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ABSTRACT

Dialogue system for medical automatic diagnosis (DSMAD) aims to learn an
agent that mimics the behavior of a human doctor, i.e. inquiring symptoms and
informing diseases. Since DSMAD has been formulated as a Markov decision-
making process, many studies apply reinforcement learning methods to solve it.
Unfortunately, existing works solely rely on simple diagnostic accuracy to justify
the effectiveness of their DSMAD agents while ignoring the medical rationality
of the inquiring process. From the perspective of medical application, it’s criti-
cal to develop an agent that is able to produce reliable and convincing diagnosing
processes and also is robust in making diagnosis facing noisy interaction with
patients. To this end, we propose a novel DSMAD agent, INS-DS (Introspec-
tive Diagnosis System) comprising of two separate yet cooperative modules, i.e.,
an inquiry module for proposing symptom-inquiries and an introspective module
for deciding when to inform a disease. INS-DS is inspired by the introspective
decision-making process of human, where the inquiry module first proposes the
most valuable symptom inquiry, then the introspective module intervenes the po-
tential responses of this inquiry and decides to inquire only if the diagnoses of
these interventions vary. We also propose two evaluation metrics to validate the
reliability and robustness of DSMAD methods. Extensive experimental results
demonstrate that INS-DS achieves the new state-of-the-art under various exper-
imental settings and possesses the advantages of reliability and robustness com-
pared to other methods.

1 INTRODUCTION

Dialogue system for medical automatic diagnosis (DSMAD) aims to learn an agent to collect pa-
tient’s information and make preliminary diagnosis in an interactive manner like a human doctor.
This task increasingly grasps the attention of researchers because of its huge industrial poten-
tial (Tang et al., 2016). Similar to other task-oriented dialogue tasks (Lipton et al., 2018; Wen et al.;
Yan et al., 2017; Lowe et al., 2015), DSMAD is composed of a sequence of dialogue-based inter-
actions between the patient and the agent, which can be formulated as a Markov decision process
and resolved by reinforcement learning (RL) (Mnih et al., 2015; Van Hasselt et al., 2016). Although
several frameworks have been proposed (Xu et al., 2019; Wei et al., 2018; Peng et al., 2018; Tang
et al., 2016), DSMAD is still far from being applicable, because these works only evaluate the agent
based on the accuracy of diagnosis, but ignoring the importance of robustness and reliability for
practical medical applications. The two major shortcomings of the current DSMAD methods are
summarized below.
Unreliable symptom-inquiry and disease-diagnosis. It is reasonable to measure DSMAD by di-
agnosis accuracy since the accuracy is the ultimate goal of the task. However, in unilateral pursuit of
high accuracy, DSMAD agent pays less attention to the rationale of the diagnosis process, reducing
the trust of users. For example, a DSMAD agent might jump into a conclusion without inquiring
about any symptom. As long as the diagnosis is correct, such an agent will still get a positive reward.
In this sense, the correctness of diagnoses is not sufficient to reflect the performance of DSMAD,
and might lead the agent to make a hasty diagnosis without interactions. Moreover, DSMAD should
learn to make consistent disease-diagnoses according to the symptom-disease relation in the training
data, insensitive to the noise happened during training.
Sensitive to small disturbance. Almost all of the current DSMAD methods combine the operation
of symptom-inquiry and disease-diagnosis together and allow models to make the sequential deci-
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sion in a black-box manner (Zhang & Zhu, 2018; Koh & Liang, 2017) without regulations, resulting
in a system vulnerable to the noise during the interaction process. If we place one of the inquired
symptoms to the self-report (to ensure the information is consistent between two cases), the agent
sensitive to noise would make different diagnoses.
To this end, we propose a novel DSMAD agent, Introspective Diagnosis System (INS-DS) (Fig. 1)
and two new evaluation metrics in terms of reliability and robustness. The diagnosis logic of INS-DS
draws on the introspective decision-making process of human doctors. In real life, human doctors
come into a conclusion if they believe that more inquiries make no difference. In INS-DS, the
inquiry module is responsible for selecting the most valuable symptom to be inquired about, while
the introspective module intervenes the potential answers of this inquiry to decide whether to inquire
the symptom or inform the disease. Specifically, the introspection module assigns different possible
answers to the inquiry resulting in multiple one-step-look-ahead dialogue states. Then it inspects
whether the diagnosis results of these states are going to be varied. If the predicted results are
the same, which means that inquiring the most valuable symptom inquiry would result in the same
diagnosis, INS-DS will inform the disease instead. Otherwise, the agent would inquire about the
symptom. Such mandatory introspection makes the inquiry more disease-related because the agent
is not allowed to make a diagnosis until the agent has collected sufficient symptom information. It
also makes the disease-diagnosis more consistent because the disease can only be informed when
the comprehensive hypothesis test is passed.
To quantify the reliability and robustness of DSMAD, we also propose two novel evaluation metrics,
namely, reliability and robustness.
Reliability. The purpose of the reliability metric is to quantify how confident the diagnosis is from
the perspective of the model (internal trust or Int.) and user (external trust or Ext.). The internal trust
is to testify whether the diagnoses made by the model is insensitive to the task-irrelevant factors,
e.g., the sampling noise and parameter initialization. Specifically, for Int., we adopt the expected
diagnostic probability of a set of bootstrapping models. These bootstrapping models are initialized
with different parameters and trained on re-sampled data with replacement, to reduce the effect of
the parameter initialization and the data sampling. Therefore, the higher Int. is, the less sensitive
the diagnosis result is to the noise in the training process. The external trust is proposed to indicate
the trust degree of a diagnosing process to users. Intuitively, patients are more likely to believe in
the diagnosis made from the agents who request symptoms like human doctors. According to this
intuition, for Ext., we compute the symptoms overlap ratio based on the co-occurrence between
symptoms and diseases in the diagnostic dialogue dataset. The higher the level of Ext., the more
likely the agent is to inquire symptoms like a human doctor.
Robustness. As for robustness, we draw on the inspiration from the noted adversarial attack (Ku-
rakin et al., 2018) in machine learning models, which generally uses samples with a subtle modifica-
tion that is indistinguishable for human but may be different for a machine to prove the vulnerability
of a model. Our evaluation metric for the robustness is the final unaltered proportion of correct
diagnoses after feeding the model with the attack samples constructed according to the formulas in
Sec. 5.
The extensive experimental results evidence that INS-DS achieves the superior performance com-
pared to other DSMAD baselines under various settings and possesses the advantages of reliability
and robustness. We also conduct human evaluations on our INS-DS and achieve significant improve-
ment in the aspects of diagnosis validity, symptom rationality as well as topic transition smoothness.

