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ABSTRACT

Building reliable speech systems often requires combining multiple modalities, like audio
and visual cues. While such multimodal solutions frequently lead to improvements in
performance and may even be critical in certain cases, they come with several constraints
such as increased sensory requirements, computational cost, and modality synchronization,
to mention a few. These challenges constrain the direct uses of these multimodal solutions
in real-world applications. In this work, we develop approaches where the learning happens
with all available modalities but the deployment or inference is done with just one or reduced
modalities. To do so, we propose a Multimodal Training and Unimodal Deployment
(MUTUD) framework which includes a Temporally Aligned Modality feature Estimation
(TAME) module that can estimate information from missing modality using modalities
present during inference. This innovative approach facilitates the integration of information
across different modalities, enhancing the overall inference process by leveraging the
strengths of each modality to compensate for the absence of certain modalities during
inference. We apply MUTUD to various audiovisual speech tasks and show that it can
reduce the performance gap between the multimodal and corresponding unimodal models
to a considerable extent. MUTUD can achieves this while reducing the model size and
compute compared to multimodal models, in some cases by almost 80%.

1 INTRODUCTION

Unimodal (audio-only) approaches to well-known speech problems such as speech enhancement, speaker
separation, and automatic speech recognition, have made rapid progress using deep learning. At the same
time, multimodal approaches to these tasks are also increasingly gaining significance (Mira et al., 2023; Xu
et al., 2020; Ma et al., 2021b; Hong et al., 2022; 2023). While the additional modality may come in different
forms such as text, contact microphones, IMUs, etc., visual modality is the most widely used in these speech
tasks. This bears similarity to humans as we also innately rely on visuals to perceive sounds and speech
(Schwartz et al., 2004). In fact, people with hearing impairments have also been shown to rely on visuals for
better perception of speech (Burnham et al., 2013). Given the significance of multimodal perception of speech
by humans, it is natural that multimodal learning has shown impressive gains over unimodal systems for
various speech tasks. The role of visuals in speech understanding becomes much more critical in acoustically
difficult scenarios such as noisy environments or situations where the speech signals on their own are not
reliable for the task at hand (Weninger et al., 2015; Tan & Wang, 2019; Wang et al., 2020; Braun et al., 2021).

While multimodal systems can extract supplementary and complementary information from different modal-
ities (Baltrušaitis et al., 2018; Lu, 2023), leading to performance improvements, certain challenges with
multimodal models can restrain their uses in real-world systems. These include but are not limited to (1)
Multimodal models are often computationally much more expensive compared to their unimodal counterparts
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and the performance gain might not justify the substantial increase in computational cost. This is especially
relevant for real-time and on-device applications (e.g., speech enhancement). In fact, in several cases, this
can prohibit the deployment of multimodal systems. (2) Multimodal data come at a significantly higher
cost. Acquisition of multimodal data requires complex sensory devices working together seamlessly. Align-
ment, synchronization, and annotation efforts in multimodal data are far more challenging than audio-only
data. More importantly, such aligned and synchronized multimodal data is required even during inference,
necessitating the availability of all sensory devices and the processing power to align and synchronize the
captured signals. This can make multimodal systems impractical in several real-world applications. (3)
Lastly, it might not be feasible to use multiple modalities for a speech task due to practical constraints such as
privacy or difficulties in getting signals for all modalities. For example, while multimodal ASR could improve
audio-only ASR in noisy conditions, getting the visual signals during real-world uses might not be possible.

The above discussion highlights benefits of multimodal learning defnitely over unimodal learning, yet there are
certain constraints which can make unimodal models preferable over multimodal despite lower performance.
Motivated by this, the primary question we ask is how do we learn from multimodal data while enabling
unimodal uses of the model? In this framework, we still want to learn from the rich information available in
multimodal data but unimodal inference removes the constraints around uses of the multimodal system. Note
that, unlike works on robustness to missing modality we develop a fundamental approach for MUltimodal
Training and Unimodal Deployment (MUTUD, pronounced “muted”). In modality robustness, the model
behavior remains the same during training and inference, and hence the challenges of multimodal systems
outlined before are not rectified. MUTUD is driven by architectural and training novelties, which addresses
those challenges. MUTUD framework is built using a novel Temporally Aligned Modality feature Estimation
(TAME) module. The TAME module is designed to estimate deep representations of modalities which are
absent during inference using the representations of modalities present during inference. TAME achieves this
by having codebooks for each modality and linking cross-modal pairs of codebooks in a way that enables
modality feature recall using the codebooks and the features of available modalities.

We apply our framework for 3 well-known tasks in the speech processing domain and do multimodal
(audiovisual (AV)) training and unimodal inference; speech enhancement, speech recognition, and active
speaker detection. Speech enhancement in particular may have tight real-time and low-compute requirements
for several applications. In all the tasks, we show that MUTUD achieves unimodal inference with a
significantly better performance compared to the counterpart models trained on unimodal data. Moreover,
compared to the full multimodal systems, our model has significantly lesser parameters and compute and yet
gives competitive performance.

