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Abstract

Despite the fact that context is known to be vital001
for resolving a range of translation ambiguities,002
most traditional machine translation systems003
continue to be trained and to operate at the004
sentence level. This limitation is an inherent005
performance ceiling that is increasingly glar-006
ing compared to their natively-contextual LLM007
counterparts. A common explanation is the008
lack of document-level annotations for existing009
training data. This work investigates whether010
having such annotations would be helpful for011
training traditional MT systems at scale. Work-012
ing with a private parallel and monolingual013
data set, we build large-scale, state-of-the-art014
contextual MT systems into German, French,015
and Russian. We find that these systems are016
harmed when including contextual training ex-017
amples sourced from mined parallel bitext. We018
also show that these improvements are invis-019
ible when using contrastive score-based test020
sets; instead, models must be tested directly021
on their ability to generate correct outputs, or022
with standard metrics on discourse-dense test023
sets. This provides evidence that mined paral-024
lel bitext does not contain reliable contextual025
signals—perhaps because it was translated in026
a sentence-level manner. Where possible, we027
repeat our results on public data.028

1 Introduction029

Large language models (LLMs) have transformed030

the field of natural language processing, provid-031

ing high-quality working solutions to problems in032

many domains (e.g., question answering, summa-033

rization, multi-step reasoning) that even a few years034

ago had no solution in clear sight. LLMs have also035

proven capable in subtasks that had already ex-036

perienced substantial commercial success: most037

notably, machine translation (MT). While they038

have not supplanted the “traditional” MT paradigm039

(i.e., using sequence-to-sequence models trained040

on mined-parallel and backtranslated-monolingual041

English German

I lost my hat. Have you
seen it?

Ich verlor meinen Hut.
Hast du es sehen?

Table 1: The sentence-level translation ceiling. Select-
ing the correct pronoun (ihn, masc.) requires context.

data), they outperform them in many high-resource 042

language pairs (Xu et al., 2023), and also intro- 043

duce new capabilities, such as easy stylistic adap- 044

tation (Moslem et al., 2023). At the same time, 045

MT systems trained in this way retain their own 046

advantages, including small model sizes and corre- 047

sponding inference-time efficiency. 048

An important advantage that LLMs possess is 049

that they are natively document-level, meaning they 050

can easily handle contextual phenomena. By na- 051

ture of its sentence-based design, traditional MT 052

is unable to correctly translate any sentence with 053

extra-sentential dependencies, such as pronouns 054

in languages with grammatic gender, except by 055

chance (Table 1). Despite significant prior work 056

on the topic (§ 7), and general acknowledgment of 057

the need to move on (Sennrich, 2018), contextual 058

translation has never managed to take hold in MT 059

research, and sentence-level systems continue to 060

dominate. This leaves a gap between them and 061

their increasingly powerful LLM counterparts, and 062

raises the question of whether this gap can be nar- 063

rowed or closed, if traditional MT systems could 064

be trained properly with context. 065

A common explanation for the lack of context in 066

MT has to do with the relative dearth of document- 067

level annotations that are available for mined paral- 068

lel and even monolingual data. At the same time, it 069

has long been understood (Venugopal et al., 2011) 070

and recently corroborated (Thompson et al., 2024) 071

that crawled bitext is rife with machine translation 072

output, which—though high quality at the sentence 073

level—may attenuate the contextual signal. We ex- 074
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plore this central problem by building the first large-075

