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ABSTRACT

Interactively learning from observation and language feedback is an increasingly
studied area driven by the emergence of large language model (LLM) agents.
While impressive empirical demonstrations have been shown, so far a principled
framing of these decision problems remains lacking. In this paper, we formal-
ize the Learning from Language Feedback (LLF) problem, assert sufficient as-
sumptions to enable learning despite latent rewards, and introduce transfer eluder
dimension as a measure to characterize the hardness of LLF problems. We formal-
ize the intuition that information in the feedback governs the learning complex-
ity of LLF problems. We demonstrate cases where learning from rich language
feedback can be exponentially faster than learning from reward. We develop a
no-regret algorithm, called HELiX, that provably solves LLF problems through
sequential interactions, with performance guarantees that scale with the transfer
eluder dimension of the problem. Across several empirical domains, we show
that HELiX performs well even when repeatedly prompting LLMs does not work
reliably. Our contributions mark an important step towards designing principled
interactive learning algorithms from generic language feedback.

1 INTRODUCTION

Large language models (LLMs) have reshaped the landscape of how machines learn and interact
with the world across a wide range of tasks (Bommasani et al., 2021; BIG-bench authors, 2023; Anil
et al., 2024; Hurst et al., 2024; Jaech et al., 2024; Guo et al., 2025; Yamada et al., 2025). Trained
on large corpra of web data, these models can interact with the world through natural language,
opening up new settings for sequential decision-making problems. Unlike traditional sequential
decision-making approaches where agents learn from scalar reward signals (Sutton & Barto, 2018),
LLM can act as agents that interpret and reason with natural language feedback such as critique (Du
et al., 2023; Akyürek et al., 2023a), guidance (Branavan et al., 2012; Harrison et al., 2017; Scheurer
et al., 2023; Nie et al., 2023; Fu et al., 2024; Wei et al., 2024; Cheng et al., 2024), or detailed
explanations (Andreas et al., 2017; Chen et al., 2023; Cheng et al., 2023).

Consider an LLM agent that produces a summary of a story and receives feedback: “The summary
is mostly accurate, but it overlooks the main character’s motivation.” Such feedback conveys no-
tably richer information than a numerical score, e.g., 0.7 out of 1, as it identifies a specific flaw
and suggests a direction for improvement. With LLMs’ abilities to understand and respond in nat-
ural language Touvron et al. (2023), such feedback can be used to drastically increase learning
efficiency. This represents a fundamental shift in how AI systems can learn through continuous,
rich interactions beyond rewards only (Silver & Sutton, 2025). Despite early works on this topic
pre-LLM (Gauthier & Mordatch, 2016; Andreas, 2022) and promising recent empirical results in
utilizing language feedback for sequential decision-making (Liu et al., 2023; Chen et al., 2024; Xie
et al., 2024), a rigorous theoretical framework remains lacking.

We introduce a formal mathematical framework of Learning from Language Feedback (LLF) in se-
quential decision making. The LLF paradigm was introduced in (Cheng et al., 2023) as an interface
to benchmark LLM agents’ ability to learn from text feedback in lieu of numerical reward. However,
it is unclear when LLF is feasible or whether it is harder to solve than the more traditional reward-
aware bandit setting. Intuitively, one might think language feedback can provide more information
to help learning. Indeed, people have empirically found constructive feedback to be more effective
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Figure 1: The LLF setup using battleship as a concrete example. The environment has a hypothesis
η∗ representable via text tokens unknown to the agent. Reward as a function of η∗ is latent and
used only to benchmark the agent via regret to an optimal policy. Feedback as a function of η∗ is
observed by the agent. Three ingredients are sufficient for no-regret learning: feedback is unbiased
(Assumption 3), agent can interpret feedback (Assumption 2), and agent considers hypotheses H
including η∗ (precursor to Assumption 1).

for LLM agents to learn from than conveying reward alone in words (Mu et al., 2022; Liu et al.,
2024; Zhong et al., 2024; Xie et al., 2024). But feedback can also mislead agents. The complexity
and generality of language make it difficult to formally quantify the effect of language feedback.

For general language feedback, can we precisely define helpful and unhelpful feedback? Can we
capture the complexity of LLF based on the information in the feedback, and does helpful feedback
indeed imply a lower problem complexity? Can we design a provably correct algorithm that learns
solely from language? The goal of this paper is to provide constructive answers to all these questions:

Language feedback can be formalized through hypothesis and verifier. To work with the gen-
erality of language, we rely on the concept of hypothesis testing and elimination in machine learning
(De Jong et al., 1993; Lehmann & Romano, 2022), except with hypotheses that can be expressed
in words. We formalize the interface in which agents sequentially interact while reasoning with
feedback produced by an underlying hypothesis (summarized by Fig. 1). We also define a verifier
which evaluates the semantic consistency between candidate hypotheses and observed feedback.
Through the notion of hypothesis and verifier, we give a precise definition of informative feedback
and establish conditions such that LLF is feasible and can be efficiently solved.

Hardness of LLF is determined by information in feedback. We capture the learning difficulty
with a new notion of complexity based on eluder dimension (Russo & Van Roy, 2013), which we call
transfer eluder dimension. This complexity measure captures how efficiently language feedback can
reduce uncertainty about rewards. While many existing settings consider feedback in place of scalar
rewards (Wang et al., 2003; Kocák et al., 2014; Bartók et al., 2014; Fürnkranz et al., 2012), they
commonly assume that the only useful information the feedback encodes is the underlying reward
and focuses on decoding it accurately. As an example, IGL (Xie et al., 2021) posits a decoder capable
of extracting reward estimates from a rich feedback vector, and treats the remaining components as
distractions. In contrast, our work emphasizes on the importance of extracting useful learning signals
other than reward, and we show regimes where LLF is strictly easier than reward-based learning.

LLF can provably have no regret. We develop HELiX, a provably efficient algorithm for LLF. We
prove that HELiX achieves a regret bound that scales gracefully with the transfer eluder dimension
and time horizon T , establishing a formal connection between no-regret learning and language feed-
back. Crucially, our analysis shows that in certain environments, HELiX can be exponentially more
efficient than learning from reward alone. We introduce a meta-algorithm that enables LLMs to
perform inference-time exploration and exploitation using HELiX, inspired by how thinking tokens
are used in large reasoning models (LRMs) (Guo et al., 2025). We empirically validate the efficacy
of our implementation on Wordle, Battleship and Minesweeper. We show that HELiX and its vari-
ants consistently outperform in-context learning LLM baselines. Altogether, our work contributes a
principled framework for understanding and designing learning agents guided by language.
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2 RELATED WORK

While using LLMs for general problem solving has been studied for a long time (Xie et al., 2022a;
Guo et al., 2024; Akyürek et al., 2023b), relatively fewer prior works studied the use of LLMs for
sequential decision-making. There are roughly two routes to improving the agent’s performance
with language feedback. One is to directly deploy LLMs as agents in decision-making problems
by incorporating feedback into subsequent prompts or an external memory buffer (Yao et al., 2023;
Brooks et al., 2023; Shinn et al., 2023; Wang et al., 2024; Krishnamurthy et al., 2024; Nie et al.,
2024; Xi et al., 2025). Another route is to process this feedback and use it to finetune a model’s
weights (Chen et al., 2024; Scheurer et al., 2022; Raparthy et al., 2023; Lee et al., 2023; Qu et al.,
2025). More recent work has investigated more sophisticated methods to improve exploration with
LLMs, such as directly learning exploration behavior through supervised fine-tuning (Nie et al.,
2024), preference-based learning (Tajwar et al., 2025), or reinforcement learning (Schmied et al.,
2025), or prompting LLMs to mimic a perfect Bayesian learner (Arumugam & Griffiths, 2025).
However, these results have been empirical.

We aim to bridge this gap by introducing a formal framework and guarantees for learning from lan-
guage feedback. Our framework is closely related to multi-armed bandits (Lai & Robbins, 1985)
and contextual bandits (Langford & Zhang, 2007). The class of algorithms that achieve dimin-
ishing long-term average reward are termed “no-regret algorithms” (Auer et al., 2002; Thompson,
1933; Russo et al., 2018). One widely adopted strategy relies on the “optimism in the face of un-
certainty” principle. Our algorithm design follows the same spirit as UCB (Auer et al., 2002). A
key difference is that our algorithm does not observe rewards at all, but instead rely on decoding
information in the feedback through a verifier loss to construct the confidence set. A recent line
of work utilizes UCB-like heuristics for LLM agents, but they either consider hypotheses as code
that specifies an MDP (Tang et al., 2024), and/or assume that the agent observes the ground-truth
numerical reward (Tang et al., 2024; N et al., 2024; Nie et al., 2024).

Another line of research has leveraged natural language as an auxiliary signal to improve learning
in sequential decision-making. Early studies showed that agents can benefit from textual guid-
ance, such as game manuals, to inform policies or features (Branavan et al., 2012). Subsequent
approaches explored grounded language to shape behavior (Gauthier & Mordatch, 2016), guide ex-
ploration (Harrison et al., 2017), or learn from feedback (Andreas et al., 2017). More recently,
LDD (Zhong et al., 2024) pre-trains agents on language-annotated demonstrations to learn environ-
ment dynamics, then fine-tunes with RL to improve sample efficiency and generalization. While
these approaches show empirical success, they lack a formal framework and theoretical guarantees.

Beyond scalar rewards, many learning settings offer richer forms of feedback. Prior work has ex-
plored bandits with side observations (Wang et al., 2003; Kocák et al., 2014), partial monitoring
(Bartók et al., 2014), and preference-based feedback (Fürnkranz et al., 2012). To characterize sam-
ple complexity in reward-aware RL, Russo & Van Roy (2013) introduces the eluder dimension. Our
work extends this notion beyond reward learning (for a detailed discussion and illustration of the
relationship of LLF to existing paradigms, see Fig. 3 in Appendix A).

3 FORMULATING LEARNING FROM LANGUAGE FEEDBACK

Our first contribution is to give a formal mathematical model to describe the LLF process (illustrated
by Fig. 1) and introduce natural assumptions to frame the learning problem so that LLF can be rigor-
ously studied. In what follows, we first define the interaction setup. Then we introduce the notion of
text hypotheses for world modeling. Finally, we define the verifier to evaluate hypothesis-feedback
consistency, which later gives a measure on the informativeness of feedback. These constructions
provide a basis for studying LLF’s learnability and analyzing regret in the next section.

3.1 FORMAL SETUP OF LLF

Let T be a finite set of tokens. We denote the set of all finite token sequences by T + = ∪k≥1T k ∪
{∅}, where T k denotes the set of length-K token sequences. There is a set O ⊂ T + of token
sequences that we refer to as the feedback space. For an arbitrary set X , we use ∆(X ) to denote the
set of all probability distributions with support on X .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We define the problem of Learning from Language Feedback (LLF)1 with a finite action set A. At
time step t, the agent interacts with the environment by executing an action At ∈ A and observing
feedback Ot ∈ O sampled from a feedback distribution f∗ : A → ∆(O); a reward Rt = r∗(At) is
incurred, based on a reward function r∗ : A → [0, 1], though Rt is not revealed to the agent. Here
we suppose the reward is generated by a deterministic function r∗; our results can be extended to
stochastic rewards. A policy is a distribution on A. We denote Π = ∆(A) and the agent’s policy
at time step t for sampling At as πt. We measure the performance of the agent in the LLF setup
by regret, which is defined as Regret(T ) =

∑T−1
t=0 R∗

max − Eπt
[Rt] , where T is the total number

time steps, R∗
max = maxa∈A r

∗(a), and the expectation is taken over feedback randomness and the
algorithm’s inner randomization.

This setup is similar to a bandit problem, and the goal of the agent is to find actions that maximize
the reward. However, unlike RL, here the agent does not observe the rewards {Rt}, and must learn
to maximize the reward solely using natural language feedback {Ot}.
Remark 1. The setup above can be naturally extended to a contextual setting (an analogy of con-
textual bandit problems; please see Appendix D.2 for details), where the agent receives a context in
each time step before taking an action. While the feedback in the context-less setting here may be
viewed similar to a context, the main difference is that the optimal actions in the context-less setting
do not change between iterations; on the other hand, in the contextual setting, the optimal actions in
each time step depend on the context presented to the agent at that point.

3.2 ENVIRONMENT MODEL AND TEXT HYPOTHESIS

The environment in the LLF setup is defined by a feedback function f∗ : A → ∆(O) and a reward
function r∗ : A → [0, 1]. We suppose they are “parameterized” by some text description, which we
call a hypothesis, belonging to a (possibly exponentially large) hypothesis spaceH ⊂ T +. One can
think of a hypothesis as describing the learning problem and mechanism of generating feedback in
texts such as natural language or codes. For example, in a recommendation environment, a hypoth-
esis can be a text description of a user’s interests, e.g., “the user enjoys fantasy movies produced in
the 21st century...”; in a video game environment, a hypothesis can describe the game’s code logic,
“<rule of the game><inferred hidden game state><inferred reward mechanism>”. A
hypothesis can also represent a finite-sized numerical array along with operations to decode it into
reward and feedback. In short, a hypothesis is a sufficient text description of the learning problem
such that the reward and the feedback functions can be fully determined.