2 RELATED WORKS

Audiovisual speech processing. Analogous to humans, AV learning for speech-related tasks naturally results
in methods that are more robust to noisy scenarios such as acoustic SNR degradation, poor lighting conditions,
motion blur, etc. In this paper we focus on three AV speech problems namely, speech enhancement (Gabbay
et al., 2017; Afouras et al., 2018a; Gao & Grauman, 2021; Mira et al., 2023; Yang et al., 2022; Owens
& Efros, 2018; Hou et al., 2018), speech recognition (Huang & Kingsbury, 2013; Mroueh et al., 2015;
Noda et al., 2015; Stewart et al., 2013; Ma et al., 2021b) and speaker detection (Garg et al., 2000; Cutler &
Davis, 2000; Chakravarty et al., 2016; Roth et al., 2020). The reader is referred to excellent survey papers
for a detailed overview of different methodologies (Michelsanti et al., 2021; Potamianos et al., 2017). As
already highlighted, traditional AV approaches suffer from several constraints such as sensor requirements,
computational cost and modality synchronization which limit their applicability in real-world applications.

Resource-constrained learning. Considerable progress has been made in resource-constrained audio-only
speech processing (Kim et al., 2020; Lee et al., 2021; Maayah et al., 2023), even though such multimodal
methods are relatively smaller. Typical strategies include lightweight network design (Maayah et al., 2023),
quantization and pruning (Tan et al., 2021) and knowledge distillation (Thakker et al., 2022). Gogate
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Figure 1: (a) The left panel shows a comparison between conventional audiovisual speech processing and
MUTUD. TAME module enables audiovisual learning without doing video processing during prediction. (b)
The upper half in the right panel illustrates MUTUD for an AVSE model. After training the video encoder is
discarded. (c) The bottom half in the right panel shows the estimation of video representations using TAME.
The illustration is for t = 0 in Eq 4.

et al. (2020) build a robust language-dependent audiovisual model called CochleaNet for real-time speech
enhancement through audiovisual mask estimation. LAVSE (Chuang et al., 2020) proposed a visual data
compression technique for speech enhancement. Our focus in this work is very different. We intend to develop
efficiency in multimodal learning by allowing resource-heavy modalities to be absent during prediction or
when deployed.

Learning with missing modality. Multimodal learning for robustness to missing modality is a practical
problem that has been explored in some works before. Each work differs in the modality considered to be
missing, the phase (training or testing) in which this information is absent, and whether the loss of information
is partial or complete (Hegde et al., 2021; Ma et al., 2021a; Woo et al., 2023; Ma et al., 2022; Lee et al., 2023).
The methods are often tailor-made for the scenarios in consideration. For brevity, here we limit our discussion
to AV speech-related tasks. Some studies rely on a memory architecture to retrieve missing modality via
associated bridging mechanism (Kim et al., 2021b; Hong et al., 2021; Kim et al., 2021a). These related works
serve as inspiration for MUTUD. Further, AV-HuBERT (Shi et al., 2022) and u-HuBERT (Hsu & Shi, 2022)
presented a self-supervised pre-training framework that can leverage both multimodal and unimodal speech
with a unified masked cluster prediction objective, achieving zero-shot modality generalization for multiple
speech processing tasks. While these works have made significant progress on various speech processing
problems, they are very different from us – their focus is on self-supervised training of large models with
massive amounts of unlabeled data. The learned models are then fine-tuned for tasks like ASR. These models
are not designed for unimodal deployment with compute/memory efficiency in mind. Furthermore, it is
difficult to adapt AV-HuBERT/u-HuBERT for tasks like speech enhancement, especially in causal settings.

Unlike these works, we are driven by the challenges of multimodal learning outlined before. We focus
explicitly on multimodal learning for unimodal prediction and real-world deployment, which addresses those
challenges. Our approach is fairly generic and can be applied to many common multimodal learning methods
and tasks.
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3 MUTUD: MULTIMODAL TRAINING AND UNIMODAL DEPLOYMENT

We describe our proposed method, which we call Multimodal Training and Unimodal Deployment (MUTUD).
Our goal is to design a network that leverages multimodal sensory inputs during training, but only takes in a
subset of them during inference. In section 3.1, we first describe MUTUD in its general setting, where an
arbitrary number of modalities are considered, followed by a discussion targeted to the audiovisual speech
domain. In section 3.2, we introduce our proposed TAME Module, which is the key component to enable
unimodal predictions. Finally in section 3.3, we describe the training objectives. The left panel in Figure 1
shows the difference between MUTUD and conventional multimodal learning.

3.1 MUTUD OVERVIEW

Let D be a dataset where each sample X ∈ D is characterized by M different modalities X = {Xmi
},

i = 1 :M . M = {m1,m2, · · · ,mM} is the set of modalities. Conventionally, multimodal learning operates
with the assumption that the model always inputs all M modalities, during training as well as for predictions.
Let hM(X = {Xmi

,mi ∈ M};ϕ) a deep neural network (DNN) based multimodal system (parameterized
by ϕ). In MUTUD, all M modalities of X are available during training, but only a subset, Ms ⊂ M, are
available during real-world deployment or for inference.

To this end, we design MUTUD with two crucial characteristics in mind. Let h(; θ) be the MUTUD system.
(1) Since h(; θ) processes only |Ms| modalities for prediction, we expect it to have fewer parameters and
be computationally more efficient in real-world deployment. Ideally, we would like h(; θ) to have inference
size and compute similar to hMs(X = {Xmi

,mi ∈ Ms};ψ), a model counterpart of hM(X;ϕ) with
M = Ms. (2) On the performance end, hM(;ϕ) should have superior performance compared to hMs(;ψ)
due to utilization of more modalities in the learning process. We expect h(; θ) to have superior performance
compared to hMs(X;ψ) and closer to that of hM(X;ϕ).