scale, state-of-the-art translation systems trained076

on data with complete document annotations. We077

are able to do this because instead of public data,078

we use a private, in-house dataset (§ 2) that we have079

crawled ourselves. This crucially allows us to ex-080

plore the effects of document annotations sourced081

from both parallel and monolingual (backtranslated082

data), together and in isolation, in order to quantify083

their effects. We find that:084

• Sourcing contextual training examples085

from parallel data is harmful. Parallel text086

mined from the web is a key component in087

constructing sentence-based translation sys-088

tems, but attempts to use it contextually fail.089

We suspect this has to do with the preva-090

lence of machine translation output (Thomp-091

son et al., 2024), which may be high quality092

at the sentence level, but which has a weak-093

ened contextual signal. We get around this by094

sourcing contextual samples only from back-095

translated data.096

• Generative evaluation is crucial. Con-097

trastive metrics, where the task is to discrim-098

inate good and bad translations using model099

scores, are often used to evaluate contextual100

MT. We show that contextual systems that101

are trained on mined parallel documents do102

well on this task, but perform poorly when103

asked to generate correct translations. Only104

generative evaluation, which looks at whether105

correct words were produced, distinguishes106

good from bad contextual systems.107

• Standard metrics require discourse-dense108

datasets. Standard sentence-level metrics like109

COMET are much more discriminative be-110

tween sentence- and contextual systems when111

applied to datasets that are dense in discourse112

phenomena.113

Together, these results raise important considera-114

tions for the construction and evaluation of contex-115

tual translation systems.116

2 The challenge of data117

Large publicly-available parallel datasets do not118

have document annotations. While the Conference119

on Machine Translation (WMT) has made over-120

tures in this direction,1 including ensuring that test121

1statmt.org

data is source-language-natural and contains doc- 122

ument information, parallel and monolingual data 123

is limited to a small subset of all data2 for which 124

such information is easily retained. 125

We wish to experiment with and compare annota- 126

tions sourced from both parallel and backtranslated 127

monolingual datasets. We therefore turn instead to 128

a state-of-the-art, large collection of in-house data. 129

2.1 Data description 130

We work with three language pairs: 131

English→German, English→French, and 132

English→Russian. We chose these languages 133

because of the availability of good contextual 134

evaluation data in each of them (§ 3). Our data 135

comprises the following sources (Table 2): 136

• Monolingual data, crawled from expected- 137

native sites: news (10%), data linked from 138

the Open Directory Project3 (40%), filtered 139

webcrawl (40%), and Wikipedia and its out- 140

links (10%). 141

• Crawled parallel web data (similar to 142

ParaCrawl) 143

• CCMatrix parallel data (Schwenk et al., 144

2021b), which has no document information. 145

Datasets have been filtered using bicleaner 146

(Ramírez-Sánchez et al., 2020), with additional 147

boilerplate and document deduplication. 148

Although the dataset is proprietary, there is noth- 149

ing in it that would surprise any researcher; the 150

data was crawled from the web using standard tech- 151

niques. The parallel data sources include a rough 152

equivalent of ParaCrawl (Bañón et al., 2020) and 153

also CCMatrix (Schwenk et al., 2021b). The mono- 154

lingual data sources focus on sites where we expect 155

data to have been written natively. 156

We emphasize that experiments at the scale pre- 157

sented in this paper are only possible with our 158

private dataset, since document annotations are 159

only available for small-data training settings like 160

IWSLT.4 In a nod to the importance of repeatable 161

work, we include results on the subset of our exper- 162

iments that are possible on English–German public 163

2Parallel: europarl, news-commentary, CzEng, and Rapid;
Monolingual: news-crawl (en, de and cs), europarl, and news-
commentary. Source: http://www2.statmt.org/wmt23/
translation-task.html

3https://odp.org
4iwslt.org

2

statmt.org
http://www2.statmt.org/wmt23/translation-task.html
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English–French English–German English–Russian

source lines docs mean lines docs mean lines docs mean

mono 166.4 5.5 29.7 205.4 7.0 29.1 202.7 6.5 31.1
parallel
→ crawled 123.1 3.7 33.0 116.7 4.7 16.6 72.4 4.7 13.2
→ ccmatrix 65.1 0 - 45.4 0 - 2.4 0 -

Table 2: Statistics of the training data used in our experiments (lines and docs in millions). The mean column is the
mean document length in sentences of documents with ≥ 2 sentences.

data and show that they corroborate correspond-164

ing results on private data (Appendix C). We also165

include 1000-document EN-DE samples with this166

submission.167

2.2 MT output in crawled parallel data168

Translation is a core facilitator of cross-cultural169

communication, and also an expensive one, when170

undertaken by humans. It is therefore not surpris-171

ing that automated machine translation has long172

been one of the success stories from the field of173

natural language processing, with widespread com-174

mercial adoption and popularization, especially175

with the release of Google Translate in 2004. Un-176

fortunately, one consequence of this success has177

been a “poisoning of the well”, where machine178

translation outputs are later collected as training179

data for new systems (Venugopal et al., 2011).180

It is standard practice to filter out the worst qual-181

ity translations with various techniques. At the182

same time, not all machine-generated data is bad183

for training. An example, sourced from our par-184

allel data, can be found in Table 3. The individ-185

ual sentence pairs are fine for training sentence-186

level systems, and only become problematic when187

training contextual ones. While we don’t know if188

this was generated by machine or a human, we do189

know that even large NMT systems are sensitive190

to small amounts of poor data.5 This fact, together191

with recent reports on the prevalence of MT out-192

put in multi-way parallel datasets (Thompson et al.,193

2024), suggest there may be a big problem. This is194

all to say that contextual translation introduces195

a new quality dimension that is invisible in the196

standard training paradigm, and the problem may197

in fact be quite large, since all machine translation198

content in the wild will have been generated by199

sentence-level systems.200

We do not expect to see this problem for our201

5A classic example is source-copy data (Ott et al., 2018)