With the hypothesis spaceH, we model the feedback mechanism through a feedback mapping η 7→
fη that maps each hypothesis η ∈ H to a feedback function fη : A → ∆(O). Similarly, we model
a reward mapping η 7→ rη that maps a hypothesis η ∈ H to a reward function rη : A → [0, 1].
We denote by η∗ ∈ H the true hypothesis of the environment, and use shorthand f∗ = fη∗ and
r∗ = rη∗ . This construction is reminiscent of classical bandit settings where the reward function
is parameterized, such as the linear case r∗(a) = ϕ(a)⊤θ∗ for some known feature map ϕ and
unknown ground-truth parameter θ∗. We generalize this by using the reward mapping η 7→ rη as an
analogue of the feature map and the hypothesis η∗ as the parameter. Following the convention in the
literature, we assume that the parameterization, i.e., the reward mapping η 7→ rη , is known to the
agent, but the parameter η∗ is unknown. See Fig. 1 for an overview.
Assumption 1. We assume that the agent has access to the reward mapping rη : η 7→ rη .

In practice, the reward mapping can be implemented using an LLM to process a given hypothesis
text, e.g., to tell whether an action is correct/incorrect (Zheng et al., 2023; Weng et al., 2023; Gu
et al., 2024). We do not assume knowing the feedback mapping η 7→ fη , however, as precisely
generating language feedback in practice is difficult.

3.3 MEASURING INFORMATION IN FEEDBACK

Without any connection between feedback and reward, learning to minimize regret from feedback is
provably impossible. Intuitively, for LLF to be feasible, language feedback must contain information

1In the original formulation in (Cheng et al., 2023), a problem context is given before learning to provide
background to interpret feedback. We omit writing the problem context for simplicity but equivalently assume
that the agent can interpret the feedback through the verifier that we will introduce later.
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that can infer the solution, like reward, action rankings, or whether an action is optimal. To study
LLF learnability, we need a way to quantify this information. Since it is impossible to enumerate all
possible language feedback, we adopt a weak, implicit definition based on a sensing function.

We introduce the notion of a verifier to formalize information the agent can extract from feedback.
The verifier represents a mechanism that assesses whether a hypothesis is consistent with observed
feedback given to an action; for example, a verifier implemented by an LLM may rule out hypotheses
that are semantically incompatible with feedback observations.

Assumption 2 (Verifier). We assume that there is a verifier, which defines a loss ℓ : A×O×H →
[0, 1], and the agent has access to the verifer through ℓ. For any action a ∈ A, feedback o ∈ O and
hypothesis η ∈ H, the value ℓ(a, o, η) quantifies how well η aligns with the feedback on action a. If
η is consistent with o on action a, then ℓ(a, o, η) = 0; otherwise, it returns a non-zero penalty.

A concrete example may help ground this abstract assumption. Suppose the agent chooses an ac-
tion a corresponding to a text summary of a story, and receives feedback o in the form of text
critique, such as: “The summary is mostly accurate, but it misses an important detail about the main
character’s motivation.” Suppose each hypothesis η ∈ H corresponds to a set of rubrics to judge
summaries. A verifier must output a score ℓ(a, o, η). If a rubric η implies that summaries should
capture the main character’s motivation, then ℓ(a, o, η) = 0, indicating consistency. Otherwise, the
loss value is positive. Such a verifier can be implemented by prompting an LLM to assess whether
the feedback o is consistent with applying rubric η to the summary a.

The set of feedback-consistent hypotheses naturally captures information in the feedback. Ideally,
feedback generated from fη(·) should be self-consistent, i.e., EO∼fη(a)[ℓ(a,O, η)] = 0 for all a ∈ A
and η ∈ H. However, in practice, both the feedback and the verifier may be noisy or imperfect and
there may be some a ∈ A such that EO∼f∗(a)[ℓ(a,O, η

∗)] > 0. To accommodate this potential
noise while preserving learnability, we adopt a weaker assumption than self-consistency: although
the feedback may be noisy, it is unbiased such that each hypothesis minimizes the expected verifier
loss under its induced distribution.

Assumption 3 (Unbiased Feedback). We say fη is unbiased, if for all a ∈ A and η ∈ H, η ∈
argminη′∈H EO∼fη(a)[ℓ(a,O, η

′)].

The notion of verifier can be used to formalize semantic equivalence among hypotheses. In natu-
ral language, many token sequences share the same underlying semantic meaning. For LLF, such
distinctions are not meaningful and should not affect the learning outcome. This invariance can be
captured by the verifier introduced above. We deem hypotheses as equivalent whenever they induce
identical loss functions across all inputs. We use this to define the geometry of the hypothesis space.
Definition 1 (Hypothesis Equivalence). We define the distance between two hypotheses η, η′ ∈ H as
dH(η, η′) := supa∈A,o∈O |ℓ(a, o, η)− ℓ(a, o, η′)|. If dH(η, η′) = 0, we say η and η′ are equivalent.

This definition provides a criteria to determine the equivalence of hypotheses, as two hypotheses
with zero distance are indistinguishable from the agent’s perspective. In applications involving
LLM-generated feedback, the loss function ℓ can be designed to reflect semantic similarity, e.g., by
assigning similar values to outputs that are paraphrases of one another, based on token-level match-
ing, embedding-based metrics, or LLM-prompted judgments (Wang & Yu, 2023; Chuang et al.,
2022; Asai & Hajishirzi, 2020; Bubeck et al., 2023).

Remark 2. Readers familiar with reinforcement learning from human feedback (RLHF) or AI feed-
back (RLAIF) may wonder if such a loss structure is necessary. Indeed, one may alternatively define
a scoring function g : A × O → [0, 1] that directly evaluates an action-feedback pair and impose
some relationships between the scoring function and the underlying reward. This construction is a
special case to our framework, which we discuss in detail in Section 4.3.

4 LEARNABILITY AND PROVABLE ALGORITHM

Compared to numerical rewards, feedback can potentially carry more information. In LLF, to in-
terpret this feedback and guide learning, the agent is equipped with: 1) The verifier loss function ℓ
and 2) The reward mapping η 7→ rη . This structure reflects a central feature of LLF: the agent must
reason over the hypothesis spaceH via the verifier to minimize regret of the hidden rewards.
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But can an agent learn to maximize reward despite not observing it? For instance, if feedback does
not convey useful information for problem solving, it is unrealistic to expect any learning to happen.
On the other hand, if feedback directly reveals the optimal action, then the problem can be solved in
two steps. Naturally, one would expect the learnability and complexity of LLF problems to depend
on the information that feedback conveys. The goal of this section is to give natural structures and
assumptions to the LLF setup that characterizes the difficulty of the learning problem.

4.1 TRANSFER ELUDER DIMENSION

To quantify information in the feedback, we propose a new complexity measure called transfer
eluder dimension based on the eluder dimension (Russo & Van Roy, 2013) using the verifier in
Section 3.3. At a high level, transfer eluder dimension characterizes how effectively information
in the feedback reduces uncertainty about the unknown reward function. When it is small, a single
piece of feedback carries a lot of information about the reward, which enables LLF to be much more
efficient than learning from reward.

Definition 2. Define ℓminη (a) := minη′ EO∼fη(a)[ℓ(a,O, η
′)]. Given a verifier loss ℓ, an action

a ∈ A is ϵ-transfer dependent on actions {a1, . . . , an} ⊂ A with respect to H if any pair of
hypotheses η, η′ ∈ H satisfying

∑n
i=1

(
Eo∼fη′ (ai)[ℓ(ai, o, η)]− ℓmin

η′ (ai)
)
≤ ϵ2, also satisfies

|rη(a) − rη′(a)| ≤ ϵ. Further, a is ϵ-transfer independent of {a1, . . . , an} with respect to H if
a is not ϵ-transfer dependent on {a1, . . . , an}.

This definition says that an action a is transfer independent of {a1, . . . , an} if two hypotheses that
give similar feedback according to the verifier at {a1, . . . , an} can differ significantly in their reward
predictions at a. This differs from the dependency condition used in eluder dimension (Definition 4),
which measures discrepancies in both the history and new observation using reward.

Definition 3 (Transfer eluder dimension). The ϵ-transfer eluder dimension dimTE(H, ℓ, ϵ) of H
with respect to the verifier loss ℓ is the length d of the longest sequence of elements in A such that,
for some ϵ′ ≥ ϵ, every action element is ϵ′-transfer independent of its predecessors.

Unlike the eluder dimension, transfer eluder dimension measures dependence based on two quanti-
ties: the verifier loss and the reward function. This extension allows us to capture information in the
feedback relevant to reward learning. Later in Section 4.4, we will present a provable algorithm that
attains a sublinear regret rate in LLF in terms of the transfer eluder dimension.

4.2 INFORMATIVE FEEDBACK REDUCES LEARNING COMPLEXITY EXPONENTIALLY

We discuss several example forms of feedback and compute the corresponding transfer eluder di-
mensions. The nature of feedback critically affects learning efficiency: uninformative feedback (e.g.,
random text) leads to infinite transfer eluder dimension, while some feedback can provide more in-
formation than reward and accelerate learning. For example, in a constraint satisfaction problem,
feedback that reveals satisfied constraints can shrink the set of potentially true hypotheses. In the
toy example below, reward-only learning requires exponential time (2L), whereas the transfer eluder
dimension is 1, so LLF has the potential for an exponential speed up.

Example 1 (Bitwise feedback on 0-1 string). Consider an action set A = {0, 1}L. The space of
hypotheses H contains all possible length-L 0-1 strings. Each hypothesis η contains a particular
fixed target string s(η) and the corresponding text instruction to provide reward and feedback about
the target. The reward function rη corresponding to a hypothesis η is such that r(a) = 1 if a = s(η)
and r(a) = 0 otherwise. In other words, rewards are sparse and every suboptimal arm incurs a regret
of 1. Feedback to an action a = (a1, . . . , aL) is bitwise, which tells in words the correctness of each
bit in the 0-1 string (i.e. whether ai = si for s(η) = (s1, . . . , sL). Equivalently, we can abstract
the feedback as fη(a) = (1{ai = si})Li=1 and define the loss function ℓ(a, o, η) = 1

L

∑L
i=1 1{oi ̸=

1{ai = si}} to measure the discrepancy between the feedback and the correctness indicated by
hypothesis η. For any ϵ < 1

L , the transfer eluder dimension dimTE(H, ℓ, ϵ) = 1, as for any action
a′, the expected loss EO∼fη′ (a′)[ℓ(a

′, O, η)] < 1
L iff η = η′.

We can also use feedback to reveal information e.g. about the optimality of selected actions, im-
proving directions, or explanation of mistakes.
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Example 2 (Reasoning steps). Consider a math reasoning problem where one tries to construct
a hidden sequence of L-step reasoning a∗ = (s∗1, . . . , s

∗
L), where each si ∈ S ⊂ T + is a to-

ken sequence that represents a correct reasoning at step i, and S is a finite set of token sequences
that represent possible reasoning steps. The action set A = ∪Lk=1(T +)k consists of all possible
reasoning of L steps. Each hypothesis represents a full solution to the problem and rubrics to cri-
tique partial answers with. Reward is 1 if all steps are correct and 0 otherwise. Below we show
the transfer eluder dimension with ϵ < 1

2L for different feedback (see Appendix C.4 for the exact
forms of verifiers and proofs). We consider four feedback types, which corresponds to the reward,
hindsight-negative, hindsight-positive, and future-positive feedback, respectively, in the LLF’s feed-
back taxonomy proposed in (Cheng et al., 2023). Directly learning from rewards incurs exponential
complexity, as the agent must enumerate all possible sequences. Feedback that identifies the first
mistake enables stage-wise decomposition and yields exponential improvement in L, though each
stage still requires brute-force search. If the feedback is more constructive, showing not only where
the first mistake is but also how to correct for it, the problem complexity does not depend on |S|.
Finally, if the feedback tells the answer right away, the complexity becomes constant, as the agent
can learn the solution immediately after one try.

Feedback dimTE(H, ℓ, ϵ)
1. (reward) binary indicator of whether all steps are correct O(|S|L)

2. (explanation) index of the first incorrect step O(|S|L)
3. (suggestion) give correction for the first mistake O(L)

4. (demonstration) all the correct steps O(1)

4.3 LEARNING FROM FEEDBACK IS NO HARDER THAN LEARNING FROM REWARD

We have shown examples where the transfer eluder dimension is bounded and decreases as the
feedback provides more information than reward. Here we prove the generality of this observation.
Below we show that if feedback discriminates between rewards, then the transfer eluder dimension
of LLF is no larger than the traditional eluder dimension of RL in Definition 4.
Definition 4 (Eluder Dimension). An action a ∈ A is ϵ-dependent on actions {a1, . . . , an} ⊂ A
with respect to a reward class R if any r, r′ ∈ R satisfying

∑n
i=1 (r(ai)− r′(ai))

2 ≤ ϵ2, also
satisfies |r(a) − r′(a)| ≤ ϵ. Further, a is ϵ-independent of {a1, . . . , an} if it is not ϵ-dependent on
{a1, . . . , an}. The ϵ-eluder dimension dimE(R, ϵ) of R is the length d of the longest sequence of
elements inA such that, for some ϵ′ ≥ ϵ, every action element is ϵ′-independent of its predecessors.

First, by using the verifier, we define the statement “feedback discriminates between rewards”.
Definition 5 (Discriminative feedback). The feedback function fη is discriminative of rη with
respect to the verifier ℓ if there is CF > 0 such that ∀η′ ∈ H, a ∈ A, |rη(a) − rη′(a)|2 ≤
CFEo∼fη(a)[ℓ(a, o, η′)− ℓminη (a)]. We say an LLF problem is discriminative if (f∗, r∗, ℓ) satisfies
the above condition.

This definition states that the verifier can distinguish hypotheses based on feedback to the same
extent as their reward differences. In other words, if two hypotheses differ in their corresponding
rewards, then the verifier can tell they are different. Therefore, problems where feedback encodes the
reward and verifier can decode it (e.g., classical RL) are subsumed as a special case of discriminative
LLF. We discuss the relationship of LLF with discriminative feedback and IGL (Xie et al., 2022b)
in Appendix A.