In a typical multimodal model, all Xmi
are encoded by a network, these representations are then fused

through various mechanisms (concatenation, attention, etc. (Kalkhorani et al., 2023; Wei et al., 2020; Ma
et al., 2021b; Lee et al., 2020; Praveen et al., 2023)). The fused representations are further processed by more
neural layers to solve the task at hand. We operate in a similar setting. To achieve our goal, we develop an
efficient and effective mechanism to associate and relate missing modalities, (M−Ms), to those in Ms,
such that the representations of Xmi ∈ M−Ms can be recalled using those of Xmi ∈ Ms. We propose a
Temporally Aligned Modality feature Estimation (TAME) module. TAME learns a pair of codebooks (Cmi ,
Cmj ) for each pair of modality in {(mi,mj), ∀mi ∈ M−Ms, ∀mj ∈ Ms}. The training objectives link
these codebooks in a way that enables estimation of representations for Xmi

∈ M−Ms during inference.

MUTUD for AudioVisual Speech Processing We focus on audiovisual speech tasks where MUTUD is
designed to use only one of them during deployment. For a succinct and clear description of MUTUD and
TAME, we explain it through the task of Audiovisual Speech Enhancement (AVSE) but the method similarly
adapts to other tasks. The right panel in Figure 1 outlines the base AVSE model (hM(;ϕ)). The speech and
video encoders produce Fa ∈ RTa×D and Fv ∈ RTv×D representations, respectively. Ta and Tv represent
time dimensions and depend on the frame rates of speech and audio. The frame rate of speech is K times of
video (Ta = Tv ∗K) and hence Fv is upsampled by a factor of K to match the size along a temporal direction
before the concatenation step. The concatenated representations are then decoded by the decoder to produce
the enhanced speech. The hMs(;ψ) model is the audio-only model, where everything is the same except that
there are no visual inputs, and the decoder decodes the encoded audio representations to output enhanced
speech. Under MUTUD, our goal is to train with both visual and audio inputs but deploy an audio-only
model. Hence, we design and train TAME module to estimate video representations during prediction.

3.2 TAME MODULE

The core of the TAME consists of modality-specific codebooks (MSCs) for audio and video. These are used
to associate and relate modalities through their respective representations during training. During inference,
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the audio representations are used to retrieve the video representations through these MSCs. The MSCs
are designed to capture temporal alignment and synchronized relations between the audio and the video.
Since the audio representations frame rate (in Fa) is higher by a factor of K, we design TAME keeping this
temporal relation in consideration. That is the tth video frame feature in Fv, f tv, is associated with K audio
features (fK·t

a , fK·t+1
a , . . . , fK·t+K−1

a ) in Fa. Besides keeping the temporal alignment between audio and
video representations intact, this temporal coupling between the audio and video is also necessary for learning
to estimate video features using audio.

TAME formulates this through K blocks of codebooks in each MSC, represented as Ca ∈ RK×N×D and
Cv ∈ RK×N×D for the audio and video respectively, (see Figure 1). N is the number of codes in each set of
codebooks in Ca and Cv .

All features in consideration (f tv for video and f t
a = {fK·t

a , fK·t+1
a , . . . , fK·t+k

a , . . . , fK·t+K−1
a } for audio)

are first embedded through their respective MSC. This relationship between f tv and kth codebook in Cv is
established through the vectors kvt,

kvt = [
< kcvn , f

t
v >

∥kcvn∥2 ∥f tv∥2
], where kcvn = Cv[k, n, :], n = {0, 1, . . . , N} (1)

kvt is computed for all K codebooks (k ∈ {0,K − 1}) using Eq 1. Similarly, the audio features are related to
its codebooks Ca as,

kaK·t+k = [
< kcan , f

K·t+k
a >

∥kcan∥2 ∥fK·t+k
a ∥2

], where kcan = Ca[k, n, :], n = {0, 1, . . . , N} (2)

The temporal steps t are {0, 1, . . . , Tv − 1}. Note that, for audio the kth codebook of Ca is linked with kth
audio feature in f t

a. Eq 1 and 2 embed the audio and video information into their respective MSCs. A softmax
across the number of codes gives the probability distribution of the relationship between the codebooks and
the corresponding modality representations,

kpt = [
exp (τ · kvtn)∑N
j=1 exp (τ · kvtj)

], kqK·t+k = [
exp (τ · kaK·t+k

n )∑N
j=1 exp (τ · kaK·t+k

j )
], n = {0, 1, . . . , N} (3)

τ is the temperature for the softmax function. These distributions are computed for each k ∈ {0, 1, . . . ,K −
1}. The modality-specific information captured by kpt and kqt are used to relate and associate the two
modalities as well as retrieve the video representations using the audio representations.

Audio To Video Representations The bottom half in the right panel of Figure 1 shows the schematics
for obtaining video representations using audio. The kth feature in f t

a directly estimates “interleaved”
representations for video using the kth codebook in Cv ,

f̂K·t+k
v = linear

(
N∑

n=1

kqK·t+k
n . kcvn; θl

)
(4)

where θl are the parameters of the linear layer, in practice, this linear layer includes batch-normalization (Ioffe
& Szegedy, 2015). The f̂K·t+k

v (instead) are concatenated with fK·t+k
a and then decoded by the decoder

to produce enhanced speech. Note that, in the base AVSE model Ta video features are simply repeated to
upsample by a factor of K and then concatenated to audio features. TAME helps estimate video information
at a lower temporal resolution, which can be crucial for precise replacement of video representations.

