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SELECTIVELY EXTRACTING AND INJECTING
VISUAL ATTRIBUTES INTO TEXT-TO-IMAGE MODELS
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Figure 1: Generation results from the proposed concept learning method. The method selectively
extracts an attribute-level concept from a reference image and applies it across diverse contexts.

ABSTRACT

Text-to-image models are increasingly utilized in design workflows, but articu-
lating nuanced design intentions through text remains a challenge. This work
proposes a method that extracts a visual attribute from a reference image and in-
jects it directly into the generation pipeline. The method optimizes a text token to
exclusively represent the target attribute using a custom training prompt and two
novel embeddings: distilled embedding and residual embedding. Through this ap-
proach, a wide range of attributes can be extracted, including the shape, material,
or color of an object, as well as the camera angle of the image. The method is
validated on various target attributes and text prompts drawn from a newly con-
structed dataset. The results show that it outperforms existing approaches in selec-
tively extracting and applying target attributes across diverse contexts. Ultimately,
the proposed method enables intuitive and controllable text-to-image generation,
streamlining the design process.

1 INTRODUCTION

Image generation models are increasingly integrated into design workflows (Guo et al., 2024; Barros
& Ai, 2024), driven by significant improvements in image quality. These models are typically guided
by text prompts (Nichol et al., 2021; Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022;
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Figure 2: Two text-to-image generation scenarios. (a) A user attempts to reconstruct the target
concept with a detailed text prompt, but the generated concept differs. (b) Our method extracts the
target concept directly from the reference image and reconstructs the concept successfully.

Betker et al., 2023), generating realistic images that reflect the written descriptions. Designers thus
specify shapes, materials, or colors in the prompts to visualize design prototypes.

However, expressing nuanced design intentions solely through text is difficult, which limits the
quality of the resulting prototypes. Although designers often collect visual references illustrating
particular attributes they wish to adopt (Hassan, 2023), they still spend considerable time experi-
menting with prompts to reconstruct those attributes. Some even compile “prompt books” by study-
ing prompt-image correlations (OpenArt, 2022), but the generated results deviate from the intended
attributes. Fig. 2a illustrates this challenge and highlights the need for a methodology that directly
transfers target attributes to text-to-image models.

To address this limitation, variants of text-to-image models that receive image representations along
with text have emerged (Mou et al., 2024; Brooks et al., 2023; Gal et al., 2022). However, these mod-
els are often restricted to learning only certain types of attributes, such as layouts or styles (Zhang
et al., 2023a), or focus on capturing entire subjects (Kumari et al., 2023). Furthermore, many require
thousands of training samples and pre-processing to learn a single attribute type.

In this work, we propose a method that enables text-to-image models to learn a wide range of
attribute-level concepts from a single reference image. These concepts include the shape, material,
or color of an object, as well as broader properties such as style or camera angle. Unlike existing
approaches, our method does not require a dataset or pre-processing. As illustrated in Fig. 2b, it
extracts the specifications of a target concept directly from an image, effectively bypassing the need
for manual prompt engineering.

To extract the target concept, our method optimizes a text token to represent its specifications exclu-
sively. Since multiple attributes are entangled within a single image, it is essential to separate the
desired concept from the irrelevant ones. To achieve this, we construct a custom training prompt that
roughly separates target from non-target attributes and introduce two novel embeddings: the distilled
embedding and the residual embedding. The distilled embedding robustly removes features associ-
ated with non-target attributes, while the residual embedding stabilizes the optimization. Together
with the custom training prompt, these embeddings allow the token to be selectively optimized for
the target concept. Once optimized, the learned concept can be reconstructed by simply inserting
the token into text prompts.

We demonstrate the effectiveness of this method on diverse concepts and prompts drawn from a
newly constructed dataset designed specifically for concept learning. The experimental results show
that our method outperforms existing approaches in selectively extracting and applying target con-
cepts across diverse contexts. This provides a practical and generalizable solution for integrating
visual attributes into text-to-image generation, significantly reducing the manual effort required in
design prototyping.