A discriminative feedback example is when the unobserved reward is a function of the feedback.
Concretely, suppose rη(a) = Eo∼fη(a)[g(a, o)] for some known g : A × O → [0, 1]. Note that the
reward mapping η 7→ rη is known, but the reward function itself is still hidden from the agent (since
η∗ is unknown). Consider ℓ(a, o, η) := (g(a, o)− rη(a))2 = (g(a, o)− Eo′∼fη(a)[g(a, o′)])2. Then
one can verify that η ∈ argminη′∈H Eo∼fη(a)[ℓ(a, o, η′)] and show that this feedback-verifier pair
is discriminative. (see Appendix C.3). In addition to this example, one can check that the forms of
feedback used in Section 4.2 are discriminative too (see Appendix C.4). Discriminative feedback
can contain information other than reward as shown in Section 4.2.

With this definition in place, we show that if feedback can discriminate rewards, the transfer eluder
dimension is no larger than the eluder dimension for the reward class induced byH.
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Algorithm 1 HELiX: Hypothesis Elimination using Language-informed Exploration

1: InputA,O, T , reward mapping η 7→ rη , verifier loss ℓ : A×O×H → [0, 1], confidence levels {ϵt}T−1
t=0

2: Initialize t = 0, A0 ∼ Unif(A),H0 = H
3: for t = 1, . . . , T do
4: observe Ot−1

5: Ht ← Ht−1

⋂
{η ∈ H : 1

t

∑
i ℓ(Ai, Oi, η)−minη′∈H

1
t

∑
i ℓ(Ai, Oi, η

′) ≤ ϵt}
6: (πp, ηp)← argmin

π∈Π
max
η∈Ht

[
rη(πη)− rη(π)

]
7: if rηp(πηp)− rηp(πp) = 0 then
8: At ∼ πp(·) // Exploitation step: exploit if there is consensus
9: else

10: (πo, ηo)← argmax
π∈Π

max
η∈Ht

rη(π) // Exploration step: UCB-inspired

11: At ∼ πo(·)
12: end if
13: end for

Proposition 1. For discriminative LLF problems with CF as in Definition 5, it holds that
dimTE(H, CF ℓ, ϵ) ≤ dimE(RH, ϵ), where RH = {rη : η ∈ H} is the effective reward class
ofH.

Proposition 1 implies that discriminative LLF problems are no harder than their reward-only coun-
terparts, such as those solved by the standard UCB algorithm over the reward classRH using reward
extracted from the language feedback by some LLM. It is important to note that general LLF prob-
lems are not necessarily discriminative. This separates LLF from existing frameworks such as IGL
(Xie et al., 2021), as it allows LLF to handle cases where feedback contains much more useful in-
formation than reward. For instance, when feedback is not discriminative but reveals information
about the optimal action, LLF captures the decrease in problem complexity compared to learning
from reward, while the latter setting is vacuous for IGL.

4.4 HELiX ALGORITHM

To validate our characterization of learnability based on the transfer eluder dimension, we design a
simple UCB-style algorithm, HELiX, outlined in Algorithm 1. HELiX uses feedback to guide explo-
ration using the optimism principle. Given a hypothesis η ∈ H, let πη denote its optimal policy. At
step t, the algorithm maintains a confidence set Ht of hypotheses that remain approximately con-
sistent with observed actions and feedback, as measured by cumulative verifier loss. The algorithm
then identifies a hypothesis ηo that achieve maximal optimal reward, and follows an optimal policy
πo under this hypothesis. With a slight abuse of notation, we let rη(π) :=

∑
a∈A rη(a)π(a) denote

the expected reward of policy π. An additional design in HELiX compared to standard UCB is a
stopping criterion. It checks for a consensus optimal action among all hypotheses in the confidence
set. If the minimax regret minπ∈Π maxη∈H̄ rη(πη) − rη(π) = 0, then the minimizer policy only
selects actions that are simultaneously optimal for all candidate hypotheses (see Lemma 5).

As discussed in Section 4.3, feedback in a trivial LLF problem can directly reveal the optimal action
but nothing about the reward. In this case, the LLF problem is not discriminative, yet the stopping
criteria ensures that the algorithm will not over-explore after identifying an optimal action.

HELiX is a concrete instantiation of how our conceptual LLF framework can inform algorithmic de-
sign, showing that LLF problems with finite transfer eluder dimensions can indeed be solved prov-
ably efficiently with a regret guarantee that depends sublinearly on the transfer eluder dimension.

Theorem 1. Under Assumption 1 and Assumption 2, for all T ∈ N, the regret of HELiX satisfies

Regret(T ) ≤ Õ
(
T 3/4

(
logN(H, ϵHT , dH)

)1/4√
dimTE(H, ℓ, ϵHT )

)
,

where N(H, ϵHT , dH) denotes the ϵHt -covering number of H based on the pseudo-metric
dH, dimTE(H, ℓ, ϵHT ) denotes the ϵHT -transfer eluder dimension of H, and ϵHT =
max

{
1
T 2 ,mina∈A inf{|rη(a)− r∗(a)| : η ∈ H, η ̸= η∗}

}
.
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(a) Wordle (b) Battleship (c) Minesweeper

Figure 2: HELiX consistently outperforms the greedy baseline and HELiX variants. Shaded area rep-
resents the standard error of cumulative reward across different scenarios. We explain the ablations
(no exploitation step; no πref ) in Appendix F.

While the order Õ(T 3/4) on the time horizon T may appear suboptimal compared to classical
Õ(
√
T ) optimal rates for bandit learning with direct reward feedback, this slower rate is in fact

a principled consequence of our minimal assumptions. Specifically, our analysis makes no struc-
tural assumptions on the verifier loss ℓ beyond boundedness. If we have more structural knowledge
of ℓ, say, that it is a squared loss, then the bound can be tightened to match the optimal order Õ(

√
T )

in classical bandit learning (see Theorem 4 in Appendix B.4). We provide a sketch of the general
argument in Theorem 1 in Appendix B.1, and include complete technical details in Appendix B.2.

Directly querying LLM for an action by prompting with the interaction history (with the low-
est temperature) is similar to drawing actions from πη where η is randomly sampled from
argminη′∈H

∑
i ℓ(Ai, Oi, η

′). In the RL setting, such a greedy algorithm does not explore and
therefore does not always have low-regret. Since RL is a special case of discriminative LLF, we
conjecture that this greedy algorithm also does not have regret guarantees for general LLF. We com-
pare this baseline in all of our experiments and confirm that HELiX reliably outperforms it.

5 EMPIRICAL STUDIES

We validate a practical LLM-based approximation of our theoretical Algorithm 1 in experiments
using three LLF problems (Wordle, Battleship and Minesweeper) constructed from the bench-
mark Tajwar et al. (2025). We provide the pseudocode for the practical implementation in Algo-
rithm 2 (see Appendix E). Our algorithm selects actions based on multiple LLM thinking traces,
treating them as samples from a space of hypotheses, while evolving this hypothesis space using
past observations (see Figure 4). Please see Appendix F for details.

Results We consider the following LLF agents: HELiX, a ReAct agent (labeled as Greedy), and
ablations of HELiX. We plot the cumulative reward as a function of the number of environment
interaction steps on WORDLE, BATTLESHIP, and MINESWEEPER in Figure 6. We see that for
all three environments, the ReAct agent (Greedy), where we only greedily choose the first action,
performs worse generally. In environments where information-gathering is more necessary, such
as in BATTLESHIP or in MINESWEEPER, agents designed to conduct strategic explorations tend to
outperform the greedy base LLM by a large margin. As shown, HELiX consistently outperforms
both the greedy baseline and HELiX variants. In particular, in BATTLESHIP and MINESWEEPER,
HELiX performs significantly better than the baselines. We leave further analysis to Appendix F.

6 DISCUSSION

One might wonder if the transfer eluder dimension forms a lower bound for LLF. The answer,
however, is negative, as some LLF problems are trivially solvable despite having infinite transfer
eluder dimension. For example, our LLF framework does not preclude problem instances where
rewards are arbitrary but feedback always reveals an optimal action. The transfer eluder dimension
is unbounded in this case, yet the learning problem is easy and HELiX can also solve it in one step.

The difference between this case where the transfer eluder dimension is unbounded and the earlier
demonstration case in Example 2 is that latter’s reward class are constrained to be binary and the
optimal action is unique, which keeps the transfer eluder dimension finite. We highlight that this
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argument assumes worst-case verifier behavior, while LLMs in practice impose inductive biases on
how feedback is interpreted. Empirically, we find that when explicitly presented with an optimal
action, LLMs tend to trust and act on it, bypassing further learning to infer full rewards. HELiX cap-
tures this using the early stopping criterion (line 8), whereas näive reward-driven UCB fails. This
counterexample points to a gap in our current understanding: the true complexity of LLF may lie be-
tween worst-case reward identification and optimal behavior learning. Closing this gap by refining
the transfer eluder dimension to lower-bound regret remains an important open question.
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A LLF AND ITS RELATIONSHIP TO EXISTING PARADIGMS

To better understand the position of LLF among existing paradigms of learning from feedback, we
provide an in-depth review in this section, as alluded to in Fig. 3. In all discussed paradigms, we
focus our comparison on how different forms of feedback are subsumed within LLF, while other
environment parameters are loosely assumed to be included in the LLF agent’s hypothesis space.
LLF covers the following learning paradigms commonly discussed in the literature:

Learning Framework Feedback Type Discriminative? LLF Verifier
Reinforcement Learn-
ing

Reward rη∗ ∈ R Yes ℓ(rη(a), rη∗(a))

Multi-objective RL Reward vector rη∗ ∈
Rd

Yes ℓ(rη(a), rη∗(a))

Interaction-Grounded
Learning (IGL)

Rich feedback y ∈ Y
s.t. ∃ψ∗ : Y × A →
R ≈ rη∗

Yes Consistency loss:
ℓ(y, a, η) (modeling ψ∗

is optional)

Preference-based RL Comparison: a1
η∗

≻ a2 No I
[
a1

η
≻ a2

]
Imitation Learning Expert actions a ∈ A∗

η∗ No I
[
a ∈ A∗

η

]
Table 1: Comparison of different learning frameworks and their feedback signals. All these learning
paradigms are subsumed under the LLF framework with the last column specifying possible verifier
losses for an LLF agent.

Reinforcement learning (RL) In RL, upon seeing an environment state xt ∈ X , the agent chooses
an action at ∈ A and observes a scalar reward feedback rt ∈ R. The rewards and states observed
by the agent at any decision step t, can depend on the past observed states and actions. In LLF,
the agent’s hypothesis η ∈ H returns a reward function rη : A × X → [0, 1], while the feedback
function is exactly the same: fη = rη . Hence, RL is trivially subsumed by LLF.

Partial Monitoring Games In Partial Monitoring (Bartók et al., 2014), the agent observes an ab-
stract feedback signal (not necessarily reward for its chosen action) and must deduce reward-optimal
actions indirectly. The function that maps actions to feedbacks (signal function) is assumed known
to the agent, and the challenge is to explore and infer optimal actions indirectly by leveraging the
known signal function. In contrast, LLF assumes that the feedback function is unknown, and agents
must interpret natural language feedback through a verifier to ascertain semantic consistency with
hypotheses. The unknown feedback mapping in LLF fundamentally alters the learning challenge,
requiring ways to extract insights from potentially ambiguous language feedback, and thus capturing
a broader class of interactive learning scenarios.

Interaction-grounded Learning (IGL) (Xie et al., 2021) In IGL, the environment generates a
latent scalar reward r(x, a) ∈ [0, 1] but only reveals a rich feedback vector y ∈ Y . To enable learn-
ing, IGL framework assumes reward decodability, i.e., the existence of a decoder ψ ∈ Ψ, such that

Figure 3: LLF and its relationship to existing paradigms. LLF covers many existing paradigms:
(1) reinforcement learning (RL): agent learning from a scalar reward signal, (2) interaction-grounded
learning (IGL) (Xie et al., 2021): agent observes a generic feedback vector that can decode a latent
reward signal, (3) discriminative LLF: agent observes language feedback that discriminates between
rewards, (4) multi-objective RL: extension of RL to problems with multiple objectives, combined via
a utility function, (5) preference-based RL: feedback provides a comparison between two actions,
(6) imitation learning: feedback provides expert demonstrations.
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ψ : Y×A → [0, 1], capable of extracting reward estimates for the agent. The remaining information
in the feedback vector is regarded as distractions to learning and assumed to be distinguishable by
the decoder. In contrast, LLF naturally accommodates information extraction by modeling both the
latent reward rη and the feedback mapping fη (hence the feedback y), allowing the agent to rea-
son about the consistency between the decoded rewards and the observed feedback vectors without
needing to identify the true decoder ψ∗ or the true feedback function f∗. Furthermore, we only
make discriminative assumptions about LLF so as to compare our algorithm to baselines in terms
of reward. In fact, the generality of LLF allows it to handle cases where feedback contains much
more useful information than reward. Specifically, when feedback is not discriminative but reveals
information about the optimal action, LLF captures the decrease in problem complexity compared
to learning from reward, while the latter setting is vacuous for IGL.

