

FORMALIZING LEARNING FROM LANGUAGE FEEDBACK WITH PROVABLE GUARANTEES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Interactively learning from observation and language feedback is an increasingly
 012 studied area driven by the emergence of large language model (LLM) agents.
 013 While impressive empirical demonstrations have been shown, so far a principled
 014 framing of these decision problems remains lacking. In this paper, we formalize
 015 the Learning from Language Feedback (LLF) problem, assert sufficient as-
 016 sumptions to enable learning despite latent rewards, and introduce *transfer eluder*
 017 *dimension* as a measure to characterize the hardness of LLF problems. We formalize
 018 the intuition that information in the feedback governs the learning complex-
 019 ity of LLF problems. We demonstrate cases where learning from rich language
 020 feedback can be exponentially faster than learning from reward. We develop a
 021 no-regret algorithm, called HELiX, that provably solves LLF problems through
 022 sequential interactions, with performance guarantees that scale with the transfer
 023 eluder dimension of the problem. Across several empirical domains, we show
 024 that HELiX performs well even when repeatedly prompting LLMs does not work
 025 reliably. Our contributions mark an important step towards designing principled
 026 interactive learning algorithms from generic language feedback.

1 INTRODUCTION

030 Large language models (LLMs) have reshaped the landscape of how machines learn and interact
 031 with the world across a wide range of tasks (Bommasani et al., 2021; BIG-bench authors, 2023; Anil
 032 et al., 2024; Hurst et al., 2024; Jaech et al., 2024; Guo et al., 2025; Yamada et al., 2025). Trained
 033 on large corpora of web data, these models can interact with the world through natural language,
 034 opening up new settings for sequential decision-making problems. Unlike traditional sequential
 035 decision-making approaches where agents learn from scalar reward signals (Sutton & Barto, 2018),
 036 LLM can act as agents that interpret and reason with natural language feedback such as critique (Du
 037 et al., 2023; Akyürek et al., 2023a), guidance (Branavan et al., 2012; Harrison et al., 2017; Scheurer
 038 et al., 2023; Nie et al., 2023; Fu et al., 2024; Wei et al., 2024; Cheng et al., 2024), or detailed
 039 explanations (Andreas et al., 2017; Chen et al., 2023; Cheng et al., 2023).

040 Consider an LLM agent that produces a summary of a story and receives feedback: “The summary
 041 is mostly accurate, but it overlooks the main character’s motivation.” Such feedback conveys no-
 042 tably richer information than a numerical score, e.g., 0.7 out of 1, as it identifies a specific flaw
 043 and suggests a direction for improvement. With LLMs’ abilities to understand and respond in nat-
 044 ural language Touvron et al. (2023), such feedback can be used to drastically increase learning
 045 efficiency. This represents a fundamental shift in how AI systems can learn through continuous,
 046 rich interactions beyond rewards only (Silver & Sutton, 2025). Despite early works on this topic
 047 pre-LLM (Gauthier & Mordatch, 2016; Andreas, 2022) and promising recent empirical results in
 048 utilizing language feedback for sequential decision-making (Liu et al., 2023; Chen et al., 2024; Xie
 049 et al., 2024), a rigorous theoretical framework remains lacking.

050 We introduce a formal mathematical framework of Learning from Language Feedback (LLF) in se-
 051 quential decision making. The LLF paradigm was introduced in (Cheng et al., 2023) as an interface
 052 to benchmark LLM agents’ ability to learn from text feedback in lieu of numerical reward. However,
 053 it is unclear when LLF is feasible or whether it is harder to solve than the more traditional reward-
 aware **bandit** setting. Intuitively, one might think language feedback can provide more information
 to help learning. Indeed, people have empirically found constructive feedback to be more effective

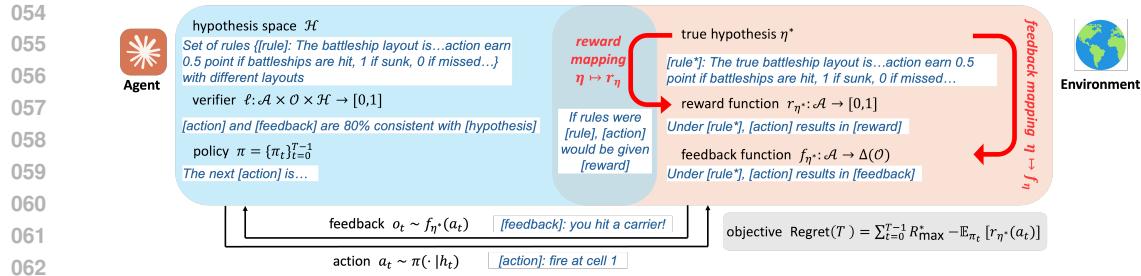


Figure 1: The LLF setup using battleship as a concrete example. The environment has a hypothesis η^* representable via text tokens unknown to the agent. Reward as a function of η^* is latent and used only to benchmark the agent via regret to an optimal policy. Feedback as a function of η^* is observed by the agent. Three ingredients are sufficient for no-regret learning: feedback is *unbiased* (Assumption 3), agent can interpret feedback (Assumption 2), and agent considers hypotheses \mathcal{H} including η^* (precursor to Assumption 1).

for LLM agents to learn from than conveying reward alone in words (Mu et al., 2022; Liu et al., 2024; Zhong et al., 2024; Xie et al., 2024). But feedback can also mislead agents. The complexity and generality of language make it difficult to formally quantify the effect of language feedback.

For general language feedback, can we precisely define helpful and unhelpful feedback? Can we capture the complexity of LLF based on the information in the feedback, and does helpful feedback indeed imply a lower problem complexity? Can we design a provably correct algorithm that learns solely from language? The goal of this paper is to provide constructive answers to all these questions:

Language feedback can be formalized through hypothesis and verifier. To work with the generality of language, we rely on the concept of hypothesis testing and elimination in machine learning (De Jong et al., 1993; Lehmann & Romano, 2022), except with hypotheses that can be expressed in words. We formalize the interface in which agents sequentially interact while reasoning with feedback produced by an underlying hypothesis (summarized by Fig. 1). We also define a verifier which evaluates the semantic consistency between candidate hypotheses and observed feedback. Through the notion of hypothesis and verifier, we give a precise definition of informative feedback and establish conditions such that LLF is feasible and can be efficiently solved.

Hardness of LLF is determined by information in feedback. We capture the learning difficulty with a new notion of complexity based on eluder dimension (Russo & Van Roy, 2013), which we call *transfer eluder dimension*. This complexity measure captures how efficiently language feedback can reduce uncertainty about rewards. While many existing settings consider feedback in place of scalar rewards (Wang et al., 2003; Kocák et al., 2014; Bartók et al., 2014; Fürnkranz et al., 2012), they commonly assume that the only useful information the feedback encodes is the underlying reward and focuses on decoding it accurately. As an example, IGL (Xie et al., 2021) posits a decoder capable of extracting reward estimates from a rich feedback vector, and treats the remaining components as distractions. In contrast, our work emphasizes on the importance of extracting useful learning signals other than reward, and we show regimes where LLF is strictly *easier* than reward-based learning.

LLF can provably have no regret. We develop HELiX, a provably efficient algorithm for LLF. We prove that HELiX achieves a regret bound that scales gracefully with the transfer eluder dimension and time horizon T , establishing a formal connection between no-regret learning and language feedback. Crucially, our analysis shows that in certain environments, HELiX can be *exponentially* more efficient than learning from reward alone. We introduce a meta-algorithm that enables LLMs to perform inference-time exploration and exploitation using HELiX, inspired by how thinking tokens are used in large reasoning models (LRMs) (Guo et al., 2025). We empirically validate the efficacy of our implementation on Wordle, Battleship and Minesweeper. We show that HELiX and its variants consistently outperform in-context learning LLM baselines. Altogether, our work contributes a principled framework for understanding and designing learning agents guided by language.

108

2 RELATED WORK

110 While using LLMs for general problem solving has been studied for a long time (Xie et al., 2022a;
 111 Guo et al., 2024; Akyürek et al., 2023b), relatively fewer prior works studied the use of LLMs for
 112 sequential decision-making. There are roughly two routes to improving the agent’s performance
 113 with language feedback. One is to directly deploy LLMs as agents in decision-making problems
 114 by incorporating feedback into subsequent prompts or an external memory buffer (Yao et al., 2023;
 115 Brooks et al., 2023; Shinn et al., 2023; Wang et al., 2024; Krishnamurthy et al., 2024; Nie et al.,
 116 2024; Xi et al., 2025). Another route is to process this feedback and use it to finetune a model’s
 117 weights (Chen et al., 2024; Scheurer et al., 2022; Raparthy et al., 2023; Lee et al., 2023; Qu et al.,
 118 2025). More recent work has investigated more sophisticated methods to improve exploration with
 119 LLMs, such as directly learning exploration behavior through supervised fine-tuning (Nie et al.,
 120 2024), preference-based learning (Tajwar et al., 2025), or reinforcement learning (Schmied et al.,
 121 2025), or prompting LLMs to mimic a perfect Bayesian learner (Arumugam & Griffiths, 2025).
 122 However, these results have been empirical.

123 We aim to bridge this gap by introducing a formal framework and guarantees for learning from lan-
 124 guage feedback. Our framework is closely related to multi-armed bandits (Lai & Robbins, 1985)
 125 and contextual bandits (Langford & Zhang, 2007). The class of algorithms that achieve dimin-
 126 ishing long-term average reward are termed “no-regret algorithms” (Auer et al., 2002; Thompson,
 127 1933; Russo et al., 2018). One widely adopted strategy relies on the “optimism in the face of un-
 128 certainty” principle. Our algorithm design follows the same spirit as UCB (Auer et al., 2002). A
 129 key difference is that our algorithm does not observe rewards at all, but instead rely on decoding
 130 information in the feedback through a verifier loss to construct the confidence set. A recent line
 131 of work utilizes UCB-like heuristics for LLM agents, but they either consider hypotheses as code
 132 that specifies an MDP (Tang et al., 2024), and/or assume that the agent observes the ground-truth
 133 numerical reward (Tang et al., 2024; N et al., 2024; Nie et al., 2024).

134 Another line of research has leveraged natural language as an auxiliary signal to improve learning
 135 in sequential decision-making. Early studies showed that agents can benefit from textual guid-
 136 ance, such as game manuals, to inform policies or features (Branavan et al., 2012). Subsequent
 137 approaches explored grounded language to shape behavior (Gauthier & Mordatch, 2016), guide ex-
 138 ploration (Harrison et al., 2017), or learn from feedback (Andreas et al., 2017). More recently,
 139 LDD (Zhong et al., 2024) pre-trains agents on language-annotated demonstrations to learn environ-
 140 ment dynamics, then fine-tunes with RL to improve sample efficiency and generalization. While
 141 these approaches show empirical success, they lack a formal framework and theoretical guarantees.

142 Beyond scalar rewards, many learning settings offer richer forms of feedback. Prior work has ex-
 143 plored bandits with side observations (Wang et al., 2003; Kocák et al., 2014), partial monitoring
 144 (Bartók et al., 2014), and preference-based feedback (Fürnkranz et al., 2012). To characterize sam-
 145 ple complexity in reward-aware RL, Russo & Van Roy (2013) introduces the eluder dimension. Our
 146 work extends this notion beyond reward learning (for a detailed discussion and illustration of the
 147 relationship of LLF to existing paradigms, see Fig. 3 in Appendix A).

148

3 FORMULATING LEARNING FROM LANGUAGE FEEDBACK

150 Our first contribution is to give a formal mathematical model to describe the LLF process (illustrated
 151 by Fig. 1) and introduce natural assumptions to frame the learning problem so that LLF can be rigor-
 152 ously studied. In what follows, we first define the interaction setup. Then we introduce the notion of
 153 text hypotheses for world modeling. Finally, we define the verifier to evaluate hypothesis-feedback
 154 consistency, which later gives a measure on the informativeness of feedback. These constructions
 155 provide a basis for studying LLF’s learnability and analyzing regret in the next section.

156

3.1 FORMAL SETUP OF LLF

157 Let \mathcal{T} be a finite set of tokens. We denote the set of all finite token sequences by $\mathcal{T}^+ = \cup_{k \geq 1} \mathcal{T}^k \cup$
 158 $\{\emptyset\}$, where \mathcal{T}^k denotes the set of length- K token sequences. There is a set $\mathcal{O} \subset \mathcal{T}^+$ of token
 159 sequences that we refer to as the *feedback* space. For an arbitrary set \mathcal{X} , we use $\Delta(\mathcal{X})$ to denote the
 160 set of all probability distributions with support on \mathcal{X} .

We define the problem of Learning from Language Feedback (LLF)¹ with a finite action set \mathcal{A} . At time step t , the agent interacts with the environment by executing an action $A_t \in \mathcal{A}$ and observing feedback $O_t \in \mathcal{O}$ sampled from a feedback distribution $f^* : \mathcal{A} \rightarrow \Delta(\mathcal{O})$; a reward $R_t = r^*(A_t)$ is incurred, based on a reward function $r^* : \mathcal{A} \rightarrow [0, 1]$, though R_t is not revealed to the agent. Here we suppose the reward is generated by a deterministic function r^* ; our results can be extended to stochastic rewards. A policy is a distribution on \mathcal{A} . We denote $\Pi = \Delta(\mathcal{A})$ and the agent's policy at time step t for sampling A_t as π_t . We measure the performance of the agent in the LLF setup by regret, which is defined as $\text{Regret}(T) = \sum_{t=0}^{T-1} R_{\max}^* - \mathbb{E}_{\pi_t} [R_t]$, where T is the total number time steps, $R_{\max}^* = \max_{a \in \mathcal{A}} r^*(a)$, and the expectation is taken over feedback randomness and the algorithm's inner randomization.

This setup is similar to a **bandit problem**, and the goal of the agent is to find actions that maximize the reward. However, unlike RL, here the agent *does not observe the rewards* $\{R_t\}$, and must learn to maximize the reward solely using natural language feedback $\{O_t\}$.

Remark 1. The setup above can be naturally extended to a contextual setting (an analogy of contextual bandit problems; please see Appendix D.2 for details), where the agent receives a context in each time step before taking an action. While the feedback in the context-less setting here may be viewed similar to a context, the main difference is that the optimal actions in the context-less setting do not change between iterations; on the other hand, in the contextual setting, the optimal actions in each time step depend on the context presented to the agent at that point.

181

182 3.2 ENVIRONMENT MODEL AND TEXT HYPOTHESIS

The environment in the LLF setup is defined by a feedback function $f^* : \mathcal{A} \rightarrow \Delta(\mathcal{O})$ and a reward function $r^* : \mathcal{A} \rightarrow [0, 1]$. We suppose they are “parameterized” by some text description, which we call a *hypothesis*, belonging to a (possibly exponentially large) hypothesis space $\mathcal{H} \subset \mathcal{T}^+$. One can think of a hypothesis as describing the learning problem and mechanism of generating feedback in texts such as natural language or codes. For example, in a recommendation environment, a hypothesis can be a text description of a user's interests, e.g., “the user enjoys fantasy movies produced in the 21st century...”; in a video game environment, a hypothesis can describe the game's code logic, “<rule of the game><inferred hidden game state><inferred reward mechanism>”. A hypothesis can also represent a finite-sized numerical array along with operations to decode it into reward and feedback. In short, a hypothesis is a sufficient text description of the learning problem such that the reward and the feedback functions can be fully determined.

With the hypothesis space \mathcal{H} , we model the feedback mechanism through a *feedback mapping* $\eta \mapsto f_\eta$ that maps each hypothesis $\eta \in \mathcal{H}$ to a *feedback function* $f_\eta : \mathcal{A} \rightarrow \Delta(\mathcal{O})$. Similarly, we model a *reward mapping* $\eta \mapsto r_\eta$ that maps a hypothesis $\eta \in \mathcal{H}$ to a *reward function* $r_\eta : \mathcal{A} \rightarrow [0, 1]$. We denote by $\eta^* \in \mathcal{H}$ the true hypothesis of the environment, and use shorthand $f^* = f_{\eta^*}$ and $r^* = r_{\eta^*}$. This construction is reminiscent of classical bandit settings where the reward function is parameterized, such as the linear case $r^*(a) = \phi(a)^\top \theta^*$ for some known feature map ϕ and unknown ground-truth parameter θ^* . We generalize this by using the reward mapping $\eta \mapsto r_\eta$ as an analogue of the feature map and the hypothesis η^* as the parameter. Following the convention in the literature, we assume that the parameterization, i.e., the reward mapping $\eta \mapsto r_\eta$, is *known* to the agent, but the parameter η^* is *unknown*. See Fig. 1 for an overview.

Assumption 1. We assume that the agent has access to the reward mapping $r_\eta : \eta \mapsto r_\eta$.

205

In practice, the reward mapping can be implemented using an LLM to process a given hypothesis text, e.g., to tell whether an action is correct/incorrect (Zheng et al., 2023; Weng et al., 2023; Gu et al., 2024). We do not assume knowing the feedback mapping $\eta \mapsto f_\eta$, however, as precisely generating language feedback in practice is difficult.

209

210 3.3 MEASURING INFORMATION IN FEEDBACK

211 Without any connection between feedback and reward, learning to minimize regret from feedback is
212 provably impossible. Intuitively, for LLF to be feasible, language feedback must contain information

¹In the original formulation in (Cheng et al., 2023), a problem context is given before learning to provide background to interpret feedback. We omit writing the problem context for simplicity but equivalently *assume that the agent can interpret the feedback through the verifier* that we will introduce later.

216 that can infer the solution, like reward, action rankings, or whether an action is optimal. To study
 217 LLF learnability, we need a way to quantify this information. Since it is impossible to enumerate all
 218 possible language feedback, we adopt a weak, implicit definition based on a sensing function.
 219

220 We introduce the notion of a *verifier* to formalize information the agent can extract from feedback.
 221 The verifier represents a mechanism that assesses whether a hypothesis is consistent with observed
 222 feedback given to an action; for example, a verifier implemented by an LLM may rule out hypotheses
 223 that are semantically incompatible with feedback observations.
 224

225 **Assumption 2** (Verifier). We assume that there is a verifier, which defines a loss $\ell : \mathcal{A} \times \mathcal{O} \times \mathcal{H} \rightarrow$
 226 $[0, 1]$, and the agent has access to the verifier through ℓ . For any action $a \in \mathcal{A}$, feedback $o \in \mathcal{O}$ and
 227 hypothesis $\eta \in \mathcal{H}$, the value $\ell(a, o, \eta)$ quantifies how well η aligns with the feedback on action a . If
 228 η is consistent with o on action a , then $\ell(a, o, \eta) = 0$; otherwise, it returns a non-zero penalty.
 229

230 A concrete example may help ground this abstract assumption. Suppose the agent chooses an action
 231 a corresponding to a text summary of a story, and receives feedback o in the form of text
 232 critique, such as: “The summary is mostly accurate, but it misses an important detail about the main
 233 character’s motivation.” Suppose each hypothesis $\eta \in \mathcal{H}$ corresponds to a set of rubrics to judge
 234 summaries. A verifier must output a score $\ell(a, o, \eta)$. If a rubric η implies that summaries should
 235 capture the main character’s motivation, then $\ell(a, o, \eta) = 0$, indicating consistency. Otherwise, the
 236 loss value is positive. Such a verifier can be implemented by prompting an LLM to assess whether
 237 the feedback o is consistent with applying rubric η to the summary a .
 238

239 The set of feedback-consistent hypotheses naturally captures information in the feedback. Ideally,
 240 feedback generated from $f_\eta(\cdot)$ should be self-consistent, i.e., $\mathbb{E}_{O \sim f_\eta(a)}[\ell(a, O, \eta)] = 0$ for all $a \in \mathcal{A}$
 241 and $\eta \in \mathcal{H}$. However, in practice, both the feedback and the verifier may be noisy or imperfect and
 242 there may be some $a \in \mathcal{A}$ such that $\mathbb{E}_{O \sim f^*(a)}[\ell(a, O, \eta^*)] > 0$. To accommodate this potential
 243 noise while preserving learnability, we adopt a weaker assumption than self-consistency: although
 244 the feedback may be noisy, it is *unbiased* such that each hypothesis minimizes the expected verifier
 245 loss under its induced distribution.
 246

247 **Assumption 3** (Unbiased Feedback). We say f_η is unbiased, if for all $a \in \mathcal{A}$ and $\eta \in \mathcal{H}$, $\eta \in$
 248 $\arg \min_{\eta' \in \mathcal{H}} \mathbb{E}_{O \sim f_\eta(a)}[\ell(a, O, \eta')]$.
 249

250 The notion of verifier can be used to formalize *semantic equivalence* among hypotheses. In natural
 251 language, many token sequences share the same underlying semantic meaning. For LLF, such
 252 distinctions are not meaningful and should not affect the learning outcome. This invariance can be
 253 captured by the verifier introduced above. We deem hypotheses as equivalent whenever they induce
 254 identical loss functions across all inputs. We use this to define the geometry of the hypothesis space.
 255

256 **Definition 1** (Hypothesis Equivalence). We define the distance between two hypotheses $\eta, \eta' \in \mathcal{H}$ as
 257 $d_{\mathcal{H}}(\eta, \eta') := \sup_{a \in \mathcal{A}, o \in \mathcal{O}} |\ell(a, o, \eta) - \ell(a, o, \eta')|$. If $d_{\mathcal{H}}(\eta, \eta') = 0$, we say η and η' are *equivalent*.
 258

259 This definition provides a criteria to determine the equivalence of hypotheses, as two hypotheses
 260 with zero distance are indistinguishable from the agent’s perspective. In applications involving
 261 LLM-generated feedback, the loss function ℓ can be designed to reflect semantic similarity, e.g., by
 262 assigning similar values to outputs that are paraphrases of one another, based on token-level matching,
 263 embedding-based metrics, or LLM-prompted judgments (Wang & Yu, 2023; Chuang et al.,
 264 2022; Asai & Hajishirzi, 2020; Bubeck et al., 2023).
 265

266 **Remark 2.** Readers familiar with reinforcement learning from human feedback (RLHF) or AI feed-
 267 back (RLAIF) may wonder if such a loss structure is necessary. Indeed, one may alternatively define
 268 a scoring function $g : \mathcal{A} \times \mathcal{O} \rightarrow [0, 1]$ that directly evaluates an action-feedback pair and impose
 269 some relationships between the scoring function and the underlying reward. This construction is a
 270 special case to our framework, which we discuss in detail in Section 4.3.
 271

272 4 LEARNABILITY AND PROVABLE ALGORITHM

273 Compared to numerical rewards, feedback can potentially carry more information. In LLF, to in-
 274 terpret this feedback and guide learning, the agent is equipped with: 1) The verifier loss function ℓ
 275 and 2) The reward mapping $\eta \mapsto r_\eta$. This structure reflects a central feature of LLF: the agent must
 276 reason over the hypothesis space \mathcal{H} via the verifier to minimize regret of the hidden rewards.
 277

270 But can an agent learn to maximize reward despite not observing it? For instance, if feedback does
 271 not convey useful information for problem solving, it is unrealistic to expect any learning to happen.
 272 On the other hand, if feedback directly reveals the optimal action, then the problem can be solved in
 273 two steps. Naturally, one would expect the learnability and complexity of LLF problems to depend
 274 on the information that feedback conveys. The goal of this section is to give natural structures and
 275 assumptions to the LLF setup that characterizes the difficulty of the learning problem.

