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Abstract

Online anomaly detection in multi-variate time series is a challenging problem
particularly when there is no supervision information. Autoregressive predictive
models are often used for this task, but such detection methods often overlook
correlations between variables observed in the most recent step and thus miss
some anomalies that violate normal variable relations. In this work, we propose a
masked modeling approach that captures variable relations and temporal relations
in a single predictive model. Our method can be combined with a wide range of
predictive models. Our experiment shows that our new masked modeling method
improves detection performance over pure autoregressive models when the time
series itself is not very predictable.

1 Introduction

Unsupervised anomaly detection is the problem of detecting data points that do not conform to a
normal data distribution (Chandola, Banerjee, and Kumar, 2009; Chalapathy and Chawla, 2019). In
many applications, there are abundant anomaly-free training data but no information about possible
anomalies. In the context of sequential data, novelties usually manifest as events that appear "out
of context" or that do not follow the typical time-dependent data generating process (Cook, Mısırlı,
and Fan, 2019; Blázquez-García et al., 2021; Choi et al., 2021). The ability to detect novelty in time
series data in an online manner is very useful in real-time monitoring systems. In our motivating
application, an agent in a game needs to detect abnormal game transitions and adjust game strategy
in real time. In this work, we focus on online anomaly detection in time series and assume no access
to anomalies.

Autoregressive predictive models are often used for anomaly detection. Specifically, the predictive
model takes previous observations x<t = (x1, . . . ,xt−1) and makes a prediction x̂t of the current
step. Then the received observation xt at the current time step is compared against the prediction: if
xt deviates much from the prediction, then xt is claimed to be anomalous. The detection performance
largely depends on the accuracy of the predictive model. Research in this direction has proposed
various methods to improve the predictive model of such detection system (Malhotra et al., 2015;
Hundman et al., 2018; Munir et al., 2018; Deng and Hooi, 2021; Chen et al., 2021). However, these
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Figure 1: Illustration of masked modeling strategy. The current observed variables in xt are masked
K times, and each mask (dashed) produces a separate prediction. These predictions are assembled to
form the final prediction, which is compared to xt to get the anomaly score.

methods often overlook correlations between variables observed in the most recent step and thus miss
some anomalies that violate normal variable relations.

In our application of detecting anomalous events in games, game rules enforce strong correlations
between variables and stochasticity in the game makes the time-series difficult to predict, rendering
typical autoregressive methods less powerful at detecting anomalies. To further motivate this fact, we
can consider an example from the popular game of Monopoly.

Consider a game of monopoly between two players, one of which might be dishonest. The honest
player will attempt to check on every turn that their opponent did not break any rules, such as moving
to positions of the board outside the one dictated by their dice roll. To catch their opponent cheating,
the honest player can employ an autoregressive model for anomaly detection, that takes the past few
board states and attempts to predict the board state at the end of the turn. If the true state observed at
the end of the turn is very unlikely under the learned model, the opponent is likely cheating. However,
using such a strategy in Monopoly is unlikely to succeed. That is because without observing the
opponent’s dice roll in the current turn, it is not possible to predict with confidence what the next
board state will be. On the other hand, if current step information is available to the model, and it can
observe the dice-roll, detecting cheating becomes much easier. As extreme as this example may seem,
this effect is widespread in such games. Other variables such as player’s cash, properties owned
and rent fees also exhibit similarly strong correlations within single time-steps and are themselves
difficult to predict due to the stochasticity of the game. Our method aims to address this problem in
predictive models by leveraging information from the current step to improve anomaly detection.

In this work, we devise a masking strategy that allows any predictive model to capture not only
temporal relations but also correlations between variables in the same time step. Inspired by masked
language modeling (Devlin et al., 2018), we withhold data entries at the current time step xt, then we
train the model to recover masked entries based on other entries as well as previous observations. In
this new approach, the model is able to capture relations between data entries within xt.

We perform experiments on our game datasets and show that our method improves the detection
performance of a predictive model. Along with detection, we also measure localization performance,
that is the ability to identify anomalous variables in the input vector, rather than just the input vector
as a whole.

2 Related Work

Autoregressive predictive models are commonly used for anomaly detection in the online setting
Malhotra et al. (2015). These models are commonly implemented with either a fixed window size
over temporal context or a recurrent neural network (RNN) (Filonov, Lavrentyev, and Vorontsov,
2016). Deng and Hooi (2021) improve the predictive model in the anomaly detection task: the
proposed model learns a graph over features to better capture relationships between the sensors in
time series. However, they solely rely on past observations to predict observations at the current step.
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3 Masked Autoregressive Training

3.1 Problem Setup

Suppose we have a normal system that generates time series X = (xτ : τ = 1, . . . , T ) according
to some unknown distribution p∗(xτ |x<τ ). Here the observation xτ ∈ Rd at each time step τ is a
vector of d variables. In the problem of online anomaly detection in time series, we only observe the
time series x≤t = (xτ : τ = 1, . . . , t) up to t, and the task is to decide whether xt follows the same
underlying distribution p∗(xt|x<t). Note that there are no training examples of anomalies, so this is
an unsupervised problem.