Discriminative LLF Discriminative LLF, defined formally in Definition 5, subsumes the special
case where the latent reward function is itself a function of the observed feedback (Xie et al., 2024).
This framework generalizes both RL and IGL, and shares similarity with IGL with action-inclusive
feedback (Xie et al., 2022b). In Xie et al. (2022b), the authors consider binary rewards, and assume
that there exists a perfect reward decoding function ψ∗ such that E[ψ∗(o, a)|r = 1]−E[ψ∗(o, a)|r =
0] = 1 for decodability. Definition 5 generalizes this to the LLF framework where the LLF agent
achieves this discriminative property via the LLF verifier loss for any two hypotheses η, η′ given
action o and feedback a. Thus discriminative LLF framework generalizes both RL and IGL, captur-
ing scenarios where feedback is rich and structured (e.g., language) but ultimately reflects reward.
As discussed in Section 4.3, this class of LLF problems can be no harder than the reward-only set-
ting and may even improve sample efficiency by leveraging structure in the feedback to recover the
reward signal more effectively.

The general LLF framework is a strict superset of both IGL and discriminative LLF as it accommo-
dates scenarios where the reward is not decodable from the environment feedback.

Multi-objective RL (MORL) MORL extends the standard RL framework to environments that
return vector-valued rewards rather than a single scalar. The central challenge in MORL is balanc-
ing trade-offs across multiple objectives, often handled via scalarization methods (see single-policy
learning approaches in (Roijers et al., 2013; Zhang & Golovin, 2020)) or Pareto front exploration
(Mossalam et al., 2016). In LLF, this is naturally captured by allowing the agent’s hypothesis to
represent vector-valued reward functions. Furthermore, the verifier loss ℓ : A × O ×H can be ex-
tended accordingly. Since the reward vector may be under-determined with respect to the underlying
utility function, we treat MORL as distinct from discriminative LLF (Definition 5), which assumes
informativeness of feedback with respect to scalar reward.

Preference-based RL In PbRL, the environment does not reveal scalar reward feedback. Instead,
the agent receives pairwise preferences over actions (or trajectories), e.g., that action a is preferred
over action a′. These comparisons may be between actions selected by the agent or between one
agent-chosen action and a reference provided by the environment. LLF captures this setting by
modeling the feedback function fη as a binary comparator over pairs of actions such that fη(a, a′) ∈
{0, 1} indicates the binary preference. The underlying reward model can be implicitly defined in the
hypothesis η such that it induces such preferences. Thus, this preference based structure fits within
LLF.

Imitation learning (IL) In IL, the agent learns from demonstrations of expert behavior rather
than explicit feedback or rewards. To make a closer comparison with LLF, we can consider the
interactive imitation learning setting, where the agent observes expert actions (corrections) for the
all environment observations. IL can be modeled within the LLF framework by considering expert
actions as a form of feedback f∗η = a∗. Any hypothesis η ∈ H considered by the LLF agent
can evaluate a verifier loss which corresponds to the discrepancy between the optimal action of the
hypothesis a∗η and expert action a∗. IL is thus a special case of LLF where the feedback space is
the action space itself, and consistency between the agent’s output and expert-labeled actions is the
verifier loss.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B REGRET ANALYSIS

B.1 PROOF SKETCH

We sketch the regret analysis in four main steps. The full proof is presented in Appendix B.2.

Step 1: Define confidence sets For each hypothesis η ∈ H, we define Lt(η) =∑t−1
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓmin

η∗ (Ai)
)

to be the cumulative population prediction error and

Lt(η) =
∑t−1
i=0 ℓ(Ai, Oi, η) =

∑t−1
i=0 ℓi(η) to be the cumulative empirical verifier loss. We define

confidence setsHt = {η ∈ H : Lt(η) ≤ minη′∈H Lt(η
′)+βt} where βt is a confidence parameter.

Step 2: Regret decomposition We let the width of a subset V ⊆ H at an action a ∈ A be wV(a) =
supη∈V |rη(a)− r∗(a)|. Then, we can decompose the regret in terms of version space widths:
Regret(T, η∗) ≤

∑T−1
t=0 E [wVt

(At) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}] .
Step 3: Bounding the sum of widths via transfer eluder dimension The key step is to show that
if the width wHt(At) > ϵ for some ϵ > 0, then At must be ϵ-dependent on only O(βt/ϵ

2) disjoint
historical action sequences, where βt is the confidence parameter. By the definition of the transfer
eluder dimension dTE = dimTE(H, ℓ, ϵ), in any sequence of N actions, there must be some action
that is ϵ-dependent on at least Ω(N/d) previous ones. Combining these facts forces the number of
large-width version spaces

∑T−1
t=0 1{wHt

(At) > ϵ} to be bounded by O(βT d/ϵ
2). Rearranging

terms and choosing a suitable sequence of ϵ gives that with high probability,
∑T−1
t=0 wVt(At) ≤

O(dTE + 2
√
3dTEβTT ). Note that when the stopping criteria is triggered, the per-step regret of all

following steps become zero, and so the regret of HELiX is always bounded above by that without
the stopping criteria.

Step 4: Prove high-probability confidence set concentration It remains to define suitable βt’s and
show that η∗ ∈ Vt for all t ∈ N with high probability. Depending on what structural assumptions
are known for the verifier loss ℓ, we determine the rate of decay of βt. If we only make the minimal
assumption that ℓ is bounded, then βT = Õ(

√
T ). Putting everything together proves Theorem 1.

B.2 FULL ANALYSIS

We first define the version spaces used in the algorithm. As shorthand notations, define

Lt(η) =
t−1∑
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓ

min
η∗ (Ai)

)
to be the cumulative population prediction error and

Lt(η) =

t−1∑
i=0

ℓ(Ai, Oi, η) =

t−1∑
i=0

ℓi(η)

to be the cumulative empirical verifier loss. A small value of Lt(η) means η is close to consistent
with observed feedback. Let Vt ⊆ H be the version space of all hypotheses still plausible after t
rounds of interactions. Concretely,

Vt = {η ∈ H : Lt(η) ≤ min
η′∈H

Lt(η
′) + βt}, (1)

where βt > 0 is an appropriately chosen confidence parameter so that we do not throw away the
true hypothesis η∗ due to noise.

A useful approach to bounding the regret is to decompose it in terms of version spaces. We define
the width of a subset V ⊆ H at an action a ∈ A by

wV(a) = sup
η∈V
|rη(a)− r∗(a)| .

Proposition 2 (Regret decomposition). Fix any sequence {Vt : t ∈ N}, where Vt ⊆ H is measur-
able with respect to σ(Ht). Then for any T ∈ N,

Regret(T, η∗) ≤
T−1∑
t=0

E [wVt(At) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}] .
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Proof. We define the upper bound Ut(a) = sup{rη(a) : η ∈ Vt} and let a∗ ∈ argmaxa∈A r
∗(a).

When η∗ ∈ Vt, the bound r∗(a) ≤ Ut(a) hold for all actions. This implies

r∗(η∗)− r∗(At) ≤ (Ut(a
∗)− r∗(At)) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}

≤ wVt(At) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}+ [Ut(a
∗)− Ut(At)] · 1{η∗ ∈ Vt}.

Since the algorithm selects an action At that maximizes Ut(a), the conclusion follows by taking the
expectation and summing over all t = 0, . . . , T − 1.

This proposition reduces upper bounding the regret to bounding the expected sum of widths∑T−1
t=0 E[wVt

(At)] if the version spaces Vt are constructed such that they contain η∗ with high
probability.

We first introduce a class of Martingale exponential inequalities that will be useful throughout our
analysis, including bounding the sum of widths and proving the high-confidence events η∗ ∈ Vt. For
random variables (Xt|t ∈ N) adapted to the filtration (Ft|t ∈ N), let us assume that E[exp(λXt)] is
finite for all λ and E[Xt|Ft−1] = 0. We assume that there is a uniform upper bound on the cumulant
generating function (i.e., log moment generating function) for the conditional distribution of Xt.
Lemma 1 (Cumulant generating function). If there is a sequence of convex functions {ψt : [0,∞)→
R}∞t=0 with ψt(0) = 0 such that, for all t ∈ N and all λ ∈ [0,∞),

logE
[
eλ|Xt||Ft−1

]
≤ ψt(λ),

then for all δ ∈ (0, 1) and T ∈ N, with probability 1− δ,∣∣∣∣∣
T−1∑
t=0

Xt

∣∣∣∣∣ ≤ inf
λ∈[0,∞)

{∑T−1
t=0 ψt(λ) + log(2/δ)

λ

}
.

Proof. Let ST =
∑T−1
t=0 Xt. By Markov’s inequality, for all u ∈ R and λ ∈ [0,∞),

P (ST ≥ u) = P
(
eλST ≥ eλu

)
≤ E[eλST ]

eλu
=

E[E[eλST |FT−1]]

eλu
=

E[eλ
∑T−2

t=0 XtE[eλXT−1 |FT−1]]

eλu

≤ E[eλ
∑T−2

t=0 Xt ] exp(ψT−1(λ))

eλu
≤ · · · ≤

exp(
∑T−1
t=0 ψt(λ))

eλu
.

This gives

P (ST ≥ u) ≤ exp

(
−λu+

T−1∑
t=0

ψt(λ)

)
for all λ ∈ [0,∞). Applying the same argument to −Xt, we have

P (ST ≤ −u) = P (−ST ≥ u) ≤ exp

(
−λu+

T−1∑
t=0

ψt(λ)

)
.

Solving for u to achieve a δ/2 probability for each side, and taking the infimum over λ ∈ [0,∞),
we have with probability at least 1− δ,

ST ≤ inf
λ∈[0,∞)

{∑T−1
t=0 ψt(λ) + log(2/δ)

λ

}
.

We now proceed to bounding the sum of widths
∑T−1
t=0 E[wVt(At)] when the event η∗ ∈ Vt holds.

As a first step, we show that there cannot be many version spaces Vt with a large width. For all
t ∈ N and η, η′ ∈ H, we define the martingale difference

Zt(η, η
′) = EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η

′)|Gt−1]− (ℓ(At, Ot, η)− ℓ(At, Ot, η′)) .
Notice that Zt have expectation zero and constitutes a martingale difference sequence adapted to the
filtration (Gt|t ∈ N) where Gt is the σ-algebra generated by all observations {(a0, o1), . . . , (at, ot)}
up to time t.
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Proposition 3. If the conditions in Lemma 1 holds for (Zt|t ∈ N) adapted to (Gt|t ∈ N) with
cumulative generating function bound (ψt|t ∈ N), (βt ≥ 0|t ∈ N) in (1) is a nondecreasing

sequence such that for all t ∈ N, βt ≥ infλ∈[0,∞)

{∑t−1
i=0 ψi(λ)+log(10t2/3δ)

λ

}
, then for all δ ∈ (0, 1),

with probability at least 1− δ,
T−1∑
t=0

1{wVt
(At) > ϵ} · 1{η∗ ∈ Vt} ≤

(
3βT
ϵ2

+ 1

)
dimTE(H, ℓ, ϵ)

for all T ∈ N and ϵ > 0.

Proof. We first show that if wVt(At) > ϵ and η∗ ∈ Vt, then with high probability, At is ϵ-dependent
on fewer than O(βt/ϵ

2) disjoint subsequences of (A0, A1, . . . , At−1). If wVt(At) > ϵ and η∗ ∈ Vt,
there exists η ∈ Vt such that |rη(At)− rη∗(At)| > ϵ. By definition, if At is ϵ-dependent on a
subsequence (Ai1 , . . . , Aik) of (A0, . . . , At−1), then we have that

k∑
j=1

(
EO∼fη∗ (Aij

)[ℓ(Aij , O, η)]− ℓmin
η∗ (Aij )

)
> ϵ2.

It follows that if At is ϵ-dependent on K disjoint subsequences of (A0, . . . , At−1) then
t−1∑
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓ

min
η∗ (Ai)

)
> Kϵ2.

Then
t−1∑
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓ

min
η∗ (Ai)

)
=

t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

=

[
t−1∑
i=0

ℓ(Ai, Oi, η
∗)− min

η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

]
−

[
t−1∑
i=0

ℓ(Ai, Oi, η)− min
η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

]

+

[
t−1∑
i=0

[ℓ(Ai, Oi, η)− ℓ(Ai, Oi, η∗)]−
t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

]

≤

∣∣∣∣∣
t−1∑
i=0

ℓ(Ai, Oi, η
∗)− min

η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

∣∣∣∣∣+
∣∣∣∣∣
t−1∑
i=0

ℓ(Ai, Oi, η)− min
η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

∣∣∣∣∣
+

[
t−1∑
i=0

[ℓ(Ai, Oi, η)− ℓ(Ai, Oi, η∗)]−
t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

]

≤ 2βt +

t−1∑
i=0

[ℓ(Ai, Oi, η)− ℓ(Ai, Oi, η∗)]−
t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

= 2βt −
t−1∑
i=0

Zi(η, η
∗).

Using Lemma 1,

P

(∣∣∣∣∣
t−1∑
i=0

Zi(η, η
∗)

∣∣∣∣∣ > inf
λ∈[0,∞)

{∑t−1
i=0 ψi(λ) + log(2/δ)

λ

})
≤ δ.

We choose a sequence {δt}t∈N>0 where δt = 3δ
5t2 , and so

∑∞
t=1 δt < δ. Using a union bound over

all t ∈ N>0, we have that with probability at least 1− δ, for all t ∈ N,∣∣∣∣∣
t−1∑
i=0

Zi(η, η
∗)

∣∣∣∣∣ ≤ inf
λ∈[0,∞)

{∑t−1
i=0 ψi(λ) + log(10t2/3δ)

λ

}
≤ βt.
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Since {βt}t∈N is nondecreasing in t, we have that with probability at least 1 − δ, Kϵ2 ≤ 3βT . It
then follows that with probability at least 1− δ, K ≤ 3βT /ϵ

2.