Clearly, the video encoder is discarded during inference and as long as the size and compute of the TAME mod-
ule is significantly smaller than the video encoder, the whole model is much more efficient compared to the
full audiovisual model.
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3.3 TRAINING OBJECTIVES

TAME Specific Losses To train the proposed TAME module, we propose three different training objectives.
First, we need to ensure that the relationship between the video features and video codebook Cv is well-
structured so that Cv gets embedded with video information. This is achieved through self-modality recall
of f tv for each codebook in Cv, kf̃ tv = linear(

∑N
n=1

kptn .
kcvn; θl). A reconstruction loss then guides the

learning

Lv→v =

Tv−1∑
t=0

K−1∑
k=0

∥ kf̃ tv − f tv∥22 (5)

Next, a reconstruction loss between the estimated video representations f̂K·t+k
v and f tv enforces retrieval of

video information through audio representations.

La→v =

Tv−1∑
t=0

K−1∑
k=0

∥ f̂K·t+k
v − f tv∥22 (6)

Lastly, we establish a cross-modal association by linking the two MSCs through the distribution captured
by kpt and kqK∗t+k. Let P k (captured by kpt) and Qk (captured by kqK∗t+k) be the distributions over the
codes for kth codebook in Cv and Ca respectively.

LCa→Cv =

K∑
k=1

DKL(P
k||Qk). (7)

The loss function in Eq 7, the distribution of codes in each codebook of Ca matches the corresponding ones
in Cv . This is necessary as the codebooks in Cv are probed using audio representations embedded in kqt to
obtain video representations.

Task Specific Loss Functions The overall training of MUTUD includes task specific loss functions which in
this case are speech enhancement losses. In this work, the output of the enhancement models are complex
spectrograms (E) of the enhanced speech. The time-domain waveform (e) from E is obtained using Inverse-
Short Time Fourier Transform. The speech enhancement loss functions we use are

Ltask = ∥E − C∥1 − SI-SDR(e, c) (8)

where C is the complex STFT of target clean speech and c is the time-domain target clean speech. The
SI-SDR loss is defined as SI-SDR(e, c) = 10 log10

∥αc∥2

∥αc−e∥2 , where α = eT c
∥c∥2 . The enhancement losses in Eq

8 are computed using both f tv and f̂ tv as inputs to the decoder and the overall Ltask is sum of these losses. This
is necessary to warrant that the video encoder learns meaningful representations in the end-to-end training.

The total loss function is

LMUTUD = αLv→v + βLa→v + γLCa→Cv + λLtask, (9)

where α, β, γ and λ are the weights given to each loss.

A few points are worth noting here. The TAME which is enabling MUTUD seamlessly fit into the base AVSE
framework and can be easily adopted for many common multimodal methods and tasks. In our experiments,
we evaluate MUTUD for 3 multimodal tasks; AVSE, audiovisual speech recognition (AVSR), and audiovisual
active speaker detection (AV-ASD).

6
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4 EXPERIMENTAL SETUP

In our experiments, we evaluate MUTUD under 3 multimodal tasks; AVSE, audiovisual speech recognition
(AVSR), and ego-centric audiovisual active speaker detection (AV-ASD). AVSE is of key focus as this task is
often desired to be deployed in real-time communication and on-device, which exacerbates the multimodal
challenges outlined earlier in the paper.

Datasets: For AVSE and AVSR tasks, we utilize the LRS3-TED corpus (Afouras et al., 2018b), a large-scale
audiovisual dataset for speech tasks. For AV-ASD task, we use EasyCom, a challenging real-world egocentric
dataset (Donley et al., 2021). Overall, this allows for a comprehensive evaluation of MUTUD under a wide
variety of acoustic and visual noise conditions. Please refer to the Appendix for further details on the datasets.

4.1 IMPLEMENTATION DETAILS FOR AVSE

Data processing. For LRS3, we crop the lip regions, resize the cropped frames into 88×88, and transform
them to grayscale following Kim et al. (2021c). The audio, sampled at 16kHz, is converted into a spectrogram
using a window size of 20 ms and a hop length of 10 ms. We augment the video data by applying random
spatial erasure and time masking for effective modeling of the visual context (Mira et al., 2022).

All models are trained using noisy-clean speech pairs where, speech samples from LRS3 are mixed with noise
samples from the DNS Challenge (Reddy et al., 2021) noise set. The noisy mixture is obtained by randomly
mixing up to 5 different noise samples. The SNR range for mixing is -15 dB to 10 dB. We report results under
2 test conditions, (a) 3 background noises (3-BN) are present in the noisy mixture, and (b) 5 background
noises (5-BN) are present. Evaluations are done at five different SNRs (in dB): 5, 0, -5, -10, and -15.

Architectural and Training details. The audio-only enhancement model is a U-Net architecture based on
the gated convolutional recurrent network (GCRN) (Tan & Wang, 2019). The decoder includes an LSTM
layer. The input to the model is a complex spectrogram of the audio. The Audiovisual model (Mira et al.,
2023) is built on top of this audio-only model by employing a 3D convolutional layer followed by a ResNet18
(He et al., 2016) as the video encoder. The video and audio encoder outputs are concatenated and forwarded
through the decoder to produce complex spectrograms of the enhanced audio. For MUTUD, K = 4 and
we set the number of codes, N in the MSCs to 32 after conducting an ablation study for different N (Sec.
5.4). We train using AdamW optimizer (Kingma & Ba, 2014) with a learning rate of 10−4. We adopt
a cosine scheduler (Loshchilov & Hutter, 2016), adding a warmup for 20 epochs. Loss function (Eq. 9)
hyperparameters α, β, γ are simply set to 1.0 and λ to 0.01. Please refer to the Appendix for more details.