In many applications, we are interested whether a single entry xt,i is from the model
p∗(xt,i|xt,η\i,x<t). Here the subscript \i denotes all entries in a vector except i and η denotes
the set of normal entries in xt. While η is also time dependent, we omit the subscript to simplify the
notation.

In online anomaly detection, a typical method is to train a predictive model p(xτ |x<τ ). Then, an
observation xt is compared to the prediction x̂t from p(xt|x<t). If xt deviates significantly from
the prediction, then it is decided that xt contains anomalous entries. Similarly, a single entry xt,i is
compared to the prediction x̂t,i to decide whether xt,i is anomalous. Typically, this method implicitly
assumes entries xt,i are conditionally independent given x<t. In our motivating application of
modeling game data where xt represents a game state at time t, two variables xt,i and xt,j might
look normal according to their marginal distributions p(xt,i|x<t) and p(xt,j |x<t) but are anomalous
according to their joint distribution p(xt,i, xt,j |x<t). This type of anomaly is only obvious when we
model the relation between xt,i and xt,j .

3.2 Masked modeling for detecting and locating anomalies

The goal of our method is to approximate the true data distribution p∗(xt,i|xt,η\i,x<t). The two main
challenges we face are determining the normal set of variables η to condition on and approximating
the conditional with a neural model. The first problem is addressed by an error-based filter that
approximates the set η using an underlying autoregressive model gψ(·). This model can be either
pretrained and fine-tuned with our module, or trained from scratch in an end to end manner. To
address the second problem we notice that the form of p∗ has structure analogous to masked modeling
and employ a masking procedure that allows us to efficiently fit the distribution.

Error-based filter As highlighted earlier, xt,i depends on the temporal context x<t and the values
of normal observations xt,η\i. Identifying the set η is not trivial, as it is tantamount to solving the full
anomaly localization problem. However, we can achieve an initial estimate by predicting the current
step x̃t using only the temporal context x<t and then comparing it against current observations xt:
those entries with large predictive errors will not be in our approximation of η.

Let the predictive model be

x̃t = gψ(·). (1)

The predictive model can be implemented with RNNs and alike. Let et be the error vector containing
the predictive error at each entry, then the binary representation η of the set η is computed as follows.

et = err(xt, x̃t) (2)
η = et < r ·max

j
et,j (3)

Again we omit the subscript t from η for simplicity. Here r ∈ R is a hyperparameter. Importantly,
this is not how we detect anomalies, as the second step of the module will leverage current-step
information to improve the prediction of xt,i. Instead, the error filter allows the module to base its
final prediction only on normal observed entries in η by removing suspicious entries. Using the error
filter we can produce x∗

t which corresponds to xt,η and treats variables not in η as missing values.
There are various ways to impute those values but for simplicity we impute with the corresponding
values of xt−1.

Masked modeling module We then approximate the conditional distribution p(xt,i|xt,η\i,x<t)
using the masking mechanism. The main challenge here is the computational cost: while an
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autoregressive model p(xt|x<t) only needs to predict once, the masked model needs to predict each
variable in xt separately. To address this issue, we consider two strategies: using a shared model to
predict all variables and compressing information x<t once for all predictions.

Let fϕ(·) denote the shared predictive module that has d outputs and predicts all variables in xt. Here
ϕ denotes all trainable parameters of the module. To prepare the input, we first impute values not in η
for the module. There are different ways to impute these values (e.g. using zeros). Here we choose to
use values from the previous step.

x′
t = η ⊙ xt + (1− η)⊙ xt−1 (4)

Then the masked predictive module fϕ(·) works as follows. Let mi = onehot(i) denote the one-hot
encoding of i.

x̂t =

d∑
i=1

mi ⊙ fϕ([(1−mi)⊙ x′
t, x̃t,η]). (5)

Here ⊙ represents element-wise multiplications. We also feed η to the module to indicate imputed
values. The shared network fϕ takes a simple MLP architecture. It runs efficiently even though it
predicts d times in total for all variables in x∗

t . Note that the information about x<t is encoded in
the prediction x̃t of the autoregressive model, and is only computed once. Additional running time
considerations are discussed in the appendix section.

