly distributed in both
training and testing datasets. The discriminative score is defined as the absolute difference between the
testing accuracy and 0.5, which is the probability of a random guess. Thus, a score close to 0 indicates that
the synthetic data is indistinguishable from the real data. Conversely, a score farther from 0 implies that
synthetic data samples are less realistic and significantly different from real data samples.

The predictive score accesses how well the synthetic data captures the underlying patterns and dynamics
in the real data. All synthetic data is utilized to train an RNN-based predictor, and all real data is used
for testing. The predictive score is the mean square error between the predicted values and the real values.
A lower score indicates that synthetic data samples capture important patterns and features in real data,
making them useful in developing predictive models.

6.3.2 Experimental results

We compare our model to baselines under the same privacy budget (ε = 1, δ = 1×10−5). Each experiment is
repeated 10 times; we report mean ± standard deviation in table 1. Formal metric definitions and aggregation
rules are in App. F.

Distributional fidelity. As shown in table 1, our model achieves the best performance in preserving the
return distribution on the Portfolio dataset and attains better or comparable KSR on the other two datasets.
For autocorrelations, our method consistently outperforms all baselines across datasets in KSAR.
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(a) TSTR(discri.) (b) TSTR(predic.)

Figure 3: The utility-privacy trade-off for Pub2Priv and the benchmark models on the portfolio dataset.

Private–public correlations. We report |Corrmeta| to assess how well synthetic data reproduce correlations
between private data x and public metadata c. Note that while our model is specifically designed to extract
and utilize knowledge from heterogeneous metadata, |Corrmeta| is a diagnostic metric which is not included
in the training objectives of θT or the diffusion model θDM . Our model yields the smallest |Corrmeta| across
datasets, indicating better preservation of private–public dependencies (table 1).

Downstream utility (TSTR). Our approach delivers superior TSTR performance on average: the dis-
criminative score improves by 0.118 (higher is better) and the predictive score by 0.013 (lower MSE is better)
compared to baselines (table 1). DP–GAN achieves the best discriminative TSTR on the Electricity dataset
but exhibits high variance (standard deviation larger than the mean), indicating instability.

Privacy–utility trade-off. Across privacy budgets, our method consistently yields better TSTR scores
than baselines (fig. 3). When the budget is very tight, all methods struggle; as ε→ 1, our model increasingly
captures useful structure tied to the public signals, improving utility. We observed that the marginal-
statistics-based baselines (GEM, AIM, and Private-GSD) perform poorly in terms of TSTR scores. This is
primarily because these methods are designed to generate synthetic data that supports accurate responses
to aggregate queries, rather than to capture realistic individual-level patterns. Consequently, they fail
to produce synthetic samples that reflect plausible trajectories or behaviors, such as realistic investment
portfolios. As a result, their TSTR performance is significantly lower due to the lack of individual-level
fidelity.

Qualitative distributional coverage. In addition to the quantitative evaluations, we use t-SNE Van der
Maaten & Hinton (2008) plots to visualize the distributions of the synthetic and real data. Figure 4 shows that
DP-GAN, PATE-GAN, and AIM deviate substantially from the real distribution under ε = 1, δ = 1× 10−5.
GEM and Private–GSD tend to cluster around a few outliers rather than covering the bulk of the data. In
contrast, our samples more closely match the real distribution.

Summary. Overall, our model surpasses baselines on most metrics and datasets and improves the pri-
vacy–utility trade-off (see table 1 and fig. 3).

6.4 Empirical Identifiability Evaluation

While DP-SGD provides a strong (ε, δ)−DP guarantee to our model training, we consider a practical privacy
metrics that allow us to compare with models trained with other privacy mechanisms. Similar to Yoon et al.
(2020), we propose the synthetic data identifiability, which is defined as:

I(D, D′) = 1
n

∑
|x′

i ∈ D′; di < d′
i| (8)

where D and D′ are the real and synthetic data. For a synthetic sample x′
i ∈ D′, di = min

xj∈D
||x′

i−xj || represents

the minimum distance between x′
i and all samples in the real data, whereas d′

i = min
x′

j
∈D′\x′

i

||x′
i − x′

j || denotes
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(a) Pub2Priv (b) DP-GAN (c) PATE-GAN (d) GEM (e) AIM (f) Private-GSD

(g) Pub2Priv (h) DP-GAN (i) PATE-GAN (j) GEM (k) AIM (l) Private-GSD

Figure 4: t-SNE visualizations of synthetic data generated by Pub2Priv and the baseline models based on
ε = 1, δ = 1 × 10−5, where the top row shows portfolio dataset and the bottom are electricity dataset.
We omit the t-SNE plots for the Comtrade dataset due to its relatively small size, which results in sparse
visualizations.