monolingual data. It is drawn selectively from 202

sites and sources which are most likely to produce 203

target-side native data, such as news sites. We do 204

not have direct proof that there are not elements of 205

translated data, but the experiments and discussion 206

in this paper help establish this. 207

3 Contextual evaluation 208

A basic hurdle in the path to contextual transla- 209

tion is the difficulty of evaluation. We expect that 210

contextual systems will produce improved transla- 211

tions of discourse-level phenomena, however, the 212

frequency of these phenomena in standard corpora 213

is not known, and we expect them to be relatively 214

rare. This paper includes three types of evaluation. 215

3.1 Corpus-level metrics 216

The conventional way to test system performance 217

is with corpus-level metrics such as chrF (Popović, 218

2015) or COMET (Rei et al., 2020), which accu- 219

mulate sentence-level scores to compute a single 220

score for a test set. If the test set is organized 221

into documents (as many are, including those from 222

WMT), its sentences can be translated contextually 223

and then split back out to sentences for evaluation. 224

The expectation is that contextual translation will 225

produce gains. However, a key consideration is 226

whether the dataset is dense enough with contex- 227

tual phenomena. Attempts to automatically identify 228

sentences requiring context have shown the task to 229

be difficult (Bawden et al., 2018) though possible 230

with hand-created rules (Fernandes et al., 2023; 231

Wicks and Post, 2023), but are often rare. Conse- 232

quently, improvements may be invisible without 233

the right test set. 234

• WMT (2015 for EN→FR, and 2022 for the 235

others). We expect that these are sparse. 236

• OpenSubtitles (Lison and Tiedemann, 2016). 237

We use the CTXPro/gender dataset (§ 3.3), 238
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English German

Unique Moorish style villa set in a tropical oa-
sis with pool, guest accommodation and amazing
views. ⟨SEP⟩ Property Reference 1846 ⟨SEP⟩ It
was built by the current owner. . .

Einzigartige maurische Villa in einer tropischen
Oase mit Pool, Gästeunterkunft und herrlicher
Aussicht. ⟨SEP⟩ Referenznummer 1846 ⟨SEP⟩ Es
wurde vom jetzigen Besitzer gebaut. . .

Table 3: An example of bad data drawn from the parallel data pool. While the sentence-level translations are fine,
the incorrect pronoun Es in the third sentence suggests sentence-level machine or low-quality human translations.

which is large and discourse-dense, namely239

with pronouns and anaphora.240

We compute a standard corpus-level COMET241

score6 on these test sets, in two settings: translating242

(i) without context and (ii) with up to 10 sentences243

or 250 tokens of left context.244

3.2 Contrastive test sets245

The dominant paradigm for evaluation of long-246

tail document phenomena has been so-called con-247

trastive evaluation (Sennrich, 2017), in which a248

system is tested on its ability to discriminate be-249

tween correct and incorrect translation pairs. The250

correct examples are usually taken from found text;251

the incorrect ones are created by inserting an er-252

ror of some sort. Systems are evaluated on the253

percentage of time they correctly score the posi-254

tive example above its incorrect variant, by way of255

model score.256

ContraPro (EN-DE) Müller et al. (2018) focus257

on the German pronouns es, er, and sie. They258

pair sentences containing naturally-found instances259

of pronouns drawn from OpenSubtitles with two260

variants where the incorrect pronoun has been used.261

ContraPro (EN-FR) Lopes et al. (2020) ex-262

tended ContraPro for EN-FR; the main difference263

is that there is only one incorrect example, since264

French has only two grammatical genders.265

GTWiC (EN-RU) (Voita et al., 2019b) Good266

Translation, Wrong in Context (GTWiC) tests verb267

selection (500 instances) and morphology (500) in268

the presence of source-side ellipsis.269

Examples of sentences in these test sets can be270

found in Appendix A.271

3.3 Testing generative ability272

The challenge sets above test whether a model can273

discriminate between good and bad examples with274

6Model wmt20-comet-da

using model score. As we will show, many docu- 275

ment models perform extremely well on these tasks, 276

but when asked to actually translate the source sen- 277

tence, produce the wrong word (Table 6). The 278

contrastive nature of these test sets is at odds with 279

the actual task: what is needed are metrics that di- 280

rectly evaluate a model’s generative, rather than its 281

discriminative, ability. 282

Fortunately, because these test sets were dis-
tributed with rich annotation information, we can
transform them into generative test sets, where we
test for the correct word in the output. A test set
T comprises a set of test examples in the form of
tuples (S,R,w), where S is the source sentence, R
the reference, and w ∈ R the target word or phrase
that is expected to be found in the translation out-
put. Let {Ti} be the set of translations of the source
sentences {Si}. We compute accuracy as

acc(T, T ) =
1

|T |

|T |∑
i=1

δ(wi ∈ Ti)

This is not a perfect metric, since a correct trans- 283

lation may have paraphrased around the pronoun, 284

but we do not expect that to systematically favor 285

any particular system. 286

We also use CTXPro (Wicks and Post, 2023), 287

which expands ContraPro’s coverage to many other 288

languages and linguistic phenomena (auxiliaries, 289

formality, gender, and inflection). CTXpro is eval- 290

uated only generatively, and has been been tested 291

only on a single system, DeepL,7 which is known 292

to make use of context. 293

4 Experimental setup 294

We train and compare four models on the exact 295

same data from two sources: parallel (P) and back- 296

translated monolingual (B) data; the only differ- 297

ence among the models is whether document sam- 298

ples are drawn from neither, one, or both of the 299

7deepl.com
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datasets. The monolingual data is backtranslated300