Training loss and Anomaly score The training loss of the model is still the same as for an
autoregressive model:

Lϕ =

T∑
t=2

d∑
i=1

loss(xt,i, x̂t,i) (6)

Here the loss function can adapt to different types of variables. For example, it can be the squared
difference if xt,i is a numerical variable or the binary cross-entropy loss if xt,i is a binary variable. A
similar calculation is also used for compute anomaly scores at test time for each variable, which are
aggregated to form the anomaly score for the time step. For more details please refer to the appendix.

4 Experiments

We conduct 2 experiments to evaluate the performance of models with the masking module on
anomaly detection and localization. An ablation of the error filter is available in the appendix.

Model Polycraftv2 Monopoly
F1 Precision Recall Best F1 Precision Recall

MLP 0.902±0.006 0.961±0.008 0.851±0.009 0.534±0.005 0.423±0.009 0.73±0.021
Masked MLP 0.976±0.004 0.989±0.003 0.964±0.007 0.824±0.004 0.967±0.005 0.718±0.007
GDN 0.915±0.008 0.875±0.006 0.96±0.014 0.528±0.007 0.46±0.004 0.622±0.019
Masked GDN 0.962±0.002 0.949±0.007 0.976±0.008 0.824±0.005 0.97±0.014 0.718±0.006

Table 1: Anomaly detection performances over 10 runs on Polycraftv2 and Monopoly. F1 scores are
in bold when masked training yields statistically significant difference in performance.

Model Polycraftv2 Monopoly
F1 Precision Recall Best F1 Precision Recall

MLP 0.43±0.004 0.803±0.06 0.306±0.017 0.458±0.004 0.369±0.005 0.608±0.016
Masked MLP 0.615±0.017 0.637±0.042 0.619±0.032 0.588±0.004 0.941±0.011 0.427±0.004
GDN 0.616±0.003 0.74±0.043 0.55±0.03 0.496±0.003 0.404±0.007 0.647±0.01
Masked GDN 0.67±0.006 0.874±0.021 0.545±0.006 0.608±0.012 0.946±0.017 0.449±0.012

Table 2: Anomaly localization performances over 10 runs on Polycraftv2 and Monopoly. F1 scores
are in bold when masked training yields statistically significant difference in performance.
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Datasets We collect data from two games Polycraftv2 (Smaldone et al., 2017) and Monopoly
(Haliem et al., 2021). Polycraftv2 is an open environment where agents collect resources and craft
items. Monopoly is a simulation derived from the well-known board game Monopoly. The games are
played by planning agents based on the DIARC architecture(Schermerhorn et al., 2007). Anomalies in
games include changes of rules, objects, or entity relations in the game. Labels for the timesteps where
anomalies occur, as well as for the specific variables affected by them are recorded automatically
when the anomalous game mechanic is in effect. We perform evaluation on both novelty detection and
localization. For novelty detection, we use the positive label for anomalous time steps. For novelty
localization we use the positive label for anomalous features. Table 4 in the appendix summarizes the
dataset statistics for each game.

Experiment settings We augment two autoregressive models with our module: multilayer-
perceptron (MLP) and GDN (Xu et al., 2021). Further information on training settings is available in
the appendix. We evaluate anomaly detection by comparing step-wise anomaly scores from different
models against anomaly labels. Following previous work, we set the threshold to the maximum
error over the validation set and compute the F1 score for each model. We also show the precision
and recall at this threshold. For anomaly localization, we take the micro-average of F1 scores of all
variables at different times: we pool anomaly scores for all variables and then compare them against
true labels to compute the F1 score, precision, and recall.

Results Results on anomaly detection are shown in table 1 and anomaly localization in table 2.
Both games have strong correlations between features as enforced by game rules, and sources of
stochasticity that make the time-series difficult to predict. In Polycraftv2, resource amounts are
strongly correlated as some are used to directly craft others. Similarly, in Monopoly the player’s
cash is strongly correlated with property ownership. The stochasticity in the games comes from
random effects such as dice rolls and agent’s decision-making. As a result, these conditions allow the
masking module to offer statistically significant improvement in F1 score for both models in both
environments.

5 Conclusion

We introduce a novel masked training approach for unsupervised online detection of anomalies in
time series. Compared with autoregressive predictive methods, the masked training method exploits
the relations between features in current date observations to increase predictive power and therefore
more effectively discover and localize anomalies in the input vector. The new masked training method
shows significant improvement in anomaly detection in interactive games, where the time series is
not very predictable due to the inherent stochasticity of human and computer agent players and the
features in the observed game states have strong intra-step correlations.
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6 Supplement

6.1 Anomaly Score calculation

For any predictive model including those with our module, we compare model predictions to
observations to calculate the anomaly score.