(a) Portfolio (b) Electricity (c) Comtrade

Figure 5: The identifiability I(D, D′) of synthetic data generated by Pub2Pub and the benchmark models
given different ε (with δ = 1× 10−5).

the minimum distance to all other synthetic data samples. If di < d′
i, x′

i is closer to real data xj ∈ D than
any other synthetic data points, posing a potential risk of exposing the information of xj . The identifiability
I(D, D′) represents the proportion of synthetic data that might be “identifiable" to the real data, where less
identifiability indicates stronger privacy.

Now we evaluate the practical identifiability I(D, D′) of the synthetic data generated by our model. Figure 5
shows that our model yields synthetic data with a similar level of identifiability compared to the baseline
models. For all datasets, including portfolio, electricity, and Comtrade, the synthetic data generated by
Pub2Priv has I(D, D′) ≤ 0.04 when ε = 1, meaning that less than 4% of the synthetic time series is closer
to the real private data. We also observe that I(D, D′) and ε are positively correlated in most cases, which
indicates that identifiability can be considered as an alternative way to evaluate and configure the privacy
of generation models. However, it’s important to note that ε alone does not guarantee low identifiability.
For example, consider a model that generates synthetic data concentrated around the geometric center of
the training distribution. Such a model may yield a low ε (since individual points have minimal influence),
yet still result in high identifiability loss—especially if there is a real individual near the center. This kind
of behavior can be seen in the t-SNE plots of PATE-GAN, GEM, and Private-GSD, which emphasize the
importance of evaluating empirical privacy leakage (e.g., identifiability) in addition to enforcing theoretical
DP guarantees.
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(a) TSTR(discri.) (b) TSTR(predic.)

Figure 6: The utility of synthetic data generated by Pub2Priv and the benchmark models given private
portfolios of different complexity (ε = 1, δ = 1× 10−5). As the number of strategies increases, the portfolios
are more diverse and the complexity of public-private data relations increases. TSTR scores from the three
marginal statistics based methods (GEM, AIM, Private-GSD) are omitted as they are significantly worse
than the above.

6.5 Impact of public-private interconnection

Our method is particularly effective when there is a correlation between public and private data. To further
assess its robustness, we investigate performance changes as the private data to be generated becomes more
complex while the public metadata given remains the same. Specifically, given the same public metadata, we
consider private data comprising various portfolio strategies and evaluate our model’s effectiveness (details of
these strategies are provided in appendix C.1). Since investments in the same set of assets can yield different
portfolios depending on the trading strategy used, private data containing a large number of strategies tends
to have a more indirect and loosely defined relationship with the public metadata (i.e., stock prices). As
a result, inferring private data from public knowledge becomes significantly more challenging. Figure 6
presents the TSTR scores when varying the number of strategies in the Portfolio dataset (public metadata
held fixed). As the number of strategies increases, the diversity and complexity of the portfolio dataset grows
and we observe a general decline in performance across methods within this controlled setting. However,
while the baselines exhibit a much steeper rise in TSTR loss, our model more effectively captures the intricate
and diverse public–private interconnections, resulting in a more gradual increase in TSTR loss. We further
evaluate the impact by controlling the public-private data correlations and show the results in appendix G.1.