Evaluation metrics. We utilize three standard speech quality and intelligibility metrics for AVSE: Short
Time Objective Intelligibility (STOI) (Taal et al., 2010), Scale-Invariant Signal-to-Distortion Ratio (SISDR)
(Le Roux et al., 2019), Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001).

5 RESULTS AND DISCUSSIONS

5.1 PERFORMANCE ANALYSIS

Table 1 presents quantitative results for the AVSE task under 3-background noise test condition. A few
important details about the reported methods are in order. For a fair comparison, in addition to audio-only, we
also report the performance of audio-only (w. matched params), that is, a model with number of parameters
matched with MUTUD. This is important to establish that the proposed TAME module is in fact providing
crucial information not present in the audio modality and cannot be compensated for by simply adding more
parameters to the audio-only model. We show results for two versions of MUTUD representing two different
training mechanisms: One where we train the entire model from scratch, denoted by w.o. pretrained TAME.
Another, where we first pre-train the TAME module solely with clean audio and video frames and then
fine-tune the entire model for the enhancement task. This is done to better guide the TAME module to store
modality-specific information in the MSCs.
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Table 1: Comparison of different models for 3-Background Noise test condition. Audio-only model is adopted
from (Tan & Wang, 2019), and the corresponding Audiovisual model is adopted from (Tan & Wang, 2019)
and (Mira et al., 2023)

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 82.6 72.4 60.5 48.8 38.9 5.00 0.01 -5.02 -10.03 -15.07 1.24 1.12 1.07 1.07 1.07

Audio-only 92.7 88.1 80.1 67.5 51.5 13.64 10.55 7.08 2.88 -2.82 2.18 1.80 1.48 1.27 1.14
Audio-only
w. matched params 93.0 88.3 80.4 68.0 52.6 13.75 10.58 7.05 2.86 -2.62 2.30 1.87 1.53 1.30 1.16

MUTUD
w.o. pretrained TAME 93.4 89.1 81.6 69.5 53.6 14.07 10.99 7.54 3.32 -2.24 2.37 1.93 1.58 1.33 1.17

MUTUD 93.5 89.2 81.8 69.8 54.0 14.11 11.02 7.56 3.38 -2.19 2.36 1.92 1.57 1.32 1.17
Audiovisual 93.5 89.6 83.3 74.0 62.7 13.92 10.90 7.61 3.81 -0.86 2.35 1.94 1.60 1.38 1.20

Table 2: Number of Parameters and Multiply Accumulate Operations (MACs) for all models.

Audio-only Audio-only
w. matched params Audiovisual MUTUD

# of Parameters 2.978M 3.627M 15.736M 3.635M
MACs 1.381G 1.821G 9.324G 1.593G

It is clear from Table 1 that our proposed framework MUTUD outperforms both the audio-only and the
audio-only with matched parameters over all metrics and SNRs. This shows that the model has learned
with visual information available during training and MUTUD is able to estimate video encodings and use
them for better enhancement. It is worth mentioning that for extremely low SNRs of -10dB and -15dB,
where multimodal models heavily rely on visual information for speech enhancement, MUTUD continues to
consistently perform better than the audio-only model. This further highlights the TAME module’s ability
to estimate relevant visual information at prediction time. While we do not expect the MUTUD model to
outperform or fully match the performance of the audiovisual model, it does an excellent job of reducing the
gap between the unimodal and multimodal models. Except for extremely low SNR (-15dB), MUTUD is fairly
competitive with the audiovisual model on all 3 metrics. This further argues for our multimodal training and
unimodal deployment strategy. We also observe that the pre-trained TAME module is slightly superior to the
one simply trained from scratch.

We observe similar trends for the more challenging 5-background noise test conditions showing that MUTUD
can be successfully employed in such extreme noise conditions (shown in the Appendix). We also experiment
with other audio-only, audiovisual, and the corresponding MUTUD models for AVSE. Please see the Appendix
for additional results (Tables 6, 7, 8).

5.2 EFFICIENCY ANALYSIS

Table 2 shows parameter and Multiply Accumulate Operations (MAC) counts for all models. The MUTUD
model is comparable in size and compute to both audio-only models. In fact, the MAC for MUTUD is around
13% lower compared to even the audio-only model with matching parameter count. However, we saw in
Table 1 that MUTUD is much more superior compared to these models. With respect to the audiovisual
model, MUTUD is smaller almost by a factor of 5 and has a smaller size and MAC by around 83% and
77% respectively. This shows the massive gain in efficiency one can achieve through our MUTUD learning
framework.
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Figure 2: Cosine similarity (red) and ℓ2 distance (blue) between video features and estimated video features,
video and audio features, and estimated video and audio features for different SNRs.
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Figure 3: TSNE visualization of the estimated video features F̂v , the actual video features Fv , and the audio
features Fa for SNRs ranging from 5dB to -15dB.

5.3 TAME MODULE ANALYSIS

To analyze the estimated video features from the TAME module, we measure how similar they are to the
original video and audio features. We compute the average cosine similarity and ℓ2 distance between video
features and estimated video features (Fv vs. F̂v), video features and audio features (Fv vs. Fa), and estimated
video features and audio features (F̂v vs. Fa) for SNRs ranging from 5dB to -15dB. Figure 2 clearly indicates
that the cosine similarity between the estimated video features and the original video features is high, around
0.94, while the similarity between audio and original (estimated) video features is low, ≈ – 0.40 (≈ – 0.42).
The ℓ2 distances showcase a similar trend where the audio and video features are further apart, and the
estimated video features and the original ones are much closer. The high similarity between the estimated and
original video features while having low similarity between the estimated video and audio feature evidence
that TAME is not just a regurgitating audio feature but is actually functioning as designed (that is use audio
information to get video information).