2 RELATED WORK

Image-guided text-to-image generation. Although text-to-image models (Nichol et al., 2021;
Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Betker et al., 2023) can already
generate high-quality results conditioned on text prompts, efforts have been made to additionally
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guide models with image representations for more perceptually intuitive control over the outcome.
For example, ControlNet (Zhang et al., 2023a), T2I-Adapter (Mou et al., 2024), and StyleShot (Gao
et al., 2024) modify the model architecture to receive representations such as a sketch, pose map,
or style image. However, each work only covers a limited range of visual concepts (e.g., layout or
style) and requires tons of training data and pre-processing, such as edge detection (Canny, 1986) or
pose estimation (Kreiss et al., 2021; Cao et al., 2019), to accept each type of representation. There
are image editing models, such as InstructPix2Pix (Brooks et al., 2023) and Emu Edit (Sheynin
et al., 2024), that accept unprocessed images, but instructions for editing concepts are only provided
in text prompts.

Another line of work is subject-driven generation (Ruiz et al., 2023; Kumari et al., 2023; Kim et al.,
2024), which takes a few images of a subject as additional guidance and generates the subject in
different environments. This task is generally solved by mapping the images to a token embedding
of the text-to-image model through optimization or a separate image encoder. Most studies have
focused on parameter-efficient optimization (Kumari et al., 2023; Han et al., 2023), encoder-based
learning (Wei et al., 2023; Li et al., 2023a), and multi-subject composition (Avrahami et al., 2023;
Ding et al., 2024), starting from the pioneering work, Textual Inversion (Gal et al., 2022). However,
these studies are oriented towards learning the subject as a whole and do not provide the freedom
to choose which concept to learn. On the other hand, our method can selectively learn only a target
concept from a single image.

Separately, a unified text-to-image generation model called OmniGen (Xiao et al., 2024) supports
all the aforementioned image-conditioned generation, image editing, and subject-driven generation.
For each task, the model demonstrates performance comparable to that of state-of-the-art models.
The model also shows generalization ability to unseen tasks, and we evaluate its performance in
concept learning.

Attribute-level concept learning. The methods for attribute-level concept learning are still in
their early stages, with only a few studies attempting to learn concepts beyond subjects by devel-
oping Textual Inversion. For example, Vinker et al. (Vinker et al., 2023) proposes a method to
decompose a subject learned by Textual Inversion into multiple concepts. This is the first to aim to
learn attribute-like concepts, yet the categories of the decomposed concepts are arbitrary. In addi-
tion, Huang et al. (Huang et al., 2024) and Motamed et al. (Motamed et al., 2023) develop methods
to learn an object relation in reference images or the conceptual difference between pairs of images.
However, they only focus on a single category of concepts or require collecting image pairs.

There are also studies that increase the number of token embeddings that are mapped to the refer-
ence images. XTI (Voynov et al., 2023) uses different embeddings per layer in the text-to-image
model, and ProSpect (Zhang et al., 2023b) uses different embeddings per diffusion timestep. Here,
ProSpect demonstrates that embeddings of different timestep possess different attributes of the ref-
erence image, such as content, material, style, or layout. The method learns several categories of
attribute-level concepts, and we compare our method with ProSpect in the experiments.

3 PRELIMINARIES

Training of diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Dhariwal & Nichol,
2021; Rombach et al., 2022) are latent variable models that generate samples from a learned data
distribution by iteratively denoising Gaussian noise. Training these models involves predicting the
denoised image x0 from a noisy image xt at a timestep t = 1, ..., T . In a setting that takes text
prompts as input, the objective function of a diffusion model xθ is formulated as

Ex0,y,ϵ∼N (0,I),t∥xθ(xt, t, τ(y))− x0∥22, (1)

where ϵ is noise added to x0 to create xt, y is a text prompt, and τ is a text encoder. After training,
prediction of the model xθ(xt, t, τ(y)) enables the generation of a slightly denoised image x̂t−1
from xt. By iteratively passing the noisy image through the model, starting from xT ∼ N (0, I), a
new denoised image x̂0 that reflects y can be produced.