277 4.1 TRANSFER ELUDER DIMENSION

278 To quantify information in the feedback, we propose a new complexity measure called *transfer*
 279 *eluder dimension* based on the eluder dimension (Russo & Van Roy, 2013) using the verifier in
 280 Section 3.3. At a high level, transfer eluder dimension characterizes how effectively information
 281 in the feedback reduces uncertainty about the unknown reward function. When it is small, a single
 282 piece of feedback carries a lot of information about the reward, which enables LLF to be much more
 283 efficient than learning from reward.

284 **Definition 2.** Define $\ell_\eta^{\min}(a) := \min_{\eta'} \mathbb{E}_{O \sim f_\eta(a)}[\ell(a, O, \eta')]$. Given a verifier loss ℓ , an action
 285 $a \in \mathcal{A}$ is ϵ -*transfer dependent* on actions $\{a_1, \dots, a_n\} \subset \mathcal{A}$ with respect to \mathcal{H} if any pair of
 286 hypotheses $\eta, \eta' \in \mathcal{H}$ satisfying $\sum_{i=1}^n (\mathbb{E}_{O \sim f_{\eta'}(a_i)}[\ell(a_i, O, \eta)] - \ell_{\eta'}^{\min}(a_i)) \leq \epsilon^2$, also satisfies
 287 $|r_\eta(a) - r_{\eta'}(a)| \leq \epsilon$. Further, a is ϵ -*transfer independent* of $\{a_1, \dots, a_n\}$ with respect to \mathcal{H} if
 288 a is not ϵ -transfer dependent on $\{a_1, \dots, a_n\}$.

290 This definition says that an action a is transfer independent of $\{a_1, \dots, a_n\}$ if two hypotheses that
 291 give similar feedback according to the verifier at $\{a_1, \dots, a_n\}$ can differ significantly in their reward
 292 predictions at a . This differs from the dependency condition used in eluder dimension (Definition 4),
 293 which measures discrepancies in both the history and new observation using reward.

294 **Definition 3** (Transfer eluder dimension). The ϵ -*transfer eluder dimension* $\dim_{TE}(\mathcal{H}, \ell, \epsilon)$ of \mathcal{H}
 295 with respect to the verifier loss ℓ is the length d of the longest sequence of elements in \mathcal{A} such that,
 296 for some $\epsilon' \geq \epsilon$, every action element is ϵ' -transfer independent of its predecessors.

297 Unlike the eluder dimension, transfer eluder dimension measures dependence based on two quantities:
 298 the verifier loss and the reward function. This extension allows us to capture information in the
 299 feedback relevant to reward learning. Later in Section 4.4, we will present a provable algorithm that
 300 attains a sublinear regret rate in LLF in terms of the transfer eluder dimension.

303 4.2 INFORMATIVE FEEDBACK REDUCES LEARNING COMPLEXITY EXPONENTIALLY

304 We discuss several example forms of feedback and compute the corresponding transfer eluder di-
 305 mensions. The nature of feedback critically affects learning efficiency: uninformative feedback (e.g.,
 306 random text) leads to infinite transfer eluder dimension, while some feedback can provide more in-
 307 formation than reward and accelerate learning. For example, in a constraint satisfaction problem,
 308 feedback that reveals satisfied constraints can shrink the set of potentially true hypotheses. In the
 309 toy example below, reward-only learning requires exponential time (2^L), whereas the transfer eluder
 310 dimension is 1, so LLF has the potential for an exponential speed up.

311 **Example 1** (Bitwise feedback on 0-1 string). Consider an action set $\mathcal{A} = \{0, 1\}^L$. The space of
 312 hypotheses \mathcal{H} contains all possible length- L 0-1 strings. Each hypothesis η contains a particular
 313 fixed target string $s(\eta)$ and the corresponding text instruction to provide reward and feedback about
 314 the target. The reward function r_η corresponding to a hypothesis η is such that $r(a) = 1$ if $a = s(\eta)$
 315 and $r(a) = 0$ otherwise. In other words, rewards are sparse and every suboptimal arm incurs a regret
 316 of 1. Feedback to an action $a = (a_1, \dots, a_L)$ is bitwise, which tells in words the correctness of each
 317 bit in the 0-1 string (i.e. whether $a_i = s_i$ for $s(\eta) = (s_1, \dots, s_L)$). Equivalently, we can abstract
 318 the feedback as $f_\eta(a) = (\mathbb{1}\{a_i = s_i\})_{i=1}^L$ and define the loss function $\ell(a, O, \eta) = \frac{1}{L} \sum_{i=1}^L \mathbb{1}\{o_i \neq$
 319 $\mathbb{1}\{a_i = s_i\}\}$ to measure the discrepancy between the feedback and the correctness indicated by
 320 hypothesis η . For any $\epsilon < \frac{1}{L}$, the transfer eluder dimension $\dim_{TE}(\mathcal{H}, \ell, \epsilon) = 1$, as for any action
 321 a' , the expected loss $\mathbb{E}_{O \sim f_{\eta'}(a')}[\ell(a', O, \eta)] < \frac{1}{L}$ iff $\eta = \eta'$.

322 We can also use feedback to reveal information e.g. about the optimality of selected actions, im-
 323 proving directions, or explanation of mistakes.

324 **Example 2** (Reasoning steps). Consider a math reasoning problem where one tries to construct
 325 a hidden sequence of L -step reasoning $a^* = (s_1^*, \dots, s_L^*)$, where each $s_i \in \mathcal{S} \subset \mathcal{T}^+$ is a to-
 326 ken sequence that represents a correct reasoning at step i , and \mathcal{S} is a finite set of token sequences
 327 that represent possible reasoning steps. The action set $\mathcal{A} = \cup_{k=1}^L (\mathcal{T}^+)^k$ consists of all possible
 328 reasoning of L steps. Each hypothesis represents a full solution to the problem and rubrics to cri-
 329 tique partial answers with. Reward is 1 if all steps are correct and 0 otherwise. Below we show
 330 the transfer eluder dimension with $\epsilon < \frac{1}{2L}$ for different feedback (see Appendix C.4 for the exact
 331 forms of verifiers and proofs). We consider four feedback types, which corresponds to the reward,
 332 hindsight-negative, hindsight-positive, and future-positive feedback, respectively, in the LLF’s feed-
 333 back taxonomy proposed in (Cheng et al., 2023). Directly learning from rewards incurs exponential
 334 complexity, as the agent must enumerate all possible sequences. Feedback that identifies the first
 335 mistake enables stage-wise decomposition and yields exponential improvement in L , though each
 336 stage still requires brute-force search. If the feedback is more constructive, showing not only where
 337 the **first** mistake is but also how to correct for it, the problem complexity does not depend on $|\mathcal{S}|$.
 338 Finally, if the feedback tells the answer right away, the complexity becomes constant, as the agent
 339 can learn the solution immediately after one try.
 340

Feedback	$\dim_{TE}(\mathcal{H}, \ell, \epsilon)$
1. (reward) binary indicator of whether all steps are correct	$O(\mathcal{S} ^L)$
2. (explanation) index of the first incorrect step	$O(\mathcal{S} L)$
3. (suggestion) give correction for the first mistake	$O(L)$
4. (demonstration) all the correct steps	$O(1)$

4.3 LEARNING FROM FEEDBACK IS NO HARDER THAN LEARNING FROM REWARD

347 We have shown examples where the transfer eluder dimension is bounded and decreases as the
 348 feedback provides more information than reward. Here we prove the generality of this observation.
 349 Below we show that if feedback discriminates between rewards, then the transfer eluder dimension
 350 of LLF is no larger than the traditional eluder dimension of RL in Definition 4.

351 **Definition 4** (Eluder Dimension). An action $a \in \mathcal{A}$ is ϵ -dependent on actions $\{a_1, \dots, a_n\} \subset \mathcal{A}$
 352 with respect to a reward class \mathcal{R} if any $r, r' \in \mathcal{R}$ satisfying $\sum_{i=1}^n (r(a_i) - r'(a_i))^2 \leq \epsilon^2$, also
 353 satisfies $|r(a) - r'(a)| \leq \epsilon$. Further, a is ϵ -independent of $\{a_1, \dots, a_n\}$ if it is not ϵ -dependent on
 354 $\{a_1, \dots, a_n\}$. The ϵ -eluder dimension $\dim_E(\mathcal{R}, \epsilon)$ of \mathcal{R} is the length d of the longest sequence of
 355 elements in \mathcal{A} such that, for some $\epsilon' \geq \epsilon$, every action element is ϵ' -independent of its predecessors.
 356

357 First, by using the verifier, we define the statement “feedback discriminates between rewards”.

358 **Definition 5** (Discriminative feedback). The feedback function f_η is *discriminative* of r_η with
 359 respect to the verifier ℓ if there is $C_F > 0$ such that $\forall \eta' \in \mathcal{H}, a \in \mathcal{A}, |r_\eta(a) - r_{\eta'}(a)|^2 \leq$
 360 $C_F \mathbb{E}_{o \sim f_\eta(a)} [\ell(a, o, \eta') - \ell_{\eta'}^{\min}(a)]$. We say an LLF problem is *discriminative* if (f^*, r^*, ℓ) satisfies
 361 the above condition.

362 This definition states that the verifier can distinguish hypotheses based on feedback to the same
 363 extent as their reward differences. In other words, if two hypotheses differ in their corresponding
 364 rewards, then the verifier can tell they are different. Therefore, problems where feedback encodes the
 365 reward and verifier can decode it (e.g., classical RL) are subsumed as a special case of discriminative
 366 LLF. We discuss the relationship of LLF with discriminative feedback and IGL (Xie et al., 2022b)
 367 in Appendix A.

368 A discriminative feedback example is when the unobserved reward is a function of the feedback.
 369 Concretely, suppose $r_\eta(a) = \mathbb{E}_{o \sim f_\eta(a)}[g(a, o)]$ for some known $g : \mathcal{A} \times \mathcal{O} \rightarrow [0, 1]$. Note that the
 370 reward mapping $\eta \mapsto r_\eta$ is known, but the reward function itself is still hidden from the agent (since
 371 η^* is unknown). Consider $\ell(a, o, \eta) := (g(a, o) - r_\eta(a))^2 = (g(a, o) - \mathbb{E}_{o' \sim f_\eta(a)}[g(a, o')])^2$. Then
 372 one can verify that $\eta \in \arg \min_{\eta' \in \mathcal{H}} \mathbb{E}_{o \sim f_\eta(a)} [\ell(a, o, \eta')]$ and show that this feedback-verifier pair
 373 is discriminative. (see Appendix C.3). In addition to this example, one can check that the forms of
 374 feedback used in Section 4.2 are discriminative too (see Appendix C.4). Discriminative feedback
 375 can contain information other than reward as shown in Section 4.2.

376 With this definition in place, we show that if feedback can discriminate rewards, the transfer eluder
 377 dimension is no larger than the eluder dimension for the reward class induced by \mathcal{H} .

Algorithm 1 HELiX: Hypothesis Elimination using Language-informed Exploration

```

378 1: Input  $\mathcal{A}, \mathcal{O}, T$ , reward mapping  $\eta \mapsto r_\eta$ , verifier loss  $\ell : \mathcal{A} \times \mathcal{O} \times \mathcal{H} \rightarrow [0, 1]$ , confidence levels  $\{\epsilon_t\}_{t=0}^{T-1}$ 
379 2: Initialize  $t = 0, A_0 \sim \text{Unif}(\mathcal{A}), \mathcal{H}_0 = \mathcal{H}$ 
380 3: for  $t = 1, \dots, T$  do
381 4:   observe  $O_{t-1}$ 
382 5:    $\mathcal{H}_t \leftarrow \mathcal{H}_{t-1} \cap \{\eta \in \mathcal{H} : \frac{1}{t} \sum_i \ell(A_i, O_i, \eta) - \min_{\eta' \in \mathcal{H}} \frac{1}{t} \sum_i \ell(A_i, O_i, \eta') \leq \epsilon_t\}$ 
383 6:    $(\pi_p, \eta_p) \leftarrow \arg \min_{\pi \in \Pi} \max_{\eta \in \mathcal{H}_t} [r_\eta(\pi_\eta) - r_\eta(\pi)]$ 
384 7:   if  $r_{\eta_p}(\pi_{\eta_p}) - r_{\eta_p}(\pi_p) = 0$  then
385 8:      $A_t \sim \pi_p(\cdot)$  // Exploitation step: exploit if there is consensus
386 9:   else
387 10:     $(\pi_o, \eta_o) \leftarrow \arg \max_{\pi \in \Pi} \max_{\eta \in \mathcal{H}_t} r_\eta(\pi)$  // Exploration step: UCB-inspired
388 11:     $A_t \sim \pi_o(\cdot)$ 
389 12:  end if
390 13: end for
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

```

Proposition 1. For discriminative LLF problems with C_F as in Definition 5, it holds that $\dim_{TE}(\mathcal{H}, C_F \ell, \epsilon) \leq \dim_E(\mathcal{R}_\mathcal{H}, \epsilon)$, where $\mathcal{R}_\mathcal{H} = \{r_\eta : \eta \in \mathcal{H}\}$ is the effective reward class of \mathcal{H} .

Proposition 1 implies that discriminative LLF problems are no harder than their reward-only counterparts, such as those solved by the standard UCB algorithm over the reward class $\mathcal{R}_\mathcal{H}$ using reward extracted from the language feedback by some LLM. It is important to note that general LLF problems are not necessarily discriminative. This separates LLF from existing frameworks such as IGL (Xie et al., 2021), as it allows LLF to handle cases where feedback contains much more *useful* information than reward. For instance, when feedback is not discriminative but reveals information about the optimal action, LLF captures the decrease in problem complexity compared to learning from reward, while the latter setting is vacuous for IGL.

4.4 HELiX ALGORITHM

To validate our characterization of learnability based on the transfer eluder dimension, we design a simple UCB-style algorithm, HELiX, outlined in Algorithm 1. HELiX uses feedback to guide exploration using the optimism principle. Given a hypothesis $\eta \in \mathcal{H}$, let π_η denote its optimal policy. At step t , the algorithm maintains a confidence set \mathcal{H}_t of hypotheses that remain approximately consistent with observed actions and feedback, as measured by cumulative verifier loss. The algorithm then identifies a hypothesis η_o that achieve maximal optimal reward, and follows an optimal policy π_o under this hypothesis. **With a slight abuse of notation, we let $r_\eta(\pi) := \sum_{a \in \mathcal{A}} r_\eta(a) \pi(a)$ denote the expected reward of policy π .** An additional design in HELiX compared to standard UCB is a stopping criterion. It checks for a consensus optimal action among all hypotheses in the confidence set. If the minimax regret $\min_{\pi \in \Pi} \max_{\eta \in \mathcal{H}} r_\eta(\pi_\eta) - r_\eta(\pi) = 0$, then the minimizer policy only selects actions that are simultaneously optimal for all candidate hypotheses (see Lemma 5).

As discussed in Section 4.3, feedback in a trivial LLF problem can directly reveal the optimal action but nothing about the reward. In this case, the LLF problem is not discriminative, yet the stopping criteria ensures that the algorithm will not over-explore after identifying an optimal action.

HELiX is a concrete instantiation of how our conceptual LLF framework can inform algorithmic design, showing that LLF problems with finite transfer eluder dimensions can indeed be solved provably efficiently with a regret guarantee that depends sublinearly on the transfer eluder dimension.

Theorem 1. Under Assumption 1 and Assumption 2, for all $T \in \mathbb{N}$, the regret of HELiX satisfies

$$\text{Regret}(T) \leq \tilde{O} \left(T^{3/4} (\log N(\mathcal{H}, \epsilon_T^\mathcal{H}, d_\mathcal{H}))^{1/4} \sqrt{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^\mathcal{H})} \right),$$

where $N(\mathcal{H}, \epsilon_T^\mathcal{H}, d_\mathcal{H})$ denotes the $\epsilon_T^\mathcal{H}$ -covering number of \mathcal{H} based on the pseudo-metric $d_\mathcal{H}$, $\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^\mathcal{H})$ denotes the $\epsilon_T^\mathcal{H}$ -transfer eluder dimension of \mathcal{H} , and $\epsilon_T^\mathcal{H} = \max \left\{ \frac{1}{T^2}, \min_{a \in \mathcal{A}} \inf \{ |r_\eta(a) - r^*(a)| : \eta \in \mathcal{H}, \eta \neq \eta^* \} \right\}$.

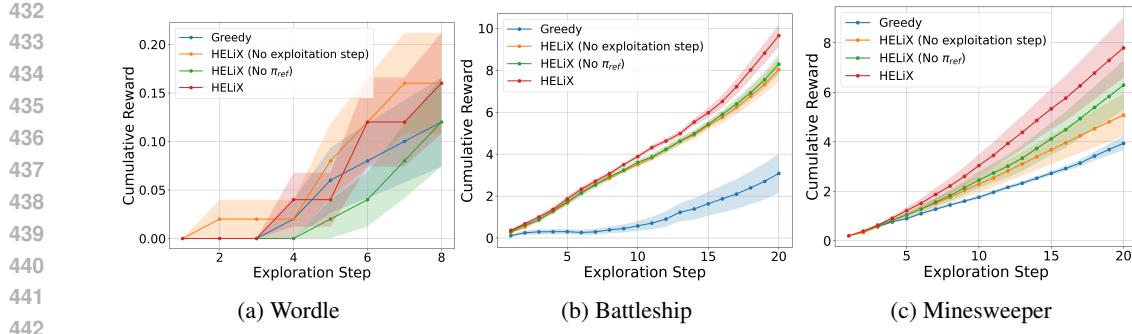


Figure 2: HELiX consistently outperforms the greedy baseline and HELiX variants. Shaded area represents the standard error of cumulative reward across different scenarios. **We explain the ablations (no exploitation step; no π_{ref}) in Appendix F.**

While the order $\tilde{O}(T^{3/4})$ on the time horizon T may appear suboptimal compared to classical $\tilde{O}(\sqrt{T})$ optimal rates for bandit learning with direct reward feedback, this slower rate is in fact a principled consequence of our minimal assumptions. Specifically, our analysis makes no structural assumptions on the verifier loss ℓ beyond boundedness. If we have more structural knowledge of ℓ , say, that it is a squared loss, then the bound can be tightened to match the optimal order $\tilde{O}(\sqrt{T})$ in **classical bandit learning** (see Theorem 4 in Appendix B.4). We provide a sketch of the general argument in Theorem 1 in Appendix B.1, and include complete technical details in Appendix B.2.

Directly querying LLM for an action by prompting with the interaction history (with the lowest temperature) is similar to drawing actions from π_η where η is randomly sampled from $\arg \min_{\eta' \in \mathcal{H}} \sum_i \ell(A_i, O_i, \eta')$. In the RL setting, such a greedy algorithm does not explore and therefore does not always have low-regret. Since RL is a special case of discriminative LLM, we conjecture that this greedy algorithm also does not have regret guarantees for general LLM. We compare this baseline in all of our experiments and confirm that HELiX reliably outperforms it.

5 EMPIRICAL STUDIES

We validate a practical LLM-based approximation of our theoretical Algorithm 1 in experiments using three LLM problems (Wordle, Battleship and Minesweeper) constructed from the benchmark Tajwar et al. (2025). We provide the pseudocode for the practical implementation in Algorithm 2 (see Appendix E). Our algorithm selects actions based on multiple LLM thinking traces, treating them as samples from a space of hypotheses, while evolving this hypothesis space using past observations (see Figure 4). Please see Appendix F for details.

Results We consider the following LLM agents: HELiX, a ReAct agent (labeled as Greedy), and ablations of HELiX. We plot the cumulative reward as a function of the number of environment interaction steps on WORDLE, BATTLESHIP, and MINESWEEPER in Figure 6. We see that for all three environments, the ReAct agent (Greedy), where we only greedily choose the first action, performs worse generally. In environments where information-gathering is more necessary, such as in BATTLESHIP or in MINESWEEPER, agents designed to conduct strategic explorations tend to outperform the greedy base LLM by a large margin. As shown, HELiX consistently outperforms both the greedy baseline and HELiX variants. In particular, in BATTLESHIP and MINESWEEPER, HELiX performs significantly better than the baselines. We leave further analysis to Appendix F.