2 RELATED WORK

The task-oriented dialogue system is designed to accomplish specific tasks, like the ticket, restaurant
booking, online shopping etc. (Lipton et al., 2018; Wen et al.; Yan et al., 2017). Most of the current
task-oriented dialogue systems adopt the framework of reinforcement learning (Mnih et al., 2015;
Lipton et al., 2018; Li et al., 2017), and some adopt the sequence-to-sequence style for dialogue
generation (Madotto et al., 2018; Wu et al., 2019; Lei et al., 2018).
For medical dialogue system, due to a large number of symptoms, reinforcement learning is a better
choice for topic selection (Tang et al., 2016; Kao et al., 2018; Peng et al., 2018). Tang et al. (2016)
apply Deep Q-Network (DQN) (Mnih et al., 2015) to diagnose using synthetic data. While Wei
et al. (2018) first did experiments on real-world data using DQN. To include explicit medical induc-
tive bias for improving the diagnostic performance, Xu et al. (2019) proposed an end-to-end model
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guided by a symptom-disease knowledge graph. KR-DQN applies the predefined conditional prob-
ability of symptom and disease to transform the Q-values estimated by DQN. However, it’s often
difficult to get a knowledge graph in real life. Moreover, most of these methods integrate symptom-
inquiry and disease-diagnosis actions into one single reinforced policy network without considering
the essential difference between symptom-inquiry and disease-diagnosis, allowing the agent to jump
into conclusions rashly to avoid the possible penalty in the diagnosing process. Different from these
methods, our approach divides the actions for symptom-inquiry and disease-diagnosis into two sep-
arate but cooperative neural modules. The idea of drawing the lesson from human is not new. Ling
et al. (2017) improve the performance of diagnosis for clinical documents by replicating the memory
recall and attention mechanism in the human decision-making process. They selected evidence from
the external clinical source according to the hint sentences of the given clinical document and then
applying reinforcement learning to filter out the useless evidence. Different from DSMAD, instead
of interacting with the patient, their RL agent is used to decide whether the matching evidence is
useful or not. And similar to (Xu et al., 2019) and (Wei et al., 2018), Ling et al. (2017) also rely
on the agent to choose to stop but not through an introspective stop mechanism as ours.
As for evaluation, aware of that only final diagnosis accuracy is not sufficient, current methods
measure the performance of the diagnosing process by computing the hitting rate of the inquired
symptoms. Lei et al. (2018); Madotto et al. (2018); Wu et al. (2019) compute the entity F1 scores.
Xu et al. (2019) use the matching rate compared to all asked symptoms while Tang et al. (2016); Kao
et al. (2018); Peng et al. (2018) measure by the average number of queried positive symptoms of
each user goal. However, the recorded symptoms in one user goal are generally a small subset of the
actual disease-relevant symptoms in the whole dataset. Therefore, measuring DSMAD according
to the recorded symptoms in each user goal could not reflect the actual performance of DSMAD
in general. Different from them, one of our proposed metrics in this paper, namely, external trust,
measures the matching rate according to the symptom-disease co-occurrence of the whole dataset.
Besides, we also propose the metrics for evaluating the model’s confidence in the decision and the
robustness to the noisy input.