(Sennrich et al., 2016) using sentence-level trans-301

former systems (Vaswani et al., 2017) with 12 en-302

coder and 6 decoder layers, trained for 20 virtual303

epochs8 on the parallel data.304

Models All of our models are transformers305

trained with Marian (Junczys-Dowmunt et al.,306

2018a,b). For each language pair, we build a sin-307

gle joint unigram subword model (Kudo, 2018) of308

size 32k. Our experiments with different model309

capacities (Appendix B) led us to use a 12-layer310

encoder, a 6-layer decoder, an embedding dimen-311

sion of 1,024, and a feed-forward network size of312

16,384. We train for 40 virtual epochs. We use a313

batch size of 500k target-side tokens. Our maxi-314

mum document sample length is L = 256 tokens.315

Our models vary based on whether they are316

trained on multi-sentence samples (compared to317

just single sentences) from the backtranslated data,318

the parallel data, both datasets, or neither. We319

compare the following variants, using the syntax320

NAME(pool1, pool2) to denote the pools of data321

each draws from:322

• SENT(P ,B). A sentence-level baseline.323

• SENT⋆(P ,B). An inference-only baseline that324

abuses SENT(P ,B) to translate contextually.9325

• DOC(Pd,Bd). A contextual system, with doc-326

uments from parallel and back-translated data.327

• DOC(Pd,B). A contextual system, with docu-328

ments drawn from parallel data only.329

• DOC(P ,Bd). A contextual system, with docu-330

ments drawn from backtranslated data only.331

Creating samples We create our training data332

on the fly using SOTASTREAM (Post et al., 2023),333

which iterates over randomized permutations of334

P and B. To generate each sample, SOTASTREAM335

first chooses randomly between the two data pools336

(parallel and backtranslated). A run-time flag de-337

termines whether contextual samples are enabled338

for each pool (denoted Pd and Bd, respectively). If339

not, it simply returns the next sentence pair. If so,340

it then chooses a maximum token length, and con-341

catenates sentences on both sides until this length342

is reached on the source side, or the document’s343

8Updates from one billion target-side tokens.
9In this setting alone, no ⟨SEP⟩ token is used when com-

bining sentences, since the sentence model has not seen them.

end is reached. Concatenated sentences are joined 344

with a special ⟨SEP⟩ token, which facilitates sen- 345

tence alignment at inference time for evaluation. 346

Contextual samples are chunked, meaning they are 347

formed from adjacent, non-overlapping sequences 348

of sentences in the training data, in contrast to 349

the “multi-resolution” approach (Sun et al., 2022), 350

which creates training samples from many overlap- 351

ping sub-sequences of each input document. The 352

training toolkit is then responsible for buffering 353

as many samples as are needed to sort and form 354

batches for training. 355

Inference For inference, we use an overlapping 356

approach. Each input sentence (the payload) is 357

prepended with left sentence context, up to a maxi- 358

mum token length, L, which includes the payload. 359

The translation system translates this as a single 360

unit. The ⟨SEP⟩ token is then used to extract the 361

payload’s translation. This is repeated for all sen- 362

tences in a test set, allowing standard sentence-level 363

metrics to be applied to the results. 364

5 Results 365

Sentence-level metrics We begin by establishing 366

baseline scores with a standard corpus-level met- 367

ric, COMET, in Table 4. We include a commercial 368

baseline (Microsoft, accessed via API). We then 369

present results for all our models translating the 370

test corpora (WMT and OpenSubtitles, using the 371

CTXPro/gender dataset) in two modes: at the sen- 372

tence level (top block), and with context (bottom 373

block). In this way, we can look at the effect of 374

context at both training and inference time. 375

We also conduct a followup experiment in 376

English→German designed to investigate the im- 377

portance of (a) having the true context at inference 378

time and (b) comparing “contextually dense” and 379

“sparse” datasets in the same domain. In Table 5, 380

we first compare the OpenSubtitles CTXPro/gender 381

dataset. Column 1 reports results translating with 382

the true context (i.e., a repeat of the contextual re- 383

sults from Table 4), whereas column 2 randomly 384

shuffles the contexts of these 31,640 test sentences, 385

testing how important having the true context is for 386

translation. Column 3 reports results from a new, 387

random selection of 500 ten-sentence documents 388

from OpenSubtitles 2016, yielding a corpus size of 389

4,973 sentences. These documents are each trans- 390

lated in single chunks. We call this subset “sparse”: 391

since it was selected randomly, it is likely to be 392

much less dense in contextual phenomena. 393
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EN→DE EN→FR EN→RU
WMT CTXPro WMT CTXPro WMT CTXPro

