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Abstract

Despite the fact that context is known to be vital
for resolving a range of translation ambiguities,
most traditional machine translation systems
continue to be trained and to operate at the
sentence level. This limitation is an inherent
performance ceiling that is increasingly glar-
ing compared to their natively-contextual LLM
counterparts. A common explanation is the
lack of document-level annotations for existing
training data. This work investigates whether
having such annotations would be helpful for
training traditional MT systems at scale. Work-
ing with a private parallel and monolingual
data set, we build large-scale, state-of-the-art
contextual MT systems into German, French,
and Russian. We find that these systems are
harmed when including contextual training ex-
amples sourced from mined parallel bitext. We
also show that these improvements are invis-
ible when using contrastive score-based test
sets; instead, models must be tested directly
on their ability to generate correct outputs, or
with standard metrics on discourse-dense test
sets. This provides evidence that mined paral-
lel bitext does not contain reliable contextual
signals—perhaps because it was translated in
a sentence-level manner. Where possible, we
repeat our results on public data.

1 Introduction

Large language models (LLMs) have transformed
the field of natural language processing, provid-
ing high-quality working solutions to problems in
many domains (e.g., question answering, summa-
rization, multi-step reasoning) that even a few years
ago had no solution in clear sight. LLMs have also
proven capable in subtasks that had already ex-
perienced substantial commercial success: most
notably, machine translation (MT). While they
have not supplanted the “traditional” MT paradigm
(i.e., using sequence-to-sequence models trained
on mined-parallel and backtranslated-monolingual

English German

Ich verlor meinen Hut.
Hast du es sehen?

Ilost my hat. Have you
seen it?

Table 1: The sentence-level translation ceiling. Select-
ing the correct pronoun (ihn, masc.) requires context.

data), they outperform them in many high-resource
language pairs (Xu et al., 2023), and also intro-
duce new capabilities, such as easy stylistic adap-
tation (Moslem et al., 2023). At the same time,
MT systems trained in this way retain their own
advantages, including small model sizes and corre-
sponding inference-time efficiency.

An important advantage that LLLMs possess is
that they are natively document-level, meaning they
can easily handle contextual phenomena. By na-
ture of its sentence-based design, traditional MT
is unable to correctly translate any sentence with
extra-sentential dependencies, such as pronouns
in languages with grammatic gender, except by
chance (Table 1). Despite significant prior work
on the topic (§ 7), and general acknowledgment of
the need to move on (Sennrich, 2018), contextual
translation has never managed to take hold in MT
research, and sentence-level systems continue to
dominate. This leaves a gap between them and
their increasingly powerful LLM counterparts, and
raises the question of whether this gap can be nar-
rowed or closed, if traditional MT systems could
be trained properly with context.

A common explanation for the lack of context in
MT has to do with the relative dearth of document-
level annotations that are available for mined paral-
lel and even monolingual data. At the same time, it
has long been understood (Venugopal et al., 2011)
and recently corroborated (Thompson et al., 2024)
that crawled bitext is rife with machine translation
output, which—though high quality at the sentence
level—may attenuate the contextual signal. We ex-



plore this central problem by building the first large-
scale, state-of-the-art translation systems trained
on data with complete document annotations. We
are able to do this because instead of public data,
we use a private, in-house dataset (§ 2) that we have
crawled ourselves. This crucially allows us to ex-
plore the effects of document annotations sourced
from both parallel and monolingual (backtranslated
data), together and in isolation, in order to quantify
their effects. We find that:

* Sourcing contextual training examples
from parallel data is harmful. Parallel text
mined from the web is a key component in
constructing sentence-based translation sys-
tems, but attempts to use it contextually fail.
We suspect this has to do with the preva-
lence of machine translation output (Thomp-
son et al., 2024), which may be high quality
at the sentence level, but which has a weak-
ened contextual signal. We get around this by
sourcing contextual samples only from back-
translated data.

* Generative evaluation is crucial. Con-
trastive metrics, where the task is to discrim-
inate good and bad translations using model
scores, are often used to evaluate contextual
MT. We show that contextual systems that
are trained on mined parallel documents do
well on this task, but perform poorly when
asked to generate correct translations. Only
generative evaluation, which looks at whether
correct words were produced, distinguishes
good from bad contextual systems.

Standard metrics require discourse-dense
datasets. Standard sentence-level metrics like
COMET are much more discriminative be-
tween sentence- and contextual systems when
applied to datasets that are dense in discourse
phenomena.