6.6 Ablation Study

The superior performance of Pub2Priv comes from two key components: (1) the use of public metadata
and (2) the knowledge transformer θT that incorporates the temporal and feature embedding of public
knowledge. We conduct the ablation study to investigate the effectiveness of these two modules. The first
ablation method is Pub2Priv(w/o c), which is simply our generator without giving any public metadata. The
second ablation method Pub2Priv(w/o θT) is created by removing θT and feeding c directly to the denoiser
θDM as conditional input. Table 1 represents the utility of synthetic data generated by Pub2Priv(w/o c) and
Pub2Priv(w/o θT). The results indicate that the TSTR scores of Pub2Priv(no w/o c) are 15% to 194% worse
than those of the original model across all datasets, highlighting the benefit of utilizing public metadata.
Although performance degradation is also observed in Pub2Priv(w/o θT), the effectiveness of θT is diminished
for datasets with lower dimensionality and less informative public data.While performance declines are also
observed for Pub2Priv(w/o θT), the θT is less effective for datasets with lower dimensionality and a smaller
amount of public information (electricity and comtrade datasets). Overall, the ablation study demonstrates
that both the public metadaa and knowledge transformer θT are essential components of Pub2Priv, and
their removal significantly weakens the model’s generative capabilities.
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7 Limitations and Discussion

While our model has shown promising results in enhancing the privacy-utility trade-off, it represents only an
initial step in the broader exploration of leveraging heterogeneous public knowledge for privacy-aware data
generation. In this study, the selection of public metadata was guided by discretion on the following three
factors:

Utility. Like other studies in semi-private learning Alon et al. (2019); Lowy et al. (2023); Wang & Zhou
(2020), our method relies on the assumption that public data is both relevant and useful. Experimental
results indicate that our approach benefits more from richer public metadata with higher dimensionality
(e.g., portfolio data) compared to lower-dimensional sources (e.g., electricity and Comtrade data). If the
private data distribution becomes more complex (larger variety of strategies in section 6.5), a larger amount
of public metadata may be necessary to preserve the utility of the generated synthetic data.

Safety. We exclusively consider non-sensitive contextual information that does not reveal any individual
details from the private data. For instance, market indices used as public data reflect overall market condi-
tions without disclosing specific portfolio compositions or strategies. Likewise, semiconductor stock prices as
public data are not tied to any particular country. To mitigate this restriction, future research could explore
additional mechanisms for incorporating sensitive metadata in a privacy-preserving manner.

Availability. While our approach expands on existing semi-private learning research by leveraging hetero-
geneous public metadata rather than solely homogeneous public data, identifying relevant public information
still requires domain expertise. To overcome this limitation, future work could harness the empirical knowl-
edge embedded in large language models (LLMs) to automatically identify useful public datasets Zhu et al.
(2024).

8 Conclusion

In this study, we introduce a conditional diffusion framework for privacy-aware time series generation that
leverages heterogeneous public knowledge. Our model incorporates a self-attention mechanism to capture
the temporal and feature correlations in the heterogeneous metadata, and employs DP-SGD to protect data
privacy. Experiment evaluations show that given the same privacy budget, our model generates time series
with better privacy-utility trade-off for datasets in various domains. Ablation studies validate the importance
of the use of public metatdata and the knowledge transformer.
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A Broader Impact

Our paper brings a novel problem formulation and introduces the first approach of privacy-aware data
generation by leveraging public contextual information. We believe this is an important research area which
extends semi-private learning to heterogeneous public data from non-sensitive sources and domains. For
instance:

• In domains such as finance, generating synthetic portfolios and trading transactions enables re-
searchers and analysts to develop and validate trading strategies without risking disclosing sensitive
market positions. In this case, non-sensitive market indices and common stock prices can be used
to enhance the generation of private portfolios.

• In healthcare, synthetic patient data can facilitate disease progression and resource allocation re-
search without exposing individuals’ private health records. Public available metadata like the
spread of diseases and distribution of vaccine can be utilized.

• In energy domain, synthetic electrical consumption patterns can assist in smart grid simulations
and forecasting while safeguarding the identities of households, which can benefit from the public
knowledge of weather conditions and electricity pricing.

B Proof of Differential Privacy in Pub2Priv

In this section, we provide a concise proof that the gradients in Pub2Priv are differentially private (DP).
Specifically, we consider the definition of Rényi Differential Privacy (RDP) from Mironov (2017):

Definition Rényi Differential Privacy A randomized mechanismM : D → R with domain D and range
R satisfies (α, ε)-RDP if for any adjacent D, D′ ∈ D:

Dα(M(d) |M(d′)) ≤ ε, (9)

where Dα is the Rényi divergence of order α. Any M that satisfies (α, ϵ)-RDP also satisfies (ϵ + log 1
δ /(α−

1), δ)-DP.
Theorem B.1. Mironov (2017) For a query function f with Sensitivity S = maxd,d′ ∥f(d) − f(d′)∥2, the
Gaussian mechanism that releases f(d) +N (0, σ2) satisfies (α, αS2/(2σ2))-RDP.