Furthermore, in Figure 3 we show the t-SNE visualization of the estimated video features, the original
video features, and the audio features for all SNRs. Analyzing the clusters, we can clearly observe that the
audio features Fa form a distinct group, separate from the estimated video features F̂v and the actual video
feature Fv, demonstrating that the TAME can differentiate between modality-specific characteristics. More
importantly, the estimated video features F̂v and the actual video features Fv are clustered closely together in
the feature space, implying that the TAME module can accurately retrieve video features from the memory
block, closely mirroring the actual video features even as the SNR levels decrease. Please see the Appendix
for additional analysis of the TAME module.

5.4 ABLATION FOR CODEBOOK SIZE

We perform an ablation for the size of the codebooks in MSCs. We experiment with 4 different codebook
sizes, N (8, 16, 32, and 64) in each MSC of the TAME module. Table 3 indicates that as the size increases,
more gain in speech enhancement performance is achieved, meaning that a larger number of codes in the
MSCs can contain more meaningful features. We see that the N = 64 does not get much performance gain
over N = 32. N = 32 is sufficient for embedding the audio and video information into the codebooks and
then relating them to enable estimation of video representations using audio.
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Table 3: Ablation on different numbers of codes, N , in each MSC of TAME.

# of codes
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

8 93.3 88.7 80.9 68.6 53.0 13.91 10.71 7.20 3.02 -2.39 2.36 1.91 1.56 1.32 1.17
16 93.4 88.8 81.1 68.9 53.3 13.98 10.81 7.30 3.10 -2.41 2.35 1.92 1.57 1.32 1.17
32 93.5 89.2 81.8 69.8 54.0 14.11 11.02 7.56 3.38 -2.19 2.36 1.92 1.57 1.32 1.17
64 93.6 89.1 81.6 69.6 54.0 14.11 11.00 7.51 3.31 -2.21 2.38 1.95 1.59 1.34 1.18

Table 4: Performance comparison on Audiovisual Speech
Recognition (AVSR) task.

Method
WER (%) ↓

5 0 -5 -10 -15

Audio-only 12.24 17.836 31.37 60.64 93.32
MUTUD 11.71 16.299 24.99 44.07 73.56

Audiovisual 5.26 7.088 11.01 21.12 36.56

Table 5: Performance comparison on Audio-
visual Active Speaker Detection (AV-ASD)
task.

Method mAP(%)
Video-only 82.25
MUTUD 86.50

Audiovisual 87.60

5.5 AUDIOVISUAL SPEECH RECOGNITION (AVSR)

We additionally demonstrate the effectiveness of TAME through results on the AVSR task. For AVSR, we use
V-CAFE (Hong et al., 2022) as the baseline architecture and measure speech recognition quality through Word
Error Rates (WER). Please refer to the Appendix for full experimental setup details. Results are shown in
Table 4. MUTUD while not outperforming the AV approach, shows a substantial reduction in WER compared
to the audio-only method, highlighting TAME module’s contribution in learning to leverage visuals even if it
is available only during training. This is especially true for low-SNRs where visual play a more important
role and MUTUD can help reduce WER by a considerable margin (6% for -5dB and 16% for -10dB)

5.6 AUDIOVISUAL ACTIVE SPEAKER DETECTION (AV-ASD)
To showcase our method’s versatility, in the AV-ASD task, we assume the absence of audio modality at
inference time, instead of the visual modality as done in previous experiments. We show results on the
EasyCom dataset, a considerably more challenging real-world noisy dataset than LRS3. We design a network
with 3D convolutional layers followed by an LSTM. Performance is evaluated using the mean Average
Precision (mAP).

As seen in Table 5, the proposed model achieves a mAP score of 86.50%, which is a significant improvement
over the Video-only method at 82.25% and quite close to the audiovisual approach at 87.60%. Notably,
this outcome demonstrates the TAME capability to properly estimate audio representation using video
representations, complementing the previously illustrated proficiency in video feature estimation. Thereby,
reinforcing its applicability in different multimodal scenarios both in terms of tasks and datasets.

6 CONCLUSION

This work is motivated to address practical challenges in using multimodal solutions in real-world applications.
We build and train the models keeping in mind that inference will be unimodal – a multimodal training but
unimodal deployment strategy. In MUTUD, the model learns to associate and relate different modalities
through modality-specific codebooks. Once this is achieved during training, the representations of modality
absent during inference are obtained using the one present. Our framework and TAME are fairly generic and
can be easily adapted for other common multimodal learning tasks and models. We can also extend MUTUD
to more than two modalities through pairwise MSCs.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REFERENCES

Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. The conversation: Deep audio-visual speech
enhancement. arXiv preprint arXiv:1804.04121, 2018a.

Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. Lrs3-ted: a large-scale dataset for visual
speech recognition. arXiv preprint arXiv:1809.00496, 2018b.
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A APPENDIX

A.1 DATASETS

LRS3: For AVSE and AVSR tasks, we utilize the LRS3-TED corpus (Afouras et al., 2018b), a large-
scale dataset of TED and TEDx videos. LRS3-TED consists of audio-visual pairs and corresponding text
transcriptions for 151,819 utterances, totaling 439 hours. Following the original splits, we use ∼131,000
utterances for training and ∼1,300 utterances for testing. For AVSE, the clean speech samples are taken from
LRS3 and the noise samples are taken from (Reddy et al., 2021) noise set. The videos are 25 fps with 224 ×
224 resolution. During pre-processing, we center-crop at the mouth with a size of 88 × 88.