Together, these results raise important considera-
tions for the construction and evaluation of contex-
tual translation systems.

2 The challenge of data

Large publicly-available parallel datasets do not
have document annotations. While the Conference
on Machine Translation (WMT) has made over-
tures in this direction,! including ensuring that test
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data is source-language-natural and contains doc-
ument information, parallel and monolingual data
is limited to a small subset of all data® for which
such information is easily retained.

We wish to experiment with and compare annota-
tions sourced from both parallel and backtranslated
monolingual datasets. We therefore turn instead to
a state-of-the-art, large collection of in-house data.

2.1 Data description

We work with three language pairs:
English—German, English—French, and
English—Russian. We chose these languages

because of the availability of good contextual
evaluation data in each of them (§ 3). Our data
comprises the following sources (Table 2):

* Monolingual data, crawled from expected-
native sites: news (10%), data linked from
the Open Directory Project® (40%), filtered
webcrawl (40%), and Wikipedia and its out-
links (10%).

* Crawled parallel web data (similar to
ParaCrawl)

* CCMatrix parallel data (Schwenk et al,
2021b), which has no document information.

Datasets have been filtered using bicleaner
(Ramirez-Sanchez et al., 2020), with additional
boilerplate and document deduplication.

Although the dataset is proprietary, there is noth-
ing in it that would surprise any researcher; the
data was crawled from the web using standard tech-
niques. The parallel data sources include a rough
equivalent of ParaCrawl (Banén et al., 2020) and
also CCMatrix (Schwenk et al., 2021b). The mono-
lingual data sources focus on sites where we expect
data to have been written natively.

We emphasize that experiments at the scale pre-
sented in this paper are only possible with our
private dataset, since document annotations are
only available for small-data training settings like
IWSLT.* In a nod to the importance of repeatable
work, we include results on the subset of our exper-
iments that are possible on English—-German public

ZParallel: europarl, news-commentary, CzEng, and Rapid;
Monolingual: news-crawl (en, de and cs), europarl, and news-
commentary. Source: http://www2.statmt.org/wmt23/
translation-task.html

3https ://odp.org

4iwslt.org
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‘ English-French

English-German

English—Russian

source ‘ lines docs mean ‘ lines docs mean ‘ lines docs mean
mono 1664 55 29.7[2054 70 2912027 65 311
parallel

— crawled | 123.1 37 33.0| 116.7 47 166 | 724 47 132
— ccmatrix 65.1 0 - 454 0 - 2.4 0 -

Table 2: Statistics of the training data used in our experiments (lines and docs in millions). The mean column is the
mean document length in sentences of documents with > 2 sentences.

data and show that they corroborate correspond-
ing results on private data (Appendix C). We also
include 1000-document EN-DE samples with this
submission.

2.2 MT output in crawled parallel data

Translation is a core facilitator of cross-cultural
communication, and also an expensive one, when
undertaken by humans. It is therefore not surpris-
ing that automated machine translation has long
been one of the success stories from the field of
natural language processing, with widespread com-
mercial adoption and popularization, especially
with the release of Google Translate in 2004. Un-
fortunately, one consequence of this success has
been a “poisoning of the well”, where machine
translation outputs are later collected as training
data for new systems (Venugopal et al., 2011).

It is standard practice to filter out the worst qual-
ity translations with various techniques. At the
same time, not all machine-generated data is bad
for training. An example, sourced from our par-
allel data, can be found in Table 3. The individ-
ual sentence pairs are fine for training sentence-
level systems, and only become problematic when
training contextual ones. While we don’t know if
this was generated by machine or a human, we do
know that even large NMT systems are sensitive
to small amounts of poor data.’ This fact, together
with recent reports on the prevalence of MT out-
put in multi-way parallel datasets (Thompson et al.,
2024), suggest there may be a big problem. This is
all to say that contextual translation introduces
a new quality dimension that is invisible in the
standard training paradigm, and the problem may
in fact be quite large, since all machine translation
content in the wild will have been generated by
sentence-level systems.

We do not expect to see this problem for our

SA classic example is source-copy data (Ott et al., 2018)

monolingual data. It is drawn selectively from
sites and sources which are most likely to produce
target-side native data, such as news sites. We do
not have direct proof that there are not elements of
translated data, but the experiments and discussion
in this paper help establish this.

3 Contextual evaluation

A basic hurdle in the path to contextual transla-
tion is the difficulty of evaluation. We expect that
contextual systems will produce improved transla-
tions of discourse-level phenomena, however, the
frequency of these phenomena in standard corpora
is not known, and we expect them to be relatively
rare. This paper includes three types of evaluation.