3 PRELIMINARY

3.1 DIALOGUE SYSTEM FOR MEDICAL AUTOMATIC DIAGNOSIS

Medical automatic diagnosis is to interact with the users, actively collect useful information, and
conduct preliminary diagnosis according to the collected information. In this task, a user goal in the
dataset includes a self-report (e.g., ”Doctor, my child has a headache. What happened to him?”), a
set of explicit symptoms, a set of implicit symptoms and a ground-truth disease. Usually, a patient
simulator is built upon user goal to create an interactive environment. Given a user goal, the patient
simulator starts the dialogue with the self-report, and then answers the inquiries from the DSMAD
agent according to the recorded symptom information in the user goal. DSMAD agent chooses to
inquire the next symptom or inform the disease according to the dialogue state in each turn. When
the agent inquires a symptom, it would get meaningful feedback if the symptom is presented in the
explicit symptoms or implicit symptoms of the user goal. And if the agent chooses to inform a
disease, the discourse will be ended and the agent will receive feedback on the ground-truth disease.
In this paper, we adopt the same patient simulator used in (Xu et al., 2019).
Generally, DSMAD consists of three elementary components: 1) natural language understand-
ing (NLU), which is used to parse the language input of the patient to fill the semantic symptom
slots; 2) dialogue management (DM), which is used to track the dialogue history and predict next
dialogue state according to the gathered information; 3) natural language generation (NLG), which
is used to generate natural language for either symptom inquiry or disease diagnosis. Different from
works (Xu et al., 2019; Wei et al., 2018), this paper focuses on the decision-making part in DM,
that’s, using the reinforced agent to either inquire a symptom or inform a disease. The NLU and
NLG components used in this paper are the same as (Xu et al., 2019).
3.2 NOTATION

We design our agent in deep reinforcement learning framework (Mnih et al., 2015). The medical au-
tomatic diagnosis can be formulated as a finite-horizon Markov decision process (MDP), defined by
the tuple (S,A, p, r), where the state space S and the action space A are discrete. Patient commu-
nicates with the dialogue system by request+disease (inform the self-report) or confirm/deny/not-
sure+symptom. There are three types of symptom states, positive, negative and not-sure, represented
by value 1, -1 and 0 respectively. We also provide a binary indicator for each symptom to indicate
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Figure 1: INS-DS with symptom-inquiry and introspection module. In the symptom-inquiry module, the
current dialogue state st is fed to the policy network to choose a candidate symptom i. Then, in the introspective
module, st is further intervened by setting the value of symptom i with all possible values to generate multiple
one-step-look-ahead s′t+1 s. These s′t+1 s are forwarded to the disease classifier to predict the diseases. The
introspection module will choose to inform the disease if all predicted diseases are the same, otherwise, the
agent will continue to inquire about the symptom i.

whether a symptom has been mentioned. At each turn, the dialogue state s ∈ S is composed of the
value and the binary indicator of each symptom. The state tracker in DM records mentioned symp-
toms in the dialogue and produces the up-to-date dialogue state st at time t. And the action space
consists of the actions of symptom-inquiries and disease-diagnoses. Without causing conflict, M
denotes the number of the diseases and N denotes the number of the symptoms. Therefore the size
of the action space isN+M . The unknown state transition probability p : S×S×A → [0,∞) rep-
resents the probability of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A.
The patient simulator emits a bounded reward r : S ×A → [rmin, rmax] on each transition.
The target of reinforcement learning is to maximize the expected accumulated rewards
E[
∑
t=0:T γ

trt], where γ is the discount factor to adjust the horizon of the foresight. In this pa-
per, we adopt the classic q-learning to optimize the policy with parameter θ, via minimizing the
temporal-difference:

min
θ

E(st,at,rt,st+1)[
(
Q(st, at; θ)− rt − γmax

a
Q(st+1, a; θ)

)2
]. (1)