EasyCom: We employ EasyCom (Donley et al., 2021) for the AV-ASD task. This dataset contains ∼ 5
hours of natural conversations recorded in a noisy restaurant-like environment. The ego-centric nature of the
data makes it extremely challenging as the sensory devices (camera and microphone on wearable glasses)
are always moving. The ego-motions makes it difficult to learn from the video and the audio is corrupted
by noise, making audiovisual active speaker detection (AV-ASD), challenging on this dataset. The dataset
includes annotated voice activity, speech transcriptions, head bounding boxes, target of speech, and source
identification labels. We use train-test splits from Hsu et al. (2022).

A.2 ARCHITECTURAL AND TRAINING DETAILS

A.2.1 AUDIOVISUAL SPEECH ENHANCEMENT (AVSE)

We mainly report the performance of the proposed Temporal Modality Retrieval module adopted from a
Gated Convolutional Recurrent network (GCRN) (Tan & Wang, 2019). The input video frames are a shape of
T ×H ×W × C, where T is the total frames of video, H , W , and C are the height, width, and channel of a
frame, respectively, and the input audio sequences are a shape of F × S where F and S represent frequency
channels and frame length, respectively.

For the video encoder, we utilize a 3D convolutional layer followed by a ResNet18 (He et al., 2016). For the
audio encoder, we adopted the GCRN, which is composed of two 2D convolutional layers, where the outputs
of each convolutional layer, one followed by Sigmoid activation, are multiplied. Then, the concatenated audio
features and video features are taken into a 2-layer Grouped LSTM. The decoder consists of 5 deconvolutional
layers with a skip connection like a U-net architecture. The encoder-decoder structure is designed in a
symmetric way, where the number of kernels progressively increases in the encoder and decreases in the
decoder. To aggregate the context along the frequency direction, a stride of 2 is adopted along the frequency,
dimension in all convolutional and deconvolutional layers. For another baseline shown in Table 7, we follow
the same architecture and implementation details as Visualvoice (Gao & Grauman, 2021).

A.2.2 AUDIOVISUAL SPEECH RECOGNITION (AVSR)

For the AVSR framework, we adopt V-CAFE (Hong et al., 2022) as a baseline architecture. The video encoder
in the V-CAFE architecture consists of a 3D convolution layer with Batch Normalization and Max-pool
followed by ResNet-18 (He et al., 2016), and the audio encoder contains two 2D convolution layers followed
by one ResBlock for the audio front-end. The input shape of the model is the same as the Audiovisual Speech
Enhancement model.

For the Visual Context-driven Audio Feature Enhancement module (V-CAFE), cross-modal attention followed
by a noise reduction mask is applied. The noise reduction mask consists of two convolution layers with ReLU
and Sigmoid activation respectively. The mask is multiplicated to the audio features fa, and the masked
audio features are summed with the original features to obtain the enhanced audio features. Finally, with
the enhanced audio features and the visual features are concatenated with the linear layer and taken into
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Conformer (Gulati et al., 2020) for the encoder and Transformer (Serdyuk et al., 2022) for the decoder for
predicting the speech.

The Conformer (Gulati et al., 2020) sequence encoder is composed of hidden dimensions of 512, feed-forward
dimensions of 2048, 12 layers, 8 attention heads, and a convolution kernel size of 31. The Transformer
(Serdyuk et al., 2022) sequence decoder contains hidden dimensions of 512, feed-forward dimensions of
2048, 6 layers, and 8 attention heads are employed. Note that the video features are upsampled with the
nearest neighbor interpolation to match the size of the audio features when taken into the proposed Temporal
Modality Retrieval Module.

We follow the same implementation details reported in V-CAFE (Hong et al., 2022). We utilize background
noises in diverse environments of DEMAND (Thiemann et al., 2013) dataset with SNR range randomly
chosen from -15dB to 15dB for training. For testing, we report the testing performance at five different SNRs
(in dB): 5, 0, -5, -10, -15.

A.2.3 AUDIOVISUAL ACTIVE SPEAKER DETECTION (AV-ASD)

The AV-ASD model consists of a mouth keypoint detector to crop the lip region, CNN-based video and
audio encoders, and a fusion layer followed by a causal temporal layer to incorporate a longer temporal past
context. For the mouth keypoint detector, we adopt the ground truth facial per speaker manually checked by
annotators. From the keypoints, we generate a new face crop by cropping the region by half of the width of
the face region horizontally and also crop a quarter of the height downwards and three-quarters of the height
upwards from the center of the mouth. We also generate a lip region, cropping the same way horizontally but
cropping a quarter of height up and down from the mouth center.

The audio encoder is adopted from a VGG-M (Chatfield et al., 2014) operating on 13-dim Mel-Frequency
Cepstral Coefficient (MFCC), treated as single-channel images. For the video encoder, we use a spatio-
temporal VGG-M (Chatfield et al., 2014) composed of a 3D convolutional layer followed by a stack of 2D
convolutions. We also adopt a Self-Attentive Pooling (SAP) layer like (Bhattacharya et al., 2017) for fusing
the output audio and video features. Lastly, we set a unidirectional LSTM layer for temporal modeling to
sequentially process consecutive embeddings from the fusion layers to predict speech activity corresponding
to the latest frame followed by a projection layer and a sigmoid activation to derive activity predictions for
each target speaker. When taken into the proposed Temporal Modality Retrieval Module, like the AVSR
model, the video features are upsampled with the nearest neighbor interpolation to match the size of the audio
features.