3.1 Corpus-level metrics

The conventional way to test system performance
is with corpus-level metrics such as chrF (Popovic,
2015) or COMET (Rei et al., 2020), which accu-
mulate sentence-level scores to compute a single
score for a test set. If the test set is organized
into documents (as many are, including those from
WMT), its sentences can be translated contextually
and then split back out to sentences for evaluation.
The expectation is that contextual translation will
produce gains. However, a key consideration is
whether the dataset is dense enough with contex-
tual phenomena. Attempts to automatically identify
sentences requiring context have shown the task to
be difficult (Bawden et al., 2018) though possible
with hand-created rules (Fernandes et al., 2023;
Wicks and Post, 2023), but are often rare. Conse-
quently, improvements may be invisible without
the right test set.

* WMT (2015 for EN—FR, and 2022 for the
others). We expect that these are sparse.

* OpenSubtitles (Lison and Tiedemann, 2016).
We use the CTXPro/gender dataset (§ 3.3),



‘ English

‘ German ‘

Unique Moorish style villa set in a tropical oa-
sis with pool, guest accommodation and amazing
views. (SEP) Property Reference 1846 (SEP) It

was built by the current owner. . .

Einzigartige maurische Villa in einer tropischen
Oase mit Pool, Gisteunterkunft und herrlicher
Aussicht. (SEP) Referenznummer 1846 (SEP) Es
wurde vom jetzigen Besitzer gebaut. . .

Table 3: An example of bad data drawn from the parallel data pool. While the sentence-level translations are fine,
the incorrect pronoun Es in the third sentence suggests sentence-level machine or low-quality human translations.

which is large and discourse-dense, namely
with pronouns and anaphora.

We compute a standard corpus-level COMET
score® on these test sets, in two settings: translating
(i) without context and (ii) with up to 10 sentences
or 250 tokens of left context.

3.2 Contrastive test sets

The dominant paradigm for evaluation of long-
tail document phenomena has been so-called con-
trastive evaluation (Sennrich, 2017), in which a
system is tested on its ability to discriminate be-
tween correct and incorrect translation pairs. The
correct examples are usually taken from found text;
the incorrect ones are created by inserting an er-
ror of some sort. Systems are evaluated on the
percentage of time they correctly score the posi-
tive example above its incorrect variant, by way of
model score.

ContraPro (EN-DE) Miiller et al. (2018) focus
on the German pronouns es, er, and sie. They
pair sentences containing naturally-found instances
of pronouns drawn from OpenSubtitles with two
variants where the incorrect pronoun has been used.

ContraPro (EN-FR) Lopes et al. (2020) ex-
tended ContraPro for EN-FR; the main difference
is that there is only one incorrect example, since
French has only two grammatical genders.

GTWiC (EN-RU) (Voita et al., 2019b) Good
Translation, Wrong in Context (GTWiC) tests verb
selection (500 instances) and morphology (500) in
the presence of source-side ellipsis.

Examples of sentences in these test sets can be
found in Appendix A.

3.3 Testing generative ability

The challenge sets above test whether a model can
discriminate between good and bad examples with

®Model wmt20-comet-da

using model score. As we will show, many docu-
ment models perform extremely well on these tasks,
but when asked to actually translate the source sen-
tence, produce the wrong word (Table 6). The
contrastive nature of these test sets is at odds with
the actual task: what is needed are metrics that di-
rectly evaluate a model’s generative, rather than its
discriminative, ability.

Fortunately, because these test sets were dis-
tributed with rich annotation information, we can
transform them into generative test sets, where we
test for the correct word in the output. A test set
T comprises a set of test examples in the form of
tuples (S, R, w), where S is the source sentence, R
the reference, and w € R the target word or phrase
that is expected to be found in the translation out-
put. Let {7} } be the set of translations of the source
sentences {5; }. We compute accuracy as

|T|
1
acc(T,T) = WZCS(W e T)

=1

This is not a perfect metric, since a correct trans-
lation may have paraphrased around the pronoun,
but we do not expect that to systematically favor
any particular system.

We also use CTXPro (Wicks and Post, 2023),
which expands ContraPro’s coverage to many other
languages and linguistic phenomena (auxiliaries,
formality, gender, and inflection). CTXpro is eval-
uated only generatively, and has been been tested
only on a single system, DeepL,” which is known
to make use of context.