4 INTROSPECTIVE DIAGNOSIS SYSTEM

Generally, disease-diagnosis is the most critical step because only the correct diagnosis result could
make the patient get the correct treatment. With a sense of security and responsibility, doctors in-
trospect their decisions by imagining all the potential outcomes (Rubin, 1974) before making the
final diagnoses. Inspired by this diagnosing process, we propose an introspective diagnosis sys-
tem (INS-DS), which includes a symptom-inquiry module to select a symptom to be inquired about,
and an introspection module to determine whether to inquire about that symptom or to inform the
predicted disease. Different from the most popular diagnosis systems which treat symptom-inquiry
and disease-diagnosis equally (Xu et al., 2019; Wei et al., 2018), our method only allows the disease-
diagnosis to be made after considering all possible future outcomes in order to make the decision
more reliable and interpretable. Also, INS-DS requires more correlation between the symptom-
inquiry and the disease-diagnosis. In INS-DS, only when the candidate symptom can trigger differ-
ent diagnosis results will the symptom be inquired about. And only when the most valuable inquiry
proposed by the symptom-inquiry module makes no difference to the future diagnosis will the pre-
dicted disease be informed. INS-DS pipeline is illustrated in Fig. 1. Next, we elaborate the details
of the two modules.
Symptom-inquiry module. At time t, the state tracker gathers historical symptom information to
generate the current dialogue state st. Then st is input to the symptom-inquiry module, which is
responsible for selecting the most valuable symptom inquiry. As mentioned previously, st consists
of two vectors, one for the presences of symptoms and another for the visitation indicators. The
two vectors are fed into two different Multi-Layered Perceptrons (MLPs) with parameters θ, whose
outputs are fused by Hadamard multiplication to produce the final Q values of all possible inquiries,
i.e. qt ∈ RN . Both MLPs consist of two fully-connected layers. And only the symptom inquiry
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with the maximum Q value will be selected as a candidate action and then be forwarded to the
introspection module.
Introspection module. The introspection module would examine the necessity of the symptom
inquiry by predicting potential diseases caused by all possible answers of the symptom inquiry. If
the potential diseases are different, meaning that the symptom will cause differences in determining
the disease, the agent would choose to request the symptom. Otherwise, the agent will inform
the disease. Specifically, after receiving the most valuable symptom i from the symptom-inquiry
module, the introspection module intervenes all possible outcomes if the inquiry were made. This
process is named as Intervention demonstrated in Fig. 1, which is an important ability for our Homo
sapiens ancestors to achieve global dominion (Pearl, 2018). To do so, the intervention function
replaces the symptom value of symptom i in st with all possible values (i.e., -1, 0 and 1) and sets the
visitation indicator of the symptom as 1, to produce several imaginary states s′t+1s (with the same
size as the number of the possible answers to the inquiry). These one-step-look-ahead states are then
forwarded to a disease classifier to produce their corresponding diagnoses. The classifier is an MLP
with three fully-connected layers.
Training objective. In the introspection module, we adopt a classifier to infer the diseases of poten-
tial outcomes of intervention. The classifier is trained with input-label pairs (st, dT )s for t ∈ [0, T ]
collected after each training episode with length T using cross-entropy. In order to optimize the
inquiry policy, we employ Deep Q-learning following (Mnih et al., 2015), and two important DQN
tricks, i.e. target network Q′ with parameter θ′ and experience relay are adopted (Van Hasselt et al.,
2016). In order to combine the introspection with the policy optimizing, the objective of INS-DS is
derived from Equ. 1.
We use Q(st, at; θ) to denote the expected discounted sum of rewards, after taking an action at
under state st. Different from traditional temporal difference whose proposed action is the actual
executed action, our policy with introspection is updated according to

min
θ

E(st,at,st+1)[
(
Q(st, at; θ)− r

(
st, Introspection(st, at)

)
− γmax

a
Q′(st+1, a; θ

′)
)2
], (2)

where θ′ is the parameters of the target network updated by θ′ ← αθ + (1 − α)θ′, where α is the
polyak factor. Introspection(s, a) denotes the process in the introspection module. We use ε-greedy
exploration at training phase for exploration, selecting a random action according to probability ε.
We store the agents experienced transition at each time-step to a experience replay buffer.

5 EVALUATION CRITERIA

Most diagnosis systems use accuracy to evaluate performance (Wei et al., 2018; Xu et al., 2019).
However, we argue that only accuracy is insufficient to evaluate a diagnosis system as a medical
application. In particular, two major shortcomings observed in prior works (Wei et al., 2018; Xu
et al., 2019) are the lack of reliability and robustness. To this end, we propose two novel metrics,
namely, reliability and robustness, as complements to accuracy.
5.1 RELIABILITY

In real life, prudent doctors tend to be cautious when faced with unfamiliar cases while unpro-
fessional doctors may ask for some irrelevant symptoms that cause patients’ distrust. To quantify
whether a DSMAD agent is reliable, we introduce two new evaluation criteria for reliability, namely,
Internal Trust (Int.) and External Trust (Ext.).
Internal trust. In order to model the internal trust of a diagnosis system, we adopt the bootstrapping
method to produce multiple diagnosis results from 100 models, m(k), k ∈ [1, 100]. We employ a
random sampling strategy with replacement to generate training set for each model. The models
are initialized with different random parameters. By considering the noises of data sampling and
parameter initialization, the expected diagnosis prediction of the bootstrapping models ought to be
less sensitive to these noises. We calculate the expectation of the diagnoses from these models by:

PrInt.(d|p) = Pr{m(k)}(d|p) = E{m(k)}[m
(k)(p) = d], and Int.(m) =

1

D

D∑
i=1

PrInt.(m(pi)|pi).