Next, we take any action sequence (a1, . . . , aτ ) and show that there is some element aj that is ϵ-
dependent on at least τ/d− 1 disjoint subsequences of (a1, . . . , aj−1), where d = dimTE(H, ℓ, ϵ).
For an integer K satisfying Kd + 1 ≤ τ ≤ Kd + d, we will construct K disjoint subsequences
B1, . . . , BK inductively starting with Bi = (ai) for i = 1, . . . ,K. If aK+1 is ϵ-dependent on each
subsequenceB1, . . . , BK , we are done. Otherwise, there must be at least one subsequence for which
aK+1 is ϵ-independent. We choose such a subsequence and append aK+1 to it. We will repeat this
process for aj with j = K + 2,K + 3, . . . until either aj is ϵ-dependent on each subsequence or
j = τ . If the first case occurs, we are done. If j = τ , we necessarily have that

∑
|Bi| ≥ Kd. Since

each element of a subsequence Bi is ϵ-independent of its predecessors, |Bi| = d. By the definition
of dimTE(H, ℓ, ϵ), aτ must be ϵ-dependent on each subsequence.

We now take (A1, . . . , Aτ ) to be the subsequence (At1 , . . . , Atτ ) of (A1, . . . , AT ) where for each
At, we have wVt

(At) > ϵ. As we have shown first, with probability at least 1 − δ, each Atj is ϵ-
dependent on fewer than 3βT /ϵ

2 disjoint subsequences of (A1, . . . , Aj−1). As we have shown in the
preceding paragraph, there is some aj that is ϵ-dependent on at least τ/d− 1 disjoint subsequences
of (a1, . . . , aj−1). Combining these two facts, we may conclude that τ/d− 1 ≤ 3βT /ϵ

2. It follows
that with probability at least 1− δ, τ ≤

(
3βT /ϵ

2 + 1
)
d as desired.

We are now ready to bound the sum of widths
∑T−1
t=0 E[wVt

(At)] when the event η∗ ∈ Vt holds.
Consider the ϵHT -transfer eluder dimension ofH, where

ϵHt = max

{
1

t2
,min
a∈A

inf{|rη(a)− r∗(a)| : η ∈ H, η ̸= η∗}
}
. (2)

Lemma 2. If the conditions in Lemma 1 holds for (Zt|t ∈ N) adapted to (Gt|t ∈ N) with cumulative
generating function bound (ψt|t ∈ N), (βt ≥ 0|t ∈ N) in (1) is a nondecreasing sequence such that

for all t ∈ N, βt ≥ infλ∈[0,∞)

{∑t−1
i=0 ψi(λ)+log(10t2/3δ)

λ

}
, then for all δ ∈ (0, 1), with probability at

least 1− δ,
T−1∑
t=0

wVt
(At) · 1{η∗ ∈ Vt} ≤

1

T
+min

{
dimTE(H, ℓ, ϵHT ), T

}
+ 2
√

3 dimTE(H, ℓ, ϵHT )βTT

for all T ∈ N.

Proof. Let dT = dimTE(H, ℓ, ϵHT ) and wt = wVt
(At). Reorder the sequence (w1, . . . , wT ) →

(wi1 , . . . , wiT ) where wi1 ≥ wi2 ≥ · · · ≥ wiT . We have

T−1∑
t=0

wVt
(At) · 1{η∗ ∈ Vt}

=

T−1∑
t=0

wit · 1{η∗ ∈ Vit}

=

T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit > ϵHT }+
T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit ≤ ϵHT }

≤ 1

T
+

T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit > ϵHT }.

The last inequality follows since either ϵHT = 1/T 2 and
∑T−1
t=0 ϵHT = 1/T or ϵHT is set below the

smallest possible width and hence 1{wit ≤ ϵHT } never occurs. We have that wit ≤ 1. Also,
wit > ϵ ⇐⇒

∑T−1
k=0 1{wVk

(ak) > ϵ} ≥ t. By Proposition 3, with probability at least 1 − δ,
this can only happen if t <

(
3βT /ϵ

2 + 1
)
dimTE(H, ℓ, ϵ). For ϵ ≥ ϵHT , since dimTE(H, ℓ, ϵ′) is

non-increasing in ϵ′, dimTE(H, ℓ, ϵ) ≤ dimTE(H, ℓ, ϵHT ) = dT . Therefore, when wit > ϵ ≥ ϵHT ,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

t ≤
(
3βT /ϵ

2 + 1
)
dT , implying ϵ ≤

√
3βT dT
t−dT . So if wit > ϵHT , then wit ≤ min{1,

√
3βT dT
t−dT }.

Thus,

T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit > ϵHT } ≤ dT +

T−1∑
t=dT+1

√
3βT dT
t− dT

≤ dT +
√
3βT dT

∫ T−1

t=1

1√
t
dt

= dT + 2
√
3βT dTT .

Since the sum of widths is always bounded by T , this implies that with probability 1− δ,

T−1∑
t=0

wVt
(at) · 1{η∗ ∈ Vt}

≤ min

{
T,

1

T
+ dimTE(H, ℓ, ϵHT ) + 2

√
3 dimTE(H, ℓ, ϵHT )βTT

}
≤ 1

T
+min

{
dimTE(H, ℓ, ϵHT ), T

}
+ 2
√
3 dimTE(H, ℓ, ϵHT )βTT .

So far, we have only considered HELiX without the exploitation step. We remark that by Lemma
6, when the exploitation step is triggered, the per-step regret of all following steps become zero,
and so the regret of the full HELiX is always bounded above by that without the exploitation step.
Combining this observation with Lemma 2 and Proposition 2, we arrive at the following abstract
regret bound in terms of the version space confidence parameter βT .

Theorem 2. If it holds that for some δ ∈ (0, 1), with probability at least 1 − δ, η∗ ∈ Vt for all t,
then for all T ∈ N,

Regret(T ) ≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT ), T}+ 2

√
3 dimTE(H, ℓ, ϵHT )βTT .

The dominant term in the regret bound is

2
√
3 dimTE(H, ℓ, ϵHT )βTT .

For our main theorem, it remains to design suitable version spaces Vt and show that they contain
the true hypothesis η∗ with high probability. Crucially, the rate at which the confidence parameters
βt of these version spaces shrink depends on concentration properties of the verifier loss function ℓ.
Note that for the general LLF framework, we have assumed only that ℓ is a bounded function taking
values in [0, 1]. If we have more structural assumptions on the verifier loss ℓ, for example, that ℓ is
α-strongly convex, then we may arrive at a tighter regret bound up to order

√
T by taking βT to be

of constant order.

B.3 VERSION SPACE CONSTRUCTION FOR GENERAL BOUNDED LOSS

Consider the most general case with minimal assumptions on the loss function, namely, that it is
bounded between [0, 1] for all inputs. Then we prove the following high-probability event:

Lemma 3 (High-probability event). For all δ > 0, η, η′ ∈ H,

P

(
LT (η′) ≥ LT (η) + LT (η

′)− LT (η)−

√
2T log

(
10T 2

3δ

)
, ∀T ∈ N

)
≥ 1− δ.

Proof. For each t = 1, . . . , T , define the Martingale difference sequence

Xt = EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η
′)]− (ℓ(At, Ot, η)− ℓ(At, Ot, η′)) .
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LT (η′)− LT (η)− (LT (η
′)− LT (η))

=

T−1∑
t=0

(
EO∼fη∗ (At)[ℓ(At, O, η)]− EO∼fη∗ (At)[ℓ(At, O, η

′)]
)
−
T−1∑
t=0

(ℓ(At, Ot, η)− ℓ(At, Ot, η′))

=

T−1∑
t=0

EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η
′)]−

T−1∑
t=0

(ℓ(At, Ot, η)− ℓ(At, Ot, η′))

=

T−1∑
t=0

Xt.

Notice thatXt have expectation zero and constitutes a Martingale difference sequence adapted to the
filtration {Gt}t≥1 where Gt is the σ-algebra generated by all observations {(A0, O1), . . . , (At, Ot)}
up to time t. Since feedback losses ℓ(a, o, η) are uniformly bounded between [0, 1], we have that
Xt ∈ [−2, 2] with probability 1. Using Lemma 1 with ψt(λ) = λ2/2 and taking the infimum over
λ, we get

P

(∣∣∣∣∣
T−1∑
t=0

Xt

∣∣∣∣∣ >√2T log(2/δ)

)
≤ δ.

We choose a sequence {δT }T∈N>0
where δT = 3δ

5T 2 such that
∑∞
T=1 δT < δ. Using a union bound

over all T ∈ N≥0, we have that with probability at least 1− δ,

|LT (η′)− LT (η)− (LT (η
′)− LT (η))| ≤

√
2T log

(
2

δT

)
=

√
2T log

(
10T 2

3δ

)
∀T ∈ N.

Since η∗ is the true hypothesis, by Assumption 3, it minimizes the population loss LT (η) for all
T ∈ N. That is, for all η ∈ H,

LT (η∗) ≤ LT (η) ∀T ∈ N.
Suppose m = |H| < ∞. By Lemma 3, for any η ∈ H, with probability at least 1 − δ/m, for all
T ∈ N,

LT (η
∗)− LT (η) ≤ LT (η∗)− LT (η) +

√
2T log

(
10T 2

3δ

)
≤

√
2T log

(
10mT 2

3δ

)
.

Using a union bound over H, with probability at least 1 − δ, the true hypothesis η∗ is contained in
the version space

VT =

{
η ∈ H : LT (η) ≤ min

η′∈H
LT (η

′) +

√
2T log

(
10|H|T 2

3δ

)}
for all T ∈ N. To extend this to a space of infinite hypotheses, we measure the set H by some
discretization scale α. Recall that we define distances in the hypothesis space in terms of the loss
function ℓ:

dH(η, η′) = sup
a∈A,o∈O

|ℓ(a, o, η)− ℓ(a, o, η′)|.

Lemma 4. dH(·, ·) is a pseudometric onH.

Proof. We check the axioms for a pseudometric.

• nonnegativity: dH(η, η) = 0 and dH(η, η′) ≥ 0 for all η, η′ ∈ H.

• symmetry: dH(η, η′) = dH(η′, η).

• triangle inequality: for each a ∈ A and o ∈ O, |ℓ(a, o, η) − ℓ(a, o, η′′)| ≤ |ℓ(a, o, η) −
ℓ(a, o, η′)| + |ℓ(a, o, η′) − ℓ(a, o, η′′)|. Taking the supremum over A and O yields the
desired property.
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Let N(H, α, dH) denote the α-covering number ofH in the pseudometric dH, and let

β∗
t (H, δ, α) :=

√
2t log

(
10N(H, α, dH)t2

3δ

)
+ 2αt. (3)

Proposition 4. For δ > 0, α > 0, and T ∈ N, define

VT :=

{
η ∈ H : LT (η) ≤ min

η′∈H
LT (η

′) + β∗
T

}
Then it holds that

P

(
η∗ ∈

∞⋂
T=1

VT

)
≥ 1− δ.

Proof. Let Hα ⊆ H be an α-cover of H in the pseudometric dH. In other words, for any η ∈ H,
there is an ηα ∈ Hα such that dH(η, ηα) ≤ α. A union bound over Hα gives that with probability
at least 1− δ,

(LT (ηα)− LT (ηα))− (LT (η∗)− LT (η∗)) ≤

√
2T log

(
10|Hα|T 2

3δ

)

=⇒ (LT (η)− LT (η))− (LT (η∗)− LT (η∗)) ≤

√
2T log

(
10|Hα|T 2

3δ

)
+ (LT (η)− LT (η))− (LT (ηα)− LT (ηα))︸ ︷︷ ︸

discretization error

.

The discretization error can be expanded and bounded as

T−1∑
t=0

[
EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η

α)]− ℓ(At, Ot, η) + ℓ(At, Ot, η
α)
]
≤ 2αT.

Since η∗ is a minimizer of LT (·), we have that with probability at least 1− δ,

LT (η
∗)− LT (η) ≤

√
2T log

(
10|Hα|T 2

3δ

)
+ 2αT.

We take the infimum over the size of α-covers, which results in the bound

LT (η
∗)− LT (η) ≤

√
2T log

(
10N(H, α, dH)T 2

3δ

)
+ 2αT.

Taking δ = 1
T and plugging βT = β∗

T (H, δ, ϵHT ) into the abstract regret bound in Theorem 2 proves
the following main theorem.

Theorem 3. For all T ∈ N,

Regret(T ) ≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT ), T}

+ 2

√
3
√
2 log

(
10N(H, α, dH)T 2

3δ

)1/2

dimTE(H, ℓ, ϵHT )T 3/2 + 6dimTE(H, ℓ, ϵHT ).
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Proof.
Regret(T )

≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT ), T}+ 2

√
3 dimTE(H, ℓ, ϵHT )β∗

T (H, δ, ϵHT )T

= 1 +
1

T
+min{dimTE(H, ℓ, ϵHT ), T}+

+ 2

√√√√3 dimTE(H, ℓ, ϵHT )

(√
2T log

(
10N(H, ϵHT , dH)T 2

3δ

)
+ 2ϵHT T

)
T

= 1 +
1

T
+min{dimTE(H, ℓ, ϵHT ), T}+

+ 2

√
3
√
2 log

(
10N(H, α, dH)T 2

3δ

)1/2

dimTE(H, ℓ, ϵHT )T 3/2 + 6ϵHT dimTE(H, ℓ, ϵHT )T 2

≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT ), T}+

+ 2

√
3
√
2 log

(
10N(H, α, dH)T 2

3δ

)1/2

dimTE(H, ℓ, ϵHT )T 3/2 + 6dimTE(H, ℓ, ϵHT ),

where the last inequality follows since ϵHT ≤ 1/T 2 by definition.

The leading term in the regret bound is of order

T 3/4
(
logN(H, ϵHT , dH)

)1/4√
dimTE(H, ℓ, ϵHT ).