Textual Inversion is a method to inject a unique subject into the output domain of pre-trained
text-to-image diffusion models. The method embeds the characteristics of the subject into a token
and has the advantage of preserving the parameters (i.e., the manifold) of the models. Specifically,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: An overview of our method.

when several reference images that contain the subject are given, a token embedding e∗ is optimized
to minimize the denoising loss of Eq. (1) over those images. The equation of the optimization is
written as follows:

e∗ = argmin
e

Ex0,y,ϵ∼N (0,I),t∥xθ(xt, t, τ(y))− x0∥22. (2)

Here, x0 is an image sampled from the reference images, and y is a simple training prompt such as
“A [*],” where [*] is the placeholder token for the token embedding e∗. Also, the diffusion model
xθ is frozen during the optimization. After the optimization, the subject is reconstructed by inserting
[*] into text prompts (e.g., “A [*] on the moon”).

4 METHOD

In this work, we build on Textual Inversion and develop a method to learn an attribute-level concept
from an image. Our method only requires a single reference image without any dataset or pre-
processing of the image.

When a reference image x0 and a target concept c are given, we optimize a token embedding e∗ to
learn the target concept in the image. Here, we assume that c is provided as text, and the concept
can be of any category. For example, if we want to learn the colors of the bubbles from x0, such as
in Fig. 3a, we simply set c as “colors of the bubbles.”

For the successful learning of an attribute-level concept, it is most important to avoid learning any
untargeted attributes. Our method is designed with this consideration in mind and proceeds through
the following steps. First, we roughly exclude non-target attributes from training by constructing
a training prompt that suits our concept learning task (Section 4.1). We leverage the findings in
subject-driven generation for the construction. Then, we propose a novel embedding called distilled
embedding, which more explicitly excludes the non-target attributes (Section 4.2). Based on the
well-known mechanism of text transformers, the distilled embedding robustly isolates the features
of the target concept from the optimized token embedding. Lastly, we observe that only using
the distilled embedding could destabilize the optimization. Thus, we propose another learnable
embedding called residual embedding, and the joint use of the distilled and residual embeddings
stabilizes the optimization (Section 4.3).

4.1 CONSTRUCTING CUSTOM TRAINING PROMPTS

In Textual Inversion, the optimization loss is minimized when the prompt “A [*]” reconstructs x0.
This means that the method forces the embedding e∗ to represent all the attributes of x0, including
objects, backgrounds, and even the camera shot and angle. On the other hand, concept learning
requires e∗ to only represent the target concept c and avoid capturing the other attributes. This needs
our training prompt to be designed such that x0 can be reconstructed even if e∗ only represents c.

Interestingly, a recent study on subject-driven generation has revealed that having a descriptive train-
ing prompt helps token embeddings to selectively represent foreground objects (Kim et al., 2024).
Specifically, when the training prompt includes descriptions of the backgrounds in the reference
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Figure 4: Comparison of the token and distilled embeddings.

Figure 5: Visualization of token embeddings and distilled embeddings.

images, the embeddings focus on capturing the remaining foregrounds in order to reconstruct the
images. This finding is particularly relevant to our concept learning task, and we leverage it to
construct our training prompts.

We want the embedding e∗ to focus on representing the target concept c. Thus, we include de-
scriptions of all the untargeted attributes in x0 in the training prompt. To obtain the descriptions, we
utilize a vision-language model (VLM) (Li et al., 2022; 2023b; Wang et al., 2024; Hong et al., 2024).
We provide an instruction-tuned VLM with x0 and request that the model describe the image except
for c in one sentence. Then, by adding a concept-specific phrase (e.g., “in [*]”) to the generated
caption, we obtain our custom training prompt ycustom. We provide the full instructions given to the
VLM in the supplementary material.

Selecting initializer token. When we optimize e∗ to represent c, we have to set the starting point
of the embedding. An easy way to do this would be to initialize e∗ with the category of c (e.g.,
“color”). However, we can utilize the VLM once again to look for a more suitable initializer token
in an automated manner.

After obtaining ycustom, we ask the VLM to infer what [*] refers to. Based on the model output, we
select a few candidate tokens with similar meanings. These candidate tokens are then input back into
the VLM, where we prompt the model to choose the most appropriate one. The selected token is
used as the initializer token. Details of the candidate selection process and the full VLM instructions
are provided in the supplementary material.