6 DISCUSSION

One might wonder if the transfer eluder dimension forms a lower bound for LLM. The answer, however, is negative, as some LLM problems are trivially solvable despite having infinite transfer eluder dimension. For example, our LLM framework does not preclude problem instances where rewards are arbitrary but feedback always reveals an optimal action. The transfer eluder dimension is unbounded in this case, yet the learning problem is easy and HELiX can also solve it in one step.

The difference between this case where the transfer eluder dimension is unbounded and the earlier demonstration case in Example 2 is that latter's reward class are constrained to be binary and the optimal action is unique, which keeps the transfer eluder dimension finite. We highlight that this

486 argument assumes worst-case verifier behavior, while LLMs in practice impose inductive biases on
 487 how feedback is interpreted. Empirically, we find that when explicitly presented with an optimal
 488 action, LLMs tend to trust and act on it, bypassing further learning to infer full rewards. HELiX cap-
 489 tures this using the early stopping criterion (line 8), whereas naïve reward-driven UCB fails. This
 490 counterexample points to a gap in our current understanding: the true complexity of LLF may lie be-
 491 tween worst-case reward identification and optimal behavior learning. Closing this gap by refining
 492 the transfer eluder dimension to lower-bound regret remains an important open question.

494 REFERENCES

496 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
 497 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
 498 ing from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

499 Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan, Ashwin Kalyan, Peter Clark, Derry Wijaya,
 500 and Niket Tandon. R14f: Generating natural language feedback with reinforcement learning for
 501 repairing model outputs. *arXiv preprint arXiv:2305.08844*, 2023a.

502 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
 503 algorithm is in-context learning? investigations with linear models. In *The Eleventh International*
 504 *Conference on Learning Representations (ICLR)*, 2023b.

505 Jacob Andreas. Language models as agent models. *arXiv preprint arXiv:2212.01681*, 2022.

506 Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. *arXiv preprint*
 507 *arXiv:1711.00482*, 2017.

508 Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
 509 Andrew M. Dai, Anja Hauth, Katie Millican, and David Silver et al. Gemini: A family of highly
 510 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2024.

511 Dilip Arumugam and Thomas L. Griffiths. Toward efficient exploration by large language model
 512 agents. *arXiv preprint arXiv:2504.20997*, 2025.

513 Akari Asai and Hannaneh Hajishirzi. Logic-guided data augmentation and regularization for con-
 514 sistent question answering. In *Proceedings of the 58th Annual Meeting of the Association for*
 515 *Computational Linguistics (ACL)*, 2020.

516 Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Auer, peter and cesa-bianchi, nicolò and fischer,
 517 paul. *Machine Learning*, 47:235–256, 2002.

518 Gábor Bartók, Dean P. Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial mon-
 519 itoring—classification, regret bounds, and algorithms. *Mathematics of Operations Research*, 39
 520 (4):967–997, 2014.

521 BIG-bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
 522 language models. *Transactions on Machine Learning Research*, 2023.

523 Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 524 Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, and Emma Brunskill et al. On the
 525 opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

526 SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals in a monte-
 527 carlo framework. *Journal of Artificial Intelligence Research*, 43:661–704, 2012.

528 Ethan Brooks, Logan A Walls, Richard Lewis, and Satinder Singh. Large language models can im-
 529 plement policy iteration. In *Thirty-seventh Conference on Neural Information Processing Systems*
 530 (*NeurIPS*), 2023.

531 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
 532 Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
 533 Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
 534 with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.

540 Angelica Chen, Jérémie Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
 541 Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. *Transactions
 542 on Machine Learning Research*, 2024.

543

544 Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
 545 to self-debug. *arXiv preprint arXiv:2304.05128*, 2023.

546 Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. Llf-bench:
 547 Benchmark for interactive learning from language feedback. *arXiv preprint arXiv:2312.06853*,
 548 2023.

549

550 Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the new autodiff — unlocking effi-
 551 cient optimization of computational workflows. *ICML 2024 Automated Reinforcement Learning
 552 Workshop*, 2024.

553

554 Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang, Marin Soljacic,
 555 Shang-Wen Li, Scott Yih, Yoon Kim, and James Glass. DiffCSE: Difference-based contrastive
 556 learning for sentence embeddings. In *Proceedings of the 2022 Conference of the North American
 557 Chapter of the Association for Computational Linguistics: Human Language Technologies*, July
 2022.

558

559 K.A. De Jong, W.M. Spears, and D.F. Gordon. Using genetic algorithms for concept learning.
 560 *Machine Learning*, pp. 161–188, 1993.

561

562 Alina Dracheva and Jonathan Phillips. Different trajectories through option space in humans and
 563 llms. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 46, 2024.

564

565 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
 566 tuality and reasoning in language models through multiagent debate. In *Forty-first International
 567 Conference on Machine Learning*, 2023.

568

569 Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
 570 and Honglak Lee. Autoguide: Automated generation and selection of context-aware guidelines
 571 for large language model agents. *arXiv preprint arXiv:2403.08978*, 2024.

572

573 Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-based
 574 reinforcement learning: a formal framework and a policy iteration algorithm. *Mach. Learn.*, 89
 575 (1–2):123–156, October 2012.

576

577 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
 578 tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv
 579 preprint arXiv:2503.01307*, 2025.

580

581 Jon Gauthier and Igor Mordatch. A paradigm for situated and goal-driven language learning. *arXiv
 582 preprint arXiv:1610.03585*, 2016.

583

584 Ali Essam Ghareeb, Benjamin Chang, Ludovico Mitchener, Angela Yiu, Caralyn J Szostkiewicz,
 585 Jon M Laurent, Muhammed T Razzak, Andrew D White, Michaela M Hinks, and Samuel G
 586 Rodrigues. Robin: A multi-agent system for automating scientific discovery. *arXiv preprint
 587 arXiv:2505.13400*, 2025.

588

589 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
 590 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint
 591 arXiv:2411.15594*, 2024.

592

593 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 594 Shirong Ma, Peiyi Wang, and Xiao Bi et al. Deepseek-r1: Incentivizing reasoning capability in
 595 llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

596

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
 597 transformers learn in-context beyond simple functions? a case study on learning with representa-
 598 tions. In *The Twelfth International Conference on Learning Representations (ICLR)*, 2024.

594 Brent Harrison, Upol Ehsan, and Mark O Riedl. Guiding reinforcement learning exploration using
 595 natural language. *arXiv preprint arXiv:1707.08616*, 2017.

596

597 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 598 trow, Akila Welihinda, Alan Hayes, and Alec Radford et al. Gpt-4o system card. *arXiv preprint*
 599 *arXiv:2410.21276*, 2024.

600 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 601 Helyar, Aleksander Madry, Alex Beutel, and Alex Carney et al. Openai o1 system card. *arXiv*
 602 *preprint arXiv:2412.16720*, 2024.

603 Tomáš Kocák, Gergely Neu, Michal Valko, and Rémi Munos. Efficient learning by implicit explo-
 604 ration in bandit problems with side observations. *Advances in Neural Information Processing*
 605 *Systems*, 27, 2014.

606

607 Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
 608 large language models explore in-context? In *ICML 2024 Workshop on In-Context Learning*,
 609 2024.

610 T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Adv. Appl. Math.*,
 611 6(1):4–22, March 1985. ISSN 0196-8858.

612 John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
 613 information. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2007.

614

615 Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
 616 Brunskill. Supervised pretraining can learn in-context reinforcement learning. In *Thirty-seventh*
 617 *Conference on Neural Information Processing Systems (NeurIPS)*, 2023.

618 E.L. Lehmann and Joseph P. Romano. *Testing Statistical Hypotheses*. Springer Cham, 2022.

619

620 Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
 621 simple, effective, and efficient reinforcement learning method for aligning large language models.
 622 *arXiv preprint arXiv:2310.10505*, 2023.

623 Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with
 624 feedback. In *The Twelfth International Conference on Learning Representations (ICLR)*, 2024.

625

626 Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan, Andrey Kolobov, and Ching-An Cheng.
 627 Interactive robot learning from verbal correction. In *2nd Workshop on Language and Robot*
 628 *Learning: Language as Grounding*, 2023.

629 Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
 630 deep reinforcement learning. *arXiv preprint arXiv:1610.02707*, 2016.

631

632 Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
 633 Edward Grefenstette. Improving intrinsic exploration with language abstractions. *Advances in*
 634 *Neural Information Processing Systems*, 35:33947–33960, 2022.

635 Rithesh R N, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng,
 636 Zeyuan Chen, Akash Gokul, Devansh Arpit, Ran Xu, Phil L Mui, Huan Wang, Caiming Xiong,
 637 and Silvio Savarese. REX: Rapid exploration and exploitation for AI agents. In *ICLR 2024*
 638 *Workshop on Large Language Model (LLM) Agents*, 2024.

639 Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Importance of directional
 640 feedback for llm-based optimizers. In *NeurIPS 2023 Foundation Models for Decision Making*
 641 *Workshop*, 2023.

642 Allen Nie, Yi Su, Bo Hsuan Chang, Jonathan N. Lee, Ed Huai hsin Chi, Quoc V. Le, and Minmin
 643 Chen. Evolve: Evaluating and optimizing llms for exploration. *arXiv preprint arXiv:2410.06238*,
 644 2024.

645

646 Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
 647 Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
 tuning. *arXiv preprint arXiv:2503.07572*, 2025.

648 Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Generalization to new sequential decision making tasks with in-context learning, 2023.

649

650

651 Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi- 652 objective sequential decision-making. *Journal of Artificial Intelligence Research*, 48:67–113, 653 2013.

654 Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic 655 exploration. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2013.

656

657 Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on 658 thompson sampling. *Found. Trends Mach. Learn.*, 11(1):1–96, July 2018. ISSN 1935-8237.

659

660 Jérémie Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen, Kyunghyun 661 Cho, and Ethan Perez. Training language models with language feedback at scale. *arXiv preprint* 662 *arXiv:2303.16755*, 2023.

663

664 Jérémie Scheurer, Jon Ander Campos, Jun Shern Chan, Angelica Chen, Kyunghyun Cho, and Ethan 665 Perez. Training language models with language feedback. *Workshop on Learning with Natural 666 Language Supervision at ACL 2022*, 2022.

667

668 Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, and Razvan Pascanu. Llms are greedy agents: Effects of rl fine-tuning on decision-making abilities. *arXiv preprint* 669 *arXiv:2504.16078*, 2025.

670

671 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflex- 672 ion: language agents with verbal reinforcement learning. In *Thirty-seventh Conference on Neural 673 Information Processing Systems*, 2023.

674

675 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad 676 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning 677 models via the lens of problem complexity, 2025. URL <https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf>.

678

679 Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a large- 680 scale human study with 100+ nlp researchers. *arXiv preprint arXiv:2409.04109*, 2024.

681

682 David Silver and Rich Sutton. Welcome to the era of experience. *preprint*, 2025.

683

684 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press, 685 2018.

686

687 Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff 688 Schneider, and Ruslan Salakhutdinov. Training a generally curious agent. *arXiv preprint* 689 *arXiv:2502.17543*, 2025.

690

691 Hao Tang, Darren Yan Key, and Kevin Ellis. Worldcoder, a model-based LLM agent: Building 692 world models by writing code and interacting with the environment. In *The Thirty-eighth Annual 693 Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

694

695 William R. Thompson. On the likelihood that one unknown probability exceeds another in view of 696 the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

697

698 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée 699 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar- 700 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation 701 language models. *arXiv preprint arXiv:2302.13971*, 2023.

702

703 Chih-Chun Wang, S.R. Kulkarni, and H.V. Poor. Bandit problems with arbitrary side observations. 704 In *42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)*, 705 volume 3, pp. 2948–2953 Vol.3, 2003.

706

707 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, 708 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. 709 *Transactions on Machine Learning Research*, 2024.

702 Hongwei Wang and Dong Yu. Going beyond sentence embeddings: A token-level matching algo-
 703 rithm for calculating semantic textual similarity. In *The 61st Annual Meeting of the Association*
 704 *for Computational Linguistics Short Papers (ACL)*, July 2023.

705 Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning.
 706 *arXiv preprint arXiv:1301.2315*, 2013.

708 Anjiang Wei, Allen Nie, Thiago SFX Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and Alex
 709 Aiken. Improving parallel program performance through dsl-driven code generation with llm
 710 optimizers. *arXiv preprint arXiv:2410.15625*, 2024.

711 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
 712 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
 713 In *Advances in Neural Information Processing Systems*, volume 35, pp. 24824–24837. Curran
 714 Associates, Inc., 2022.

715 Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
 716 Zhao. Large language models are better reasoners with self-verification. In *The 2023 Conference*
 717 *on Empirical Methods in Natural Language Processing (EMNLP)*, 2023.

719 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 720 Wang, Senjie Jin, and Enyu Zhou et al. The rise and potential of large language model based
 721 agents: a survey. *Sci. China Inf. Sci.*, 68, 121101, 2025.

722 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 723 learning as implicit bayesian inference. In *International Conference on Learning Representations*
 724 (*ICLR*), 2022a.

726 Tengyang Xie, John Langford, Paul Mineiro, and Ida Momennejad. Interaction-grounded learning.
 727 In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on*
 728 *Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 11414–11423.
 729 PMLR, 18–24 Jul 2021.

730 Tengyang Xie, Akanksha Saran, Dylan J Foster, Lekan Molu, Ida Momennejad, Nan Jiang, Paul
 731 Mineiro, and John Langford. Interaction-grounded learning with action-inclusive feedback. *Ad-*
 732 *vances in Neural Information Processing Systems*, 35:12529–12541, 2022b.

733 Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
 734 Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.
 735 In *International Conference on Learning Representations (ICLR)*, 2024 (07/05/2024-11/05/2024,
 736 Vienna, Austria), 2024.

738 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
 739 and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
 740 search. *arXiv preprint arXiv:2504.08066*, 2025.

741 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 742 React: Synergizing reasoning and acting in language models. *The International Conference on*
 743 *Learning Representations (ICLR)*, 2023.

744 Richard Zhang and Daniel Golovin. Random hypervolume scalarizations for provable multi-
 745 objective black box optimization. In *International conference on machine learning*, pp. 11096–
 746 11105. PMLR, 2020.

748 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 749 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 750 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on*
 751 *Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2023.

752 Victor Zhong, Dipendra Misra, Xingdi Yuan, and Marc-Alexandre Côté. Policy improvement using
 753 language feedback models. *arXiv preprint arXiv:2402.07876*, 2024.

754 Yangqiaoyu Zhou, Haokun Liu, Tejes Srivastava, Hongyuan Mei, and Chenhao Tan. Hypothesis
 755 generation with large language models. *arXiv preprint arXiv:2404.04326*, 2024.

756 **A LLF AND ITS RELATIONSHIP TO EXISTING PARADIGMS**
757

758 To better understand the position of LLF among existing paradigms of learning from feedback, we
759 provide an in-depth review in this section, as alluded to in Fig. 3. In all discussed paradigms, we
760 focus our comparison on how different forms of feedback are subsumed within LLF, while other
761 environment parameters are loosely assumed to be included in the LLF agent’s hypothesis space.
762 LLF covers the following learning paradigms commonly discussed in the literature:

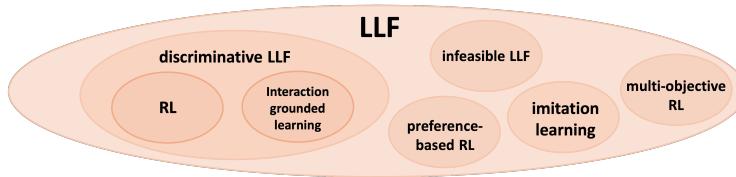
Learning Framework	Feedback Type	Discriminative?	LLF Verifier
Reinforcement Learning	Reward $r_{\eta^*} \in \mathbb{R}$	Yes	$\ell(r_\eta(a), r_{\eta^*}(a))$
Multi-objective RL	Reward vector $r_{\eta^*} \in \mathbb{R}^d$	Yes	$\ell(r_\eta(a), r_{\eta^*}(a))$
Interaction-Grounded Learning (IGL)	Rich feedback $y \in \mathcal{Y}$ s.t. $\exists \psi^* : \mathcal{Y} \times \mathcal{A} \rightarrow \mathbb{R} \approx r_{\eta^*}$	Yes	Consistency loss: $\ell(y, a, \eta)$ (modeling ψ^* is optional)
Preference-based RL	Comparison: $a_1 \xsucc{\eta^*} a_2$	No	$\mathbb{I}[a_1 \xsucc{\eta} a_2]$
Imitation Learning	Expert actions $a \in \mathcal{A}_{\eta^*}$	No	$\mathbb{I}[a \in \mathcal{A}_\eta]$

755 Table 1: Comparison of different learning frameworks and their feedback signals. All these learning
756 paradigms are subsumed under the LLF framework with the last column specifying possible verifier
757 losses for an LLF agent.

758 **Reinforcement learning (RL)** In RL, upon seeing an environment state $x_t \in \mathcal{X}$, the agent chooses
759 an action $a_t \in \mathcal{A}$ and observes a scalar reward feedback $r_t \in \mathbb{R}$. The rewards and states observed
760 by the agent at any decision step t , can depend on the past observed states and actions. In LLF,
761 the agent’s hypothesis $\eta \in \mathcal{H}$ returns a reward function $r_\eta : \mathcal{A} \times \mathcal{X} \rightarrow [0, 1]$, while the feedback
762 function is exactly the same: $f_\eta = r_\eta$. Hence, RL is trivially subsumed by LLF.

758 **Partial Monitoring Games** In Partial Monitoring (Bartók et al., 2014), the agent observes an ab-
759 stract feedback signal (not necessarily reward for its chosen action) and must deduce reward-optimal
760 actions indirectly. The function that maps actions to feedbacks (signal function) is assumed known
761 to the agent, and the challenge is to explore and infer optimal actions indirectly by leveraging the
762 known signal function. In contrast, LLF assumes that the feedback function is unknown, and agents
763 must interpret natural language feedback through a verifier to ascertain semantic consistency with
764 hypotheses. The unknown feedback mapping in LLF fundamentally alters the learning challenge,
765 requiring ways to extract insights from potentially ambiguous language feedback, and thus capturing
766 a broader class of interactive learning scenarios.

758 **Interaction-grounded Learning (IGL) (Xie et al., 2021)** In IGL, the environment generates a
759 latent scalar reward $r(x, a) \in [0, 1]$ but only reveals a rich feedback vector $y \in \mathcal{Y}$. To enable learn-
760 ing, IGL framework assumes reward decodability, i.e., the existence of a decoder $\psi \in \Psi$, such that



805 **Figure 3: LLF and its relationship to existing paradigms.** LLF covers many existing paradigms:
806 (1) reinforcement learning (RL): agent learning from a scalar reward signal, (2) interaction-grounded
807 learning (IGL) (Xie et al., 2021): agent observes a generic feedback vector that can decode a latent
808 reward signal, (3) discriminative LLF: agent observes language feedback that discriminates between
809 rewards, (4) multi-objective RL: extension of RL to problems with multiple objectives, combined via
810 a utility function, (5) preference-based RL: feedback provides a comparison between two actions,
811 (6) imitation learning: feedback provides expert demonstrations.

$\psi : \mathcal{Y} \times \mathcal{A} \rightarrow [0, 1]$, capable of extracting reward estimates for the agent. The remaining information in the feedback vector is regarded as distractions to learning and assumed to be distinguishable by the decoder. In contrast, LLF naturally accommodates information extraction by modeling both the latent reward r_η and the feedback mapping f_η (hence the feedback y), allowing the agent to reason about the consistency between the decoded rewards and the observed feedback vectors without needing to identify the true decoder ψ^* or the true feedback function f^* . Furthermore, we only make discriminative assumptions about LLF so as to compare our algorithm to baselines in terms of reward. In fact, the generality of LLF allows it to handle cases where feedback contains much more *useful* information than reward. Specifically, when feedback is not discriminative but reveals information about the optimal action, LLF captures the decrease in problem complexity compared to learning from reward, while the latter setting is vacuous for IGL.

Discriminative LLF Discriminative LLF, defined formally in Definition 5, subsumes the special case where the latent reward function is itself a function of the observed feedback (Xie et al., 2024). This framework generalizes both RL and IGL, and shares similarity with IGL with action-inclusive feedback (Xie et al., 2022b). In Xie et al. (2022b), the authors consider binary rewards, and assume that there exists a perfect reward decoding function ψ^* such that $\mathbb{E}[\psi^*(o, a)|r = 1] - \mathbb{E}[\psi^*(o, a)|r = 0] = 1$ for decodability. Definition 5 generalizes this to the LLF framework where the LLF agent achieves this discriminative property via the LLF verifier loss for any two hypotheses η, η' given action o and feedback a . Thus discriminative LLF framework generalizes both RL and IGL, capturing scenarios where feedback is rich and structured (e.g., language) but ultimately reflects reward. As discussed in Section 4.3, this class of LLF problems can be no harder than the reward-only setting and may even improve sample efficiency by leveraging structure in the feedback to recover the reward signal more effectively.

The general LLF framework is a strict superset of both IGL and discriminative LLF as it accommodates scenarios where the reward is not decodable from the environment feedback.

Multi-objective RL (MORL) MORL extends the standard RL framework to environments that return vector-valued rewards rather than a single scalar. The central challenge in MORL is balancing trade-offs across multiple objectives, often handled via scalarization methods (see single-policy learning approaches in (Rojers et al., 2013; Zhang & Golovin, 2020)) or Pareto front exploration (Mossalam et al., 2016). In LLF, this is naturally captured by allowing the agent’s hypothesis to represent vector-valued reward functions. Furthermore, the verifier loss $\ell : \mathcal{A} \times \mathcal{O} \times \mathcal{H}$ can be extended accordingly. Since the reward vector may be under-determined with respect to the underlying utility function, we treat MORL as distinct from discriminative LLF (Definition 5), which assumes informativeness of feedback with respect to scalar reward.