In each iteration of Algorithm 1, we randomly sample a mini-batch Bτ with expected size B with no repeated
indices. We implement our model based on Yousefpour et al. (2021) which applies the Gaussian mechanism
for gradient sanitization. After computing the gradient of L(xi, zi)), we apply clipping with norm C, and
then divide the clipped gradients by the expected batch size B to obtain the batched gradient GDM:

GDM({xi, zi}) = 1
|B|

∑
i∈B

clipC(∇θDML(xi, zi)). (10)

Finally, Gaussian noise ϵ ∼ N (0, σ2) is added to GDM and released as the response G̃DM:

G̃DM({xi, zi}i∈B) = GDM({xi, zi}i∈B) + C

B
ϵ. (11)

Since zi is metadata embedding of ci which is free of privacy concerns, we can restate Theorem 2 as follow:
Theorem B.2. For noise magnitude σDP, dataset d = {xi}N

i=1, and a set of samples Bτ , releasing
G̃DM({xi}i∈B) satisfies (α, α/2σ2)-RDP.

Proof. Considering two neighboring datasets d = {xi}N
i=1 and d′ = d ∪ {x′}, where x′ /∈ d, and mini-batches

{xi}i∈B and {x′} ∪ {xi}i∈B , that differs by one additional entry x′. We can bound the difference of their
gradients in L2-norm as
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Dataset # of Samples Length Pearson(x, c) Private Data Public Data
Portfolio 1260 360 0.573 Daily hoding positions Market indices and common stocks

Electriciy 1404 365 0.386 Electriciy usage Daily average temperature;
monthly electricity price

Comtrade 100 120 0.761 Monthly trading values Semiconductor index (SOX)

Table 2: Summary of the datasets.

∥GDM({xi}i∈B)−GDM({x′} ∪ {xi}i∈B)∥2

=

∥∥∥∥∥ 1
B

∑
i∈B

clipC(∇θL(xi))−
1
B

(clipC(∇θL(x′)) −
∑
i∈B

clipC(∇θL(xi))
)∥∥∥∥∥

2

= 1
B
∥clipC(∇θL(x′))∥2 ≤

C

B
. (12)

This difference is bounded by the sensitivity of C
B , which is accounted for in the Gaussian mechanism

under Mironov (2017). Furthermore, since ϵ ∼ N (0, σ2), it follows that C
B ϵ ∼ N

(
0,

(
C
B

)2
σ2

)
. Following

standard arguments, releasing G̃DM({xi}i∈B) = GDM({xi}i∈B) + C
B ϵ satisfies (α, α/2σ2)-RDP. Since c is

not private data, θT does not bring additional privacy cost by the post-processing property of differential
privacy Dwork et al. (2014). In practice, we construct mini-batches by sampling the training dataset for
privacy amplification via Poisson Sampling Mironov et al. (2019). The overall privacy cost of training θDM
is computed via RDP composition Mironov (2017), using the processes implemented in Opacus Yousefpour
et al. (2021).

C Dataset Description

In this section, we describe the details of the datasets used for our experiment evaluation, including the
private time series data and public domain knowledge. Table 2 presents the summary statistics of all
datasets.

C.1 Portfolio Dataset

We consider the classic investment return maximization problem Cover (1984) which allocates investment
capital over the stocks. The private data presents the amount of holdings on each day, which contains 1260
portfolio time series created based on the following two strategies:

C.1.1 Contrarian Strategy

The contrarian trading strategy is introduced by Sharpe (2010), which represents an adaptive asset allocation
policy. An investor starts with an initial portfolio of value V0 =

∑
i Xi where Xi is the amount of money

invested in asset i. At each reviewing period t, the investor adjust the proportion of assets by adding the
adjusting value Di (purchase if positive and sell if negative) for each assets:

Di = (Kp − ki)Xi (13)

where Kp = Vt

V0
and ki is the return of the asset.