For the training, we apply horizontal flipping, random rotation within −15° ∼ +15°, and motion blur
augmentation with kernels randomly from 10, 25, 50, and 100. Due to the limited amount of dataset, we firstly
pretrain the model with a larger dataset, VoxCeleb2 (Chung et al., 2018), to produce a better performance and
generalization. We train using SGD optimizer (Robbins & Monro, 1951) with a learning rate of 5−5 with a
weight decay of 5−4.

A.3 ADDITIONAL RESULTS AND ANALYSIS

A.3.1 ADDITIONAL RESULTS ON AUDIOVISUAL SPEECH ENHANCEMENT (AVSE)

Table 6 shows performance comparison for 5-Background noise test conditions. We see that the method
shows trends comparable to the 3-noise case and consistently maintains better performance than audio-only
in this more challenging noise scenario.

In Table 7 we show additional results after incorporating MUTUD within the VisualVoice (Gao & Grauman,
2021) framework. This demonstrates our method’s flexibility with the underlying network architectures for
the AVSE task.
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Table 6: Performance comparison of different models for 5-Background noise test conditions.

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 81.7 70.8 58.2 46.0 36.3 5.00 0.00 -5.00 -10.00 -15.02 1.21 1.10 1.06 1.06 1.08

Audio-only 92.2 87.0 78.3 64.4 47.0 13.28 10.08 6.47 1.99 -4.17 2.16 1.74 1.43 1.23 1.11
MUTUD
w.o. pretrained TAME 92.7 87.7 79.3 65.5 48.1 13.45 10.32 6.72 2.27 -3.88 2.24 1.8 1.47 1.25 1.12

MUTUD 92.8 88.0 79.6 65.6 48.0 13.60 10.43 6.85 2.33 -3.86 2.23 1.80 1.47 1.25 1.12
Audiovisual 92.9 88.6 81.6 71.3 58.9 13.43 10.37 6.95 2.90 -2.23 2.25 1.85 1.53 1.30 1.16

Table 7: Performance comparison with Visualvoice (Gao & Grauman, 2021) audio-only, audiovisual, and
MUTUD for verifying TMR’s robustness to other baseline architecture.

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 82.6 72.4 60.5 48.8 38.9 5.00 0.00 -5.00 -10.03 -15.06 1.24 1.12 1.07 1.07 1.07

Audio-only 91.8 85.9 76.5 64.0 48.8 11.67 8.62 5.17 1.08 -4.90 2.05 1.60 1.32 1.17 1.09
MUTUD 93.5 89.0 82.0 71.3 56.5 12.72 9.68 6.53 2.98 -2.04 2.40 1.94 1.58 1.33 1.18
Audiovisual 94.0 90.1 84.1 75.4 64.3 12.92 9.94 6.90 3.54 -0.86 2.51 2.03 1.65 1.39 1.21

Table 8: Enhancement Performance comparison for models. The audio-only and the corresponding audiovisual
used here are smaller and weaker.

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 82.6 72.4 60.5 48.8 38.9 5.00 0.00 -5.00 -10.03 -15.06 1.24 1.12 1.07 1.07 1.07

Audio-only 91.9 86.6 77.7 64.5 49.3 12.98 9.68 5.99 1.58 -4.14 2.12 1.73 1.44 1.24 1.13
MUTUD
w.o. pretrained TAME 92.3 87.3 78.9 66.0 50.3 13.31 10.07 6.45 2.08 -3.65 2.20 1.79 1.49 1.27 1.14

MUTUD 92.3 87.3 78.9 66.0 50.5 13.29 10.04 6.43 2.06 -3.66 2.22 1.81 1.49 1.27 1.14
Audiovisual 92.6 88.2 81.1 71.1 59.9 13.23 10.10 6.65 2.72 -2.01 2.15 1.80 1.51 1.31 1.18

We analyze robustness of the TAME module with a smaller baseline architecture. To do so, we reduce the
output dimension of the last two layers of the the audio encoder from 128 to 64. This results in audio-only
and audiovisual models with 0.815M and 12.195M parameters, respectively. Results in Table 8 verify the
robustness of TAME module which showcases quantitative trends similar to the original architecture.
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Video codebook
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Figure 4: Data distribution of kth audio codebook and video codebook.

Probability distribution of the relationship between the audio codebook and the corresponding audio modality representation

k=1 k=2 k=3 k=4

Figure 5: Probability distribution q of the relationship between the kth audio codebook and the corresponding
audio modality representation for estimating video representation for a sample noisy audio frame.

A.3.2 ADDITIONAL ANALYSIS ON TAME MODULE

We analyze the distribution across the audio and video codebooks for allK. Figure 4 illustrates the distribution
of data across the audio and video codebooks, with each Kth code showing different usage patterns. This
variation in usage across different codebook elements suggests that each code contains different audio and
video information.

Additionally, we visualize the softmax probability distribution q of the relationship between the Kth audio
codebook and the corresponding audio modality representation for a sample input test audio dataset, shown
in Figure 5. The variation in these vectors further supports the conclusion that different parts of the codebook
are being actively utilized.

A.4 LIMITATIONS AND BROADER IMPACTS

While the MUTUD introduces a novel approach to multimodal training with the proposed TAME module
and applies it to audiovisual speech tasks, its behaviour on other tasks and models in multimodal domain
remains to be seen. So further exploration through even more complex tasks and models may shed more
light on MUTUD. Regarding broader societal impacts, the MUTUD can be crucial for real-time, real-world
applications (especially for on-device modeling), and not all kinds of information are available during
real-world uses. This can make such applications more accessible as well as energy efficient.
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