4 Experimental setup

We train and compare four models on the exact
same data from two sources: parallel (P) and back-
translated monolingual (B) data; the only differ-
ence among the models is whether document sam-
ples are drawn from neither, one, or both of the
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datasets. The monolingual data is backtranslated
(Sennrich et al., 2016) using sentence-level trans-
former systems (Vaswani et al., 2017) with 12 en-
coder and 6 decoder layers, trained for 20 virtual
epochs® on the parallel data.

Models All of our models are transformers
trained with Marian (Junczys-Dowmunt et al.,
2018a,b). For each language pair, we build a sin-
gle joint unigram subword model (Kudo, 2018) of
size 32k. Our experiments with different model
capacities (Appendix B) led us to use a 12-layer
encoder, a 6-layer decoder, an embedding dimen-
sion of 1,024, and a feed-forward network size of
16,384. We train for 40 virtual epochs. We use a
batch size of 500k target-side tokens. Our maxi-
mum document sample length is . = 256 tokens.

Our models vary based on whether they are
trained on multi-sentence samples (compared to
just single sentences) from the backtranslated data,
the parallel data, both datasets, or neither. We
compare the following variants, using the syntax
NAME(pool;, pooly) to denote the pools of data
each draws from:

¢ SENT(P,B). A sentence-level baseline.

¢ SENT(P,B). An inference-only baseline that
abuses SENT(P,13) to translate contextually.’

* Doc(Pg4,B4). A contextual system, with doc-
uments from parallel and back-translated data.

e DoC(Py,B). A contextual system, with docu-
ments drawn from parallel data only.

e Doc(P,B,). A contextual system, with docu-
ments drawn from backtranslated data only.

Creating samples We create our training data
on the fly using SOTASTREAM (Post et al., 2023),
which iterates over randomized permutations of
‘P and B. To generate each sample, SOTASTREAM
first chooses randomly between the two data pools
(parallel and backtranslated). A run-time flag de-
termines whether contextual samples are enabled
for each pool (denoted P, and By, respectively). If
not, it simply returns the next sentence pair. If so,
it then chooses a maximum token length, and con-
catenates sentences on both sides until this length
is reached on the source side, or the document’s

8Updates from one billion target-side tokens.
°In this setting alone, no (SEP) token is used when com-
bining sentences, since the sentence model has not seen them.

end is reached. Concatenated sentences are joined
with a special (SEP) token, which facilitates sen-
tence alignment at inference time for evaluation.
Contextual samples are chunked, meaning they are
formed from adjacent, non-overlapping sequences
of sentences in the training data, in contrast to
the “multi-resolution” approach (Sun et al., 2022),
which creates training samples from many overlap-
ping sub-sequences of each input document. The
training toolkit is then responsible for buffering
as many samples as are needed to sort and form
batches for training.

Inference For inference, we use an overlapping
approach. Each input sentence (the payload) is
prepended with left sentence context, up to a maxi-
mum token length, L, which includes the payload.
The translation system translates this as a single
unit. The (SEP) token is then used to extract the
payload’s translation. This is repeated for all sen-
tences in a test set, allowing standard sentence-level
metrics to be applied to the results.

5 Results

Sentence-level metrics We begin by establishing
baseline scores with a standard corpus-level met-
ric, COMET, in Table 4. We include a commercial
baseline (Microsoft, accessed via API). We then
present results for all our models translating the
test corpora (WMT and OpenSubtitles, using the
CTXPro/gender dataset) in two modes: at the sen-
tence level (top block), and with context (bottom
block). In this way, we can look at the effect of
context at both training and inference time.

We also conduct a followup experiment in
English—German designed to investigate the im-
portance of (a) having the true context at inference
time and (b) comparing “contextually dense” and
“sparse” datasets in the same domain. In Table 5,
we first compare the OpenSubtitles CTXPro/gender
dataset. Column 1 reports results translating with
the true context (i.e., a repeat of the contextual re-
sults from Table 4), whereas column 2 randomly
shuffles the contexts of these 31,640 test sentences,
testing how important having the true context is for
translation. Column 3 reports results from a new,
random selection of 500 ten-sentence documents
from OpenSubtitles 2016, yielding a corpus size of
4,973 sentences. These documents are each trans-
lated in single chunks. We call this subset “sparse”:
since it was selected randomly, it is likely to be
much less dense in contextual phenomena.