We first consider locating anomalies to individual variables. Here we compare xt,i and x̂t,i to get the
anomaly score αt,i for entry i at time t. Let rt,i = err(xt,i, x̂t,i) be the predictive error with some
type of error function. For example, it can be the absolute error if xt,i is continuous. We also compute
a single anomaly score at for the entire time step t by aggregating anomaly scores of single entries.

at = aggregate(αt,1, . . . , αt,d). (7)

There are various choices for the aggregation function. For example, we can take the average or
maximum of the d anomaly scores. In our experiments, we use the maximum as the step-wise
anomaly score. Figure 1 illustrates the architecture.

6.2 Running Time Considerations

If the number d of variables is very large, variables can be grouped together in masking to further
reduce the required computation. Suppose we create k groups from d variables and denote each
group with a binary vector.

M = {mk′ ∈ {0, 1}d : k′ = 1, . . . , k},
k∑

k′=1

mk′ = 1 (8)

Then the conditional distribution we need to fit is p∗(xt,mk
|xt,(1−mk)⊙η,x<t), which is a general-

ization of the conditional distribution of a single variable. The prediction x̂t is computed in the same
way as (5) except that the summation loops over k masks.

However, in practice we find that for non-time critical applications the lightweight architecture of the
module means the extra computational cost is not very significant. Table 3 shows per training epoch
running times for models with the masked module without variable grouping.

Models Polycraftv2 (s) Monopoly (s)
MLP 4.65 ± 0.75 8.36 ± 0.44
Masked MLP 5.45 ± 0.36 9.64 ± 0.38
GDN 9.19 ± 1.32 17.87 ± 1.87
Masked GDN 11.43 ± 1.04 20.32 ± 2.47

Table 3: Per epoch running time comparison for all models in Polycraftv2, and Monopoly

6.3 Dataset Statistics

Table 4 shows the statistics of the game datasets.

6.4 Training information and Hyperparameters

The game datasets include binary, numerical and categorical features. Categories in categorical
features are encoded as vectors. Numerical features are normalized by subtracting their training data
mean and dividing by the variance. To scale up the training, all models use fixed window size for the
temporal context and are trained for a maximum of 200 epochs with early stopping. We run each
model 10 times and collect the mean.

Common Training parameters: Adam, learning rate 1e-3, beta1,beta2= (0.9,0.99). Early stopping
with patience 15.

Dataset : Polycraftv2
GDN: Embedding dimension 64, topk 5, Hidden dimension 16, dropout=0.2
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Dataset # variables # Train # Test % Anomalous Steps % Anomalous Variables
Polycraftv2 26 3461 993 10 1.1
Monopoly 9 7393 2148 10 2.2

Table 4: Statistics of two game datasets.

Masked GDN: masks 10, Embedding dimension 64, topk 15, Hidden dimension 64

MLP: Hidden dimension 32, last layer dimension 16, number of hidden layers 4, dropout 0.2

Masked MLP: masks 10, Hidden dimension 16, last layer dimension 16, number of hidden layers 4,
dropout 0.2

Dataset : Monopoly
GDN: Embedding dimension 64, topk 5, Hidden dimension 16, dropout=0.2

Masked GDN: masks 19, Embedding dimension 64, topk 15, Hidden dimension 32

MLP: Hidden dimension 256, last layer dimension 64, number of hidden layers 2, dropout 0.2

Masked MLP: masks 19, Hidden dimension 64, last layer dimension 64, number of hidden layers 2,
dropout 0.2

Additional Experiments

Figure 2: Polycraftv2 and Monopoly localization performance for varying error filter opacity. When
r = 0 the filter is opaque, when r > 1 the filter is transparent.

6.4.1 Ablation of error filter

In this experiment we perform ablation of the error filter by varying the value of r. We would like to
note that this experiment was conducted after the completion of all previous experiments and did not
influence the selection of r.

Experiment Settings We perform the ablation study on the anomaly localization tasks for monopoly
and Polycraftv2 as these tasks are particularly susceptible to the problem of conditioning on anomalies.
We vary the hyperparameter r to values of 0, 0.5, 0.95, 1.0 and also completely remove the filter by
setting r > 1 thus using the full current step.

Results The results shown in Figure 2 demonstrate that the error filter is necessary to extract the full
benefit of the masked modeling module. In both games, when r > 1 the model suffers in performance
as it conditions predictions on anomalous entries. When r is small, the predictive power of the model
is decreased so detection performance suffers. In Polycraftv2 r = 0.95 provides the best trade-off. In
Monopoly r = 1 provides the best trade-off. While our chosen value of r = 0.95 seems reasonable
across tasks, the optimal choice is application dependent and not easily tuned.
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