C.1.2 Momentum Strategy

The momentum strategy is based on the principle that stocks that have performed well in the past will
continue to perform well in the future, while stocks that have performed poorly will continue to underperform.
At each reviewing period t, it set the invested value Xi = kiVt for each asset.
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Figure 7: Pub2Priv architecture. We use self-attention layers θT to create temporal and feature embedding
of the metadata c, which is passed to every residual layers of the denoiser θDM to generate the output for
each denoising step t.

Note that multiple strategies can be derived from the above two policies by considering different length of
reviewing period for calculating asset returns. To protect investor identity and their business strategies, each
portfolios was built on an unknown stocks from the Dow Jones composite components during an unknown
time period of 360 consecutive days excluding weekends. For public knowledge, we consider the Standard
and Poor’s 500 index (S&P 500), which is a stock market index tracking the stock performance of 500 of the
largest publicly traded companies on stock exchanges in the United States. We also consider the Dow Jones
Industrial index and the price of common stocks including AAPL, AMZN, MSFT, NVDA, and TSLA.

C.2 Electricity Dataset

The electricity dataset contains power consumption recorded for 370 users over a period of 4 years from
2011 to 2015 provided by Trindade (2015). Daily usage are created by aggregating the 15 minutes power
consumption in the raw data. As all users are located in Évora, Portugal, we randomly selected four 1-year
samples for each user in order to create a dataset for conditionally generating time series based on specific
public metadata. This results in 1404 time series as some users have consumption record shorter or equal to
one year. We consider the daily average temperature and the monthly electricity price as public knowledge.

C.3 Comtrade Dataset

We also collected time series data from the UN Comtrade data source, which is a comprehensive and widely-
used data resource for international trading statics. This dataset provides data recorded by the United
Nations about many aspects in global trading, including information on imports and exports, trading cate-
gories, trading values and volumes. We specifically focused on the import values of the electronic integrated
circuits category, which category code is 8542, from 10 selected countries (Spain, USA, Germany, Japan,
United Kingdom, France, Brazil, Italy, Canada, Australia). We collected the corresponding monthly trad-
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ing values from Jan 2010 to Dec 2023. For each country, we sampled 10 time series samples with random
starting months, and we set the length of samples to 120. Thus, we collected 100 time series samples with
each length of 120 as the private dataset for our utility studies. The corresponding public data was the
Philadelphia semiconductor sector index (SOX) monthly time series collected via the Yahoo Finance Python
API. Similarly, the SOX samples were also collected with the length of 120. So that the public dataset share
the same data quantity as the private dataset.

D Pub2Priv Model Architecture

We present additional details about the Pub2Priv architetcture in order to improve the reproducibility and
usage of our framework. Figure 7 shows the architecture of the knowledge transformer θDM and denoiser
θT. Inspired by Tashiro et al. (2021), we use the self-attention layers to capture the temporal and feature
correlations of the metadata c. We implemented the denoiser network θDM using residual layers similar
to Narasimhan et al. (2024), which utilize the public knowledge embedding z at each step to mitagate the
loss from DP-SGD. Our model parameters are listed in table 3.

Parameter Value
θT embedding size 128
θT attention heads 8
θT self-attention layers 8
θT dropout 0.05
θT activation GELU
z size 128
# of residual layers 4
θDM hidden dimension 256
# of diffusion steps 400
β1 0.0001
βT 0.2

Batch size 128 (port. & elec.);
16 (Comtrade)

Learning rate 1× 10−4

Table 3: Hyperparamters of Pub2Priv.

Parameter Value
Generator layers 4
Generator hidden dimensions 256
Discriminator layers 3
Discriminator hidden dimensions 128
Discriminator iterations (DP-GAN) 20
# of teachers (PATE-GAN) 10
noise ratio (PATE-GAN) 1.0
noise size (PATE-GAN) 1.0
λ (ADS-GAN) 1.0

Batch size 128 (port. & elec.);
16 (Comtrade)

Learning rate 1× 10−4

Table 4: Hyperparameters of baseline models.