model/#lines 1,500 31,640 2,307 43,375 2,307 32,948

Microsoft 62.0 27.7 67.6 36.4 67.3 39.1
se

nt
-l

ev
el SENT(P ,B) 61.7 24.7 69.1 35.4 70.0 38.5

DOC(Pd,Bd) 62.0 25.4 70.0 35.7 70.5 38.8
DOC(Pd,B) 61.3 24.3 69.2 35.0 70.0 37.8
DOC(P ,Bd) 62.2 25.8 69.8 35.7 70.3 38.2

co
nt

ex
t DOC(Pd,Bd) 62.1 30.8 69.2 40.4 69.2 43.2

DOC(Pd,B) 62.1 29.2 67.6 39.4 68.5 40.3
DOC(P ,Bd) 62.2 34.3 70.2 44.1 70.6 45.8

Table 4: COMET20 scores on WMT (22/15) and OpenSubtitles (CTXPro/gender) test sets translating alone (top
block) and with context (bottom block). Numbers within a column are comparable. The gains from DOC(P ,Bd)
(with context) over SENT(P ,B) (without it) are much larger for the discourse-dense OpenSubtitles data.

Dense Sparse
context true rand true

SENT(P ,B) 24.7 30.5

DOC(Pd,Bd) 30.8 24.8 31.4
DOC(Pd,B) 29.2 25.4 32.4
DOC(P ,Bd) 34.2 21.8 31.7

Table 5: EN→DE COMET scores on a dense dataset
(OpenSubtitles CTXpro/gender) with true and random
contexts; next, a sparse dataset (random sample of Open-
Subtitles) with true contexts. DOC(P ,Bd) gains most
over the sentence baseline on dense with true contexts
and is harmed most on dense with random contexts. The
doc systems are similar on the sparse dataset.

Contrastive suites Next, we turn to the394

document-level contrastive and generative metrics395

described in § 3.2–3.3.396

For generative document metrics, we took spe-397

cial care with SENT⋆(P ,B). It was not trained398

with the separator token, making it hard to iden-399

tify the payload sentence’s translation. We work400

around this by applying the Moses sentence split-401

ter.10 Spot-checking suggests this to be a reason-402

able heuristic that likely overestimates accuracy,403

since the identified sentence is often longer than404

it should be. Table 6 contains results for all three405

language pairs.406

Accuracy-based generative evaluation Finally,407

in Table 7, we present accuracy results on the rele-408

vant CTXPro datasets for each language.409

10github.com/mediacloud/sentence-splitter

6 Discussion 410

6.1 Standard sentence-level metrics work if 411

the dataset is dense enough 412

Table 4 shows state-of-the-art performance for all 413

models when translating at the sentence level (with- 414

out context), compared to the commercial system. 415

This confirms the large-scale, state-of-the-art na- 416

ture of our experiments. On the WMT datasets, we 417

see a fairly consistent gain of roughly a COMET 418

point when moving from the baseline sentence- 419

level translation with SENT(P ,B) (first row top 420

sent-level section) to DOC(P ,Bd); however, these 421

gains are observed in nearly all contextual sys- 422

tems. Looking at the CTXPro columns, however, 423

we observe a large, clear separation between the 424

DOC(P ,Bd) system and all the other contextual 425

systems, across all three languages. 426

We believe the explanation for this is two-fold: 427

first, the CTXPro dataset is the OpenSubtitles 428

gender-identified portion, so it is extremely dense 429

in discourse phenomena. Second, while three 430

systems have contextual training data, it is only 431

DOC(P ,Bd) whose contextual training signal has 432

not been muddied by unreliable contextual data 433

from the mined parallel training data pool.11 434

Table 5 contains results that suggest these score 435

differences are not random effects between the 436

two test sets. In the first experiment (first two re- 437

sults columns), we randomly swap the contexts 438

provided to each payload sentence in the CTX- 439

Pro EN→DE/gender dataset. The effect is most 440

pronounced on the DOC(P ,Bd) system, suggest- 441

11We note that OpenSubtitles is not in our training data.
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EN→DE EN→FR EN→RU
model C/Pro G/Pro C/Pro G/Pro C/ellinfl G/ellinfl C/ellVP G/ellVP

Literature 70.8 - 83.2 - 76.2 - 80.0 -

SENT(P ,B) 50.0 33.2 71.6 22.5 51.8 24.8 19.8 4.6

SENT⋆(P ,B) 69.0 46.3 93.1 62.3 77.0 32.8 55.0 19.2
DOC(Pd,Bd) 76.5 47.8 95.1 62.5 84.2 35.8 68.0 26.0
DOC(Pd,B) 71.6 41.9 94.3 60.4 76.2 31.8 66.2 26.4
DOC(P ,Bd) 77.9 70.5 94.8 77.3 84.6 39.6 66.0 28.4

Table 6: Document contrastive test suites and their generative variants. Contrastive accuracies (C/*) are over the
entire dataset in order to compare with the literature, while generative accuracies (G/*) are over extra-sentential
items only. Literature scores are taken from Lopes et al. (2020, EN→FR,EN→DE), and Voita et al. (2019b).
Feeding documents to SENT⋆(P ,B) (which it wasn’t trained on) increases contrastive scores over the sentence
baseline and generally brings generative scores within line of doc systems trained with parallel data.