Preference-based RL In PbRL, the environment does not reveal scalar reward feedback. Instead, the agent receives pairwise preferences over actions (or trajectories), e.g., that action a is preferred over action a' . These comparisons may be between actions selected by the agent or between one agent-chosen action and a reference provided by the environment. LLF captures this setting by modeling the feedback function f_η as a binary comparator over pairs of actions such that $f_\eta(a, a') \in \{0, 1\}$ indicates the binary preference. The underlying reward model can be implicitly defined in the hypothesis η such that it induces such preferences. Thus, this preference based structure fits within LLF.

Imitation learning (IL) In IL, the agent learns from demonstrations of expert behavior rather than explicit feedback or rewards. To make a closer comparison with LLF, we can consider the interactive imitation learning setting, where the agent observes expert actions (corrections) for the all environment observations. IL can be modeled within the LLF framework by considering expert actions as a form of feedback $f_\eta^* = a^*$. Any hypothesis $\eta \in \mathcal{H}$ considered by the LLF agent can evaluate a verifier loss which corresponds to the discrepancy between the optimal action of the hypothesis a_η^* and expert action a^* . IL is thus a special case of LLF where the feedback space is the action space itself, and consistency between the agent’s output and expert-labeled actions is the verifier loss.

864 **B REGRET ANALYSIS**865 **B.1 PROOF SKETCH**

868 We sketch the regret analysis in four main steps. The full proof is presented in Appendix B.2.

869 **Step 1: Define confidence sets** For each hypothesis $\eta \in \mathcal{H}$, we define $\mathcal{L}_t(\eta) =$
 870 $\sum_{i=0}^{t-1} (\mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \eta)] - \ell_{\eta^*}^{\min}(A_i))$ to be the cumulative population prediction error and
 871 $L_t(\eta) = \sum_{i=0}^{t-1} \ell(A_i, O_i, \eta) = \sum_{i=0}^{t-1} \ell_i(\eta)$ to be the cumulative empirical verifier loss. We define
 872 confidence sets $\mathcal{H}_t = \{\eta \in \mathcal{H} : L_t(\eta) \leq \min_{\eta' \in \mathcal{H}} L_t(\eta') + \beta_t\}$ where β_t is a confidence parameter.

873 **Step 2: Regret decomposition** We let the width of a subset $\mathcal{V} \subseteq \mathcal{H}$ at an action $a \in \mathcal{A}$ be $w_{\mathcal{V}}(a) =$
 874 $\sup_{\bar{\eta} \in \mathcal{V}} |r_{\bar{\eta}}(a) - r^*(a)|$. Then, we can decompose the regret in terms of version space widths:
 875 $\text{Regret}(T, \eta^*) \leq \sum_{t=0}^{T-1} \mathbb{E} [w_{\mathcal{V}_t}(A_t) \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} + \mathbb{1}\{\eta^* \notin \mathcal{V}_t\}]$.

876 **Step 3: Bounding the sum of widths via transfer eluder dimension** The key step is to show that
 877 if the width $w_{\mathcal{H}_t}(A_t) > \epsilon$ for some $\epsilon > 0$, then A_t must be ϵ -dependent on only $O(\beta_t/\epsilon^2)$ disjoint
 878 historical action sequences, where β_t is the confidence parameter. By the definition of the transfer
 879 eluder dimension $d_{TE} = \dim_{TE}(\mathcal{H}, \ell, \epsilon)$, in any sequence of N actions, there must be some action
 880 that is ϵ -dependent on at least $\Omega(N/d)$ previous ones. Combining these facts forces the number of
 881 large-width version spaces $\sum_{t=0}^{T-1} \mathbb{1}\{w_{\mathcal{H}_t}(A_t) > \epsilon\}$ to be bounded by $O(\beta_T d/\epsilon^2)$. Rearranging
 882 terms and choosing a suitable sequence of ϵ gives that with high probability, $\sum_{t=0}^{T-1} w_{\mathcal{V}_t}(A_t) \leq$
 883 $O(d_{TE} + 2\sqrt{3d_{TE}\beta_T T})$. Note that when the stopping criteria is triggered, the per-step regret of all
 884 following steps become zero, and so the regret of HELiX is always bounded above by that without
 885 the stopping criteria.

886 **Step 4: Prove high-probability confidence set concentration** It remains to define suitable β_t 's and
 887 show that $\eta^* \in \mathcal{V}_t$ for all $t \in \mathbb{N}$ with high probability. Depending on what structural assumptions
 888 are known for the verifier loss ℓ , we determine the rate of decay of β_t . If we only make the minimal
 889 assumption that ℓ is bounded, then $\beta_T = \tilde{O}(\sqrt{T})$. Putting everything together proves Theorem 1.

890 **B.2 FULL ANALYSIS**

891 We first define the version spaces used in the algorithm. As shorthand notations, define

$$892 \mathcal{L}_t(\eta) = \sum_{i=0}^{t-1} \left(\mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \eta)] - \ell_{\eta^*}^{\min}(A_i) \right)$$

893 to be the cumulative population prediction error and

$$894 L_t(\eta) = \sum_{i=0}^{t-1} \ell(A_i, O_i, \eta) = \sum_{i=0}^{t-1} \ell_i(\eta)$$

895 to be the cumulative empirical verifier loss. A small value of $L_t(\eta)$ means η is close to consistent
 896 with observed feedback. Let $\mathcal{V}_t \subseteq \mathcal{H}$ be the version space of all hypotheses still plausible after t
 897 rounds of interactions. Concretely,

$$898 \mathcal{V}_t = \{\eta \in \mathcal{H} : L_t(\eta) \leq \min_{\eta' \in \mathcal{H}} L_t(\eta') + \beta_t\}, \quad (1)$$

899 where $\beta_t > 0$ is an appropriately chosen confidence parameter so that we do not throw away the
 900 true hypothesis η^* due to noise.

901 A useful approach to bounding the regret is to decompose it in terms of version spaces. We define
 902 the width of a subset $\mathcal{V} \subseteq \mathcal{H}$ at an action $a \in \mathcal{A}$ by

$$903 w_{\mathcal{V}}(a) = \sup_{\bar{\eta} \in \mathcal{V}} |r_{\bar{\eta}}(a) - r^*(a)|.$$

904 **Proposition 2 (Regret decomposition).** *Fix any sequence $\{\mathcal{V}_t : t \in \mathbb{N}\}$, where $\mathcal{V}_t \subseteq \mathcal{H}$ is measurable
 905 with respect to $\sigma(\mathcal{H}_t)$. Then for any $T \in \mathbb{N}$,*

$$906 \text{Regret}(T, \eta^*) \leq \sum_{t=0}^{T-1} \mathbb{E} [w_{\mathcal{V}_t}(A_t) \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} + \mathbb{1}\{\eta^* \notin \mathcal{V}_t\}].$$

918 *Proof.* We define the upper bound $U_t(a) = \sup\{r_\eta(a) : \eta \in \mathcal{V}_t\}$ and let $a^* \in \arg \max_{a \in \mathcal{A}} r^*(a)$.
 919 When $\eta^* \in \mathcal{V}_t$, the bound $r^*(a) \leq U_t(a)$ hold for all actions. This implies
 920

$$921 \quad r^*(\eta^*) - r^*(A_t) \leq (U_t(a^*) - r^*(A_t)) \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} + \mathbb{1}\{\eta^* \notin \mathcal{V}_t\} \\ 922 \quad \leq w_{\mathcal{V}_t}(A_t) \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} + \mathbb{1}\{\eta^* \notin \mathcal{V}_t\} + [U_t(a^*) - U_t(A_t)] \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\}.$$

923 Since the algorithm selects an action A_t that maximizes $U_t(a)$, the conclusion follows by taking the
 924 expectation and summing over all $t = 0, \dots, T - 1$. \square
 925

926 This proposition reduces upper bounding the regret to bounding the expected sum of widths
 927 $\sum_{t=0}^{T-1} \mathbb{E}[w_{\mathcal{V}_t}(A_t)]$ if the version spaces \mathcal{V}_t are constructed such that they contain η^* with high
 928 probability.

929 We first introduce a class of Martingale exponential inequalities that will be useful throughout our
 930 analysis, including bounding the sum of widths and proving the high-confidence events $\eta^* \in \mathcal{V}_t$. For
 931 random variables $(X_t | t \in \mathbb{N})$ adapted to the filtration $(\mathcal{F}_t | t \in \mathbb{N})$, let us assume that $\mathbb{E}[\exp(\lambda X_t)]$ is
 932 finite for all λ and $\mathbb{E}[X_t | \mathcal{F}_{t-1}] = 0$. We assume that there is a uniform upper bound on the cumulant
 933 generating function (i.e., log moment generating function) for the conditional distribution of X_t .

934 **Lemma 1** (Cumulant generating function). *If there is a sequence of convex functions $\{\psi_t : [0, \infty) \rightarrow \mathbb{R}\}_{t=0}^\infty$ with $\psi_t(0) = 0$ such that, for all $t \in \mathbb{N}$ and all $\lambda \in [0, \infty)$,*

$$937 \quad \log \mathbb{E} \left[e^{\lambda |X_t|} | \mathcal{F}_{t-1} \right] \leq \psi_t(\lambda),$$

938 then for all $\delta \in (0, 1)$ and $T \in \mathbb{N}$, with probability $1 - \delta$,

$$940 \quad \left| \sum_{t=0}^{T-1} X_t \right| \leq \inf_{\lambda \in [0, \infty)} \left\{ \frac{\sum_{t=0}^{T-1} \psi_t(\lambda) + \log(2/\delta)}{\lambda} \right\}.$$

943 *Proof.* Let $S_T = \sum_{t=0}^{T-1} X_t$. By Markov's inequality, for all $u \in \mathbb{R}$ and $\lambda \in [0, \infty)$,

$$945 \quad \mathbb{P}(S_T \geq u) = \mathbb{P}(e^{\lambda S_T} \geq e^{\lambda u}) \leq \frac{\mathbb{E}[e^{\lambda S_T}]}{e^{\lambda u}} = \frac{\mathbb{E}[\mathbb{E}[e^{\lambda S_T} | \mathcal{F}_{T-1}]]}{e^{\lambda u}} = \frac{\mathbb{E}[e^{\lambda \sum_{t=0}^{T-2} X_t} \mathbb{E}[e^{\lambda X_{T-1}} | \mathcal{F}_{T-1}]]}{e^{\lambda u}} \\ 946 \quad \leq \frac{\mathbb{E}[e^{\lambda \sum_{t=0}^{T-2} X_t}] \exp(\psi_{T-1}(\lambda))}{e^{\lambda u}} \leq \dots \leq \frac{\exp(\sum_{t=0}^{T-1} \psi_t(\lambda))}{e^{\lambda u}}.$$

949 This gives

$$951 \quad \mathbb{P}(S_T \geq u) \leq \exp \left(-\lambda u + \sum_{t=0}^{T-1} \psi_t(\lambda) \right)$$

954 for all $\lambda \in [0, \infty)$. Applying the same argument to $-X_t$, we have

$$955 \quad \mathbb{P}(S_T \leq -u) = \mathbb{P}(-S_T \geq u) \leq \exp \left(-\lambda u + \sum_{t=0}^{T-1} \psi_t(\lambda) \right).$$

958 Solving for u to achieve a $\delta/2$ probability for each side, and taking the infimum over $\lambda \in [0, \infty)$,
 959 we have with probability at least $1 - \delta$,

$$961 \quad S_T \leq \inf_{\lambda \in [0, \infty)} \left\{ \frac{\sum_{t=0}^{T-1} \psi_t(\lambda) + \log(2/\delta)}{\lambda} \right\}.$$

963 \square
 964

965 We now proceed to bounding the sum of widths $\sum_{t=0}^{T-1} \mathbb{E}[w_{\mathcal{V}_t}(A_t)]$ when the event $\eta^* \in \mathcal{V}_t$ holds.
 966 As a first step, we show that there cannot be many version spaces \mathcal{V}_t with a large width. For all
 967 $t \in \mathbb{N}$ and $\eta, \eta' \in \mathcal{H}$, we define the martingale difference

$$968 \quad Z_t(\eta, \eta') = \mathbb{E}_{O \sim f_{\eta^*}(A_t)} [\ell(A_t, O, \eta) - \ell(A_t, O, \eta') | \mathcal{G}_{t-1}] - (\ell(A_t, O_t, \eta) - \ell(A_t, O_t, \eta')).$$

970 Notice that Z_t have expectation zero and constitutes a martingale difference sequence adapted to the
 971 filtration $(\mathcal{G}_t | t \in \mathbb{N})$ where \mathcal{G}_t is the σ -algebra generated by all observations $\{(a_0, o_1), \dots, (a_t, o_t)\}$
 972 up to time t .

972 **Proposition 3.** *If the conditions in Lemma 1 holds for $(Z_t | t \in \mathbb{N})$ adapted to $(\mathcal{G}_t | t \in \mathbb{N})$ with
973 cumulative generating function bound $(\psi_t | t \in \mathbb{N})$, $(\beta_t \geq 0 | t \in \mathbb{N})$ in (1) is a nondecreasing
974 sequence such that for all $t \in \mathbb{N}$, $\beta_t \geq \inf_{\lambda \in [0, \infty)} \left\{ \frac{\sum_{i=0}^{t-1} \psi_i(\lambda) + \log(10t^2/3\delta)}{\lambda} \right\}$, then for all $\delta \in (0, 1)$,
975 with probability at least $1 - \delta$,*

$$977 \quad \sum_{t=0}^{T-1} \mathbb{1}\{w_{\mathcal{V}_t}(A_t) > \epsilon\} \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} \leq \left(\frac{3\beta_T}{\epsilon^2} + 1 \right) \dim_{TE}(\mathcal{H}, \ell, \epsilon)$$

980 for all $T \in \mathbb{N}$ and $\epsilon > 0$.

982 *Proof.* We first show that if $w_{\mathcal{V}_t}(A_t) > \epsilon$ and $\eta^* \in \mathcal{V}_t$, then with high probability, A_t is ϵ -dependent
983 on fewer than $O(\beta_t/\epsilon^2)$ disjoint subsequences of $(A_0, A_1, \dots, A_{t-1})$. If $w_{\mathcal{V}_t}(A_t) > \epsilon$ and $\eta^* \in \mathcal{V}_t$,
984 there exists $\bar{\eta} \in \mathcal{V}_t$ such that $|r_{\bar{\eta}}(A_t) - r_{\eta^*}(A_t)| > \epsilon$. By definition, if A_t is ϵ -dependent on a
985 subsequence $(A_{i_1}, \dots, A_{i_k})$ of (A_0, \dots, A_{t-1}) , then we have that

$$986 \quad \sum_{j=1}^k \left(\mathbb{E}_{O \sim f_{\eta^*}(A_{i_j})} [\ell(A_{i_j}, O, \bar{\eta})] - \ell_{\eta^*}^{\min}(A_{i_j}) \right) > \epsilon^2.$$

989 It follows that if A_t is ϵ -dependent on K disjoint subsequences of (A_0, \dots, A_{t-1}) then

$$991 \quad \sum_{i=0}^{t-1} \left(\mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \bar{\eta})] - \ell_{\eta^*}^{\min}(A_i) \right) > K\epsilon^2.$$

993 Then

$$\begin{aligned} 995 \quad & \sum_{i=0}^{t-1} \left(\mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \bar{\eta})] - \ell_{\eta^*}^{\min}(A_i) \right) \\ 996 \quad &= \sum_{i=0}^{t-1} \mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \bar{\eta}) - \ell(A_i, O, \eta^*)] \\ 997 \quad &= \left[\sum_{i=0}^{t-1} \ell(A_i, O_i, \eta^*) - \min_{\eta' \in \mathcal{H}} \sum_{i=0}^{t-1} \ell(A_i, O_i, \eta') \right] - \left[\sum_{i=0}^{t-1} \ell(A_i, O_i, \bar{\eta}) - \min_{\eta' \in \mathcal{H}} \sum_{i=0}^{t-1} \ell(A_i, O_i, \eta') \right] \\ 998 \quad &+ \left[\sum_{i=0}^{t-1} [\ell(A_i, O_i, \bar{\eta}) - \ell(A_i, O_i, \eta^*)] - \sum_{i=0}^{t-1} \mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \bar{\eta}) - \ell(A_i, O, \eta^*)] \right] \\ 999 \quad &\leq \left| \sum_{i=0}^{t-1} \ell(A_i, O_i, \eta^*) - \min_{\eta' \in \mathcal{H}} \sum_{i=0}^{t-1} \ell(A_i, O_i, \eta') \right| + \left| \sum_{i=0}^{t-1} \ell(A_i, O_i, \bar{\eta}) - \min_{\eta' \in \mathcal{H}} \sum_{i=0}^{t-1} \ell(A_i, O_i, \eta') \right| \\ 1000 \quad &+ \left[\sum_{i=0}^{t-1} [\ell(A_i, O_i, \bar{\eta}) - \ell(A_i, O_i, \eta^*)] - \sum_{i=0}^{t-1} \mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \bar{\eta}) - \ell(A_i, O, \eta^*)] \right] \\ 1001 \quad &\leq 2\beta_t + \sum_{i=0}^{t-1} [\ell(A_i, O_i, \bar{\eta}) - \ell(A_i, O_i, \eta^*)] - \sum_{i=0}^{t-1} \mathbb{E}_{O \sim f_{\eta^*}(A_i)} [\ell(A_i, O, \bar{\eta}) - \ell(A_i, O, \eta^*)] \\ 1002 \quad &= 2\beta_t - \sum_{i=0}^{t-1} Z_i(\bar{\eta}, \eta^*). \end{aligned}$$

1018 Using Lemma 1,

$$1019 \quad \mathbb{P} \left(\left| \sum_{i=0}^{t-1} Z_i(\bar{\eta}, \eta^*) \right| > \inf_{\lambda \in [0, \infty)} \left\{ \frac{\sum_{i=0}^{t-1} \psi_i(\lambda) + \log(2/\delta)}{\lambda} \right\} \right) \leq \delta.$$

1022 We choose a sequence $\{\delta_t\}_{t \in \mathbb{N}_{>0}}$ where $\delta_t = \frac{3\delta}{5t^2}$, and so $\sum_{t=1}^{\infty} \delta_t < \delta$. Using a union bound over
1023 all $t \in \mathbb{N}_{>0}$, we have that with probability at least $1 - \delta$, for all $t \in \mathbb{N}$,

$$1024 \quad \left| \sum_{i=0}^{t-1} Z_i(\bar{\eta}, \eta^*) \right| \leq \inf_{\lambda \in [0, \infty)} \left\{ \frac{\sum_{i=0}^{t-1} \psi_i(\lambda) + \log(10t^2/3\delta)}{\lambda} \right\} \leq \beta_t.$$

1026 Since $\{\beta_t\}_{t \in \mathbb{N}}$ is nondecreasing in t , we have that with probability at least $1 - \delta$, $K\epsilon^2 \leq 3\beta_T$. It
 1027 then follows that with probability at least $1 - \delta$, $K \leq 3\beta_T/\epsilon^2$.
 1028

1029 Next, we take any action sequence (a_1, \dots, a_τ) and show that there is some element a_j that is ϵ -
 1030 dependent on at least $\tau/d - 1$ disjoint subsequences of (a_1, \dots, a_{j-1}) , where $d = \dim_{TE}(\mathcal{H}, \ell, \epsilon)$.
 1031 For an integer K satisfying $Kd + 1 \leq \tau \leq Kd + d$, we will construct K disjoint subsequences
 1032 B_1, \dots, B_K inductively starting with $B_i = (a_i)$ for $i = 1, \dots, K$. If a_{K+1} is ϵ -dependent on each
 1033 subsequence B_1, \dots, B_K , we are done. Otherwise, there must be at least one subsequence for which
 1034 a_{K+1} is ϵ -independent. We choose such a subsequence and append a_{K+1} to it. We will repeat this
 1035 process for a_j with $j = K + 2, K + 3, \dots$ until either a_j is ϵ -dependent on each subsequence or
 1036 $j = \tau$. If the first case occurs, we are done. If $j = \tau$, we necessarily have that $\sum |B_i| \geq Kd$. Since
 1037 each element of a subsequence B_i is ϵ -independent of its predecessors, $|B_i| = d$. By the definition
 1038 of $\dim_{TE}(\mathcal{H}, \ell, \epsilon)$, a_τ must be ϵ -dependent on each subsequence. \square

1039 We now take (A_1, \dots, A_τ) to be the subsequence $(A_{t_1}, \dots, A_{t_\tau})$ of (A_1, \dots, A_T) where for each
 1040 A_t , we have $w_{\mathcal{V}_t}(A_t) > \epsilon$. As we have shown first, with probability at least $1 - \delta$, each A_{t_j} is ϵ -
 1041 dependent on fewer than $3\beta_T/\epsilon^2$ disjoint subsequences of (A_1, \dots, A_{j-1}) . As we have shown in the
 1042 preceding paragraph, there is some a_j that is ϵ -dependent on at least $\tau/d - 1$ disjoint subsequences
 1043 of (a_1, \dots, a_{j-1}) . Combining these two facts, we may conclude that $\tau/d - 1 \leq 3\beta_T/\epsilon^2$. It follows
 1044 that with probability at least $1 - \delta$, $\tau \leq (3\beta_T/\epsilon^2 + 1) d$ as desired. \square

1045 We are now ready to bound the sum of widths $\sum_{t=0}^{T-1} \mathbb{E}[w_{\mathcal{V}_t}(A_t)]$ when the event $\eta^* \in \mathcal{V}_t$ holds.
 1046 Consider the $\epsilon_T^{\mathcal{H}}$ -transfer eluder dimension of \mathcal{H} , where
 1047

$$\epsilon_t^{\mathcal{H}} = \max \left\{ \frac{1}{t^2}, \min_{a \in \mathcal{A}} \inf \{ |r_\eta(a) - r^*(a)| : \eta \in \mathcal{H}, \eta \neq \eta^* \} \right\}. \quad (2)$$

1051 **Lemma 2.** *If the conditions in Lemma 1 holds for $(Z_t | t \in \mathbb{N})$ adapted to $(\mathcal{G}_t | t \in \mathbb{N})$ with cumulative
 1052 generating function bound $(\psi_t | t \in \mathbb{N})$, $(\beta_t \geq 0 | t \in \mathbb{N})$ in (1) is a nondecreasing sequence such that
 1053 for all $t \in \mathbb{N}$, $\beta_t \geq \inf_{\lambda \in [0, \infty)} \left\{ \frac{\sum_{i=0}^{t-1} \psi_i(\lambda) + \log(10t^2/3\delta)}{\lambda} \right\}$, then for all $\delta \in (0, 1)$, with probability at
 1054 least $1 - \delta$,*

$$1056 \sum_{t=0}^{T-1} w_{\mathcal{V}_t}(A_t) \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} \leq \frac{1}{T} + \min \{ \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T \} + 2\sqrt{3 \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) \beta_T T}$$

1059 for all $T \in \mathbb{N}$.