EN—DE EN—FR EN—RU
WMT | CTXPro || WMT | CTXPro || WMT | CTXPro

model/#lines | 1,500 | 31,640 || 2,307 | 43375 || 2307 | 32,948
Microsoft | 620 | 277 676| 364 | 673]  39.1

5 SENT(P.B) | 617 247 || 69.1 354 | 1700 38.5
& Doc(PgBy) | 620 254 | 700 357 | 705 38.8
g Doc(PgB) | 61.3 243 || 692 350 | 700 37.8
® Doc(P.Bg) | 622 258 || 69.8 357 | 703 38.2
£ Doc(PgBy) | 62.1 308 || 69.2 404 | 692 4322
£ Doc(PyB) | 621 292 || 676 394 | 685 403
S Doc(P.Bg) | 622 343 | 702 441 | 70.6 45.8

Table 4: COMET?20 scores on WMT (22/15) and OpenSubtitles (CTXPro/gender) test sets translating alone (top
block) and with context (bottom block). Numbers within a column are comparable. The gains from Doc(P,5,)
(with context) over SENT(P,B) (without it) are much larger for the discourse-dense OpenSubtitles data.

Dense Sparse
context true rand true
SENT(P,B) 24.7 30.5
Doc(P4,By) | 30.8 24.8 314
Doc(Py,B) | 292 254 32.4
Doc(P,By) | 342 21.8 31.7

Table 5: EN—DE COMET scores on a dense dataset
(OpenSubtitles CTXpro/gender) with true and random
contexts; next, a sparse dataset (random sample of Open-
Subtitles) with true contexts. DOC(P,B,;) gains most
over the sentence baseline on dense with true contexts
and is harmed most on dense with random contexts. The
doc systems are similar on the sparse dataset.

Contrastive suites Next, we turn to the
document-level contrastive and generative metrics
described in § 3.2-3.3.

For generative document metrics, we took spe-
cial care with SENTx(P,B). It was not trained
with the separator token, making it hard to iden-
tify the payload sentence’s translation. We work
around this by applying the Moses sentence split-
ter.!” Spot-checking suggests this to be a reason-
able heuristic that likely overestimates accuracy,
since the identified sentence is often longer than
it should be. Table 6 contains results for all three
language pairs.

Accuracy-based generative evaluation Finally,
in Table 7, we present accuracy results on the rele-
vant CTXPro datasets for each language.

10github.com/mediacloud/sentence—splitter

6 Discussion

6.1 Standard sentence-level metrics work if
the dataset is dense enough

Table 4 shows state-of-the-art performance for all
models when translating at the sentence level (with-
out context), compared to the commercial system.
This confirms the large-scale, state-of-the-art na-
ture of our experiments. On the WMT datasets, we
see a fairly consistent gain of roughly a COMET
point when moving from the baseline sentence-
level translation with SENT(P,B) (first row top
sent-level section) to DoOC(P,B,); however, these
gains are observed in nearly all contextual sys-
tems. Looking at the CTXPro columns, however,
we observe a large, clear separation between the
Doc(P,By) system and all the other contextual
systems, across all three languages.

We believe the explanation for this is two-fold:
first, the CTXPro dataset is the OpenSubtitles
gender-identified portion, so it is extremely dense
in discourse phenomena. Second, while three
systems have contextual training data, it is only
Doc(P,B;) whose contextual training signal has
not been muddied by unreliable contextual data
from the mined parallel training data pool.!!

Table 5 contains results that suggest these score
differences are not random effects between the
two test sets. In the first experiment (first two re-
sults columns), we randomly swap the contexts
provided to each payload sentence in the CTX-
Pro EN—DE/gender dataset. The effect is most
pronounced on the DOC(P,B,;) system, suggest-

""We note that OpenSubtitles is not in our training data.


github.com/mediacloud/sentence-splitter

EN—DE  EN-FR EN—RU

model C/Pro G/Pro | C/Pro G/Pro | Clelliya  Glelliw | Clellyp  Glellyp
Literature | 70.8 - | 832 - 762 -] 80.0 -
SENT(P.B) | 500 332|716 225| 518 248 198 4.6
SENT«(P.B) | 69.0 463 | 93.1 623| 770 328| 550 192
Doc(Pq.Bg) | 76.5 47.8 | 951 625| 842 358 | 680 260
Doc(Pg.B) | 71.6 419 | 943 604 | 762 318 | 662 264
Doc(P.Bg) | 779 705 | 948 773 | 846 39.6| 660 284