(3)
where p denotes a patient and d denotes a disease, m is the target model and D is the size of test
patients.
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External trust. As for modeling the external trust, we calculate the coverage ratio of the men-
tioned symptoms during the diagnosing process. Specifically, we first calculate the symptom-disease
co-occurrence PrExt.(Symptom|d) from the whole dataset. Then we calculate the external trust
of each dialogue using the average probability of the mentioned symptoms corresponding to the
ground-truth disease. Denote the set of symptoms inquired by the target model m when interacting
with the patient pi as {Symp.j , j ∈ [1, Hpi ]}, where Hpi is the number of the inquiries. Formally,
the final external trust of the target model m is the averaged external trust of all test dialogues as

Ext.(m) =
1

D

D∑
i=1

1

Hpi

Hpi∑
j=1

PrExt.(Symp.j |d∗pi), (4)

where D is the size of the test patients and d∗pi is the ground-truth disease of patient i. In order to
reach higher external trust, the system is required to inquire disease-relevant symptoms which are
frequently inquired about in real life.
5.2 ROBUSTNESS

Robustness refers to the ability of a system to stay functioning correctly in the presence of noisy
inputs or stressful environmental conditions. Enlightened by the adversarial attack theory of current
machine learning models (Kurakin et al., 2018), in the context of the medical dialogue system, we
consider the robustness of a model measured by the invariance under the noisy inputs which are
designed to have little impact on the final diagnosis. Owing to the particularity of the medical diag-
nosis, that is, subtle changes in symptoms might lead to different diagnoses (for example, reversing
the presence of a symptom might associate the patient with a complete distinct disease), we design
two relatively innocuous patterns of noises to symptoms in a user goal: 1) Given the symptom-
disease relationship, we move 0 ∼ k symptoms with the weakest correlation to the ground-truth
disease from explicit symptoms to the implicit symptoms; 2) Add 1 ∼ h symptoms to the user goals
that are mostly correlated to the ground-truth disease. To quantify the robustness of the model m,
we calculate the unaltered ratio of the correct diagnoses given the noisy test set P ′, formally:

Rub.(m;P ′) = EP ′ [m(p′) = m(p)|m(p) = d∗], (5)

where p is the original data of the noisy data p′, and d∗ is the ground-truth disease. The robustness is
calculated on the patients whose original diagnoses are correct (i.e.,m(p) = d∗). This is because the
misdiagnoses made by a robust system could be attributed to the inadequate symptom information
from the patients. Therefore, a robust system is reasonable to change its diagnoses with more or less
symptom information from these patients.

6 EXPERIMENTS

We begin by introducing the two open-released DSMAD benchmarks used in this paper and the
baseline approaches. Then, we compare different methods w.r.t. diagnosis accuracy as well as our
proposed metrics. Moreover, we have conducted a human evaluation of different approaches to
better demonstrate the superiority of our method from the human expert perspective.
Benchmarks. In this paper, all experiments are conducted using the two open-released medical
diagnosis datasets, i.e., MuZhi (MZ) and DingXiang (DX). MZ is a synthesized dataset proposed
by Wei et al. (2018), which includes 586 training and 142 test records with 66 symptoms and 4
diseases; DX in Xu et al. (2019) consists of 423 training and 104 test records with 41 symptoms
and 5 diseases1. Records in MZ are synthesized so that its records are clean and structural. Different
from MZ, records in DX Xu et al. (2019) is collected in real life, so that the raw self-report corpus are
maintained in these records. In both datasets, the diagnosis record contains the ground-truth disease,
the explicit symptoms (i.e. the symptom information in self-report), the implicit symptoms (i.e. the
symptom information mentioned during the discourse).
Baselines. In this section, we focus on evaluating and analyzing the performance of current DSMAD
baselines, i.e., Basic DQN (Wei et al., 2018), KR-DS (Xu et al., 2019), including our proposed INS-
DS. Basic DQN makes the first attempt to apply the classical reinforcement learning framework,
deep q-network (Mnih et al., 2015), to dialogue-based medical automatic diagnosis system. Based

1The diseases in MZ are infantile bronchitis (Bronch.), upper respiratory tract infection (U.R.I.), infantile
diarrhea (I.D.) and infantile dyspepsia (Dysp.); and the diseases for DX are allergic rhinitis (A.R.), upper
respiratory tract infection (U.R.I.), infantile diarrhea (I.D.), infantile hand-foot-and-mouth disease (H.F.M) and
pneumonia (Pneu.). For brevity, In the experiment section, disease names in the tables are abbreviations.
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Table 1: Diagnosis accuracy of different baselines on MZ dataset and DX datasets