1061 *Proof.* Let $d_T = \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})$ and $w_t = w_{\mathcal{V}_t}(A_t)$. Reorder the sequence $(w_1, \dots, w_T) \rightarrow$
 1062 $(w_{i_1}, \dots, w_{i_T})$ where $w_{i_1} \geq w_{i_2} \geq \dots \geq w_{i_T}$. We have

$$\begin{aligned} 1064 & \sum_{t=0}^{T-1} w_{\mathcal{V}_t}(A_t) \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} \\ 1065 &= \sum_{t=0}^{T-1} w_{i_t} \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_{i_t}\} \\ 1066 &= \sum_{t=0}^{T-1} w_{i_t} \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_{i_t}\} \cdot \mathbb{1}\{w_{i_t} > \epsilon_T^{\mathcal{H}}\} + \sum_{t=0}^{T-1} w_{i_t} \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_{i_t}\} \cdot \mathbb{1}\{w_{i_t} \leq \epsilon_T^{\mathcal{H}}\} \\ 1067 &\leq \frac{1}{T} + \sum_{t=0}^{T-1} w_{i_t} \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_{i_t}\} \cdot \mathbb{1}\{w_{i_t} > \epsilon_T^{\mathcal{H}}\}. \end{aligned}$$

1075 The last inequality follows since either $\epsilon_T^{\mathcal{H}} = 1/T^2$ and $\sum_{t=0}^{T-1} \epsilon_T^{\mathcal{H}} = 1/T$ or $\epsilon_T^{\mathcal{H}}$ is set below the
 1076 smallest possible width and hence $\mathbb{1}\{w_{i_t} \leq \epsilon_T^{\mathcal{H}}\}$ never occurs. We have that $w_{i_t} \leq 1$. Also,
 1077 $w_{i_t} > \epsilon \iff \sum_{k=0}^{T-1} \mathbb{1}\{w_{\mathcal{V}_k}(a_k) > \epsilon\} \geq t$. By Proposition 3, with probability at least $1 - \delta$,
 1078 this can only happen if $t < (3\beta_T/\epsilon^2 + 1) \dim_{TE}(\mathcal{H}, \ell, \epsilon)$. For $\epsilon \geq \epsilon_T^{\mathcal{H}}$, since $\dim_{TE}(\mathcal{H}, \ell, \epsilon')$ is
 1079 non-increasing in ϵ' , $\dim_{TE}(\mathcal{H}, \ell, \epsilon) \leq \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) = d_T$. Therefore, when $w_{i_t} > \epsilon \geq \epsilon_T^{\mathcal{H}}$,

1080
1081 $t \leq (3\beta_T/\epsilon^2 + 1) d_T$, implying $\epsilon \leq \sqrt{\frac{3\beta_T d_T}{t-d_T}}$. So if $w_{i_t} > \epsilon_T^{\mathcal{H}}$, then $w_{i_t} \leq \min\{1, \sqrt{\frac{3\beta_T d_T}{t-d_T}}\}$.
1082 Thus,

$$\begin{aligned} 1083 \sum_{t=0}^{T-1} w_{i_t} \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_{i_t}\} \cdot \mathbb{1}\{w_{i_t} > \epsilon_T^{\mathcal{H}}\} &\leq d_T + \sum_{t=d_T+1}^{T-1} \sqrt{\frac{3\beta_T d_T}{t-d_T}} \\ 1084 &\leq d_T + \sqrt{3\beta_T d_T} \int_{t=1}^{T-1} \frac{1}{\sqrt{t}} dt \\ 1085 &= d_T + 2\sqrt{3\beta_T d_T T}. \end{aligned}$$

1090 Since the sum of widths is always bounded by T , this implies that with probability $1 - \delta$,
1091

$$\begin{aligned} 1092 \sum_{t=0}^{T-1} w_{\mathcal{V}_t}(a_t) \cdot \mathbb{1}\{\eta^* \in \mathcal{V}_t\} \\ 1093 &\leq \min \left\{ T, \frac{1}{T} + \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) + 2\sqrt{3 \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) \beta_T T} \right\} \\ 1094 &\leq \frac{1}{T} + \min \{ \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T \} + 2\sqrt{3 \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) \beta_T T}. \end{aligned}$$

□

1101 So far, we have only considered HELiX without the exploitation step. We remark that by Lemma
1102 6, when the exploitation step is triggered, the per-step regret of all following steps become zero,
1103 and so the regret of the full HELiX is always bounded above by that without the exploitation step.
1104 Combining this observation with Lemma 2 and Proposition 2, we arrive at the following abstract
1105 regret bound in terms of the version space confidence parameter β_T .

1106 **Theorem 2.** *If it holds that for some $\delta \in (0, 1)$, with probability at least $1 - \delta$, $\eta^* \in \mathcal{V}_t$ for all t ,
1107 then for all $T \in \mathbb{N}$,*

$$1109 \text{Regret}(T) \leq 1 + \frac{1}{T} + \min\{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T\} + 2\sqrt{3 \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) \beta_T T}.$$

1111 The dominant term in the regret bound is

$$1113 2\sqrt{3 \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) \beta_T T}.$$

1115 For our main theorem, it remains to design suitable version spaces \mathcal{V}_t and show that they contain
1116 the true hypothesis η^* with high probability. Crucially, the rate at which the confidence parameters
1117 β_t of these version spaces shrink depends on concentration properties of the verifier loss function ℓ .
1118 Note that for the general LLF framework, we have assumed only that ℓ is a bounded function taking
1119 values in $[0, 1]$. If we have more structural assumptions on the verifier loss ℓ , for example, that ℓ is
1120 α -strongly convex, then we may arrive at a tighter regret bound up to order \sqrt{T} by taking β_T to be
1121 of constant order.

1123 B.3 VERSION SPACE CONSTRUCTION FOR GENERAL BOUNDED LOSS

1125 Consider the most general case with minimal assumptions on the loss function, namely, that it is
1126 bounded between $[0, 1]$ for all inputs. Then we prove the following high-probability event:

1127 **Lemma 3** (High-probability event). *For all $\delta > 0$, $\eta, \eta' \in \mathcal{H}$,*

$$1129 \mathbb{P} \left(\mathcal{L}_T(\eta') \geq \mathcal{L}_T(\eta) + L_T(\eta') - L_T(\eta) - \sqrt{2T \log \left(\frac{10T^2}{3\delta} \right)}, \quad \forall T \in \mathbb{N} \right) \geq 1 - \delta.$$

1132 *Proof.* For each $t = 1, \dots, T$, define the Martingale difference sequence
1133

$$X_t = \mathbb{E}_{O \sim f_{\eta^*}(A_t)} [\ell(A_t, O, \eta) - \ell(A_t, O, \eta')] - (\ell(A_t, O_t, \eta) - \ell(A_t, O_t, \eta')).$$

$$\begin{aligned}
& \mathcal{L}_T(\eta') - \mathcal{L}_T(\eta) - (L_T(\eta') - L_T(\eta)) \\
&= \sum_{t=0}^{T-1} \left(\mathbb{E}_{O \sim f_{\eta^*}(A_t)} [\ell(A_t, O, \eta)] - \mathbb{E}_{O \sim f_{\eta^*}(A_t)} [\ell(A_t, O, \eta')] \right) - \sum_{t=0}^{T-1} (\ell(A_t, O_t, \eta) - \ell(A_t, O_t, \eta')) \\
&= \sum_{t=0}^{T-1} \mathbb{E}_{O \sim f_{\eta^*}(A_t)} [\ell(A_t, O, \eta) - \ell(A_t, O, \eta')] - \sum_{t=0}^{T-1} (\ell(A_t, O_t, \eta) - \ell(A_t, O_t, \eta')) \\
&= \sum_{t=0}^{T-1} X_t.
\end{aligned}$$

Notice that X_t have expectation zero and constitutes a Martingale difference sequence adapted to the filtration $\{\mathcal{G}_t\}_{t \geq 1}$ where \mathcal{G}_t is the σ -algebra generated by all observations $\{(A_0, O_1), \dots, (A_t, O_t)\}$ up to time t . Since feedback losses $\ell(a, o, \eta)$ are uniformly bounded between $[0, 1]$, we have that $X_t \in [-2, 2]$ with probability 1. Using Lemma 1 with $\psi_t(\lambda) = \lambda^2/2$ and taking the infimum over λ , we get

$$\mathbb{P} \left(\left| \sum_{t=0}^{T-1} X_t \right| > \sqrt{2T \log(2/\delta)} \right) \leq \delta.$$

We choose a sequence $\{\delta_T\}_{T \in \mathbb{N}_{>0}}$ where $\delta_T = \frac{3\delta}{5T^2}$ such that $\sum_{T=1}^{\infty} \delta_T < \delta$. Using a union bound over all $T \in \mathbb{N}_{\geq 0}$, we have that with probability at least $1 - \delta$,

$$|\mathcal{L}_T(\eta') - \mathcal{L}_T(\eta) - (L_T(\eta') - L_T(\eta))| \leq \sqrt{2T \log \left(\frac{2}{\delta_T} \right)} = \sqrt{2T \log \left(\frac{10T^2}{3\delta} \right)} \quad \forall T \in \mathbb{N}.$$

□

Since η^* is the true hypothesis, by Assumption 3, it minimizes the population loss $\mathcal{L}_T(\eta)$ for all $T \in \mathbb{N}$. That is, for all $\eta \in \mathcal{H}$,

$$\mathcal{L}_T(\eta^*) \leq \mathcal{L}_T(\eta) \quad \forall T \in \mathbb{N}.$$

Suppose $m = |\mathcal{H}| < \infty$. By Lemma 3, for any $\eta \in \mathcal{H}$, with probability at least $1 - \delta/m$, for all $T \in \mathbb{N}$,

$$L_T(\eta^*) - L_T(\eta) \leq \mathcal{L}_T(\eta^*) - \mathcal{L}_T(\eta) + \sqrt{2T \log \left(\frac{10T^2}{3\delta} \right)} \leq \sqrt{2T \log \left(\frac{10mT^2}{3\delta} \right)}.$$

Using a union bound over \mathcal{H} , with probability at least $1 - \delta$, the true hypothesis η^* is contained in the version space

$$\mathcal{V}_T = \left\{ \eta \in \mathcal{H} : L_T(\eta) \leq \min_{\eta' \in \mathcal{H}} L_T(\eta') + \sqrt{2T \log \left(\frac{10|\mathcal{H}|T^2}{3\delta} \right)} \right\}$$

for all $T \in \mathbb{N}$. To extend this to a space of infinite hypotheses, we measure the set \mathcal{H} by some discretization scale α . Recall that we define distances in the hypothesis space in terms of the loss function ℓ :

$$d_{\mathcal{H}}(\eta, \eta') = \sup_{a \in \mathcal{A}, o \in \mathcal{O}} |\ell(a, o, \eta) - \ell(a, o, \eta')|.$$

Lemma 4. $d_{\mathcal{H}}(\cdot, \cdot)$ is a pseudometric on \mathcal{H} .

Proof. We check the axioms for a pseudometric.

- nonnegativity: $d_{\mathcal{H}}(\eta, \eta) = 0$ and $d_{\mathcal{H}}(\eta, \eta') \geq 0$ for all $\eta, \eta' \in \mathcal{H}$.
- symmetry: $d_{\mathcal{H}}(\eta, \eta') = d_{\mathcal{H}}(\eta', \eta)$.
- triangle inequality: for each $a \in \mathcal{A}$ and $o \in \mathcal{O}$, $|\ell(a, o, \eta) - \ell(a, o, \eta'')| \leq |\ell(a, o, \eta) - \ell(a, o, \eta')| + |\ell(a, o, \eta') - \ell(a, o, \eta'')|$. Taking the supremum over \mathcal{A} and \mathcal{O} yields the desired property.

1188

1189

1190

1191 Let $N(\mathcal{H}, \alpha, d_{\mathcal{H}})$ denote the α -covering number of \mathcal{H} in the pseudometric $d_{\mathcal{H}}$, and let

1192

1193

1194

1195

1196

1197

Proposition 4. For $\delta > 0$, $\alpha > 0$, and $T \in \mathbb{N}$, define

1198

1199

1200

1201

Then it holds that

1202

1203

1204

1205

1206

1207

1208

Proof. Let $\mathcal{H}^\alpha \subseteq \mathcal{H}$ be an α -cover of \mathcal{H} in the pseudometric $d_{\mathcal{H}}$. In other words, for any $\eta \in \mathcal{H}$, there is an $\eta^\alpha \in \mathcal{H}^\alpha$ such that $d_{\mathcal{H}}(\eta, \eta^\alpha) \leq \alpha$. A union bound over \mathcal{H}^α gives that with probability at least $1 - \delta$,

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

$$\begin{aligned}
 (\mathcal{L}_T(\eta^\alpha) - L_T(\eta^\alpha)) - (\mathcal{L}_T(\eta^*) - L_T(\eta^*)) &\leq \sqrt{2T \log \left(\frac{10|\mathcal{H}^\alpha|T^2}{3\delta} \right)} \\
 \implies (\mathcal{L}_T(\eta) - L_T(\eta)) - (\mathcal{L}_T(\eta^*) - L_T(\eta^*)) &\leq \sqrt{2T \log \left(\frac{10|\mathcal{H}^\alpha|T^2}{3\delta} \right)} \\
 &\quad + \underbrace{(\mathcal{L}_T(\eta) - L_T(\eta)) - (\mathcal{L}_T(\eta^\alpha) - L_T(\eta^\alpha))}_{\text{discretization error}}.
 \end{aligned}$$

The discretization error can be expanded and bounded as

1219

1220

1221

$$\sum_{t=0}^{T-1} \left[\mathbb{E}_{O \sim f_{\eta^*}(A_t)} [\ell(A_t, O, \eta) - \ell(A_t, O, \eta^\alpha)] - \ell(A_t, O_t, \eta) + \ell(A_t, O_t, \eta^\alpha) \right] \leq 2\alpha T.$$

1222

1223

Since η^* is a minimizer of $\mathcal{L}_T(\cdot)$, we have that with probability at least $1 - \delta$,

1224

1225

1226

$$L_T(\eta^*) - L_T(\eta) \leq \sqrt{2T \log \left(\frac{10|\mathcal{H}^\alpha|T^2}{3\delta} \right)} + 2\alpha T.$$

We take the infimum over the size of α -covers, which results in the bound

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

Taking $\delta = \frac{1}{T}$ and plugging $\beta_T = \beta_T^*(\mathcal{H}, \delta, \epsilon_T^{\mathcal{H}})$ into the abstract regret bound in Theorem 2 proves the following main theorem.**Theorem 3.** For all $T \in \mathbb{N}$,

1238

1239

1240

1241

$$\begin{aligned}
 \text{Regret}(T) &\leq 1 + \frac{1}{T} + \min\{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T\} \\
 &\quad + 2\sqrt{3\sqrt{2} \log \left(\frac{10N(\mathcal{H}, \alpha, d_{\mathcal{H}})T^2}{3\delta} \right)^{1/2} \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}) T^{3/2} + 6 \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})}.
 \end{aligned}$$

□

1242 *Proof.*

1243 $\text{Regret}(T)$

1244 $\leq 1 + \frac{1}{T} + \min\{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T\} + 2\sqrt{3\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})\beta_T^*(\mathcal{H}, \delta, \epsilon_T^{\mathcal{H}})T}$

1245 $= 1 + \frac{1}{T} + \min\{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T\} +$

1246 $+ 2\sqrt{3\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})\left(\sqrt{2T\log\left(\frac{10N(\mathcal{H}, \epsilon_T^{\mathcal{H}}, d_{\mathcal{H}})T^2}{3\delta}\right)} + 2\epsilon_T^{\mathcal{H}}T\right)T}$

1247 $= 1 + \frac{1}{T} + \min\{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T\} +$

1248 $+ 2\sqrt{3\sqrt{2}\log\left(\frac{10N(\mathcal{H}, \alpha, d_{\mathcal{H}})T^2}{3\delta}\right)^{1/2}\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})T^{3/2} + 6\epsilon_T^{\mathcal{H}}\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})T^2}$

1249 $\leq 1 + \frac{1}{T} + \min\{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}}), T\} +$

1250 $+ 2\sqrt{3\sqrt{2}\log\left(\frac{10N(\mathcal{H}, \alpha, d_{\mathcal{H}})T^2}{3\delta}\right)^{1/2}\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})T^{3/2} + 6\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})},$

1251 where the last inequality follows since $\epsilon_T^{\mathcal{H}} \leq 1/T^2$ by definition. \square

1252 The leading term in the regret bound is of order

1253 $T^{3/4} (\log N(\mathcal{H}, \epsilon_T^{\mathcal{H}}, d_{\mathcal{H}}))^{1/4} \sqrt{\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})}.$

1254 **Remark 3.** As noted earlier on, while the order $\tilde{O}(T^{3/4})$ on the time horizon T may appear suboptimal compared to classical $\tilde{O}(\sqrt{T})$ optimal rates for bandit learning with direct reward feedback, this slower rate is in fact a principled consequence of our minimal assumptions. Specifically, our analysis makes no structural assumptions on the verifier loss ℓ beyond boundedness. If we have more structural knowledge of ℓ , say, that it is α -strongly convex, then the bound can be tightened to match the optimal order $\tilde{O}(\sqrt{T})$. A notable instance is when ℓ is a squared loss. A refined analysis on the drift of conditional mean losses allows us to choose the confidence parameters β_T for the version spaces to be of order $\tilde{O}(\log(1/\delta))$, which results in the tight $\tilde{O}(\sqrt{T})$ regret rate.

1255 B.4 RATE-OPTIMAL BOUND FOR SQUARED LOSS

1256 In this section, we consider a special case of a verifier ℓ , taking the discriminative example introduced in Section 4.3 and detailed in Section C.3.

1257 **Theorem 4.** Suppose $r_{\eta}(a) = \mathbb{E}_{o \sim f_{\eta}(a)}[g(a, o)]$ for some known $g : \mathcal{A} \times \mathcal{O} \rightarrow [0, 1]$ and $\ell(a, o, \eta) = (g(a, o) - r_{\eta}(a))^2 = (g(a, o) - \mathbb{E}_{o' \sim f_{\eta}(a)}[g(a, o')])^2$. Suppose for all $t \in \mathbb{N}$, $g(A_t, O_t) - \mathbb{E}_{O' \sim f_{\eta}(A_t)}[g(A_t, O')]$ conditioned on (\mathcal{G}_t, A_t) is σ -sub-Gaussian. For all $T \in \mathbb{N}$, the regret of LLF-UCB satisfies

1258 $\text{Regret}(T) \leq \tilde{O}\left(\sqrt{T \log N(\mathcal{H}, \epsilon_T^{\mathcal{H}}, d_{\mathcal{H}}) \dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})}\right),$

1259 where $N(\mathcal{H}, \epsilon_T^{\mathcal{H}}, d_{\mathcal{H}})$ denotes the $\epsilon_T^{\mathcal{H}}$ -covering number of \mathcal{H} based on the pseudo-metric $d_{\mathcal{H}}$, $\dim_{TE}(\mathcal{H}, \ell, \epsilon_T^{\mathcal{H}})$ denotes the $\epsilon_T^{\mathcal{H}}$ -transfer eluder dimension of \mathcal{H} , and $\epsilon_T^{\mathcal{H}} = \max\left\{\frac{1}{T^2}, \min_{a \in \mathcal{A}} \inf\{|r_{\eta}(a) - r^*(a)| : \eta \in \mathcal{H}, \eta \neq \eta^*\}\right\}$.