4.2 DISTILLING TARGET FEATURES FROM TOKEN EMBEDDING

Although our training prompt ycustom prevents the token embedding e∗ from capturing the other
attributes than the target concept c, it is impossible to describe all the undesired attributes in the text
of limited token length. Thus, some of the untargeted attributes still get embedded in e∗. This is
evidently shown in Fig. 4a, where the text prompt “[*]” generates not just the color, but also other
concepts such as the layout or camera focus.
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The root cause of this issue comes from the fact that e∗ can be the token embedding of any value.
Since there are no constraints that directly limit the value range of the embedding, any attributes not
described in ycustom naturally get embedded in e∗ to lower the optimization loss. While concept-
specific phrases such as “in,” “made of,” or “captured in” indirectly bound the attributes that can go
into e∗, it is impossible to structurally prohibit e∗ from learning the undescribed attributes with the
current text encoding process.

To prevent any undescribed attributes from being learnt, we propose a novel embedding called dis-
tilled embedding h[category]←∗. Our proposed embedding selectively distills the features that belong
to c from the token embedding e∗ through the transformer in the text encoder of the text-to-image
model. Specifically, we leverage the well-known mechanism of transformers, where semantically-
related tokens in a sentence attend to each other as they pass through the layers (Abnar & Zuidema,
2020). An example of using our distilled embedding is shown in Fig. 4b, which demonstrates that
only c is embedded in the embedding.

To explain the distillation of c, let us suppose the category of c is color. When the phrase “[*] color”
passes through the transformer, [*] and the token “color” would attend to each other. Here, the
embedding of the “color” encodes features associated with color from [*]. This can be observed
in Fig. 5, which shows changes in the “color” embedding depending on the word in place of [*].
If a word such as “red,” “green,” or “blue” is in place of [*], the color that the word represents is
reflected in the embedding. On the other hand, the embedding does not change if the word does not
have any meaning as a color (e.g., circular, stretching, or aerial). Here, putting “[*] color” through
the transformer can be viewed as distilling color features from [*].

Based on the observation, we put “[*] [category]” through the transformer in the text encoder, where
[category] is a coarse category descriptor of c. Then, the forwarded embedding of [category], which
we denote as h[category]←∗, is used in conjunction with our prompt ycustom as our distilled embedding.
The resulting optimization loss is as follows:

Eϵ∼N (0,I),t∥xθ(xt, t, Insert(τ(ỹcustom),h[category]←∗))− x0∥22. (3)

Here, ỹcustom is a prompt with the [*] token removed from ycustom, and Insert() is a function that
inserts h[category]←∗ back into the encoded ỹcustom.

4.3 STABILIZING THE OPTIMIZATION

Using the distilled embedding h[category]←∗ in conjunction with the detailed training prompt ycustom
makes it possible to selectively represent c among all the attributes in the reference image x0. How-
ever, Eq. (3) still forces h[category]←∗ to reconstruct all the attributes undescribed in ycustom. This
conflict between the structure of the embedding and the loss could destabilize the training, making
the embedding move to an unexpected direction.

To avoid the conflict and stabilize the training, we propose another learnable embedding called the
residual embedding. The purpose of this embedding, which we denote as hresidual, is to capture
all the residual attributes except for c. Similar to h[category]←∗, hresidual is the forwarded embedding
of [category] when the phrase “[R] [category]” passes through the transformer, where [R] is the
placeholder token. We set the token “image” as [category] since we do not want hresidual to be
bound to a specific category. Using hresidual during the training alleviates the need for h[category]←∗ to
represent all the undescribed attributes, thus stabilizing the training.

One thing to note is that hresidual could represent c instead of h[category]←∗ since it is able to capture
attributes of any category. To prevent this, we adopt the cosine similarity loss:

Lcosine = max

(
0,

hresidual · h[category]←∗

∥hresidual∥ ∥h[category]←∗∥

)
. (4)

The loss only updates hresidual, meaning that the residual embedding is forced to move away from
what h[category]←∗ is representing, which is c. Consequently, our final loss is as follows:

Lrecon = Eϵ∼N (0,I),t ∥xθ (xt, t, Insert(Prepend(τ(ỹcustom),hresidual),h[category]←∗))− x0∥22 , (5)

Ltotal = Lrecon + λLcosine, (6)

where Prepend() is a function that inserts hresidual in front of τ(ỹcustom), and λ is a coefficient.
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Figure 6: Qualitative comparison with OmniGen, U-VAP, ProSpect, and Textual Inversion (TI).