Table 6: Document contrastive test suites and their generative variants. Contrastive accuracies (C/¥) are over the
entire dataset in order to compare with the literature, while generative accuracies (G/*) are over extra-sentential
items only. Literature scores are taken from Lopes et al. (2020, EN—FR,EN—DE), and Voita et al. (2019b).
Feeding documents to SENTx(P,5) (which it wasn’t trained on) increases contrastive scores over the sentence
baseline and generally brings generative scores within line of doc systems trained with parallel data.

| EN—DE EN—FR EN—RU

| AUX FORm GEN | FORm GEN | AUX FORm GEN INFI
SENT(P.B) | 45 425 445| 390 389| 47 522 376 329
Doc(Pa.Bs) | 78 460 557 | 454 480| 209 586 455 398
Doc(Pe.B) | 7.6 444 520 457 462| 167 568 395 374
Doc(P.Bg) | 117 463 698 | 463 564 | 252 587 535 426

Table 7: Generative accuracy on CTXPro datasets, where the task is to translate a source sentence and then determine
whether an exact form of the required target word is in the output. The contextual systems trained on documents

from mined parallel data perform notably worse than the DOC(P,B,) system.

ing that this model is most dependent on a reliable
contextual clue. The final column shows perfor-
mance on a random subset of OpenSubtitles (§ 2),
rather than the carefully-selected CTXPro/gender.
Here, we see the performance among the document
systems is quite similar, as we saw with WMT
datasets. This suggests that the flat performance
with WMT data was likely due to it, too, being
sparse with contextual phenomena. For standard,
sentence-based metrics like COMET to separate
these systems, dense test sets are needed.

6.2 Contrastive test sets are problematic

Across all three language pairs, there is an inter-
esting pattern: in the contrastive metrics, the docu-
ment systems improve over the sentence baseline,
as a block. However, the generative metrics see
their best results with DOC('P,Bg), often by a large
margin. Additionally, the SENTx(P,B) system im-
proves over the SENT(P,B) system when measured
contrastively, but these gains are not reflected in
the generative metric. This calls into question the
reliability of contrastive metrics, since we know

this system has no generative document capacity.

We direct special attention to SENTx(P,B5).
This system was trained on sentences only, yet it
performs on par with—and even above—the best
literature results. Yet we know from the generative
experiments that when asked to produce these trans-
lations, it is often unable to do so. Discriminative
ability is not the same as generative.

We repeat the note from Section 3.3 that genera-
tive evaluation may penalize a system that produces
a correct sentence not containing the pronoun, or
unfairly credit a system that happens to generate
the pronoun by accident, but do not expect that this
will favor any particular system. Spot-checking
suggests to us that the large differences reported in
Table 6 capture actual improvements.

6.3 Generative accuracy captures differences

Finally, Table 7 shows a similar gap between the
Doc(P,B;) and other systems when testing for
word-based accuracy. For EN—DE and EN—FR,
the gender categories are similar to the ContraPro
test sets for those languages, but much larger. The



other categories show that the gains continue across
a range of linguistic phenomena.

7 Related Work

A good early survey of work in contextual neural
MT is Maruf et al. (2019), who cover work with
both RNN and Transformer frameworks along a
rich taxonomy.

The transition to neural architectures was a
paradigm enabler for document translation, since it
eliminated the Markov limitations of statistical MT.
Much work has focused on special architectures
and input encodings. This includes cache models
(Tu et al., 2018; Kuang et al., 2018), hierarchical
attention (Miculicich et al., 2018), separately en-
coding context (Voita et al., 2018; Zhang et al.,
2018), allowing attention across a batch of pseudo-
documents (Wu et al., 2023), encoding sentence
position (Bao et al., 2021; Lupo et al., 2023), and
sparse attention mechanisms (Guo et al., 2019). A
number of approaches work on base systems out-
puts, such as post-editing with contextual language
models (Voita et al., 2019a) and using contextual
language models to rerank sentence-level system
output Yu et al. (2020). Junczys-Dowmunt (2019)
built one of the earliest contextual systems to per-
form well at WMT. Sun et al. (2022) also proposed
to use standard transformer models, testing small
architectures with no backtranslated data, and us-
ing a “multi-resolutional” training approach that
creates overlapping documents.