1260 C PROOFS FOR SUPPORTING LEMMAS AND PROPOSITIONS

1261 C.1 PROOF FOR PROPOSITION 1

1262 *Proof.* Let $\tilde{\ell} = C_F \ell$. Let $d_{TE} = \dim_{TE}(\mathcal{H}, \tilde{\ell}, \epsilon)$ be the shorthand for the ϵ -transfer eluder dimension of \mathcal{H} with respect to $\tilde{\ell}$. Then, there exists a length d_{TE} sequence of elements in \mathcal{A} such

1296 that for some $\tilde{\epsilon} \geq \epsilon$, every action element is $\tilde{\epsilon}$ -transfer independent of its predecessors. We de-
 1297 note such a sequence as $(a_0, \dots, a_{d_{TE}-1})$. By definition of the transfer eluder dimension, for any
 1298 $k \in \{0, \dots, d_{TE} - 2\}$, there exists a pair of hypotheses $\eta, \eta' \in \mathcal{H}$ satisfying
 1299

$$1300 \quad 1301 \quad \sum_{i=0}^k \left(\mathbb{E}_{o \sim f_{\eta'}}(a_i)[\tilde{\ell}(a_i, o, \eta)] - \tilde{\ell}_{\eta'}^{\min}(a_i) \right) \leq \tilde{\epsilon}^2$$

$$1302$$

1303 but $|r_\eta(a_{k+1}) - r_{\eta'}(a_{k+1})| > \tilde{\epsilon}$. Using the definition for reward-discriminative verifiers,
 1304

$$1305 \quad 1306 \quad \sum_{i=0}^k (r_\eta(a_i) - r_{\eta'}(a_i))^2 \leq C_F \sum_{i=0}^k \left(\mathbb{E}_{o \sim f_{\eta'}}(a_i)[\ell(a_i, o, \eta)] - \ell_{\eta'}^{\min}(a_i) \right)$$

$$1307$$

$$1308 \quad 1309 \quad = \sum_{i=0}^k \left(\mathbb{E}_{o \sim f_{\eta'}}(a_i)[\tilde{\ell}(a_i, o, \eta)] - \tilde{\ell}_{\eta'}^{\min}(a_i) \right) \leq \tilde{\epsilon}^2.$$

$$1310$$

1311 By the definition of the (regular) eluder dimension, every action in the sequence $(a_0, \dots, a_{d_{TE}-1})$ is
 1312 ϵ -independent of its predecessors. Therefore, $d_{TE} \leq \dim_E(\mathcal{R}, \epsilon)$ since the latter is the length of the
 1313 longest sequence of independent actions. We may conclude that $\dim_E(\mathcal{R}, \epsilon) \geq \dim_{TE}(\mathcal{H}, C_F \ell, \epsilon)$.
 1314

□

1317 C.2 PROOF FOR LEMMA 5

1318

1319 **Lemma 5.** Consider some $\bar{\mathcal{H}}$. Suppose $\min_{\pi \in \Pi} \max_{\eta \in \bar{\mathcal{H}}} r_\eta(\pi_\eta) - r_\eta(\pi) = 0$. Let $\hat{\pi}$ be a minimizer.
 1320 Let \mathcal{A}_η^* denote the set of optimal actions with respect to r_η . Then $\text{supp}(\hat{\pi}) \subseteq \mathcal{A}_\eta^*$, for all $\eta \in \bar{\mathcal{H}}$.

1321

1322

1323 *Proof.* We prove by contradiction. Suppose $\hat{\pi}$ takes some action a' outside of \mathcal{A}_η^* for some $\eta \in \bar{\mathcal{H}}$
 1324 with probability p' . Let $\pi' = \hat{\pi} - p' \mathbb{1}[a = a'] + p' \text{Unif}[a \in \mathcal{A}_\eta^*]$. Then it follows $r_\eta(\pi') > r_\eta(\hat{\pi})$,
 1325 which is a contradiction. Therefore, $\text{supp}(\hat{\pi}) \subseteq \mathcal{A}_\eta^*$, for all $\eta \in \bar{\mathcal{H}}$. □

1326 C.3 PROOF OF THE DISCRIMINATIVE FEEDBACK EXAMPLE

1327

1328 Suppose $r_\eta(a) = \mathbb{E}_{o \sim f_\eta(a)}[g(a, o)]$ for some known $g : \mathcal{A} \times \mathcal{O} \rightarrow [0, 1]$. Note that the reward
 1329 mapping $\eta \mapsto r_\eta$ is known, but the reward function itself is still hidden from the agent (since η^*
 1330 is unknown). We define $\ell(a, o, \eta) := (g(a, o) - r_\eta(a))^2 = (g(a, o) - \mathbb{E}_{o' \sim f_\eta(a)}[g(a, o')])^2$, which
 1331 gives
 1332

$$1333 \quad 1334 \quad \mathbb{E}_{o \sim f_\eta(a)}[\ell(a, o, \eta')] = \mathbb{E}_{o \sim f_\eta(a)} \left[(g(a, o) - \mathbb{E}_{o' \sim f_{\eta'}(a)}[g(a, o')])^2 \right].$$

$$1335$$

1336 One can easily verify that $\eta \in \arg \min_{\eta' \in \mathcal{H}} \mathbb{E}_{o \sim f_\eta(a)}[\ell(a, o, \eta')]$. With this definition, we have that
 1337

$$1338 \quad |r_\eta(a) - r_{\eta'}(a)|^2 = (\mathbb{E}_{o \sim f_\eta(a)}[g(a, o)] - \mathbb{E}_{o \sim f_{\eta'}(a)}[g(a, o)])^2$$

$$1339 \quad = (\mathbb{E}_{o \sim f_\eta(a)}[g(a, o) - \mathbb{E}_{o' \sim f_{\eta'}(a)}[g(a, o')]])^2$$

$$1340 \quad \leq \mathbb{E}_{o \sim f_\eta(a)}[(g(a, o) - \mathbb{E}_{o' \sim f_{\eta'}(a)}[g(a, o')])^2]$$

$$1341 \quad = \mathbb{E}_{o \sim f_\eta(a)}[\ell(a, o, \eta')]$$

$$1342$$

1343 This shows the feedback is discriminative.

1344 C.4 PROOF OF REASONING EXAMPLE

1345

1346 **binary indicator of whether all steps are correct** This problem is equivalent to a bandit problem
 1347 with $|\mathcal{S}|^L$ arms. Here $f_\eta(a) = r(a)$, so the transfer eluder dimension reduces to the standard eluder
 1348 dimension, which is bounded by the size of the action space.

1350 **index of the first incorrect step** Here we prove for $\epsilon < 1/2L$. Given the rubric of η^* , partition
 1351 the action space into L sets, where $\mathcal{A}_l = \{(s_1, \dots, s_L) | s_1, \dots, s_{l-1} \text{ are correct and } s_l \text{ is incorrect}\}$
 1352 for $l = 1, \dots, L$, where \mathcal{A}_0 denotes sequences where s_1 is incorrect. By this definition, we have
 1353 $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$, for $i \neq j$, and $\mathcal{A}^* \cup (\bigcup_{l=1}^L \mathcal{A}_l) = \mathcal{A}$, where $\mathcal{A}^* = \{a^*\}$
 1354

1355 Suppose we have an independent action sequence (a_1, \dots, a_K) in the sense of Definition 3 where
 1356 each action is ϵ -independent of their predecessors. We show it can have no more than $|\mathcal{S}|$ actions
 1357 from each \mathcal{A}_l for $l \in [1, L]$. By definition of the feedback, for $a \in \mathcal{A}_l$, $f_\eta(a) = l$. Suppose we have
 1358 more than $|\mathcal{S}|$ actions from \mathcal{A}_l . It implies that a token must be used twice at the l th position. Say it's
 1359 s_l and it's shared by $a^1, a^2 \in \mathcal{A}_l$. Then we show a^2 is ϵ -dependent on a^1 when $\epsilon < 1/L$. For $\eta \in \mathcal{H}$,
 1360 satisfying $\mathbb{E}_{o \sim f^*(a^0)} [|o - f_\eta(a^0)|^2 / L^2] = |l - f_\eta(a^0)|^2 / L^2 \leq \epsilon^2$, we have $l - L\epsilon \leq f_\eta(a^0) \leq l + L\epsilon$.
 1361 Since $\epsilon < 1/2L$ and $f_\eta(a^0)$ is an integer, this implies $f_\eta(a^0) = l$. That is, for such an η satisfying the
 1362 constraint given by a^0 , s_l is incorrect. This implies $f_\eta(a^1) \leq l$. Therefore, $r_\eta(a^0) = r_\eta(a^1) = 0$.
 1363

1364 Therefore, the length of independent action sequences is bounded by $|\mathcal{S}|L + |\mathcal{A}^*| = |\mathcal{S}|L + 1$.

1365 **give correction for the first mistake** In this case, the feedback not only returns the index of the
 1366 first incorrect step l , but also reveals the correct reasoning action s_l^* . Let $a_\eta^* = (s_1(\eta), \dots, s_L(\eta))$
 1367 denote the L reasoning steps based on the hypothesis η . The reward function of any action a and
 1368 hypothesis η is $r_\eta(a) = \mathbb{I}\{a_\eta^* = a\}$. For an action $a = (s_1, \dots, s_L)$ and feedback $o := (l, s_l(\eta))$
 1369 generated based on $f_\eta(a)$, we have $s_j = s_j(\eta)$ for all $j < l$ and $s_l \neq s_l(\eta)$. Now, given any feedback
 1370 $o := (l, s_l^*)$, we define the following loss $\ell(a, o, \eta) = \frac{1}{L} \left(\sum_{j=1}^{l-1} \mathbb{I}\{s_j(\eta) = s_j\} + \mathbb{I}\{s_l(\eta) = s_l^*\} \right)$.
 1371 This verifier loss evaluates whether η and η' have the same first l reasoning steps.

1372 For $\epsilon < 1$, suppose an action sequence (a_1, \dots, a_K) where each action is ϵ -independent of their
 1373 predecessors. If action a is ϵ -independent, there exists η, η' such that $\sum_{i=1}^K \mathbb{E}_{o_i \sim f_{\eta'}(a)} [l(a_i, o_i, \eta)] \leq$
 1374 ϵ and $|r_\eta(a) - r_{\eta'}(a)| > \epsilon$. By definition of the feedback and loss, we know η, η' have the same
 1375 initial $\max_i l_i$ reasoning steps. However, we know that $r_\eta(a) \neq r_{\eta'}(a)$ indicating at least one index
 1376 $l > \max_i l_i$ where $s_l \in \{s_l(\eta), s_l(\eta')\}$ and $s_l(\eta) \neq s_l(\eta')$, resulting in feedback $o = (l, s_l(\eta'))$ for
 1377 a . Thus, the sequence of indices in feedback o_1, o_2, \dots is monotonic. As we have L reasoning steps,
 1378 for any pair η, η' , the sequence length is bounded by L .
 1379

1380 **demonstration** Here, the feedback directly demonstrates correct reasoning sequence $a^* =$
 1381 (s_1^*, \dots, s_L^*) and is independent of the agent's action sequence. For action $a = (s_1, \dots, s_L)$ and
 1382 hypothesis η , we define the loss as $\ell(a, o, \eta) = \mathbb{I}\{o = a_\eta^*\}$. Therefore, for any η, η' and $\epsilon < 1$, if a
 1383 satisfies: $\mathbb{E}_{o \sim f_{\eta'}(a)} \ell(a, o, \eta) \leq \epsilon$, we have $a_\eta^* = a_{\eta'}^*$, implying $r_\eta(a) = r_{\eta'}(a)$ for all $a \in |\mathcal{S}|^L$ and
 1384 a transfer Eluder dimension of 1.
 1385

1386 C.5 PROOF FOR LEMMA 6

1387 **Lemma 6.** Suppose for some $t_0 \geq 0$, we have that $\min_{\pi \in \Pi} \max_{\eta \in \mathcal{H}_{t_0}} |r_\eta(\pi_\eta) - r_\eta(\pi)| = 0$ in
 1388 Algorithm 1. Then for all $t > t_0$, $\min_{\pi \in \Pi} \max_{\eta \in \mathcal{H}_t} |r_\eta(\pi_\eta) - r_\eta(\pi)| = 0$.

1389 *Proof.* We prove by induction. Suppose the conclusion holds for $t > t_0$, we prove that it holds for
 1390 $t+1$ as well. At time t , the induction hypothesis implies that $\min_{\pi \in \Pi} \max_{\eta \in \mathcal{H}_t} |r_\eta(\pi_\eta) - r_\eta(\pi)| =$
 1391 0. Since $\mathcal{H}_{t+1} \subseteq \mathcal{H}_t$, $\max_{\eta \in \mathcal{H}_{t+1}} |r_\eta(\pi_\eta) - r_\eta(\pi)| \leq \max_{\eta \in \mathcal{H}_t} |r_\eta(\pi_\eta) - r_\eta(\pi)|$ for all $\pi \in \Pi$.
 1392 Thus, $\min_{\pi \in \Pi} \max_{\eta \in \mathcal{H}_{t+1}} |r_\eta(\pi_\eta) - r_\eta(\pi)| \leq \min_{\pi \in \Pi} \max_{\eta \in \mathcal{H}_t} |r_\eta(\pi_\eta) - r_\eta(\pi)| = 0$.
 1393 \square

1394 D EXTENSIONS

1395 D.1 SPECIAL CASE OF REWARD-AGNOSTIC FEEDBACK

1396 Text feedback may contain information beyond what is relevant to the reward. In particular, one
 1397 could imagine a special case, where feedback does not reveal much about the reward, but still pro-
 1398 vides enough to identify an optimal action over time. One simple example is when the feedback

1404 directly reveals the optimal action, regardless of the action chosen. In this case, the transfer eluder
 1405 dimension as defined could be arbitrarily large, but ideally an efficient LLF agent should choose the
 1406 optimal action in the following steps instead of trying to identify the mean reward for each action.
 1407

1408 D.2 EXTENSION TO CONTEXTUAL BANDITS AND STATEFUL INTERACTIONS

1409 Our formulation can be modified slightly to accommodate learning with a context. In a con-
 1410 textual problem, a Markov process X_t independently takes values in a set \mathcal{X} that the agent
 1411 views as contexts. We may define the full set of actions to be the set of context-action pairs
 1412 $\mathcal{A} := \{(x, a) : x \in \mathcal{X}, a \in \mathcal{A}(x)\}$, where $\mathcal{A}(x)$ is the set of available actions under the
 1413 context x . Instead of having a fixed action space \mathcal{A} across time, consider time-varying action sets
 1414 $\mathcal{A}_t := \{(X_t, a) : a \in \mathcal{A}(X_t)\}$. At each time t , an action $a_t \in \mathcal{A}_t$ will be selected. In accordance,
 1415 the policy $\pi = \{\pi_t | t \in \mathbb{N}\}$ is now a sequence of functions indexed by time, each mapping the his-
 1416 tory $H_t = (\mathcal{A}_0, A_0, R_0, \dots, \mathcal{A}_{t-1}, A_{t-1}, R_{t-1}, \mathcal{A}_t)$ to a distribution over \mathcal{A} with support \mathcal{A}_t . Our
 1417 analysis for the context-free setting directly carries over.
 1418

1419 While our framework focuses on stateless settings similar to bandits (and contextual bandits in the
 1420 extension discussed above), extending this formulation to stateful interactions is an exciting avenue
 1421 for future work. A most straightforward extension is treating history as contexts and following
 1422 the contextual extension described above. However, this will induce an exponential explosion in
 1423 the state space, and the regret guarantees will become too loose. A more careful treatment might
 1424 involve formulating LLF problems in an MDP setting, and designing algorithms capable of deep
 1425 exploration.

1426 D.3 ALTERNATIVE FORMULATION OF FEEDBACK GENERATION

1427 The LLF formulation we have presented so far assumes that feedback arises from a fixed mapping
 1428 $\eta \mapsto f_\eta$ with each hypothesis $\eta \in \mathcal{H}$. While this “model-based” view simplifies both the design
 1429 of exploration strategies and the complexity analysis via the transfer eluder dimension, it imposes
 1430 a structural constraint that may be too restrictive in settings where feedback is generated by a more
 1431 complex or even adversarial process. An alternative, entirely “model-free” formulation allows feed-
 1432 back to be generated arbitrarily from an oracle in a streaming fashion, without the need to explicitly
 1433 model a feedback mapping $\eta \mapsto f_\eta$. Concretely, at each time t , the agent executes an action $A_t \in \mathcal{A}$
 1434 and observes feedback $O_t \in \mathcal{O}$. We denote the history of interactions as $I_t = (A_0, O_0, \dots, A_t, O_t)$
 1435 and write \mathcal{I} for the set of all possible histories. A (history-dependent) policy $\pi : \mathcal{I} \rightarrow \Delta(\mathcal{A})$ maps
 1436 each history $h \in \mathcal{I}$ to a distribution over actions.
 1437

1438 This streaming-oracle perspective subsumes both stochastic and adversarial feedback models, and
 1439 can capture scenarios where the dependence on η is unknown or too complex to parameterize. In
 1440 this setting, one must replace the hypothesis-indexed complexity measures by complexity metrics
 1441 defined directly over the space of oracles or possible histories. Although this general approach will
 1442 likely incur additional technical overhead, it also broadens the applicability of our LLF framework to
 1443 encompass richer feedback protocols beyond the hypothesis-testing paradigm. An interesting future
 1444 direction is to develop performance guarantees under the more general feedback generation model.
 1445

1446 E IMPLEMENTING HELiX WITH LARGE LANGUAGE MODELS

1447 We provide a practical implementation of HELiX using an LLM. LLMs with advanced reasoning
 1448 capabilities can produce chain-of-thoughts that often contain guesses and reasoning traces of the
 1449 environment (Wei et al., 2022; Guo et al., 2025; Gandhi et al., 2025). We propose to leverage LLMs’
 1450 knowledge about the world to enhance decision-making. In particular, we treat an LLM’s thinking
 1451 tokens before deciding on an action as “hypotheses”. These thinking tokens can be sampled by
 1452 prompting the LLM to output its reasoning before an action with prompts in the form of “<Thought>
 1453 <Action>”.

1454 We provide the pseudocode for the practical implementation in Algorithm 2 and illustrate a corre-
 1455 sponding flow-graph in Figure 4. The algorithm takes as inputs the following LLM-based compo-
 1456 nents:

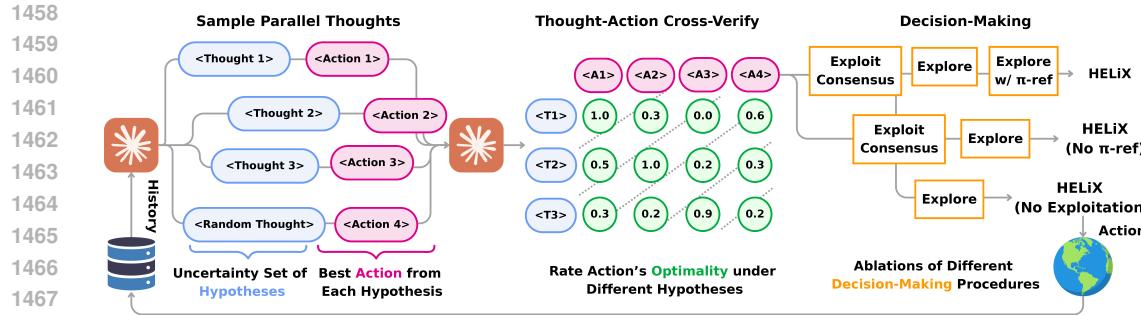


Figure 4: **Thought Sampling with Cross-Verify.** Our algorithm extends the traditional paradigm of model-based exploration to the LLM setting. Here, the “model” is represented by the LLM’s intermediate thoughts, which we interpret as their hypotheses about the external world. We ground this thought-then-act behavior in the interactive decision-making framework and introduce a new algorithm that conducts efficient exploration from language feedback.

1. $\pi_{\text{LLM}} : \bigcup_{t=0}^{\infty} (\mathcal{A} \times \mathcal{O})^t \rightarrow \Delta(\mathcal{H} \times \mathcal{A})$. This is an LLM with a chain-of-thought prompt that asks it to analyze the current observation through thinking tokens and produce a valid action. We may view this policy as producing the best action conditioned on a hypothesis consistent with the feedback history.
2. $\pi_{\text{ref}} : \emptyset \rightarrow \Delta(\mathcal{A})$. This is a user-provided reference policy to sample actions, analogous to a baseline policy. The design of reference policy may vary. In this work, we adopt a random reference policy by asking an LLM to produce a set of random actions that are different from those generated by π_{LLM} .
3. $R_{\text{LLM}} : \mathcal{H} \times \mathcal{A} \rightarrow [0, 1]$. This is a reward mapping to evaluate how good/bad the action is under a given hypothesis. We implement this by prompting an LLM to score an action conditioned on a sampled hypothesis. This can be viewed as a hypothesis-conditioned reward model.

Approximation of Feedback-consistent Hypotheses and Policy Space. HELiX (Algorithm 1) maintains a hypothesis space \mathcal{H}_t at iteration t , which contains all hypotheses η that are consistent with observed feedback. Then, HELiX searches over all possible policies by computing π_p and π_o . We approximate these two steps with finite sets of candidates, $\hat{\mathcal{H}}_t$ and $\hat{\mathcal{A}}_t$, respectively. We make the assumption that state-of-the-art LLMs are capable of producing valid hypotheses when instructed with a chain-of-thought prompt and history. In other words, they provide hypotheses that are plausible explanations of the interaction history of actions and feedback. At each step, we use π_{LLM} to produce thought-conditioned actions. We first ask the LLM to generate a diverse set of hypotheses. For each hypothesis, we prompt the LLM to generate corresponding optimal actions. Unlike a common chain-of-thought approach that asks LLM to produce only one thought and one action, we ask the LLM to output N thoughts and actions. This set of thoughts accounts for the agent’s uncertainty about the environment. In addition, we use π_{ref} to propose M random valid actions. For computational efficiency, we sample these N hypotheses and actions in one LLM call rather than N calls, introducing conditional dependencies between them (the same holds when sampling the M random actions). These LLM calls produce an approximate hypotheses space $\hat{\mathcal{H}}_t$ of size N and an approximate policy space $\hat{\mathcal{A}}_t$ (of deterministic actions) of size $N + M$.