Method MZ DX
I.D. Dysp. U.R.I. Bronch. Overall A.R. U.R.I. Pneu. H.F.M. I.D. Overall

SVM-ex 0.89 0.28 0.44 0.71 0.59 0.5 0.92 0 0.8 0.95 0.64
SVM-ex&im 0.91 0.34 0.52 0.93 0.71 0.7 0.96 0.35 0.75 0.9 0.74
Basic DQN (2018) - - - - 0.65 0.7 0.79 0.55 0.7 0.9 0.73
KR-DS (2019) 0.96 0.39 0.5 0.97 0.73 0.9 0.67 0.3 0.95 0.9 0.74
Our INS-DS 0.87 0.55 0.60 0.82 0.73 0.75 0.96 0.3 0.95 0.8 0.76

Table 2: Dialogue performance on DX dataset

Method Acc. Match rate #turns

Basic DQN (2018) 0.731 0.110 3.92
Sequicity (2018) 0.285 0.246 3.40
KR-DS (2019) 0.740 0.267 3.36
Our INS-DS 0.760 0.290 5.84

Table 3: Robustness on MZ dataset.

Method NS.1 NS.2 NS.3

Basic DQN (2018) 0.669 0.785 0.699
KR-DS (2019) 0.883 0.864 0.806
KR-DS-relation* (2019) 0.760 0.836 0.785
Our INS-DS 0.840 0.883 0.835

on this method, KR-DQN incorporates the pre-defined symptom-disease conditional probability to
transform the output of DQN to improve diagnostic performance. For fair comparison, we adopt
the same NLU from (Xu et al., 2019) for all baselines. Following the same settings as (Wei et al.,
2018) and (Xu et al., 2019), we also includes the supervised learning baselines SVM-ex (using
explicit symptoms as input), SVM-ex&im (using explicit and implicit symptoms as input) as well as
Sequicity (Lei et al., 2018) (sequence-to-sequence model). Since these supervised learning methods
were not trained or evaluated with interactive processes, we only evaluate the accuracy of these
methods to highlight the effectiveness of the RL baselines.
Training Details. In general, the maximum discourse length of these baselines is 22. Rewards are
critical to reinforcement learning. We follow the reward settings in (Xu et al., 2019), where +44
reward is used to encourage successful diagnosis and -22 to punish misdiagnosis. For each turn, -1
is used to penalize the failure to hit one of the recorded symptoms in the user goal. The philosophy
of the scale of the reward is to balance the maximum accumulated rewards (+44) and minimum
accumulated rewards (-22+-1×22=-44). Empirically, the size of the replay buffer is 1e6, the discount
factor γ is set as 0.95, the polyak factor α is 5e-3, the learning rate is 1e-4 and the optimization
method is Adam (Kingma & Ba, 2014). The maximum interaction runs for each experiment is
1e6. At the end of the training, the lastest model with the best diagnosis accuracy on training set
is adopted for evaluation. As for training 100 bootstrapping DSMADs and synthesizing noisy test
datasets, we adopt different random seeds to keep them various.
As for the training data for the disease classifier, we use data in replay buffer which is collected
along training. Specifically, at each training step, the RL agent interacts with the patient simulator
and generates the dialogue state comprised of the symptom value vector and the binary visited
indicator vector, as mentioned in Sec.3.1. At the end of each discourse, each of these dialogue states
are paired with the disease label and stored into the experience replay buffer. When updating the
disease classifier, a batch of training data is sampled from the replay buffer, and then the classifier
takes the symptom value vectors and disease labels as the training inputs and labels, respectively.
The classifier is training along the training of the RL policy.
6.1 QUANTITATIVE RESULTS

In this part, we compare different baselines with our method using the metrics diagnosis accuracy
as well as our proposed DSMAD metrics for reliability and robustness. Note that, the results of
the baselines are the best number reported in their papers if provided. Otherwise, the results are
calculated by running the open/reproduced codes.
Accuracy of diagnosis. We compared the performance of our method and the state-of-art methods
by diagnostic accuracy as well as matching rate, as shown in Tab. 2 and Tab. 1, which strictly follows
the same settings as (Xu et al., 2019). Method Sequicity (Lei et al., 2018) is only evaluated on DX
because it requires raw language as input. And the results of each disease of Basic DQN in Tab. 2
is missing because the results are from the paper (Xu et al., 2019). According to these tables, our
approach exceeds or reaches the comparable diagnosis accuracy of KR-DS which is guided by the
external knowledge. In the Tab. 1, we observed that the accuracy of diseases “infantile diarrhea”
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Table 4: Internal/external trusts and diagnosis entropy on MZ and DX datasets.

Method MZ DX
Int. Ext. Ent. Int. Ext. Ent.