Datasets with document annotations include
OpenSubtitles (Lison and Tiedemann, 2016), WIT?
(Cettolo et al., 2012), News Commentary, and Eu-
roparl (Koehn, 2005). Liu and Zhang (2020) pro-
vide a nice survey, and release a small amount
of government-crawled new data for Chinese—
Portuguese. The Conference on Machine Trans-
lation (WMT) began releasing limited document-
level data for DE-EN and CS-EN in 2019 (Barrault
et al., 2019). This limitation has forced researchers
to get creative. Voita et al. (2019b) built a mono-
lingual post-editing system that took the output of
a baseline system and used it for document-level
“repair”’. Sugiyama and Yoshinaga (2019) also used
target-side data for backtranslation, evaluating in
small-data settings with BLEU and contrastive met-
rics. Our work scales to very large web-crawled
datasets and shows that parallel data, as a whole,
may be harmful.

Contextual metrics work has been important.

PROTEST (Guillou and Hardmeier, 2016) used
hand-designed pronoun test cases and also evalu-
ated generatively. Liubli et al. (2018) provided
early evidence that document-level metrics would
be helpful. BlonDe (Jiang et al., 2022), eval-
uated for Chinese—English, automatically identi-
fies discourse-relevant phenomena in the output
and compares to a reference, optionally combined
with an n-gram fluency component. Doc-COMET
(Vernikos et al., 2022) is simpler and builds sen-
tence representations from context. Both metrics
are interesting but await deeper evaluation and we
did not explore them in this paper. Vamvas and
Sennrich (2021) have also noted the problem with
the disconnect between contrastive evaluation and
generative ability for machine translation. Fer-
nandes et al. (2023) developed rules to identify
contextually-dependent sentences.

8 Conclusions

Machine translation research and production sys-
tems continue to be dominated by sentence-level
approaches. A common explanation for this short-
coming is the lack of document-annotated parallel
data. Our results suggests that parallel data may
be of high enough quality for building sentence
systems, but may be harmful when used to build
contextual ones. As an explanation, we consider it
a strong possibility that web-crawled parallel data
contains too much machine translation output, con-
taminating the contextual signal. This suspicion
makes sense a priori, and is confirmed in other re-
cent work(Thompson et al., 2024). We have also
shown the importance of evaluating contextual ma-
chine translation output in its generative capacity,
rather than in its ability to discriminate good out-
puts from bad ones. In fact, the failed contex-
tual signal was invisible without such evaluation.
This can be done by using challenge sets (which
often mark the expected word) at sufficient scale
to cover the noise of the accuracy metric, or by us-
ing standard corpus-level metrics like COMET on
test sets that are sufficiently dense with contextual
phenomena.

A fruitful avenue for followup work is to auto-
matically identify sentences that require context
to translate correctly, which could be used to filter
training data and also in the construction of new test
sets. Though we have focused on “traditionally”-
trained MT, it will also be useful to learn how
LLMs perform on these tasks.



Limitations

With respect to reproducibility, the deepest limita-
tion of our paper is our use of private, rather than
public, data. As we explained, this was a necessity,
since public data does not contain the annotations
we need. There is therefore a risk that our findings
might not be reproducible by other teams work-
ing with (necessarily) different datasets. We have
attempted to mitigate this problem by reproduc-
ing a subset of our results on publicly available
data (Appendix C), where our findings stood. We
hope that this corroboration, together with the the
fact that harvesting data from the web is itself a
well-understood science, help mitigate this risk. Fi-
nally, although we suspect our results will hold for
language pairs beyond the three we investigated,
further complications could arise, and it is possible
they will not generalize.

We have focused on adding a missing capability
to the traditional MT training pipeline, still actively
used in both research and deployment. We leave to
future work an in-depth comparison to LLMs on
contextual performance using these measures.
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A Dataset examples

Examples from the datasets used for generative and
contrastive evaluation can be found in Tables 8 and
9.

B Model capacity

Much work in investigating document-level ma-
chine translation has been limited to standard-size
Transformer architectures (cf. Zhang et al. (2018);
Sun et al. (2022); Lopes et al. (2020)). Yet it stands
to reason that modeling longer-range phenomena
will require increased model capacity, and in fact,
the base model size we chose for our experiments
(12 layer encoder, 16k FFN) reflects this. Here, we
provide more detail, varying two model parameters
only: (i) the number of encoder layers, and (ii) the
width of the model feed-forward layer (encoder and
decoder side). We keep all other parameters the
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The
working. | Der
ich durchlaufen, Sir. {

has passed every test, sir. It’s
hat jeden Test erfolgre-
,Es,Sie} funktioniert.

(a) ContraPro example. Contrastive examples are formed
by substituting incorrect pronouns.

Veronica, thank you, but you saw what happened.
We all did. | Beponuka, cnacu6o, HO THI BHJEINA,
YTO MPOU30LLIO0. MBI BCe XOTeJIH.