Remark 3. As noted earlier on, while the order Õ(T 3/4) on the time horizon T may appear subop-
timal compared to classical Õ(

√
T ) optimal rates for bandit learning with direct reward feedback,

this slower rate is in fact a principled consequence of our minimal assumptions. Specifically, our
analysis makes no structural assumptions on the verifier loss ℓ beyond boundedness. If we have
more structural knowledge of ℓ, say, that it is α-strongly convex, then the bound can be tightened to
match the optimal order Õ(

√
T ). A notable instance is when ℓ is a squared loss. A refined analysis

on the drift of conditional mean losses allows us to choose the confidence parameters βT for the
version spaces to be of order Õ(log(1/δ)), which results in the tight Õ(

√
T ) regret rate.

B.4 RATE-OPTIMAL BOUND FOR SQUARED LOSS

In this section, we consider a special case of a verifier ℓ, taking the discriminative example intro-
duced in Section 4.3 and detailed in Section C.3.
Theorem 4. Suppose rη(a) = Eo∼fη(a)[g(a, o)] for some known g : A × O → [0, 1] and
ℓ(a, o, η) = (g(a, o) − rη(a))

2 = (g(a, o) − Eo′∼fη(a)[g(a, o′)])2. Suppose for all t ∈ N,
g(At, Ot) − EO′∼fη(At)[g(At, O

′)] conditioned on (Gt, At) is σ-sub-Gaussian. For all T ∈ N,
the regret of LLF-UCB satisfies

Regret(T ) ≤ Õ
(√

T logN(H, ϵHT , dH) dimTE(H, ℓ, ϵHT )
)
,

where N(H, ϵHT , dH) denotes the ϵHt -covering number of H based on the pseudo-metric
dH, dimTE(H, ℓ, ϵHT ) denotes the ϵHT -transfer eluder dimension of H, and ϵHT =
max

{
1
T 2 ,mina∈A inf{|rη(a)− r∗(a)| : η ∈ H, η ̸= η∗}

}
.

C PROOFS FOR SUPPORTING LEMMAS AND PROPOSITIONS

C.1 PROOF FOR PROPOSITION 1

Proof. Let ℓ̃ = CF ℓ. Let dTE = dimTE(H, ℓ̃, ϵ) be the shorthand for the ϵ-transfer eluder di-
mension of H with respect to ℓ̃. Then, there exists a length dTE sequence of elements in A such
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that for some ϵ̃ ≥ ϵ, every action element is ϵ̃-transfer independent of its predecessors. We de-
note such a sequence as (a0, . . . , adTE−1). By definition of the transfer eluder dimension, for any
k ∈ {0, . . . , dTE − 2}, there exists a pair of hypotheses η, η′ ∈ H satisfying

k∑
i=0

(
Eo∼fη′ (ai)[ℓ̃(ai, o, η)]− ℓ̃min

η′ (ai)
)
≤ ϵ̃2

but |rη(ak+1)− rη′(ak+1)| > ϵ̃. Using the definition for reward-discriminative verifiers,

k∑
i=0

(rη(ai)− rη′(ai))2 ≤ CF
k∑
i=0

(
Eo∼fη′ (ai)[ℓ(ai, o, η)]− ℓmin

η′ (ai)
)

=

k∑
i=0

(
Eo∼fη′ (ai)[ℓ̃(ai, o, η)]− ℓ̃min

η′ (ai)
)
≤ ϵ̃2.

By the definition of the (regular) eluder dimension, every action in the sequence (a0, . . . , adTE−1) is
ϵ-independent of its predecessors. Therefore, dTE ≤ dimE(R, ϵ) since the latter is the length of the
longest sequence of independent actions. We may conclude that dimE(R, ϵ) ≥ dimTE(H, CF ℓ, ϵ).

C.2 PROOF FOR LEMMA 5

Lemma 5. Consider some H̄. Suppose minπ∈Π maxη∈H̄ rη(πη)−rη(π) = 0. Let π̂ be a minimizer.
Let A∗

η denote the set of optimal actions with respect to rη . Then supp(π̂) ⊆ A∗
η , for all η ∈ H̄.

Proof. We prove by contradiction. Suppose π̂ takes some action a′ outside of A∗
η for some η ∈ H̄

with probability p′. Let π′ = π̂ − p′1[a = a′] + p′Unif[a ∈ A∗
η]. Then it follows rη(π′) > rη(π̂),

which is a contradiction. Therefore, supp(π̂) ⊆ A∗
η , for all η ∈ H.

C.3 PROOF OF THE DISCRIMINATIVE FEEDBACK EXAMPLE

Suppose rη(a) = Eo∼fη(a)[g(a, o)] for some known g : A × O → [0, 1]. Note that the reward
mapping η 7→ rη is known, but the reward function itself is still hidden from the agent (since η∗

is unknown). We define ℓ(a, o, η) := (g(a, o) − rη(a))2 = (g(a, o) − Eo′∼fη(a)[g(a, o′)])2, which
gives

Eo∼fη(a)[ℓ(a, o, η
′)] = Eo∼fη(a)

[
(g(a, o)− Eo′∼fη′ (a)[g(a, o

′)])2
]
.

One can easily verify that η ∈ argminη′∈H Eo∼fη(a)[ℓ(a, o, η′)]. With this definition, we have that

|rη(a)− rη′(a)|2 = (Eo∼fη(a)[g(a, o)]− Eo∼fη′ (a)[g(a, o)])
2

= (Eo∼fη(a)[g(a, o)− Eo′∼fη′ (a)[g(a, o
′)]])2

≤ Eo∼fη(a)[(g(a, o)− Eo′∼fη′ (a)[g(a, o
′)])2]

= Eo∼fη(a)[ℓ(a, o, η
′)]

This shows the feedback is discriminative.

C.4 PROOF OF REASONING EXAMPLE

binary indicator of whether all steps are correct This problem is equivalent to a bandit problem
with |S|L arms. Here fη(a) = r(a), so the transfer eluder dimension reduces to the standard eluder
dimension, which is bounded by the size of the action space.
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index of the first incorrect step Here we prove for ϵ < 1/2L. Given the rubric of η∗, partition
the action space into L sets, where Al = {(s1, . . . , sL)|s1, . . . , sl−1 are correct and sl is incorrect}
for l = 1, . . . , L, where A0 denotes sequences where s1 is incorrect. By this definition, we have
Ai
⋂
Aj = ∅, for i ̸= j, and A∗⋃(

⋃L
l=1Al) = A, where A∗ = {a∗}

Suppose we have an independent action sequence (a1, . . . , aK) in the sense of Definition 3 where
each action is ϵ-independent of their predecessors. We show it can have no more than |S| actions
from each Al for l ∈ [1, L]. By definition of the feedback, for a ∈ Al, f∗η (a) = l. Suppose we have
more than |S| actions fromAl. It implies that a token must be used twice at the lth position. Say it’s
sl and it’s shared by a1, a2 ∈ Al. Then we show a2 is ϵ-dependent on a1 when ϵ < 1/L. For η ∈ H,
satisfying Eo∼f∗(a0)[|o−fη(a0)|2/L2] = |l−fη(a0)|2/L2 ≤ ϵ2, we have l−Lϵ ≤ fη(a0) ≤ l+Lϵ.
Since ϵ < 1/2L and fη(a0) is an integer, this implies fη(a0) = l. That is, for such an η satisfying the
constraint given by a0, sl is incorrect. This implies fη(a1) ≤ l. Therefore, rη(a0) = rη(a

1) = 0.

Therefore, the length of independent action sequences is bounded by |S|L+ |A∗| = |S|L+ 1 .

give correction for the first mistake In this case, the feedback not only returns the index of the
first incorrect step l, but also reveals the correct reasoning action s∗l . Let a∗η = (s1(η), . . . , sL(η))
denote the L reasoning steps based on the hypothesis η. The reward function of any action a and
hypothesis η is rη(a) = I{a∗η = a}. For an action a = (s1, . . . , sL) and feedback o := (l, sl(η))
generated based on fη(a), we have sj = sj(η) for all j < l and sl ̸= sl(η). Now, given any feedback

o := (l, s∗l ), we define the following loss ℓ(a, o, η) = 1
L

(∑l−1
j=1 I{sj(η) = sj}+ I{sl(η) = s∗l }

)
.

This verifer loss evaluates whether η and η′ have the same first l reasoning steps.

For ϵ < 1, suppose an action sequence (a1, . . . , aK) where each action is ϵ-independent of their
predecessors. If action a is ϵ-independent, there exists η, η′ such that

∑K
i=1 Eoi∼fη′ (a)[l(ai, oi, η)] ≤

ϵ and |rη(a) − rη′(a)| > ϵ. By definition of the feedback and loss, we know η,η′ have the same
initial maxi li reasoning steps. However, we know that rη(a) ̸= rη′(a) indicating at least one index
l > maxi li where sl ∈ {sl(η), sl(η′)} and sl(η) ̸= sl(η

′), resulting in feedback o = (l, sl(η
′)) for

a. Thus, the sequence of indices in feedback o1, o2, . . . is monotonic. As we have L reasoning steps,
for any pair η, η′, the sequence length is bounded by L.

demonstration Here, the feedback directly demonstrates correct reasoning sequence a∗ =
(s∗1, . . . , s

∗
L) and is independent of the agent’s action sequence. For action a = (s1, . . . , sL) and

hypothesis η, we define the loss as ℓ(a, o, η) = I{o = a∗η}. Therefore, for any η, η′ and ϵ < 1, if a
satisfies: Eo∼fη′ (a)ℓ(a, o, η) ≤ ϵ, we have a∗η = a∗η′ , implying rη(a) = rη′(a) for all a ∈ |S|L and
a transfer Eluder dimension of 1.

C.5 PROOF FOR LEMMA 6

Lemma 6. Suppose for some t0 ≥ 0, we have that minπ∈Π maxη∈Ht0
|rη(πη) − rη(π)| = 0 in

Algorithm 1. Then for all t > t0, minπ∈Π maxη∈Ht |rη(πη)− rη(π)| = 0.

Proof. We prove by induction. Suppose the conclusion holds for t > t0, we prove that it holds for
t+1 as well. At time t, the induction hypothesis implies that minπ∈Π maxη∈Ht

|rη(πη)− rη(π)| =
0. Since Ht+1 ⊆ Ht, maxη∈Ht+1

|rη(πη) − rη(π)| ≤ maxη∈Ht
|rη(πη) − rη(π)| for all π ∈ Π.

Thus, minπ∈Π maxη∈Ht+1
|rη(πη)− rη(π)| ≤ minπ∈Π maxη∈Ht

|rη(πη)− rη(π)| = 0.

D EXTENSIONS

D.1 SPECIAL CASE OF REWARD-AGNOSTIC FEEDBACK

Text feedback may contain information beyond what is relevant to the reward. In particular, one
could imagine a special case, where feedback does not reveal much about the reward, but still pro-
vides enough to identify an optimal action over time. One simple example is when the feedback
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directly reveals the optimal action, regardless of the action chosen. In this case, the transfer eluder
dimension as defined could be arbitrarily large, but ideally an efficient LLF agent should choose the
optimal action in the following steps instead of trying to identify the mean reward for each action.

D.2 EXTENSION TO CONTEXTUAL BANDITS AND STATEFUL INTERACTIONS

Our formulation can be modified slightly to accommodate learning with a context. In a con-
textual problem, a Markov process Xt independently takes values in a set X that the agent
views as contexts. We may define the full set of actions to be the set of context-action pairs
A := {(x, a) : x ∈ X , a ∈ A(x)}, where A(x) is the set of available actions under the con-
text x. Instead of having a fixed action space A across time, consider time-varying action sets
At := {(Xt, a) : a ∈ A(Xt)}. At each time t, an action at ∈ At will be selected. In accordance,
the policy π = {πt|t ∈ N} is now a sequence of functions indexed by time, each mapping the his-
tory Ht = (A0, A0, R0, . . . ,At−1, At−1, Rt−1,At) to a distribution over A with support At. Our
analysis for the context-free setting directly carries over.

While our framework focuses on stateless settings similar to bandits (and contextual bandits in the
extension discussed above), extending this formulation to stateful interactions is an exciting avenue
for future work. A most straightforward extension is treating history as contexts and following
the contextual extension described above. However, this will induce an exponential explosion in
the state space, and the regret guarantees will become too loose. A more careful treatment might
involve formulating LLF problems in an MDP setting, and designing algorithms capable of deep
exploration.

D.3 ALTERNATIVE FORMULATION OF FEEDBACK GENERATION

The LLF formulation we have presented so far assumes that feedback arises from a fixed mapping
η 7→ fη with each hypothesis η ∈ H. While this “model-based” view simplifies both the design
of exploration strategies and the complexity analysis via the transfer eluder dimension, it imposes
a structural constraint that may be too restrictive in settings where feedback is generated by a more
complex or even adversarial process. An alternative, entirely “model-free” formulation allows feed-
back to be generated arbitrarily from an oracle in a streaming fashion, without the need to explicitly
model a feedback mapping η 7→ fη . Concretely, at each time t, the agent executes an action At ∈ A
and observes feedback Ot ∈ O. We denote the history of interactions as It = (A0, O0, . . . , At, Ot)
and write I for the set of all possible histories. A (history-dependent) policy π : I → ∆(A) maps
each history h ∈ I to a distribution over actions.

This streaming-oracle perspective subsumes both stochastic and adversarial feedback models, and
can capture scenarios where the dependence on η is unknown or too complex to parameterize. In
this setting, one must replace the hypothesis-indexed complexity measures by complexity metrics
defined directly over the space of oracles or possible histories. Although this general approach will
likely incur additional technical overhead, it also broadens the applicability of our LLF framework to
encompass richer feedback protocols beyond the hypothesis-testing paradigm. An interesting future
direction is to develop performance guarantees under the more general feedback generation model.