EN→DE EN→FR EN→RU

AUX FORm GEN FORm GEN AUX FORm GEN INFl

SENT(P ,B) 4.5 42.5 44.5 39.0 38.9 4.7 52.2 37.6 32.9

DOC(Pd,Bd) 7.8 46.0 55.7 45.4 48.0 20.9 58.6 45.5 39.8
DOC(Pd,B) 7.6 44.4 52.0 45.7 46.2 16.7 56.8 39.5 37.4
DOC(P ,Bd) 11.7 46.3 69.8 46.3 56.4 25.2 58.7 53.5 42.6

Table 7: Generative accuracy on CTXPro datasets, where the task is to translate a source sentence and then determine
whether an exact form of the required target word is in the output. The contextual systems trained on documents
from mined parallel data perform notably worse than the DOC(P ,Bd) system.

ing that this model is most dependent on a reliable442

contextual clue. The final column shows perfor-443

mance on a random subset of OpenSubtitles (§ 2),444

rather than the carefully-selected CTXPro/gender.445

Here, we see the performance among the document446

systems is quite similar, as we saw with WMT447

datasets. This suggests that the flat performance448

with WMT data was likely due to it, too, being449

sparse with contextual phenomena. For standard,450

sentence-based metrics like COMET to separate451

these systems, dense test sets are needed.452

6.2 Contrastive test sets are problematic453

Across all three language pairs, there is an inter-454

esting pattern: in the contrastive metrics, the docu-455

ment systems improve over the sentence baseline,456

as a block. However, the generative metrics see457

their best results with DOC(P ,Bd), often by a large458

margin. Additionally, the SENT⋆(P ,B) system im-459

proves over the SENT(P ,B) system when measured460

contrastively, but these gains are not reflected in461

the generative metric. This calls into question the462

reliability of contrastive metrics, since we know463

this system has no generative document capacity. 464

We direct special attention to SENT⋆(P ,B). 465

This system was trained on sentences only, yet it 466

performs on par with—and even above—the best 467

literature results. Yet we know from the generative 468

experiments that when asked to produce these trans- 469

lations, it is often unable to do so. Discriminative 470

ability is not the same as generative. 471

We repeat the note from Section 3.3 that genera- 472

tive evaluation may penalize a system that produces 473

a correct sentence not containing the pronoun, or 474

unfairly credit a system that happens to generate 475

the pronoun by accident, but do not expect that this 476

will favor any particular system. Spot-checking 477

suggests to us that the large differences reported in 478

Table 6 capture actual improvements. 479

6.3 Generative accuracy captures differences 480

Finally, Table 7 shows a similar gap between the 481

DOC(P ,Bd) and other systems when testing for 482

word-based accuracy. For EN→DE and EN→FR, 483

the gender categories are similar to the ContraPro 484

test sets for those languages, but much larger. The 485
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other categories show that the gains continue across486