E Baseline Model Implementations

Here we report the hyerparameter configurations for the baseline models in table 4. We use the implementa-
tion provided by the original authors for all baseline methods: DP-GAN Xie et al. (2018), PATE-GAN Jordon
et al. (2018), and ADS-GAN Yoon et al. (2020). We concatenate the metadata as conditional input and
add 1D convolution layer to adapt the baselines models for time series data. In addition, we adjusted the
number of parameters in the generator and discriminator to roughly match the Pub2Priv models. Preserving
marginal statistics has proven effective for generating synthetic data with privacy guarantees, particularly in
the context of query release. However, these methods primarily target tabular data, focusing on queries such
as the average age of individuals earning above $20k. To adapt state-of-the-art marginal statistics–based
approaches (GEM, AIM, and Private-GSD) to time series data, we apply an aggressive preprocessing strat-
egy. Specifically, we divide each time series into 10 temporal segments and quantize the feature values into
50 discrete levels. This flattening process allows us to approximate the data as a 2D table for the query
workloads, but at the cost of significant loss in temporal resolution and structure. We acknowledge that
this approach is a crude and lossy adaptation, and indeed it confirms our concern: methods designed for
preserving marginal statistics in static tabular data are not suitable for generating temporally coherent,
realistic synthetic trajectories.
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F Evaluation Metrics

Let Dreal = {x(n) ∈ Rd×L}N
n=1 be the set of real private time series (with d channels and length L),

Dsyn = {x′(n) ∈ Rd×L}N
n=1 the corresponding synthetic set, and c(n) ∈ Rk×L the public metadata. Unless

noted, all computations are performed per sequence and per channel, then aggregated as specified.

KSR: KS distance of return distributions. For each channel i and sequence n, define first-difference
returns

r
(n)
i,t = x

(n)
i,t − x

(n)
i,t−1, r

′ (n)
i,t = x

′ (n)
i,t − x

′ (n)
i,t−1, t = 2, . . . , L.

Let Fi(u) and F ′
i (u) be the empirical CDFs of {r(n)

i,t }n,t and {r′ (n)
i,t }n,t, obtained by pooling over all n and t.

The per-channel KS statistic is
KSR(i) = sup

u∈R

∣∣ Fi(u)− F ′
i (u)

∣∣.
We report the average across channels:

KSR = 1
d

d∑
i=1

KSR(i).

KSAR: KS distance of auto-correlation distributions. Fix a set of lags Λ = {1, . . . , Lmax}. For each
channel i, sequence n, and lag ℓ ∈ Λ, define the sample auto-correlation

ρ
(n)
i,ℓ =

∑L
t=ℓ+1

(
x

(n)
i,t − x̄

(n)
i

)(
x

(n)
i,t−ℓ − x̄

(n)
i

)∑L
t=1

(
x

(n)
i,t − x̄

(n)
i

)2 , x̄
(n)
i = 1

L

L∑
t=1

x
(n)
i,t ,

and similarly ρ
′ (n)
i,ℓ from x′(n). For each lag ℓ, let Gℓ(u) and G′

ℓ(u) be the empirical CDFs of {ρ(n)
i,ℓ }i,n and

{ρ′ (n)
i,ℓ }i,n. The lag-wise KS statistic is

KSAR(ℓ) = sup
u∈[−1,1]

∣∣ Gℓ(u)−G′
ℓ(u)

∣∣,
and we aggregate over lags by averaging:

KSAR = 1
|Λ|

∑
ℓ∈Λ

KSAR(ℓ).

|Corrmeta|: metadata–data correlation gap. For each private channel i ∈ {1, . . . , d}, metadata channel
j ∈ {1, . . . , k}, and sequence n, compute the Pearson correlation across time

corr(n)
i,j = Pearson

(
x

(n)
i,1:L, c

(n)
j,1:L

)
, corr′ (n)

i,j = Pearson
(
x

′ (n)
i,1:L, c

(n)
j,1:L

)
.