E IMPLEMENTING HELiX WITH LARGE LANGUAGE MODELS

We provide a practical implementation of HELiX using an LLM. LLMs with advanced reasoning
capabilities can produce chain-of-thoughts that often contain guesses and reasoning traces of the
environment (Wei et al., 2022; Guo et al., 2025; Gandhi et al., 2025). We propose to leverage LLMs’
knowledge about the world to enhance decision-making. In particular, we treat an LLM’s thinking
tokens before deciding on an action as “hypotheses”. These thinking tokens can be sampled by
prompting the LLM to output its reasoning before an action with prompts in the form of “<Thought>
<Action>”.

We provide the pseudocode for the practical implementation in Algorithm 2 and illustrate a corre-
sponding flow-graph in Figure 4. The algorithm takes as inputs the following LLM-based compo-
nents:
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Figure 4: Thought Sampling with Cross-Verify. Our algorithm extends the traditional paradigm
of model-based exploration to the LLM setting. Here, the “model” is represented by the LLM’s
intermediate thoughts, which we interpret as their hypotheses about the external world. We ground
this thought-then-act behavior in the interactive decision-making framework and introduce a new
algorithm that conducts efficient exploration from language feedback.

1. πLLM :
⋃∞
t=0(A × O)t → ∆(H × A). This is an LLM with a chain-of-thought prompt

that asks it to analyze the current observation through thinking tokens and produce a valid
action. We may view this policy as producing the best action conditioned on a hypothesis
consistent with the feedback history.

2. πref : ∅ → ∆(A). This is a user-provided reference policy to sample actions, analogous
to a baseline policy. The design of reference policy may vary. In this work, we adopt a
random reference policy by asking an LLM to produce a set of random actions that are
different from those generated by πLLM.

3. RLLM : H × A → [0, 1]. This is a reward mapping to evaluate how good/bad the action
is under a given hypothesis. We implement this by prompting an LLM to score an action
conditioned on a sampled hypothesis. This can be viewed as a hypothesis-conditioned
reward model.

Approximation of Feedback-consistent Hypotheses and Policy Space. HELiX (Algorithm 1)
maintains a hypothesis space Ht at iteration t, which contains all hypotheses η that are consistent
with observed feedback. Then, HELiX searches over all possible policies by computing πp and
πo. We approximate these two steps with finite sets of candidates, Ĥt and Ât, respectively. We
make the assumption that state-of-the-art LLMs are capable of producing valid hypotheses when
instructed with a chain-of-thought prompt and history. In other words, they provide hypotheses that
are plausible explanations of the interaction history of actions and feedback. At each step, we use
πLLM to produce thought-conditioned actions. We first ask the LLM to generate a diverse set of
hypotheses. For each hypothesis, we prompt the LLM to generate corresponding optimal actions.
Unlike a common chain-of-thought approach that asks LLM to produce only one thought and one
action, we ask the LLM to output N thoughts and actions. This set of thoughts accounts for the
agent’s uncertainty about the environment. In addition, we use πref to propose M random valid
actions. For computational efficiency, we sample these N hypotheses and actions in one LLM
call rather than N calls, introducing conditional dependencies between them (the same holds when
sampling the M random actions). These LLM calls produce an approximate hypotheses space Ĥt
of size N and an approximate policy space Ât (of deterministic actions) of size N +M .

Thought Cross-verify. In Algorithm 2, we approximate the minimax and maximization steps in
Algorithm 1 with Ĥt and Ât. Concretely, we construct a score matrix St ∈ [0, 1]N×(N+M) whose
entries [St]η,a correspond to the reward of hypothesis-action pairs (η, a). The rows of this score
matrix correspond to hypotheses in Ĥt and columns correspond to actions in Ât. This matrix is
visualized in the middle portion in Figure 4. We use the reward mapping RLLM to produce scores.
The diagonal entries of St are close to 1.0 because the action ai conditionally sampled from ηi should
be scored the highest under ηi. If some action a is deemed optimal across all sampled hypotheses,
we follow this consensus choice (Fig. 5 Stage 1). Conversely, when the hypotheses disagree, we
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Algorithm 2 HELiX (Practical Version with LLMs)

1: Input T , πLLM, πref , RLLM, N,M
2: initialize A0, η0 ∼ πLLM()
3: for t = 0, 1, . . . , T − 1 do
4: execute At, observe Ot
5: Ât, Ĥt ← {πLLM({Aτ , Oτ}tτ=0) | i = 1, . . . , N} // Sample N thought-action
6: Ât ← Ât ∪ {πref(·) | i = 1, . . . ,M} // Sample M random actions from πref
7: // Thought-action cross-verify (for checking if Exploitation step should be trig-

gered.)
8: compute score matrix [St] where [St]η,a ← RLLM(η, a) for a ∈ Ât, η ∈ Ĥt
9: Â∗

t ←
⋂
η∈Ĥt

argmax [St]η // Set of actions optimal to all hypotheses in Ĥt.
10: if Â∗

t ̸= ∅ then
11: At+1 ← tie-break-choose(Â∗

t ) // Exploitation step: check consensus
12: else
13: H̃t ← argmaxη∈Ĥt

(
max [St]η

)
// Exploration step: UCB-inspired

14: At+1 ← argmaxa∈Ât

(
maxη∈H̃t

[
[St]η,a − Eã∼πref

[
[St]η,ã

]])
15: end if
16: end for

Figure 5: HELiX Algorithm. The HELiX algorithm has three steps. First, if the highest-scoring
actions across all generated hypotheses coincide, the algorithm performs an exploitation step. Oth-
erwise, it performs an exploration step by retaining only the hypotheses whose optimal actions
achieve the highest scores. In the absence of a random policy πref , HELiX chooses an action using a
predefined tie-breaking rule. When a random policy πref is available, the algorithm adjusts the score
of each action by subtracting the average score of actions under πref . In the example above, A3 and
A4 are random actions sampled from πref.

select the most optimistic action to encourage exploration (Fig. 5 Stage 2). This distinction between
consensus and disagreement forms the backbone of our exploration–exploitation strategy.

Exploitation Step. Given the score matrix St, we first check whether the exploitation step in Al-
gorithm 1 is triggered. Specifically, if a given action a⋆ satisfies RLLM(η, a⋆) ≥ RLLM(η, a) for
all η ∈ Ht and a ∈ At, then a∗ is identified as a consensus action and exploited immediately. This
corresponds to the exploitation step in the theoretical Algorithm 1. By Lemma 5, if an action solves
the minimax problem, it must also be an optimal action for all remaining hypotheses simultaneously.
If there are multiple consensus actions, we perform tie-breaking detailed below. In Figure 5, this
step is implemented as a set intersection operation over the sets of highest-scoring actions from each
hypothesis.

Exploration Step. If no consensus action exists, we conduct the exploration step in Algorithm 1.
We first eliminate hypotheses whose highest score is lower than those of other hypotheses. This
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implements exploration using the optimism in the face of uncertainty principle (Auer et al., 2002),
where we only keep the most optimistic hypotheses. After the hypothesis elimination, if only one
hypothesis remains, then we execute the best action under that hypothesis. If there are more than one
hypothesis left, we apply a tie-breaking step by re-scoring with a reference policy. The re-scoring
or re-centering step is widely used in RL, such as baseline methods (Weaver & Tao, 2013; Sutton &
Barto, 2018), ReMax (Li et al., 2023), RLOO (Ahmadian et al., 2024), and GRPO (Guo et al., 2025).
This procedure interprets the score as the advantage of an action a relative to those sampled from a
reference policy πref , under a given hypothesis η. There are multiple reasons why an advantage is
useful for tie-breaking: 1) LLMs may not score consistently across hypotheses. Comparing score
differences can help cancel out these inconsistencies. 2) When we use a uniformly random πref ,
the advantage implicitly examines the quality of the hypotheses and favors more discriminative
ones. A permissive hypothesis that assigns approximately the same score to all actions (e.g., “Fire
a shot anywhere on the map”) lacks discriminative power. In contrast, a discriminative hypothesis
assigns higher scores to actions that align with its intent (e.g., “Fire a shot along the edge of the
map”), yielding a higher advantage over random actions. With re-scoring, we favor actions with
high advantages over random actions.

A Note on Tie-breaking. If ties remain after re-scoring, we further tie-break by preferring hypothe-
ses and actions generated earlier in the output. This is due to empirical observations that LLMs
have a preference to produce the best plan and action first, followed by less likely plans and ac-
tions (Dracheva & Phillips, 2024).

F EXPERIMENT DETAILS

In this section, we present experiment details of HELiX in three environments that require learning
from language feedback.

F.1 BASELINES

We consider the following agents for comparison. In addition to HELiX, we implement two of its
variants with slightly different action selection procedures.

Greedy. This agent generates one hypothesis and one action, and returns that action immediately.
This is a ReAct-style baseline.

HELiX (No exploitation step). This baseline agent conducts optimistic exploration without the
consensus-based exploitation step. We demonstrate that optimistic exploration alone is insufficient
in our setup. We use thought sampling to generate N +M actions and N hypotheses, followed
by cross-verification that scores each action under every hypothesis. Unlike in HELiX, we directly
select actions with the highest score across all hypotheses. If there are multiple actions, we tie-break
by preferring hypotheses and actions generated earlier in the output.

HELiX (No πref ). This variant of HELiX includes thought sampling, cross-verification, and the ex-
ploitation step, but omits the re-scoring step using πref . If the exploitation step is not triggered,
we perform the exploration step without re-scoring using random actions sampled from πref . The
benefit of using πref is entirely empirical and depends on its specific instantiation.

F.2 EXPERIMENTAL SETUP

We conduct experiments in the following three gym environments proposed in Tajwar et al. (2025).

WORDLE In each scenario, the environment selects a secret 5-letter word from a predefined dictio-
nary. The agent attempts to guess the word, receiving feedback after each guess indicating correct
letters and their positions. In our experiment, we used 50 scenarios to evaluate all agents. To better
illustrate Example 2 in Section 4.2, we modify the feedback from the original environment to only
contain information about the first incorrect character. For example, if the target word is “totem” and
the agent’s guess is “apple”, the feedback is “The first letter ‘a’ is incorrect.” Considering that this
feedback provides less information than typical feedback in wordle, we allow the agents to make 10
attempts before termination.
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(a) Wordle (Modified Feedback) (b) Battleship (c) Minesweeper

Figure 6: We show the cumulative reward that the agent is able to obtain during a fixed number of
interactions with the environment. Shaded area represents the standard error of cumulative reward
across different scenarios. We use Claude-Sonnet-3.5 v2 for the experiment.

BATTLESHIP Battleship is a 2D grid environment where the agent must locate and sink three hidden
ships within 20 turns. The agent fires at one cell per turn and receives hit/miss feedback, ship type
(5-cell ship, 4-cell ship, and 3-cell ship), and a map showing all previous hits and misses. Success
requires strategic exploration to find ships and exploitation to sink them efficiently. We use 20
scenarios (maps of ship layout) to evaluate all agents. We use a hidden per-step reward to evaluate
an agent’s performance. For instance, the feedback “a ship was hit but not sunk” corresponds to 0.5
point. We do not communicate this numerical reward information to the agent.

MINESWEEPER Minesweeper is a 2D grid puzzle with hidden mines. At each turn, the agent
chooses to reveal one cell, aiming to uncover all safe cells within 20 turns without hitting a mine.
Revealed cells show the number of adjacent mines, and a ‘0’ triggers automatic revelations of sur-
rounding safe cells. Sequential reasoning and updating of hypotheses based on observed clues are
essential for success. Hidden rewards are calculated by assigning 0.2 to choosing a square that does
not have a mine, and 1.0 to fully solving the game. Invalid moves incur a -0.2 penalty. The agent
receives feedback in the form of a partially revealed map after each action.

F.3 DISCUSSION OF RESULTS

We plot the cumulative reward as a function of the number of environment interaction steps on
WORDLE, BATTLESHIP, and MINESWEEPER in Figure 6. We see that for all three environments,
the base LLM, where we only greedily choose the first action, performs worse generally. In environ-
ments where information-gathering is more necessary, such as BATTLESHIP and MINESWEEPER,
agents designed to conduct strategic explorations and exploitations tend to outperform the greedy
base LLM by a large margin.

As shown, HELiX consistently outperforms both the greedy baseline and HELiX variants: HELiX (no
exploitation step) and HELiX (no πref ). In particular, in BATTLESHIP and MINESWEEPER,
HELiX performs significantly better than the baselines. Although the theoretical version of our algo-
rithm does not use πref , we have found that across these three environments, performing an explicit
re-scoring is beneficial.

Although the initial results are promising, our practical implementation relies on assumptions that
warrant discussion. We assume that the LLM can select an optimal action under a given hypothe-
sis. We also assume that the LLM can produce fair scores across hypotheses for different actions.
However, these assumptions may not hold for all LLMs (Shojaee et al., 2025), and further investi-
gation is needed to validate them. Additionally, to capture the agent’s uncertainty about the envi-
ronment, we sample a set of hypotheses from the LLM. These hypotheses should be both diverse
and faithful in reflecting the history of interactions. The extent to which existing LLMs can propose
plausible hypotheses given historical information remains uncertain, with evidence pointing in both
directions (Zhou et al., 2024; Si et al., 2024; Ghareeb et al., 2025). Our theory-inspired algorithm
highlights key properties an LLM must exhibit to function effectively as a decision-making agent,
one that autonomously learns from environment feedback, proposes hypotheses, and explores ac-
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cordingly. Further research is needed to verify whether current LLMs possess these properties, and,
if not, to determine what forms of training could instill them.