a range of linguistic phenomena.487

7 Related Work488

A good early survey of work in contextual neural489

MT is Maruf et al. (2019), who cover work with490

both RNN and Transformer frameworks along a491

rich taxonomy.492

The transition to neural architectures was a493

paradigm enabler for document translation, since it494

eliminated the Markov limitations of statistical MT.495

Much work has focused on special architectures496

and input encodings. This includes cache models497

(Tu et al., 2018; Kuang et al., 2018), hierarchical498

attention (Miculicich et al., 2018), separately en-499

coding context (Voita et al., 2018; Zhang et al.,500

2018), allowing attention across a batch of pseudo-501

documents (Wu et al., 2023), encoding sentence502

position (Bao et al., 2021; Lupo et al., 2023), and503

sparse attention mechanisms (Guo et al., 2019). A504

number of approaches work on base systems out-505

puts, such as post-editing with contextual language506

models (Voita et al., 2019a) and using contextual507

language models to rerank sentence-level system508

output Yu et al. (2020). Junczys-Dowmunt (2019)509

built one of the earliest contextual systems to per-510

form well at WMT. Sun et al. (2022) also proposed511

to use standard transformer models, testing small512

architectures with no backtranslated data, and us-513

ing a “multi-resolutional” training approach that514

creates overlapping documents.515

Datasets with document annotations include516

OpenSubtitles (Lison and Tiedemann, 2016), WIT3517

(Cettolo et al., 2012), News Commentary, and Eu-518

roparl (Koehn, 2005). Liu and Zhang (2020) pro-519

vide a nice survey, and release a small amount520

of government-crawled new data for Chinese–521

Portuguese. The Conference on Machine Trans-522

lation (WMT) began releasing limited document-523

level data for DE-EN and CS-EN in 2019 (Barrault524

et al., 2019). This limitation has forced researchers525

to get creative. Voita et al. (2019b) built a mono-526

lingual post-editing system that took the output of527

a baseline system and used it for document-level528

“repair”. Sugiyama and Yoshinaga (2019) also used529

target-side data for backtranslation, evaluating in530

small-data settings with BLEU and contrastive met-531

rics. Our work scales to very large web-crawled532

datasets and shows that parallel data, as a whole,533

may be harmful.534

Contextual metrics work has been important.535

PROTEST (Guillou and Hardmeier, 2016) used 536

hand-designed pronoun test cases and also evalu- 537

ated generatively. Läubli et al. (2018) provided 538

early evidence that document-level metrics would 539

be helpful. BlonDe (Jiang et al., 2022), eval- 540

uated for Chinese–English, automatically identi- 541

fies discourse-relevant phenomena in the output 542

and compares to a reference, optionally combined 543

with an n-gram fluency component. Doc-COMET 544

(Vernikos et al., 2022) is simpler and builds sen- 545

tence representations from context. Both metrics 546

are interesting but await deeper evaluation and we 547

did not explore them in this paper. Vamvas and 548

Sennrich (2021) have also noted the problem with 549

the disconnect between contrastive evaluation and 550

generative ability for machine translation. Fer- 551

nandes et al. (2023) developed rules to identify 552

contextually-dependent sentences. 553

8 Conclusions 554

Machine translation research and production sys- 555

tems continue to be dominated by sentence-level 556

approaches. A common explanation for this short- 557

coming is the lack of document-annotated parallel 558

data. Our results suggests that parallel data may 559

be of high enough quality for building sentence 560

systems, but may be harmful when used to build 561

contextual ones. As an explanation, we consider it 562

a strong possibility that web-crawled parallel data 563

contains too much machine translation output, con- 564

taminating the contextual signal. This suspicion 565

makes sense a priori, and is confirmed in other re- 566

cent work(Thompson et al., 2024). We have also 567

shown the importance of evaluating contextual ma- 568

chine translation output in its generative capacity, 569

rather than in its ability to discriminate good out- 570

puts from bad ones. In fact, the failed contex- 571

tual signal was invisible without such evaluation. 572

This can be done by using challenge sets (which 573

often mark the expected word) at sufficient scale 574

to cover the noise of the accuracy metric, or by us- 575

ing standard corpus-level metrics like COMET on 576

test sets that are sufficiently dense with contextual 577

phenomena. 578

A fruitful avenue for followup work is to auto- 579

matically identify sentences that require context 580

to translate correctly, which could be used to filter 581

training data and also in the construction of new test 582

sets. Though we have focused on “traditionally”- 583

trained MT, it will also be useful to learn how 584

LLMs perform on these tasks. 585
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Limitations586

With respect to reproducibility, the deepest limita-587

tion of our paper is our use of private, rather than588

public, data. As we explained, this was a necessity,589

since public data does not contain the annotations590

we need. There is therefore a risk that our findings591

might not be reproducible by other teams work-592

ing with (necessarily) different datasets. We have593

attempted to mitigate this problem by reproduc-594

ing a subset of our results on publicly available595

data (Appendix C), where our findings stood. We596

hope that this corroboration, together with the the597

fact that harvesting data from the web is itself a598

well-understood science, help mitigate this risk. Fi-599

nally, although we suspect our results will hold for600

language pairs beyond the three we investigated,601

further complications could arise, and it is possible602

they will not generalize.603

We have focused on adding a missing capability604

to the traditional MT training pipeline, still actively605

used in both research and deployment. We leave to606

future work an in-depth comparison to LLMs on607

contextual performance using these measures.608
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A Dataset examples962

Examples from the datasets used for generative and963

contrastive evaluation can be found in Tables 8 and964

9.965

B Model capacity966

Much work in investigating document-level ma-967

chine translation has been limited to standard-size968

Transformer architectures (cf. Zhang et al. (2018);969

Sun et al. (2022); Lopes et al. (2020)). Yet it stands970

to reason that modeling longer-range phenomena971

will require increased model capacity, and in fact,972

the base model size we chose for our experiments973

(12 layer encoder, 16k FFN) reflects this. Here, we974

provide more detail, varying two model parameters975

only: (i) the number of encoder layers, and (ii) the976

width of the model feed-forward layer (encoder and977

decoder side). We keep all other parameters the978

The prototype has passed every test, sir. It’s
working. | Der Prototyp hat jeden Test erfolgre-
ich durchlaufen, Sir. {Er,Es,Sie} funktioniert.