Figure 7: Comparison with ablation setups. Ours is best at exclusively learning target concepts.

5 EXPERIMENTS

In this section, we present generation results across diverse target concepts and text prompts using
our concept learning method. The concepts and prompts are from our novel dataset that is specifi-
cally constructed for the concept learning task. We also provide results from existing methods and
ablation setups for comparisons. We discuss the qualitative and quantitative findings in detail below.

Implementation details. We have implemented our method on Stable Diffusion 3 (SD3) (AI,
2024) by optimizing token embeddings in each of the three text encoders in the model. In practice,
we optimize four token embeddings per encoder. Also, when we omit the [*] token from ycustom to
obtain the distilled embedding, we maintain the sentence structure by putting a dummy token in its
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Figure 8: Quantitative comparison with baselines and ablation setups.

place. We use [category] as the dummy token, and its embedding is later replaced with the obtained
distilled embedding. Similarly, we insert another dummy token (i.e., “image”) at the beginning of
ycustom and later replace its embedding with the residual embedding.

We conduct all optimization on an NVIDIA GeForce RTX 3090 GPU. We use a learning rate of
0.001 and a batch size of 1. Similar to Textual Inversion, each optimization run takes 5000 iterations
on average. The coefficient λ from the loss is set as 0.01 or 0.001.

Proposed dataset. We construct a dataset dedicated to our attribute-level concept learning task.
The target concepts in our dataset are grouped into six categories: shape, material, color, pose, cam-
era shot and angle, and style. These categories correspond to the core visual attributes that make
up the composition of an image. We collect real-world images and a set of evaluation prompts for
each category, totaling 30 reference images and 60 evaluation prompts. The resolution of the ref-
erence images is 1024 × 1024, and we carefully select images that exhibit unique attributes of the
corresponding category, especially those that are difficult to articulate through text. For the evalu-
ation prompts, we design the prompts of sufficiently diverse contexts that could visually highlight
the attributes of the corresponding category. The prompt design is done with the support of a large
language model (OpenAI, 2022). We show all the reference images and evaluation prompts in the
supplementary material. Our dataset enables a comprehensive assessment of a concept learning
method’s ability to extract a wide range of attribute-level concepts from an image and apply them
across diverse contexts.

Comparisons. We compare our method against four baselines: OmniGen (Xiao et al., 2024), U-
VAP (Wu et al., 2024), ProSpect (Zhang et al., 2023b), and Textual Inversion (TI) (Gal et al., 2022).
All of them have released official source codes. For OmniGen, we use the official implementation as-
is. For the other baselines, we modify their code to work with Stable Diffusion 3 before generating
results.

As shown in Fig. 6, most baselines either fail to accurately reflect the target concept in the generated
image or inadvertently incorporate non-target attributes. This issue is particularly pronounced in
U-VAP and ProSpect: U-VAP tends to produce results that closely resemble the reference image,
almost reconstructing it, while ProSpect often fails to incorporate the reference concept at all. In
contrast, our method reliably integrates the target concept into the output while demonstrating a
strong ability to selectively extract only the target concept without bringing in unrelated attributes.

For quantitative evaluation, we generate six images per evaluation prompt, resulting in 60 images per
subject and 1,800 images in total. We assess the results using two evaluation metrics, as reported
in Fig. 8. Concept Similarity measures how well the generated images reflect the target concept
by computing the CLIP similarity between the generation and the reference image. To isolate the
relevant concept in both the generated and reference images, we apply concept-specific preprocess-
ing: edge detection for shape and pose concepts, and background removal for material and color
concepts. Due to the lack of preprocessing techniques for camera shot and style, we compute the
metric for these four concept types. Concept Exclusiveness, on the other hand, measures how well
the method avoids embedding irrelevant attributes. It is computed as one minus the CLIP similar-
ity between the unprocessed generated image and the reference image, and a high score implies that
fewer non-target attributes have been copied over. As shown in Fig. 8, our method achieves the high-
est overall scores in concept similarity and exclusiveness, indicating its effectiveness in accurately
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Metric OmniGen U-VAP ProSpect TI
Concept Similarity (%) 58.1 54.2 94.7 68.8
Concept Exclusiveness (%) 51.2 79.2 27.4 57.1