Thought Cross-verify. In Algorithm 2, we approximate the minimax and maximization steps in Algorithm 1 with $\hat{\mathcal{H}}_t$ and $\hat{\mathcal{A}}_t$. Concretely, we construct a score matrix $S_t \in [0, 1]^{N \times (N+M)}$ whose entries $[S_t]_{\eta, a}$ correspond to the reward of hypothesis-action pairs (η, a) . The rows of this score matrix correspond to hypotheses in $\hat{\mathcal{H}}_t$ and columns correspond to actions in $\hat{\mathcal{A}}_t$. This matrix is visualized in the middle portion in Figure 4. We use the reward mapping R_{LLM} to produce scores. The diagonal entries of S_t are close to 1.0 because the action a_i conditionally sampled from η_i should be scored the highest under η_i . If some action a is deemed optimal across all sampled hypotheses, we follow this consensus choice (Fig. 5 Stage 1). Conversely, when the hypotheses disagree, we

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Algorithm 2 HELiX (Practical Version with LLMs)

```

1: Input  $T, \pi_{\text{LLM}}, \pi_{\text{ref}}, R_{\text{LLM}}, N, M$ 
2: initialize  $A_0, \eta_0 \sim \pi_{\text{LLM}}()$ 
3: for  $t = 0, 1, \dots, T - 1$  do
4:   execute  $A_t$ , observe  $O_t$ 
5:    $\hat{A}_t, \hat{H}_t \leftarrow \{\pi_{\text{LLM}}(\{A_\tau, O_\tau\}_{\tau=0}^t) \mid i = 1, \dots, N\}$  // Sample  $N$  thought-action
6:    $\hat{A}_t \leftarrow \hat{A}_t \cup \{\pi_{\text{ref}}(\cdot) \mid i = 1, \dots, M\}$  // Sample  $M$  random actions from  $\pi_{\text{ref}}$ 
7:   // Thought-action cross-verify (for checking if Exploitation step should be triggered.)
8:   compute score matrix  $[S_t]$  where  $[S_t]_{\eta, a} \leftarrow R_{\text{LLM}}(\eta, a)$  for  $a \in \hat{A}_t, \eta \in \hat{H}_t$ 
9:    $\hat{A}_t^* \leftarrow \bigcap_{\eta \in \hat{H}_t} \arg \max [S_t]_\eta$  // Set of actions optimal to all hypotheses in  $\hat{H}_t$ .
10:  if  $\hat{A}_t^* \neq \emptyset$  then
11:     $A_{t+1} \leftarrow \text{tie-break-choose}(\hat{A}_t^*)$  // Exploitation step: check consensus
12:  else
13:     $\tilde{H}_t \leftarrow \arg \max_{\eta \in \hat{H}_t} (\max [S_t]_\eta)$  // Exploration step: UCB-inspired
14:     $A_{t+1} \leftarrow \arg \max_{a \in \hat{A}_t} \left( \max_{\eta \in \tilde{H}_t} [S_t]_{\eta, a} - \mathbb{E}_{\tilde{a} \sim \pi_{\text{ref}}} [[S_t]_{\eta, \tilde{a}}] \right)$ 
15:  end if
16: end for

```

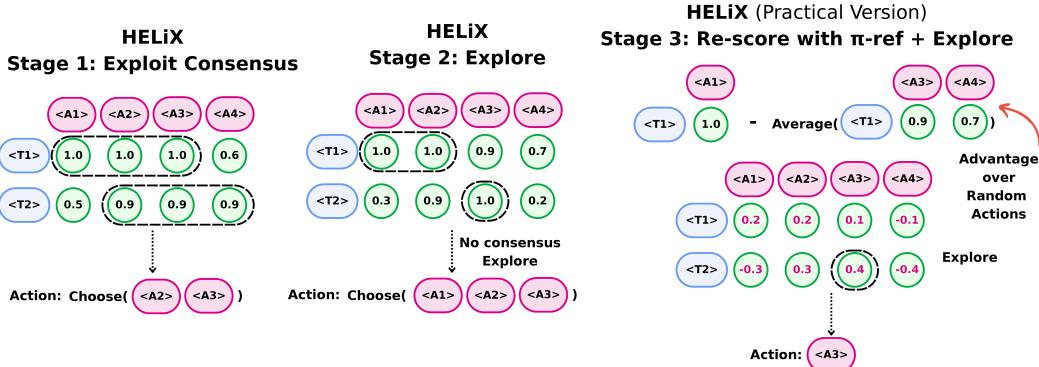


Figure 5: **HELiX Algorithm.** The HELiX algorithm has three steps. First, if the highest-scoring actions across all generated hypotheses coincide, the algorithm performs an exploitation step. Otherwise, it performs an exploration step by retaining only the hypotheses whose optimal actions achieve the highest scores. In the absence of a random policy π_{ref} , HELiX chooses an action using a predefined tie-breaking rule. When a random policy π_{ref} is available, the algorithm adjusts the score of each action by subtracting the average score of actions under π_{ref} . In the example above, A3 and A4 are random actions sampled from π_{ref} .

select the most optimistic action to encourage exploration (Fig. 5 Stage 2). This distinction between consensus and disagreement forms the backbone of our exploration-exploitation strategy.

Exploitation Step. Given the score matrix S_t , we first check whether the exploitation step in Algorithm 1 is triggered. Specifically, if a given action a^* satisfies $R_{\text{LLM}}(\eta, a^*) \geq R_{\text{LLM}}(\eta, a)$ for all $\eta \in H_t$ and $a \in A_t$, then a^* is identified as a consensus action and exploited immediately. This corresponds to the exploitation step in the theoretical Algorithm 1. By Lemma 5, if an action solves the minimax problem, it must also be an optimal action for all remaining hypotheses simultaneously. If there are multiple consensus actions, we perform tie-breaking detailed below. In Figure 5, this step is implemented as a set intersection operation over the sets of highest-scoring actions from each hypothesis.

Exploration Step. If no consensus action exists, we conduct the exploration step in Algorithm 1. We first eliminate hypotheses whose highest score is lower than those of other hypotheses. This

implements exploration using the optimism in the face of uncertainty principle (Auer et al., 2002), where we only keep the most optimistic hypotheses. After the hypothesis elimination, if only one hypothesis remains, then we execute the best action under that hypothesis. If there are more than one hypothesis left, we apply a tie-breaking step by re-scoring with a reference policy. The re-scoring or re-centering step is widely used in RL, such as baseline methods (Weaver & Tao, 2013; Sutton & Barto, 2018), ReMax (Li et al., 2023), RLOO (Ahmadian et al., 2024), and GRPO (Guo et al., 2025). This procedure interprets the score as the advantage of an action a relative to those sampled from a reference policy π_{ref} , under a given hypothesis η . There are multiple reasons why an advantage is useful for tie-breaking: 1) LLMs may not score consistently across hypotheses. Comparing score differences can help cancel out these inconsistencies. 2) When we use a uniformly random π_{ref} , the advantage implicitly examines the quality of the hypotheses and favors more discriminative ones. A permissive hypothesis that assigns approximately the same score to all actions (e.g., “Fire a shot anywhere on the map”) lacks discriminative power. In contrast, a discriminative hypothesis assigns higher scores to actions that align with its intent (e.g., “Fire a shot along the edge of the map”), yielding a higher advantage over random actions. With re-scoring, we favor actions with high advantages over random actions.

A Note on Tie-breaking. If ties remain after re-scoring, we further tie-break by preferring hypotheses and actions generated earlier in the output. This is due to empirical observations that LLMs have a preference to produce the best plan and action first, followed by less likely plans and actions (Dracheva & Phillips, 2024).

F EXPERIMENT DETAILS

In this section, we present experiment details of HELiX in three environments that require learning from language feedback.

F.1 BASELINES

We consider the following agents for comparison. In addition to HELiX, we implement two of its variants with slightly different action selection procedures.

Greedy. This agent generates one hypothesis and one action, and returns that action immediately. This is a ReAct-style baseline.

HELiX (No exploitation step). This baseline agent conducts optimistic exploration without the consensus-based exploitation step. We demonstrate that optimistic exploration alone is insufficient in our setup. We use thought sampling to generate $N + M$ actions and N hypotheses, followed by cross-verification that scores each action under every hypothesis. Unlike in HELiX, we directly select actions with the highest score across all hypotheses. If there are multiple actions, we tie-break by preferring hypotheses and actions generated earlier in the output.

HELiX (No π_{ref}). This variant of HELiX includes thought sampling, cross-verification, and the exploitation step, but omits the re-scoring step using π_{ref} . If the exploitation step is not triggered, we perform the exploration step without re-scoring using random actions sampled from π_{ref} . The benefit of using π_{ref} is entirely empirical and depends on its specific instantiation.

F.2 EXPERIMENTAL SETUP

We conduct experiments in the following three gym environments proposed in Tajwar et al. (2025).

WORDLE In each scenario, the environment selects a secret 5-letter word from a predefined dictionary. The agent attempts to guess the word, receiving feedback after each guess indicating correct letters and their positions. In our experiment, we used 50 scenarios to evaluate all agents. To better illustrate Example 2 in Section 4.2, we modify the feedback from the original environment to only contain information about the first incorrect character. For example, if the target word is “totem” and the agent’s guess is “apple”, the feedback is “The first letter ‘a’ is incorrect.” Considering that this feedback provides less information than typical feedback in wordle, we allow the agents to make 10 attempts before termination.

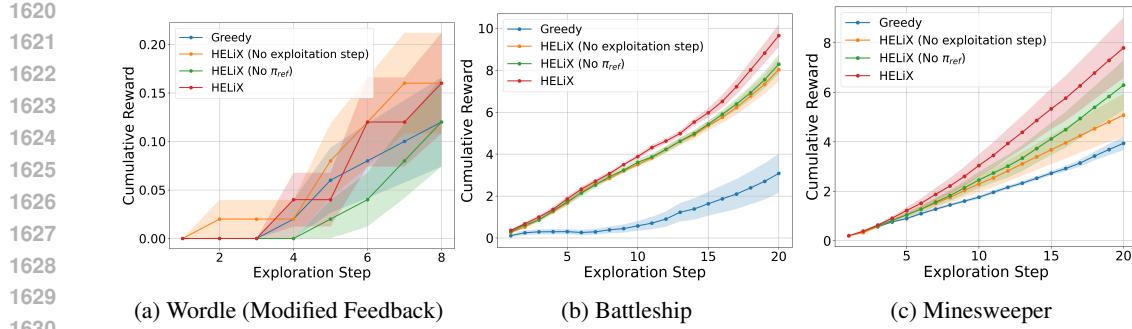


Figure 6: We show the cumulative reward that the agent is able to obtain during a fixed number of interactions with the environment. Shaded area represents the standard error of cumulative reward across different scenarios. We use Claude-Sonnet-3.5 v2 for the experiment.

BATTLESHIP Battleship is a 2D grid environment where the agent must locate and sink three hidden ships within 20 turns. The agent fires at one cell per turn and receives hit/miss feedback, ship type (5-cell ship, 4-cell ship, and 3-cell ship), and a map showing all previous hits and misses. Success requires strategic exploration to find ships and exploitation to sink them efficiently. We use 20 scenarios (maps of ship layout) to evaluate all agents. We use a hidden per-step reward to evaluate an agent’s performance. For instance, the feedback “a ship was hit but not sunk” corresponds to 0.5 point. We do not communicate this numerical reward information to the agent.

MINESWEEPER Minesweeper is a 2D grid puzzle with hidden mines. At each turn, the agent chooses to reveal one cell, aiming to uncover all safe cells within 20 turns without hitting a mine. Revealed cells show the number of adjacent mines, and a ‘0’ triggers automatic revelations of surrounding safe cells. Sequential reasoning and updating of hypotheses based on observed clues are essential for success. Hidden rewards are calculated by assigning 0.2 to choosing a square that does not have a mine, and 1.0 to fully solving the game. Invalid moves incur a -0.2 penalty. The agent receives feedback in the form of a partially revealed map after each action.

F.3 DISCUSSION OF RESULTS

We plot the cumulative reward as a function of the number of environment interaction steps on WORDLE, BATTLESHIP, and MINESWEEPER in Figure 6. We see that for all three environments, the base LLM, where we only greedily choose the first action, performs worse generally. In environments where information-gathering is more necessary, such as BATTLESHIP and MINESWEEPER, agents designed to conduct strategic explorations and exploitations tend to outperform the greedy base LLM by a large margin.

As shown, HELiX consistently outperforms both the greedy baseline and HELiX variants: HELiX (no exploitation step) and HELiX (no π_{ref}). In particular, in BATTLESHIP and MINESWEEPER, HELiX performs significantly better than the baselines. Although the theoretical version of our algorithm does not use π_{ref} , we have found that across these three environments, performing an explicit re-scoring is beneficial.

Although the initial results are promising, our practical implementation relies on assumptions that warrant discussion. We assume that the LLM can select an optimal action under a given hypothesis. We also assume that the LLM can produce fair scores across hypotheses for different actions. However, these assumptions may not hold for all LLMs (Shojaee et al., 2025), and further investigation is needed to validate them. Additionally, to capture the agent’s uncertainty about the environment, we sample a set of hypotheses from the LLM. These hypotheses should be both diverse and faithful in reflecting the history of interactions. The extent to which existing LLMs can propose plausible hypotheses given historical information remains uncertain, with evidence pointing in both directions (Zhou et al., 2024; Si et al., 2024; Ghareeb et al., 2025). Our theory-inspired algorithm highlights key properties an LLM must exhibit to function effectively as a decision-making agent, one that autonomously learns from environment feedback, proposes hypotheses, and explores ac-

1674 cordingly. Further research is needed to verify whether current LLMs possess these properties, and,
 1675 if not, to determine what forms of training could instill them.
 1676

1677 F.4 DISCUSSION OF COMPUTATIONAL COST 1678

1679 As a practical implementation of our theoretical algorithm, **HELiX** incurs a computational cost on
 1680 sampling from LLMs. At a first glance, building the score matrix through cross-verify could incur
 1681 K^2 LLM calls. However, we could leverage parallelization and efficient sampling techniques to
 1682 reduce the cost significantly.

1683 **Parallelization of Thought Sampling and Verification.** In practical implementations, we sample
 1684 thoughts and verify thoughts in parallel, reducing $O(K^2)$ to $O(K)$ LLM calls during thought-cross-
 1685 verify and $O(K)$ to $O(1)$ calls during thought sampling.

1686 **Efficient use of tokens through prefix Caching.** In practical implementations, we could leverage
 1687 advanced inference techniques like prefix caching where instructions sharing the same prefix se-
 1688 quence can be stored and loaded as KV-cache without re-computing. In **HELiX**, many LLM calls
 1689 share common observations and judgments, significantly reducing the actual tokens needed.

1690 Since we mainly use the experiment to illustrate and instantiate one practical implementation, we do
 1691 not implement prefix caching or parallel sampling. The table below demonstrates that even without
 1692 such advanced techniques, just by exploring the environment better, we still avoid exponential cost
 1693 blowup (instead of $9x$ tokens compared to the baseline, we incur $3.73x$ to $4.02x$ the token count of
 1694 baseline).
 1695

Method	Token Count	Ratio to Baseline
Baseline	698,873	1
HELiX (no exploitation step) (explore optimistically)	3,151,173	4.51 ($K = 3$ hypotheses)
HELiX	2,812,856	4.02 ($K = 3$ hypotheses)

1700
 1701 Table 2: Token count comparisons on Battleship.
 1702

Method	Token Count	Ratio to Baseline
Baseline	553,389	1
HELiX (no exploitation step) (explore optimistically)	2,538,838	4.59 ($K = 3$ hypotheses)
HELiX	2,064,156	3.59 ($K = 3$ hypotheses)

1703
 1704 Table 3: Token count comparisons on Minesweeper.
 1705

1706 To help give a sense of the computational overhead of our practical implementation of **HELiX** (Algo-
 1707 rithm 2), we expand on some key problem-dependent parameters and hyperparameters. For detailed
 1708 prompt format and reasoning traces, please see Appendix F.6. Given an LLF problem, practical
 1709 **HELiX** needs an input of `domain_description`, `action_space`, and `learning_task_instruction`
 1710 at the start of learning. This constitutes the initial prompt. At each round, given historical context
 1711 C , **HELiX** goes through 2-3 LLM calls, whose contexts are outlined below:
 1712

1. Feedback-consistent hypothesis generation: the context includes C along with the most
 1713 recent `domain_state` and instruction to simultaneously propose `num_actions` diverse hy-
 1714 potheses and actions. This is done in one LLM call.
2. Thought cross-verify: the context includes C along with the `num_actions` proposed hy-
 1715 potheses and actions from step 1 and instruction to evaluate each action under each hypoth-
 1716 esis. This is done in one LLM call.
3. Exploration step: if π_{ref} is enabled, the LLM is asked to propose additional
 1717 `num_ref_actions` exploratory actions. The context includes C along with the `num_actions`
 1718 proposed actions from step 2 and instructions to propose actions different from those.

1719 The remaining steps do not need LLM calls; these include: consensus check, UCB elimination based
 1720 on scores from step 2, and advantage-based exploration with tie-breaking. Tunable hyperparameters
 1721 include `num_actions`, whether to use π_{ref} , and `num_ref_actions`.
 1722

1728	Assumption 3 satisfaction (trajectory-averaged)	96.26%
1729	Assumption 3 satisfaction (step-averaged)	95.98%

1730
1731 Table 4: The empirical rate at which Assumption 3 is satisfied in Battleship.
1732
17331734 **F.5 ASSUMPTION SATISFACTION**

1735 To give a sense of how Assumption 3 connects to our experiments, we evaluate a key implication of
 1736 it: that the shrinking hypothesis set remains consistent with the true hypothesis along the trajectory.
 1737 Concretely, if Assumption 3 approximately holds, then as the algorithm updates and prunes the hy-
 1738 pothesis set, the true hypothesis should almost always remain included. To test this, we manually
 1739 annotate 10 trajectories from the Battleship experiment. For each step in each trajectory, we check
 1740 whether the candidate set of hypotheses produced by HELIX contained the true hypothesis. The fol-
 1741 lowing table reports (i) the average fraction of steps within a trajectory for which the true hypothesis
 1742 is included (“Assumption 3 satisfaction (trajectory-averaged)”), and (ii) the fraction of all annotated
 1743 steps across trajectories for which the true hypothesis is included (“Assumption 3 satisfaction (step-
 1744 averaged)”). Both metrics are above 95%, empirically supporting that Assumption 3 holds to a good
 1745 approximation in our experiment.

1746
1747 **F.6 REASONING TRACES FOR BATTLESHIP**

1748 Here we show a concrete example on how the algorithm works and what the LLM generates.

1749 Transcript on Multi-Hypothesis Evaluation (Battleship)

1750
1751 **Prompt:** Hit at D2! You have hit a ship, which occupies 4 cells in the grid. Here is how the
1752 board looks now:

	1	2	3	4	5	6
A	M	M	M	M	.	M
B	M	X	X	M	M	.
C	M	X	X	.	M	.
D	.	X	X	M	.	.
E	.	.	X	.	.	.
F	.	.	X	.	.	.

1753
1754 Now you have a new task. You are given a hypothesis (thought/instruction) and actions.
1755 You need to evaluate if how good or bad the action is given the hypothesis.1756 **Hypothesis:**1757 Alternatively, a 2-cell ship might be placed horizontally in the A5-B6 area, as this is one of
1758 the few remaining areas large enough to fit it. A5 would be worth checking.

1759 Rate all the actions individually based on whether the action is aligned with the hypothesis.

1760 **Action 1:** <action>E2</action>1761 **Action 2:** <action>E5</action>1762 **Action 3:** <action>A5</action>1763 Make sure the score you assign is between 0 and 1. Please provide your scores in the
1764 following format: ...1765 **Response:**1766 **Action 1 for the Hypothesis:**1767 <think> E2 is not aligned with the hypothesis at all. The hypothesis suggests check-
1768 ing A5 area for the 2-cell ship, but E2 is in a completely different part of the
1769 board. Additionally, we already have significant ship presence in the middle columns.

1770 </think><score> 0.1 </score>

1771 **Action 2 for the Hypothesis:**

1782

<think> E5 is somewhat in the direction of exploring new areas for remaining ships, but it's not in the specific A5-B6 area mentioned in the hypothesis. It's not directly supporting the hypothesis's suggested strategy. </think><score> 0.3</score>

1786 Action 3 for the Hypothesis:

<think> A5 is exactly what the hypothesis suggests checking. It's directly aligned with the reasoning that the 2-cell ship might be placed horizontally in the A5-B6 area, and it's one of the few remaining unexplored areas that could fit a 2-cell ship. </think><score> 1.0</score>

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

Transcript on Action Proposal (Battleship)

1805

1806 **Prompt:** Hit at A5! You have hit a ship, which occupies 5 cells in the grid.

1807 Here is how the board looks now:

1808

1809

1810

1811

1812

1813

1814

	1	2	3	4	5
A	.	.	X	X	X
B	.	X	X	X	X
C	.	M	X	X	.
D	.	.	M	.	.
E	.	.	M	.	.

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Given the information above, please propose 3 actions, make sure each of them is a valid action in the environment, and is reasonable.

Make sure your thoughts and hypotheses are diverse and unique. However, actions are allowed to be the same if they are the best possible action under that hypothesis.

Please provide your actions in the following format:

Action 1: <think> ...</think><answer> your first action</answer>

...

Action 3: <think> ...</think><answer> your 3th action</answer>

Response:

Action 1: <think> Looking at the pattern of hits for the 5-cell ship, we can see it extends from A3 to A5. Since 5-cell ships are 5 cells long and we've found 3 cells, we should check A2 as it's likely part of the 5-cell ship. </think><answer> A2</answer>

Action 2: <think> If the 5-cell ship is not extending westward, it might extend to the east. Even though this is less likely since it would make the ship overlap with known hits, we should consider A1 to eliminate this possibility. </think><answer> A1</answer>

Action 3: <think> Since we've hit three cells of the ship (A3, A4, A5), and this ship is 5 cells long, if it's not extending horizontally, it must extend vertically. Therefore, checking C5 could reveal if the 5-cell ship extends downward from A5. </think><answer> C5</answer>

1836
1837

F.7 PROMPT TEMPLATES

1838
1839Propose Action Prompt (π_{LLM})1840
1841

Given the information above, please propose some hypotheses and act according to those hypotheses.

1842
1843
1844

You can propose at most {num_actions} hypotheses.

Please propose a reasonable number of hypotheses – each hypothesis represents what you think.

1845
1846
1847

Please provide your actions in the following format:

Action 1: <think>...</think><answer>action 1</answer>

...