Basic DQN (Wei et al., 2018) 0.6298 0.4054 0.6351 0.7428 0.0135 0.4563
KR-DS (Xu et al., 2019) 0.7999 0.4740 0.2204 0.7438 0.1632 0.3663
Our INS-DS 0.8508 0.4832 0.0414 0.7916 0.4327 0.0614

(I.D.) and “infantile bronchitis” (Bronch.) of baseline methods are much higher than the accuracy
of the other two diseases. Aware of the similarity of these diseases (“infantile diarrhea” is similar
to “infantile dyspepsia” and “infantile bronchitis” is similar to “upper respiratory tract infection”),
we concludes that the baselines method have learnt a biased diagnoser to obtain a higher overall
diagnosis accuracy. And our approach has achieved a more balanced performance. This implies our
method is better at distinguishing two similar diseases instead of biasing to one of them. While on
DX, Basic DQN has a more balanced results but its overall accuracy is lower. As shown in Tab. 2,
our INS-DS has the most average interaction turns. This is because INS-DS is not allowed to jump
into informing a disease until the introspective results are converged. The higher matching rate of
INS-DS means that mentioned symptoms of INS-DS are more likely presented in the records.
Reliability analysis. We evaluated DSMAD baselines using reliability measures and the results
are shown in Tab. 4. We found the internal trust of our model has obvious advantages over other
methods (at least 0.048). This indicates that the diagnosis of our INS-DS is less sensitive to the noise
during the training phrase, such as sampling error and parameter initialization. Basic DQN has the
lowest internal trust on both benchmarks. To better understand the variance of diagnosis results,
we also calculated the entropy (Ent.) of diagnoses from the bootstrapping models. Specifically,
the entropy of diagnoses from the bootstrapping models for each test patient, and then the averaged
entropy is reported in Tab. 4. Method with higher entropy indicates that the method is more likely
to produce various diagnosis with training noise. Our INS-DS has the close to zero entropy, which
also evidences that the diagnoses from INS-DS are more consistent and are more in line with the
symptom-disease relation in the benchmarks. In terms of external trust, our model still achieves the
highest score. Since the external trust is calculated based on the symptom-disease co-occurrence,
it indicates that our INS-DS can inquire about more disease-relevant symptoms, so its diagnosis is
more convincing to the patients. For Basic DQN and KR-DS, their external trust across MZ and
DX are dramatically different. This is because the symptom-disease co-occurrence of DX is much
denser than MZ’s, so the values in the co-occurrence matrix of DX are generally smaller. And if the
method does not inquires about those frequent symptoms on DX, the overall external trust calculated
by averaging small probabilities is likely to be smaller.
Robustness analysis. A robust system is expected to maintain its correct diagnosis after incon-
sequential modification of its input. We set up three noisy test dataset according to the formulas
proposed in Sec. 5.2. Specifically, (a) NS.1 consists of noisy samples constructed by randomly
moving 0∼2 symptoms (which are mostly irrelevant with the ground-truth disease) from self-report
to the implicit symptoms slots; (b) As for NS.2 and NS.3, we append 1 and 2 symptoms most
related with the ground-truth disease to the explicit symptoms, respectively. We repeated the above
process 10 times and calculated the averaged unaltered proportion of the correct diagnoses using
Equ. (5). The results are presented in Tab. 3. We only evaluated the robustness on MZ dataset since
the self-reports in DX are natural language 2. As discussed in Sec.5.2, higher unaltered propor-
tion means that the correct diagnosis is more robust to noisy information. We found that INS-DS
achieved superior performance on these noisy datasets.
As for NS.2 and NS.3, the results of all approaches decreased when more disease-related symp-
toms are added. It indicates that current DSMAD methods are prone to memorize the pattern of
the diagnosis dialogue record instead of learning the ground-truth symptom-disease relationship.
This is also contradictory to our real-life experience, indicating the difference between current DS-
MAD methods and human cognition process. While by incorporating the introspective process,
INS-DS could maintain a high invariance, which means that INS-DS are better at exploiting the
ground-truth symptom-disease relation than other methods. It’s worth noting that KR-DS also has
good performance on these three settings since KR-DS is provided with a pre-defined symptom-
disease knowledge graph. As we observed in Tab. 3, the performance of KR-DS without the graph,

2It’s possible but time-consuming to revise the self-report of DX in order to evaluate the robustness on DX.
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T0, User: At noon on the 10th, my 1-week-old baby began vomiting and 

diarrhea. He’s  getting loose and yellow stool. The fever began at night. Merrill 

Lynch was eaten, the fever recurred and then subsided on the morning of the 12th. 

On the 11th, he stopped vomiting, but kept getting

smelly yellow-green stool. He had an upset stomach in this morning. 

T1, agent: 

Your baby 

may have 

infantile 

diarrhea.