(a) ContraPro example. Contrastive examples are formed
by substituting incorrect pronouns.

(b) GTWiC example. The first Russian sentence uses the
formal register.

Table 8: Examples from contrastive test sets.

(AUX ) I just figured you need to know. And
now you do. → Je pensais que tu méritais de
savoir. Et maintenant tu sais.

(INF) My friend had some mech work done here.
Industry stuff. → Вы ставили имплант моей
подруге. Промышленную штуковину.

(FORm) I don’t know you, but.. → Ich kenne
Sie nicht, aber...

Table 9: Examples of contextually-sensitive auxiliary
and inflection elision from the CTXPro dataset.

same, including fixing the decoder depth to 6. Fo- 979

cusing on changes to the encoder depth helps limit 980

grid search and is justified by prior work showing 981

that (relatively cheap) encoder layers can be traded 982

for (relatively expensive) decoder layers with no 983

penalty (Kasai et al., 2020). We alternate between 984

increasing the number of encoding layers, and in- 985

creasing the dimension of the Transformer feed- 986

forward layer. 987

Table 10 contains English–German results. Un- 988

surprisingly, all scores continue to rise, up to the 989

wide 18-layer model. Both increasing the number 990

of encoder layers, and increasing the size of the 991

FFN, contribute to better performance. This sug- 992

gests that the common approach of working with 993

6-layer Transformer base models is not enough 994

for document-context MT. There is more to gain 995

by moving to larger models and likely, to larger 996

datasets and context lengths, as well. 997

C Results on public data 998

The full breadth of this paper’s experiments was 999

not possible on public datasets; due to the lack 1000

of document annotations on large-scale parallel 1001
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arch params BLEU COMET C/Pro G/Pro

6/1k 146m 27.0 48.7 65.2 58.4
6/2k 171m 27.4 49.7 66.2 58.7
6/4k 221m 28.0 51.0 69.7 62.9
12/4k 297m 28.4 51.8 70.6 66.0
6/8k 322m 27.8 51.0 71.7 62.8
12/8k 448m 28.6 52.5 74.2 67.1
6/16k 523m 28.4 51.7 74.5 64.9
18/8k 574m 28.8 53.0 75.0 67.1
12/16k 750m 28.9 52.8 75.8 68.5
18/16k 977m 29.3 53.3 75.5 69.4

Table 10: Model capacity (encoder layers / FFN / #
params) for an EN-DE document model, ordered by
param. count. Decoder depth is always 6 layers. Scores
were computed on a checkpoint after 30k updates.
BLEU and COMET scores are on WMT21, translating
as sentences. C/Pro is over the complete test set, while
G/Pro is over only sentences with external anaphora.

data, we are unable to build DOC(Pd,Bd) and1002

DOC(Pd,B) systems. However, we can build the1003

SENT(P ,B) and DOC(P ,Bd) systems with a subset1004

of the WMT22 EN→DE data with monolingual1005

document annotations, and see whether they ex-1006

hibit the same pattern.1007

We use all available parallel data provided for1008

WMT22 (Kocmi et al., 2022):12 Europarl v101009

(Koehn, 2005), Paracrawl v9 (Bañón et al., 2020),1010

Common Crawl,13 News Commentary, Wiki Ti-1011

tles v3, Tilde MODEL Corpus (Rozis and Skadin, š,1012

2017), and Wikimatrix (Schwenk et al., 2021a). A1013

few of these resources have document-level infor-1014

mation, but we do not use any of it. For monolin-1015

gual data, the only data available with document1016

metadata is News Crawl.14 We used all even years1017

from 2008–2020, backtranslating it from German1018

to English with an internal system. No filtering is1019

applied. From this data, we train the only two of1020

our systems supported by this setup: SENT(P ,B)1021

and DOC(P ,Bd). These are trained for 40 virtual1022

epochs each using the same settings described in1023

Section 5.151024

Results can be found in Table 11. They are en-1025

couraging: we see the same pattern of improvement1026

between SENT(P ,B) and DOC(P ,Bd), although the1027

absolute numbers are lower. Compared to our in-1028

12statmt.org/wmt22/translation-task.html
13https://commoncrawl.org/
14https://data.statmt.org/news-crawl/de-doc/
15Mono data: 311.2m lines, 14.1m docs, with a mean sen-

tence length of 21.9 sentences. Parallel data: 297.6m lines.

system COMET C/Pro G/Pro

SENT(P ,B) 60.6 56.7 23.9
DOC(P ,Bd) 59.4 83.4 64.3

Table 11: Metrics on the only two models we are able
to build on public data. Similar patterns are observable
to those seen in Tables 4 and 6.

house data, the document metrics are even better 1029

for SENT(P ,B). 1030

13

statmt.org/wmt22/translation-task.html
https://commoncrawl.org/
https://data.statmt.org/news-crawl/de-doc/
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