Action {num_actions}: <think>...</think><answer>your {num_actions}th action</answer>

1849
1850
1851Propose Exploration Action Prompt (π_{ref})1852
1853
1854
1855

Given the information above, please propose {num_actions} completely different and unexpected actions. These should be valid in the environment but should explore unusual or creative approaches.

1856
1857
1858

Try to think outside the box and propose actions that might not be immediately obvious or conventional.

Here are the actions you have already proposed:

{actions}

Please avoid proposing the same actions.

Please provide your actions in the following format:

Action 1: <think>...</think><answer>your first random/exploratory action</answer>

...

Action {num_actions}: <think>...</think><answer>your {num_actions}th random/exploratory action</answer>

1865

Hypothesis-Conditioned Value Function Prompt (V_{LLM})1866
1867
1868
1869

{task description}

=====

Now you have a new task. You are given a hypothesis (thought/instruction) and actions. You need to evaluate how good or bad the action is given the hypothesis.

1870
1871
1872
1873
1874
1875
1876

Hypothesis:

<think>

{hypothesis}

</think>

1877
1878

Rate all the actions individually based on whether the action is aligned with the hypothesis.

1879
1880

Action {action_idx}: <action>{action}</action>

1881
1882

Make sure the score you assign is between 0 and 1. Please provide your scores in the following format:

1883
1884
1885
1886

Action 1 for the Hypothesis:

<think>... </think>

<score>...</score>

...

Action {num_actions} for the Hypothesis:

<think>... </think>

<score>...</score>

1890 F.8 CODE IMPLEMENTATION
18911892 We provide a high-level code snippet that demonstrates how we implement the algorithm below. We
1893 omit the implementation details of methods involving LLM calls.

```

1 import numpy as np
2
3 class HELiX:
4
5     def select_action(self, observation, hypotheses, actions,
6                         random_actions):
7
8         if random_actions is not None:
9             actions = actions + random_actions # evaluate on all actions
10
11         # Create a matrix to store scores for each hypothesis-action pair
12         score_matrix = np.zeros((len(hypotheses), len(actions)))
13
14         # Fill the score matrix by evaluating each hypothesis-action pair
15         for h_idx, hypothesis in enumerate(hypotheses):
16             scores = self.evaluate_multi_hypotheses(observation,
17                                                 hypothesis, actions)
18             score_matrix[h_idx] = scores
19
20         # ====== Exploitation step: consensus check ======
21         consensus_action = self.consensus_action(score_matrix, actions)
22         if consensus_action is not None:
23             return consensus_action
24
25         # ====== UCB elimination =====
26         score_matrix, hypotheses, actions = self.
27             ucb_hypothesis_elimination(score_matrix.copy(), hypotheses,
28                                         actions)
29
30         # ====== (Re-scoring +) Exploration =====
31         best_hypothesis, best_action, best_overall_score,
32             best_action_indices = self.tie_breaking(score_matrix,
33                                         hypotheses, actions)
34
35         return best_action
36
37     def consensus_action(self, score_matrix, actions):
38         max_scores_per_row = np.max(score_matrix, axis=1)
39         action_sets = []
40         for i in range(score_matrix.shape[0]):
41             action_sets.append(np.where(score_matrix[i] ==
42                                         max_scores_per_row[i])[0].tolist())
43         # Convert each sublist to a set
44         action_sets = [set(actions) for actions in action_sets]
45
46         # Find the intersection of all sets
47         overlapped_actions = reduce(lambda x, y: x.intersection(y),
48                                     action_sets)
49
50         # Convert back to list if needed
51         overlapped_actions_list = list(overlapped_actions)
52
53         if len(overlapped_actions_list) == 0:
54             return None
55         else:
56             # randomly choose one
57             random_index = np.random.choice(len(overlapped_actions_list))
58             return actions[overlapped_actions_list[random_index]]
59
60     def tie_breaking(self, score_matrix, hypotheses, actions,
61                         random_actions=[]):
62
63         # ====== Optional Re-Scoring ======
64         # Calculate average scores only for random actions
65         num_regular_actions = len(actions) - len(random_actions)

```

```

1944 57
1945 58    # avg(random actions)
1946 59    action_avg_scores = np.mean(score_matrix[:, num_regular_actions
1947 60        :, axis=1, keepdims=True)
1948 61    normalized_score_matrix = score_matrix - action_avg_scores
1949 62
1950 63    # eliminate hypothesis again, to prevent ties
1951 64    normalized_score_matrix, hypotheses, actions = self.
1952 65        ucb_hypothesis_elimination(normalized_score_matrix.copy(),
1953 66        hypotheses, actions)
1954 67
1955 68    best_hypothesis, best_action, best_overall_score,
1956 69        best_action_indices
1957 70
1958 71    def ucb_hypothesis_elimination(self, score_matrix, hypotheses,
1959 72        actions):
1960 73        # Get the maximum score for each row (hypothesis)
1961 74        max_scores_per_row = np.max(score_matrix, axis=1)
1962 75
1963 76        # Find the highest score value
1964 77        highest_score = np.max(max_scores_per_row)
1965 78
1966 79        # Get indices of rows that have the highest score
1967 80        selected_row_indices = np.where(max_scores_per_row ==
1968 81        highest_score)[0]
1969 82
1970 83        # Select the hypotheses corresponding to these rows
1971 84        selected_hypotheses = [hypotheses[i] for i in
1972 85            selected_row_indices]
1973 86        # we only eliminate hypotheses, not actions
1974 87
1975 88        # Create a new score matrix with only the selected rows and
1976 89        # columns
1977 90        new_score_matrix = score_matrix[selected_row_indices, :]
1978 91
1979 92        return new_score_matrix, selected_hypotheses, actions
1980 93
1981 94    def two_tiered_argmax_sampling(self, score_matrix, hypotheses,
1982 95        actions):
1983 96        # we take the highest score hypothesis, then sample its highest
1984 97        # action
1985 98        assert score_matrix.shape[0] == len(hypotheses)
1986 99
1987 100       best_hypo_idx = np.argmax(np.max(score_matrix, axis=1)) # bias
1988 101       towards first hypothesis
1989 102       best_action_idx = np.argmax(score_matrix[best_hypo_idx, :])
1990 103
1991 104       best_action = actions[best_action_idx]
1992 105       best_hypothesis = hypotheses[best_hypo_idx]
1993 106       best_overall_score = score_matrix[best_hypo_idx, best_action_idx]
1994 107
1995 108       return best_hypothesis, best_action, best_overall_score, [
1996 109        best_action_idx]
1997 110
1998 111
1999 112
2000 113
2001 114
2002 115
2003 116
2004 117
2005 118
2006 119
2007 120
2008 121
2009 122
2010 123
2011 124
2012 125
2013 126
2014 127
2015 128
2016 129
2017 130
2018 131
2019 132
2020 133
2021 134
2022 135
2023 136
2024 137
2025 138
2026 139
2027 140
2028 141
2029 142
2030 143
2031 144
2032 145
2033 146
2034 147
2035 148
2036 149
2037 150
2038 151
2039 152
2040 153
2041 154
2042 155
2043 156
2044 157
2045 158
2046 159
2047 160
2048 161
2049 162
2050 163
2051 164
2052 165
2053 166
2054 167
2055 168
2056 169
2057 170
2058 171
2059 172
2060 173
2061 174
2062 175
2063 176
2064 177
2065 178
2066 179
2067 180
2068 181
2069 182
2070 183
2071 184
2072 185
2073 186
2074 187
2075 188
2076 189
2077 190
2078 191
2079 192
2080 193
2081 194
2082 195
2083 196
2084 197
2085 198
2086 199
2087 200
2088 201
2089 202
2090 203
2091 204
2092 205
2093 206
2094 207
2095 208
2096 209
2097 210
2098 211
2099 212
2100 213
2101 214
2102 215
2103 216
2104 217
2105 218
2106 219
2107 220
2108 221
2109 222
2110 223
2111 224
2112 225
2113 226
2114 227
2115 228
2116 229
2117 230
2118 231
2119 232
2120 233
2121 234
2122 235
2123 236
2124 237
2125 238
2126 239
2127 240
2128 241
2129 242
2130 243
2131 244
2132 245
2133 246
2134 247
2135 248
2136 249
2137 250
2138 251
2139 252
2140 253
2141 254
2142 255
2143 256
2144 257
2145 258
2146 259
2147 260
2148 261
2149 262
2150 263
2151 264
2152 265
2153 266
2154 267
2155 268
2156 269
2157 270
2158 271
2159 272
2160 273
2161 274
2162 275
2163 276
2164 277
2165 278
2166 279
2167 280
2168 281
2169 282
2170 283
2171 284
2172 285
2173 286
2174 287
2175 288
2176 289
2177 290
2178 291
2179 292
2180 293
2181 294
2182 295
2183 296
2184 297
2185 298
2186 299
2187 300
2188 301
2189 302
2190 303
2191 304
2192 305
2193 306
2194 307
2195 308
2196 309
2197 310
2198 311
2199 312
2200 313
2201 314
2202 315
2203 316
2204 317
2205 318
2206 319
2207 320
2208 321
2209 322
2210 323
2211 324
2212 325
2213 326
2214 327
2215 328
2216 329
2217 330
2218 331
2219 332
2220 333
2221 334
2222 335
2223 336
2224 337
2225 338
2226 339
2227 340
2228 341
2229 342
2230 343
2231 344
2232 345
2233 346
2234 347
2235 348
2236 349
2237 350
2238 351
2239 352
2240 353
2241 354
2242 355
2243 356
2244 357
2245 358
2246 359
2247 360
2248 361
2249 362
2250 363
2251 364
2252 365
2253 366
2254 367
2255 368
2256 369
2257 370
2258 371
2259 372
2260 373
2261 374
2262 375
2263 376
2264 377
2265 378
2266 379
2267 380
2268 381
2269 382
2270 383
2271 384
2272 385
2273 386
2274 387
2275 388
2276 389
2277 390
2278 391
2279 392
2280 393
2281 394
2282 395
2283 396
2284 397
2285 398
2286 399
2287 400
2288 401
2289 402
2290 403
2291 404
2292 405
2293 406
2294 407
2295 408
2296 409
2297 410
2298 411
2299 412
2300 413
2301 414
2302 415
2303 416
2304 417
2305 418
2306 419
2307 420
2308 421
2309 422
2310 423
2311 424
2312 425
2313 426
2314 427
2315 428
2316 429
2317 430
2318 431
2319 432
2320 433
2321 434
2322 435
2323 436
2324 437
2325 438
2326 439
2327 440
2328 441
2329 442
2330 443
2331 444
2332 445
2333 446
2334 447
2335 448
2336 449
2337 450
2338 451
2339 452
2340 453
2341 454
2342 455
2343 456
2344 457
2345 458
2346 459
2347 460
2348 461
2349 462
2350 463
2351 464
2352 465
2353 466
2354 467
2355 468
2356 469
2357 470
2358 471
2359 472
2360 473
2361 474
2362 475
2363 476
2364 477
2365 478
2366 479
2367 480
2368 481
2369 482
2370 483
2371 484
2372 485
2373 486
2374 487
2375 488
2376 489
2377 490
2378 491
2379 492
2380 493
2381 494
2382 495
2383 496
2384 497
2385 498
2386 499
2387 500
2388 501
2389 502
2390 503
2391 504
2392 505
2393 506
2394 507
2395 508
2396 509
2397 510
2398 511
2399 512
2400 513
2401 514
2402 515
2403 516
2404 517
2405 518
2406 519
2407 520
2408 521
2409 522
2410 523
2411 524
2412 525
2413 526
2414 527
2415 528
2416 529
2417 530
2418 531
2419 532
2420 533
2421 534
2422 535
2423 536
2424 537
2425 538
2426 539
2427 540
2428 541
2429 542
2430 543
2431 544
2432 545
2433 546
2434 547
2435 548
2436 549
2437 550
2438 551
2439 552
2440 553
2441 554
2442 555
2443 556
2444 557
2445 558
2446 559
2447 560
2448 561
2449 562
2450 563
2451 564
2452 565
2453 566
2454 567
2455 568
2456 569
2457 570
2458 571
2459 572
2460 573
2461 574
2462 575
2463 576
2464 577
2465 578
2466 579
2467 580
2468 581
2469 582
2470 583
2471 584
2472 585
2473 586
2474 587
2475 588
2476 589
2477 590
2478 591
2479 592
2480 593
2481 594
2482 595
2483 596
2484 597
2485 598
2486 599
2487 600
2488 601
2489 602
2490 603
2491 604
2492 605
2493 606
2494 607
2495 608
2496 609
2497 610
2498 611
2499 612
2500 613
2501 614
2502 615
2503 616
2504 617
2505 618
2506 619
2507 620
2508 621
2509 622
2510 623
2511 624
2512 625
2513 626
2514 627
2515 628
2516 629
2517 630
2518 631
2519 632
2520 633
2521 634
2522 635
2523 636
2524 637
2525 638
2526 639
2527 640
2528 641
2529 642
2530 643
2531 644
2532 645
2533 646
2534 647
2535 648
2536 649
2537 650
2538 651
2539 652
2540 653
2541 654
2542 655
2543 656
2544 657
2545 658
2546 659
2547 660
2548 661
2549 662
2550 663
2551 664
2552 665
2553 666
2554 667
2555 668
2556 669
2557 670
2558 671
2559 672
2560 673
2561 674
2562 675
2563 676
2564 677
2565 678
2566 679
2567 680
2568 681
2569 682
2570 683
2571 684
2572 685
2573 686
2574 687
2575 688
2576 689
2577 690
2578 691
2579 692
2580 693
2581 694
2582 695
2583 696
2584 697
2585 698
2586 699
2587 700
2588 701
2589 702
2590 703
2591 704
2592 705
2593 706
2594 707
2595 708
2596 709
2597 710
2598 711
2599 712
2600 713
2601 714
2602 715
2603 716
2604 717
2605 718
2606 719
2607 720
2608 721
2609 722
2610 723
2611 724
2612 725
2613 726
2614 727
2615 728
2616 729
2617 730
2618 731
2619 732
2620 733
2621 734
2622 735
2623 736
2624 737
2625 738
2626 739
2627 740
2628 741
2629 742
2630 743
2631 744
2632 745
2633 746
2634 747
2635 748
2636 749
2637 750
2638 751
2639 752
2640 753
2641 754
2642 755
2643 756
2644 757
2645 758
2646 759
2647 760
2648 761
2649 762
2650 763
2651 764
2652 765
2653 766
2654 767
2655 768
2656 769
2657 770
2658 771
2659 772
2660 773
2661 774
2662 775
2663 776
2664 777
2665 778
2666 779
2667 780
2668 781
2669 782
2670 783
2671 784
2672 785
2673 786
2674 787
2675 788
2676 789
2677 790
2678 791
2679 792
2680 793
2681 794
2682 795
2683 796
2684 797
2685 798
2686 799
2687 800
2688 801
2689 802
2690 803
2691 804
2692 805
2693 806
2694 807
2695 808
2696 809
2697 810
2698 811
2699 812
2700 813
2701 814
2702 815
2703 816
2704 817
2705 818
2706 819
2707 820
2708 821
2709 822
2710 823
2711 824
2712 825
2713 826
2714 827
2715 828
2716 829
2717 830
2718 831
2719 832
2720 833
2721 834
2722 835
2723 836
2724 837
2725 838
2726 839
2727 840
2728 841
2729 842
2730 843
2731 844
2732 845
2733 846
2734 847
2735 848
2736 849
2737 850
2738 851
2739 852
2740 853
2741 854
2742 855
2743 856
2744 857
2745 858
2746 859
2747 860
2748 861
2749 862
2750 863
2751 864
2752 865
2753 866
2754 867
2755 868
2756 869
2757 870
2758 871
2759 872
2760 873
2761 874
2762 875
2763 876
2764 877
2765 878
2766 879
2767 880
2768 881
2769 882
2770 883
2771 884
2772 885
2773 886
2774 887
2775 888
2776 889
2777 890
2778 891
2779 892
2780 893
2781 894
2782 895
2783 896
2784 897
2785 898
2786 899
2787 900
2788 901
2789 902
2790 903
2791 904
2792 905
2793 906
2794 907
2795 908
2796 909
2797 910
2798 911
2799 912
2800 913
2801 914
2802 915
2803 916
2804 917
2805 918
2806 919
2807 920
2808 921
2809 922
2810 923
2811 924
2812 925
2813 926
2814 927
2815 928
2816 929
2817 930
2818 931
2819 932
2820 933
2821 934
2822 935
2823 936
2824 937
2825 938
2826 939
2827 940
2828 941
2829 942
2830 943
2831 944
2832 945
2833 946
2834 947
2835 948
2836 949
2837 950
2838 951
2839 952
2840 953
2841 954
2842 955
2843 956
2844 957
2845 958
2846 959
2847 960
2848 961
2849 962
2850 963
2851 964
2852 965
2853 966
2854 967
2855 968
2856 969
2857 970
2858 971
2859 972
2860 973
2861 974
2862 975
2863 976
2864 977
2865 978
2866 979
2867 980
2868 981
2869 982
2870 983
2871 984
2872 985
2873 986
2874 987
2875 988
2876 989
2877 990
2878 991
2879 992
2880 993
2881 994
2882 995
2883 996
2884 997
2885 998
2886 999
2887 999

```

G FAQ FOR REVIEWERS

We compile a list of FAQs from previous interactions with reviewers, with the hope of resolving common questions and providing a clearer perspective on our contributions.

Q: This work assumes that the agent has access to an effective verifier. Is this assumption necessary or realistic?

1998 **A (Verifier assumption):** This assumption is motivated by empirical evidence that LLMs are
 1999 generally **stronger at verification than generation**. It captures the ability of an LLF agent to decode
 2000 textual feedback and assess its consistency, rather than being a mere mathematical simplification.
 2001 In practice, for instance, an LLM verifier can be prompted to judge whether an observed (action,
 2002 feedback) pair is consistent with a text hypothesis, acting as the verifier loss. For the simplest case,
 2003 the LLM judge outputs 0 if it deems these consistent, and 1 otherwise. This verifier loss satisfies
 2004 the boundedness and consistency properties (Assumption 2). The unbiased feedback assumption
 2005 (Assumption 3) can be satisfied by considering a large enough hypothesis space. Our experiments
 2006 further support that these assumptions hold in practice.

2007 Since classical no-regret literature has no formal structure or tools to analyze text-based interactions,
 2008 some assumptions must be made to develop rigorous theoretical understanding in this space. Our
 2009 work takes an initial step towards such an attempt by making assumptions on the verification capa-
 2010 bility of text models only, rather than on their generation capability. We would like to highlight that
 2011 the verifier is a natural structure to reduce the problem to solvable problems and hence derive prov-
 2012 able algorithms. In particular, we can view the verifier loss as a generalization of a loss of reward
 2013 fitting in a classical bandit setting (e.g., one way is to identify $O = R$ as the observed reward and
 2014 $\eta = \hat{r}(\cdot)$ as the reward model, and then use a square loss $\ell(a, O, \eta) = (R - \hat{r}(a))^2$. The unbiased
 2015 feedback assumption (Assumption 3) is equivalent to using a proper loss function for reward fitting
 2016 in this case.

2017 Our set of assumptions is not the only path towards a rigorous understanding of LLF problems, and
 2018 it remains an open question if weaker or other forms of assumptions could be made instead. In the
 2019 current framework, we can easily relax the verifier assumption to use a Δ -approximately correct
 2020 verifier to model mistakes LLM can make (modify assumption 3 to have $\mathbb{E}_{O \sim f_\eta(a)}[\ell(a, O, \eta)] \leq$
 2021 $\ell_\eta^{\min}(a) + \Delta$), and this will induce a linear bias of $O(\sqrt{\Delta})$ term in the final regret.

2022 **Q:** What is the main technical contributions made by this work?

2023 **A (Framework construction as a technical contribution):** Beyond proving theorems, our primary
 2024 contribution is the rigorous framework for LLF, together with principled assumptions under which
 2025 such problems are tractable. We view this foundational structure as critical for enabling future
 2026 advances in the field.

2027 We would like to emphasize that technical results are not just limited to theorems and lemmas, as
 2028 those regarding the regret bound you have pointed out. We believe that technical papers include two
 2029 types of technical contributions: those that define the right problem to set the stage, and those that
 2030 attempt to solve pre-defined problems.

2032 In fact, in many foundational papers, the primary novelty lies in identifying and formalizing the
 2033 right abstraction, one that captures the essential difficulty of a new class of problems and allows
 2034 for rigorous analysis. Once such a framework is set, some theory in the traditional sense (upper
 2035 bounds, sanity checks in carefully presented examples) shows that it is well-posed, but the heavy
 2036 lifting is really in the conceptualization. Our paper can be cast in this category. LLF problems have
 2037 been studied largely empirically, and we contribute a formal problem definition, a complexity mea-
 2038 sure (TED) to capture learnability, and an efficient algorithm to show the utility of the framework.
 2039 We believe that this kind of framework with inspired algorithm work constitutes a solid technical
 2040 contribution, even if the theorem-proving part does not contain particularly extensive results.

2041 **Q:** How does this work compare to other frameworks on learning beyond rewards?

2042 **A (Comparison to existing frameworks):** We provide detailed discussion (Appendix C) of how
 2043 LLF extends frameworks such as IGL. While IGL emphasizes decodability of realized rewards, LLF
 2044 leverages richer textual information beyond realized rewards to accelerate learning.

2045 **Q:** Why doesn't the obtained regret rate in Theorem 1 match the usual $\tilde{O}\sqrt{T}$ rate in the bandit
 2046 literature?

2048 **A (Regret rate):** Achieving the optimal rate requires assuming favorable loss structures (e.g.,
 2049 squared loss with sub-Gaussian noise). In Theorem 4, we show that when additional structural
 2050 assumptions are made, we can recover the $\tilde{O}\sqrt{T}$ regret rate.

2051