The absolute correlation gap is then averaged over all triplets:

∣∣Corrmeta
∣∣ = 1

Ndk

N∑
n=1

d∑
i=1

k∑
j=1

∣∣ corr(n)
i,j − corr′ (n)

i,j

∣∣.
TSTR (discriminative). Given a supervised discriminative task with real labels {y(n)} (e.g., classifica-
tion), train a predictor hθ on {(x′(n), y(n))} using the synthetic inputs, then evaluate on a held-out real test
set Treal:

θ⋆
syn = arg min

θ
Ldisc

(
hθ; Dsyn

)
, TSTRdisc = Mdisc

(
hθ⋆

syn
; Treal

)
,

where Ldisc is a standard discriminative loss (e.g., cross-entropy) andMdisc is the target metric (e.g., accuracy
or AUROC). Higher is better for accuracy/AUROC.
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Correlation 0.0 0.3 0.6 0.9
TSTR(discri) 0.480 0.385 0.450 0.480
TSTR(predic) 0.022 0.020 0.015 0.005

Table 5: The TSTR performance of Pub2Priv (ε = 1, δ = 1 × 10−5) on the same toy private dataset given
public metadata with different degrees of public-private correlation.

TSTR (predictive). For a forecasting task with horizon ∆ and window size w, construct supervised pairs
from sliding windows. Train a forecaster fθ on synthetic pairs and evaluate mean squared error on real test
pairs:

θ⋆
syn = arg min

θ

1
|Ssyn|

∑
(X′,Y ′)∈Ssyn

∥∥fθ(X ′)− Y ′∥∥2
2, TSTRpred = 1

|Sreal|
∑

(X,Y )∈Sreal

∥∥fθ⋆
syn

(X)− Y
∥∥2

2.

Here each X ∈ Rd×w is a length-w window from a real series and Y ∈ Rd×∆ is the ∆-step-ahead target;
(X ′, Y ′) are constructed analogously from synthetic series. Lower is better for MSE. We report means over
multiple random seeds/splits.

G Additional Experiment Results

In this section, we present additional experiments that do not fit into the main body of the paper.

G.1 Impact of public-private interconnection

In addition to the portfolio experiment in section 6.5, we have included a new toy scenario to provide a
more intuitive understanding of how the correlation between public and private data affects our model.
Specifically, we construct a toy dataset of 100 one-dimensional time series, where each private series xi is
composed of trend, seasonality, and small noise components. Corresponding public metadata ci is generated
as ci = αxi +

√
1− α2 · N(µ, σ) where α is the desired Pearson correlation. As shown in the table 5,

we observe that stronger correlation improves the TSTR predictive score, suggesting that Pub2Priv can
effectively leverage relevant public knowledge. Interestingly, TSTR discriminative scores are similar for
different correlations, potentially due to the diversity in random private samples, which makes classification
inherently harder.

G.2 Visualization of synthetic data

Here provide a visual comparison between original data and synthetic data generated by our model in fig. 8.
The time series generate by our model closely align with the original holding positions.

(a) (b) (c) (d)

Figure 8: Portfolio time series generated by Pub2Priv given the same metadata condition c.
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(a) Returns (b) Auto-correlations (c) Correlations with public
metadata

Figure 9: Distributions of return, auto-correlation, and the correlations with metadata.

Input time series length 100 200 300
Pub2Priv 2m16s 2m22s 3m21s
DP-GAN 3m32s 4m16s 5m29s
PATE-GAN 2m04s 2m04s 3m30s

Table 6: The runtime of Pub2Priv, DP-GAN, and PATE-GAN for input time series with different length.

Data size (dimension × length) 1×100 1×200 1×300 2×100 2×100 3×100
Peak GPU memory usage (MB) 1208 1564 5764 1422 1970 2748

Table 7: The computational cost of Pub2Priv for input time series with different size.

G.3 Additional Time series utility metrics

In addition to the KS statistics, here we take a closer look at fig. 9 which shows the distribution of time
series stylized facts including return, auto-correlation, and private-public data correlations. We observe that
Pub2Priv yields synthetic data with stylized facts distributionally close to the original dataset.

G.4 Scalability and Computational Cost Analysis

All experiments in the paper were conducted on AWS g4dn.4xlarge instances (16 vCPUs, 64 GB RAM, 16
GB GPU). Here we further investigate the computational cost (GPU usage) and the runtime of our models
w.r.t. the size of the input data (dimension and length of ). Each dataset contains 500 samples, and we
train all models with batch size 32 for 100 epochs.

We show the results averaged over five runs in table 6 and table 7. The GPU usage of all models are very
similar as we match the size of the generator networks, and the runtime of our model scales comparably for
varying data dimensionality.
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