Metric Ours OmniGen U-VAP ProSpect TI
Prompt Fidelity 0.842 0.791 0.181 0.811 0.597

Table 1: User study results.

capturing and isolating the target concept. While ProSpect scores higher in concept exclusiveness,
the method largely ignores the target concept and generates images based solely on the text prompt,
resulting in low similarity to the reference image regardless of the target concept.

We also conduct a user study involving 11 participants, each responding to 30 questions, totaling
330 responses. Each question presents a reference image, a target concept, a text prompt, and two
generated images—one from our method and one from a baseline. Participants are asked three
questions: (1) Which image better reflects the target concept? (concept similarity), (2) Which image
appears less copied from the reference image? (concept exclusiveness), (3) Does the image faithfully
follow the prompt or not? (prompt fidelity; evaluated per image). As shown in Table 1, our method
outperforms the baselines in both concept similarity and concept exclusiveness in most cases. The
only exception is against ProSpect in concept exclusiveness, where it scores higher. Nevertheless,
ProSpect still underperforms in prompt fidelity, and our method achieves the highest prompt fidelity
score among all methods.

Ablation studies. We also compare our method with several ablation setups to assess the contri-
bution of each component. As shown in Fig. 7, removing the residual embeddings leads to unstable
training and results in distilled embeddings that fail to capture the target concept effectively. In
another variant where only custom training prompts are used without other components, we ob-
serve that non-target attributes are not fully disentangled from the target concept, leading to their
unintended inclusion in the generated images. Also, our method achieves the highest overall scores
in concept similarity and exclusiveness in Fig. 8. These results highlight the importance of each
component in our method, and demonstrate that all elements are necessary to achieve accurate and
controlled concept learning.

6 LIMITATIONS AND DISCUSSION

We conducted the experiments using SD3 due to limited GPU resources, and the generation quality
of our method is constrained by that of the base model. For example, SD3 is known to have a
limited understanding of human anatomy, which can reduce the accuracy in extracting complex
human poses from reference images (Edwards, 2024). Also, the range of contexts in which the
extracted concepts can be applied is limited by the generative capabilities of SD3. Fortunately, our
method does not depend on SD3, but improving such capabilities still requires adopting a larger
model (e.g., FLUX (Labs, 2024)).

In addition, our experiments are designed to span six distinct categories of visual concepts, each se-
lected to test different aspects of compositional and controllable generation. We keep the number of
reference images within a manageable range, as our goal is to evaluate whether a method can extract,
isolate, and generalize a concept across diverse contexts. Accordingly, we prioritize diversity across
concept types and contexts, resulting in 1800 generations per method and fine-grained comparisons
across multiple criteria. Moving forward, we encourage future work to expand in complementary
directions, such as developing scalable tools for evaluation in terms of both difficulty and volume.

7 CONCLUSION

We present a novel method for learning diverse concepts from a single reference image by isolating
the target attribute. Our distilled and residual embeddings enable precise concept extraction and
stable optimization. Experiments show that our approach outperforms existing methods, offering a
flexible solution for attribute-level manipulation in generative models.
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ETHICS STATEMENT

This work aims to assist designers in efficiently incorporating specific visual attributes into the
image generation process, which could enhance creativity and reduce prototyping costs in various
domains. However, as with many generative models, the potential for misuse remains. There is a
risk of generating images that unintentionally reflect or reinforce social biases or violate copyright if
used improperly. We encourage future work to investigate safeguards and bias-mitigation strategies
when deploying such tools in real-world applications.

USE OF LARGE LANGUAGE MODELS

We used large language models solely to aid or polish writing. They were not used for idea genera-
tion, technical contributions, experiments, or analysis.
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