T1, agent: Your 

baby may have 

infantile 

diarrhea.

T1, Agent: Does your baby get nausea?

T2, User: I have no idea.

T3, Agent: OK, has your baby got lung moist 

rale?

T4, User: I don’t know.

T5, Agent: Does your baby have green stool?

T6, User: I am not sure.

T7, Agent: Does your baby has loss of 

appetite?

T8, User: Yes, he does.

T9, Agent: Your baby may have infantile 

diarrhea.

T0, User: My baby caught a cold at the beginning of this year and is still 

coughing. Last week, He took antihistamines for four days, and it hasn't 

improved. The day before yesterday, I had a cold, which seemed to be infectious 

by my baby. At present, I can’t cough with the phlegm, and all kinds of cold 

symptoms appear.

T1, Agent: Your 

baby may have 

upper 

respiratory 

infection.

T1, Agent: Does your baby 

have nasal congestion?

T2, User: I am not sure.

T3, Agent: Does your baby 

have dyspnea?

T4, User: Yes, he has.

T5, Agent: Does your baby 

get running nose?

T6, User: I don’t know.

T7, Agent: OK, maybe your 

baby has caught allergic 

rhinitis.

T1, Agent: Has your baby 

got lung moist rale? 

T2, User: Yes, he has.

T3, Agent: Does your baby 

have egg pattern stool?

T4, User: I have no idea.

T5, Agent: According to 

above symptoms, I think 

your baby may have 

pneumonia.

Figure 2: Two visualized conversation results on DX dataset of basic DQN, KR-DS and our INS-DS methods.
In each table, the first line is a self-report of the patient. The resulted dialogues from the left to right are Basic
DQN, KR-DS and INS-DS respectively. The correct mentioned symptoms are highlighted with orange boxes,
and the correct diagnosis is blue underlined.

named KR-DS-relation*, is severely degraded. Since the policy of INS-DS without the introspection
module has the similar structure as Basic DQN, we conclude that the introspection module enables
INS-DS to better perceive the symptom-disease dependencies and obtain the similar performance
with KR-DS which has the pre-defined symptom-disease relationship.
6.2 QUALITATIVE RESULTS

For an intuitive recognition of baselines, we provide some visual results, as shown in Fig. 2. The
first line of each running example is the self-report of the patient and the second line is dialogues
of DQN, KR-DS, and INS-DS consecutively. Basic DQN often gives a reckless diagnosis without
inquiring about more symptoms. KR-DS did make the attempts to inquire some symptoms but
have limited ability to grasp useful symptoms. Our INS-DS performs better in acquiring relevant
symptoms and is more cautious in conclusion with more reasonable interactions.

2.801
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2.827

2.536 2.638

3.234 3.121
3.25

1

1.5

2

2.5

3

3.5

4

4.5

5

Diagnosis validity Symptom rationality Topic transition

smoothness

Basic DQN KR-DS INS-DS

Figure 3: Results of human evaluation on
DX dataset, our INS-DS has exceeded in
diagnosis validity, symptom rationality and
topic smoothness.

It is not sufficient to evaluate a dialogue system merely
by automatic metric, we invited three students, who are
in pursuit of a medical doctorate, to perform human eval-
uations based on three aspects: 1) diagnosis validity,
the correctness of final diagnosis; 2) symptom rational-
ity, the rationality of requested symptoms based on the
medical knowledge; 3) topic transition smoothness, the
smoothness of the inquiry logic irrelevant to the disease.
Different from the diagnosis accuracy in Sec.6.1, par-
ticipant were asked to score the diagnoses validity not
only referring to the ground-truth disease but also the
symptom-inquiry process. We generated dialogues of the
test dataset by using each DSMAD baseline incorporated
with NLU and NLG modules from Xu et al. (2019). Then
we asked the participants to score each of the randomly
shuffled dialogues (to ensure a double-blind rating process) from 1 to 5 (integer). At the end, we re-
ceived 104*3=412 assessments for each index and for each approach. The larger the score, the better
the dialogue. The averaged scores and standard deviations are shown in Fig. 3. From the perspec-
tive of human experts, our INS-DS exceeds the other two methods in the three standards, especially
in the aspect of symptom rationality and topic transition smoothness. The standard deviations are
about 1.13. The standard deviation is large since the scores are discrete integers.

7 CONCLUSION

In this work, we heuristically designed the INS-DS model to mimic the rational decision-making
process in real life. Our approach achieves superior performance in different evaluation metrics,
including our proposed reliability and robustness metrics. Experimental results evidence that our
method can better understand the symptom-disease relation and therefore is insensitive to other
irrelevant noisy factors.

3From the left to right of the scores in Fig. 3, standard deviations are 1.10, 1.11, 1.09, 1.06, 1.24, 1.16, 0.95,
0.87 and 1.04, respectively
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