(b) GTWiC example. The first Russian sentence uses the
formal register.

Table 8: Examples from contrastive test sets.

(AUX ) I just figured you need to know. And
now you do. — Je pensais que tu méritais de
savoir. Et maintenant tu sais.

(INF) My friend had some mech work done here.
Industry stuff. — Bor craBuim uminianT mMoei
noapyre. IIpoMBIIIIEHHYIO IITYKOBUHY.

(FORm) I don’t know you, but.. — Ich kenne
Sie nicht, aber...

Table 9: Examples of contextually-sensitive auxiliary
and inflection elision from the CTXPro dataset.

same, including fixing the decoder depth to 6. Fo-
cusing on changes to the encoder depth helps limit
grid search and is justified by prior work showing
that (relatively cheap) encoder layers can be traded
for (relatively expensive) decoder layers with no
penalty (Kasai et al., 2020). We alternate between
increasing the number of encoding layers, and in-
creasing the dimension of the Transformer feed-
forward layer.

Table 10 contains English—-German results. Un-
surprisingly, all scores continue to rise, up to the
wide 18-layer model. Both increasing the number
of encoder layers, and increasing the size of the
FFN, contribute to better performance. This sug-
gests that the common approach of working with
6-layer Transformer base models is not enough
for document-context MT. There is more to gain
by moving to larger models and likely, to larger
datasets and context lengths, as well.

C Results on public data

The full breadth of this paper’s experiments was
not possible on public datasets; due to the lack
of document annotations on large-scale parallel
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arch params | BLEU COMET C/Pro G/Pro
6/1k 146m 27.0 4877 652 584
6/2k 171m 27.4 49.7 66.2 58.7
6/4k 221m 28.0 51.0 69.7 629
12/4k  297m 28.4 51.8 706 66.0
6/8k 322m 27.8 51.0 71.7 628
12/8k  448m 28.6 525 742 67.1
6/16k  523m 28.4 51.7 745 649
18/8k  574m 28.8 53.0 750 67.1
12/16k  750m 28.9 52.8 75.8 685
18/16k 977m 29.3 533 755 694

Table 10: Model capacity (encoder layers / FFN / #
params) for an EN-DE document model, ordered by
param. count. Decoder depth is always 6 layers. Scores
were computed on a checkpoint after 30k updates.
BLEU and COMET scores are on WMT21, translating
as sentences. C/Pro is over the complete test set, while
G/Pro is over only sentences with external anaphora.

data, we are unable to build Doc(P4,B,) and
Doc(P4,B) systems. However, we can build the
SENT(P,B) and DOC(P,B,) systems with a subset
of the WMT22 EN—DE data with monolingual
document annotations, and see whether they ex-
hibit the same pattern.

We use all available parallel data provided for
WMT22 (Kocmi et al., 2022):'> Europarl v10
(Koehn, 2005), Paracrawl v9 (Bafién et al., 2020),
Common Crawl,!*> News Commentary, Wiki Ti-
tles v3, Tilde MODEL Corpus (Rozis and Skadins,
2017), and Wikimatrix (Schwenk et al., 2021a). A
few of these resources have document-level infor-
mation, but we do not use any of it. For monolin-
gual data, the only data available with document
metadata is News Crawl.'* We used all even years
from 2008-2020, backtranslating it from German
to English with an internal system. No filtering is
applied. From this data, we train the only two of
our systems supported by this setup: SENT(P,5)
and Doc(P,By). These are trained for 40 virtual
epochs each using the same settings described in
Section 5.1

Results can be found in Table 11. They are en-
couraging: we see the same pattern of improvement
between SENT(P,B8) and Doc(P,B,), although the
absolute numbers are lower. Compared to our in-

PZstatmt. org/wmt22/translation-task.html
Bhttps://commoncrawl.org/
“https://data.statmt.org/news-crawl/de-doc/
SMono data: 311.2m lines, 14.1m docs, with a mean sen-
tence length of 21.9 sentences. Parallel data: 297.6m lines.
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system | COMET | C/Pro G/Pro
SENT(P,B) 60.6 | 56.7 239
Doc(P,By) 594 | 834 64.3

Table 11: Metrics on the only two models we are able
to build on public data. Similar patterns are observable
to those seen in Tables 4 and 6.

house data, the document metrics are even better
for SENT(P,B).


statmt.org/wmt22/translation-task.html
https://commoncrawl.org/
https://data.statmt.org/news-crawl/de-doc/
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