F.4 DISCUSSION OF COMPUTATIONAL COST

As a practical implementation of our theoretical algorithm, HELiX incurs a computational cost on
sampling from LLMs. At a first glance, building the score matrix through cross-verify could incur
K2 LLM calls. However, we could leverage parallelization and efficient sampling techniques to
reduce the cost significantly.

Parallelization of Thought Sampling and Verification. In practical implementations, we sample
thoughts and verify thoughts in parallel, reducing O(K2) to O(K) LLM calls during thought-cross-
verify and O(K) to O(1) calls during thought sampling.

Efficient use of tokens through prefix Caching. In practical implementations, we could leverage
advanced inference techniques like prefix caching where instructions sharing the same prefix se-
quence can be stored and loaded as KV-cache without re-computing. In HELiX, many LLM calls
share common observations and judgments, significantly reducing the actual tokens needed.

Since we mainly use the experiment to illustrate and instantiate one practical implementation, we do
not implement prefix caching or parallel sampling. The table below demonstrates that even without
such advanced techniques, just by exploring the environment better, we still avoid exponential cost
blowup (instead of 9x tokens compared to the baseline, we incur 3.73x to 4.02x the token count of
baseline).

Method Token Count Ratio to Baseline
Baseline 698, 873 1

HELiX (no exploitation step) (explore optimistically) 3, 151, 173 4.51 (K = 3 hypotheses)
HELiX 2, 812, 856 4.02 (K = 3 hypotheses)

Table 2: Token count comparisons on Battleship.

Method Token Count Ratio to Baseline
Baseline 553, 389 1

HELiX (no exploitation step) (explore optimistically) 2, 538, 838 4.59 (K = 3 hypotheses)
HELiX 2, 064, 156 3.59 (K = 3 hypotheses)

Table 3: Token count comparisons on Minesweeper.

To help give a sense of the computational overhead of our practical implementation of HELiX (Algo-
rithm 2), we expand on some key problem-dependent parameters and hyperparameters. For detailed
prompt format and reasoning traces, please see Appendix F.6. Given an LLF problem, practical
HELiX needs an input of domain description, action space, and learning task instruction
at the start of learning. This constitutes the initial prompt. At each round, given historical context
C, HELiX goes through 2-3 LLM calls, whose contexts are outlined below:

1. Feedback-consistent hypothesis generation: the context includes C along with the most
recent domain state and instruction to simultaneously propose num actions diverse hy-
potheses and actions. This is done in one LLM call.

2. Thought cross-verify: the context includes C along with the num actions proposed hy-
potheses and actions from step 1 and instruction to evaluate each action under each hypoth-
esis. This is done in one LLM call.

3. Exploration step: if πref is enabled, the LLM is asked to propose additional
num ref actions exploratory actions. The context includesC along with the num actions
proposed actions from step 2 and instructions to propose actions different from those.

The remaining steps do not need LLM calls; these include: consensus check, UCB elimination based
on scores from step 2, and advantage-based exploration with tie-breaking. Tunable hyperparameters
include num actions, whether to use πref, and num ref actions.
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Assumption 3 satisfcation (trajectory-averaged) 96.26%
Assumption 3 satisfcation (step-averaged) 95.98%

Table 4: The empirical rate at which Assumption 3 is satisfied in Battleship.

F.5 ASSUMPTION SATISFACTION

To give a sense of how Assumption 3 connects to our experiments, we evaluate a key implication of
it: that the shrinking hypothesis set remains consistent with the true hypothesis along the trajectory.
Concretely, if Assumption 3 approximately holds, then as the algorithm updates and prunes the hy-
pothesis set, the true hypothesis should almost always remain included. To test this, we manually
annotate 10 trajectories from the Battleship experiment. For each step in each trajectory, we check
whether the candidate set of hypotheses produced by HELiX contained the true hypothesis. The fol-
lowing table reports (i) the average fraction of steps within a trajectory for which the true hypothesis
is included (Assumption 3 satisfaction (trajectory-averaged)”), and (ii) the fraction of all annotated
steps across trajectories for which the true hypothesis is included (“Assumption 3 satisfaction (step-
averaged)”). Both metrics are above 95%, empirically supporting that Assumption 3 holds to a good
approximation in our experiment.

F.6 REASONING TRACES FOR BATTLESHIP

Here we show a concrete example on how the algorithm works and what the LLM generates.

Transcript on Multi-Hypothesis Evaluation (Battleship)

Prompt: Hit at D2! You have hit a ship, which occupies 4 cells in the grid. Here is how the
board looks now:

1 2 3 4 5 6
A M M M M . M
B M X X M M .
C M X X . M .
D . X X M . .
E . . X . . .
F . . X . . .

========================
Now you have a new task. You are a given a hypothesis (thought/instruction) and actions.
You need to evaluate if how good or bad the action is given the hypothesis.
Hypothesis:
Alternatively, a 2-cell ship might be placed horizontally in the A5-B6 area, as this is one of

the few remaining areas large enough to fit it. A5 would be worth checking.
Rate all the actions indiviually based on whether the action is aligned with the hypothesis.
Action 1: <action>E2</action>
Action 2: <action>E5</action>
Action 3: <action>A5</action>

Make sure the score you assign is between 0 and 1. Please provide your scores in the
following format: ...

Response:
Action 1 for the Hypothesis:
<think> E2 is not aligned with the hypothesis at all. The hypothesis suggests check-
ing A5 area for the 2-cell ship, but E2 is in a completely different part of the
board. Additionally, we already have significant ship presence in the middle columns.
</think><score> 0.1</score>
Action 2 for the Hypothesis:
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<think> E5 is somewhat in the direction of exploring new areas for remaining ships, but
it’s not in the specific A5-B6 area mentioned in the hypothesis. It’s not directly supporting
the hypothesis’s suggested strategy. </think><score> 0.3</score>
Action 3 for the Hypothesis:
<think> A5 is exactly what the hypothesis suggests checking. It’s directly aligned
with the reasoning that the 2-cell ship might be placed horizontally in the A5-B6
area, and it’s one of the few remaining unexplored areas that could fit a 2-cell ship.
</think><score> 1.0</score>

Transcript on Action Proposal (Battleship)

Prompt: Hit at A5! You have hit a ship, which occupies 5 cells in the grid.
Here is how the board looks now:

1 2 3 4 5
A . . X X X
B . X X X X
C . M X X .
D . . M . .
E . . M . .

Given the information above, please propose 3 actions, make sure each of them is a valid
action in the environment, and is reasonable.
Make sure your thoughts and hypotheses are diverse and unique. However, actions are
allowed to be the same if they are the best possible action under that hypothesis.
Please provide your actions in the following format:
Action 1: ¡think¿ ...</think><answer> your first action</answer>
...
Action 3: <think> ...</think><answer> your 3th action</answer>

Response:
Action 1: <think> Looking at the pattern of hits for the 5-cell ship, we can see it extends
from A3 to A5. Since 5-cell ships are 5 cells long and we’ve found 3 cells, we should check
A2 as it’s likely part of the 5-cell ship.</think><answer> A2</answer>

Action 2: <think> If the 5-cell ship is not extending westward, it might extend to the east.
Even though this is less likely since it would make the ship overlap with known hits, we
should consider A1 to eliminate this possibility.</think><answer> A1</answer>

Action 3: <think> Since we’ve hit three cells of the ship (A3, A4, A5), and
this ship is 5 cells long, if it’s not extending horizontally, it must extend verti-
cally. Therefore, checking C5 could reveal if the 5-cell ship extends downward from
A5.</think><answer> C5</answer>
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F.7 PROMPT TEMPLATES

Propose Action Prompt (πLLM)

Given the information above, please propose some hypotheses and act according to those
hypotheses.
You can propose at most {num actions} hypotheses.
Please propose a reasonable number of hypotheses – each hypothesis represents what you
think.
Please provide your actions in the following format:
Action 1: <think>...</think><answer>action 1</answer>
...
Action {num actions}: <think>...</think><answer>your {num actions}th ac-
tion</answer>

Propose Exploration Action Prompt (πref)

Given the information above, please propose {num actions} completely different and un-
expected actions. These should be valid in the environment but should explore unusual or
creative approaches.
Try to think outside the box and propose actions that might not be immediately obvious or
conventional.
Here are the actions you have already proposed:
{actions}
Please avoid proposing the same actions.
Please provide your actions in the following format:
Action 1: <think>...</think><answer>your first random/exploratory action</answer>
...
Action {num actions}: <think>...</think><answer>your {num actions}th random/ex-
ploratory action</answer>

Hypothesis-Conditioned Value Function Prompt (VLLM)

{task description}
========================
Now you have a new task. You are a given a hypothesis (thought/instruction) and actions.
You need to evaluate how good or bad the action is given the hypothesis.

Hypothesis:
<think>
{hypothesis}
</think>

Rate all the actions indiviually based on whether the action is aligned with the hypothesis.

Action {action idx}: <action>{action}</action>

Make sure the score you assign is between 0 and 1. Please provide your scores in the
following format:

Action 1 for the Hypothesis:
<think>... </think>
<score>...</score>
...
Action {num actions} for the Hypothesis:
<think>... </think>
<score>...</score>
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F.8 CODE IMPLEMENTATION

We provide a high-level code snippet that demonstrates how we implement the algorithm below. We
omit the implementation details of methods involving LLM calls.

1 import numpy as np
2

3 c l a s s HELiX :
4

5 def s e l e c t a c t i o n ( s e l f , observat ion , hypotheses , ac t ions ,
random actions ) :

6

7 i f random actions i s not None :
8 a c t i o n s = a c t i o n s + random actions # eva lua te on a l l a c t i o n s
9

10 # Create a matr ix to s t o r e s co re s f o r each hypothes i s−ac t ion pa i r
11 s co re mat r i x = np . zeros (( len ( hypotheses ) , len ( a c t i o n s ) ) )
12

13 # F i l l the score matr ix by eva lua t ing each hypothes i s−ac t ion pa i r
14 f o r h idx , hypothes i s in enumerate ( hypotheses ) :
15 s co re s = s e l f . eva lua te mu l t i hypo these s ( observat ion ,

hypothes i s , a c t i o n s )
16 s co re mat r i x [ h idx ] = score s
17

18 # ======== E x p l o i t a t i o n s tep : consensus check =======
19 consensus ac t ion = s e l f . consensus ac t ion ( score matr ix , a c t i o n s )
20 i f consensus ac t ion i s not None :
21 re turn consensus ac t ion
22

23 # ====== UCB e l im ina t i on ======
24 score matr ix , hypotheses , a c t i o n s = s e l f .

u cb hypo the s i s e l im ina t i on ( s co re mat r i x . copy () , hypotheses ,
a c t i o n s )

25

26 # ====== (Re−scor ing +) Exp lora t ion =====
27 bes t hypo thes i s , be s t a c t i on , b e s t o v e r a l l s c o r e ,

b e s t a c t i o n i n d i c e s = s e l f . t i e b r e a k i n g ( score matr ix ,
hypotheses , a c t i o n s )

28

29 re turn b e s t a c t i o n
30

31 def consensus ac t ion ( s e l f , s core matr ix , a c t i o n s ) :
32 max scores per row = np . max( score matr ix , a x i s =1)
33 a c t i o n s e t s = []
34 f o r i in range ( s co re mat r i x . shape [0]) :
35 a c t i o n s e t s . append (np . where ( s co re mat r i x [ i ] ==

max scores per row [ i ]) [ 0 ] . t o l i s t ( ) )
36 # Convert each s u b l i s t to a s e t
37 a c t i o n s e t s = [ s e t ( a c t i o n s ) f o r a c t i o n s in a c t i o n s e t s ]
38

39 # Find the i n t e r s e c t i o n of a l l s e t s
40 over l apped ac t ions = reduce ( lambda x , y : x . i n t e r s e c t i o n ( y ) ,

a c t i o n s e t s )
41

42 # Convert back to l i s t i f needed
43 o v e r l a p p e d a c t i o n s l i s t = l i s t ( ove r l apped ac t ions )
44

45 i f len ( o v e r l a p p e d a c t i o n s l i s t ) == 0:
46 re turn None
47 e l s e :
48 # randomly choose one
49 random index = np . random . choice ( len ( o v e r l a p p e d a c t i o n s l i s t ) )
50 re turn a c t i o n s [ o v e r l a p p e d a c t i o n s l i s t [ random index ]]
51

52 def t i e b r e a k i n g ( s e l f , s core matr ix , hypotheses , ac t ions ,
random actions =[]) :

53

54 # ====== Optional Re−Scor ing =========
55 # Ca l cu la t e average s co re s only f o r random a c t i o n s
56 num regu lar ac t ions = len ( a c t i o n s ) − len ( random actions )
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57

58 # avg (random a c t i o n s )
59 a c t i o n a v g s c o r e s = np . mean( sco re mat r i x [ : , num regu lar ac t ions

: ] , a x i s =1, keepdims=True )
60 normal i zed score mat r ix = score mat r i x − a c t i o n a v g s c o r e s
61

62 # el im ina te hypothes i s again , to prevent t i e s
63 normal ized score matr ix , hypotheses , a c t i o n s = s e l f .

u cb hypo the s i s e l im ina t i on ( normal i zed score mat r ix . copy () ,
hypotheses , a c t i o n s )

64

65 bes t hypo thes i s , be s t a c t i on , b e s t o v e r a l l s c o r e ,
b e s t a c t i o n i n d i c e s = s e l f . two t iered argmax sampl ing (

66 normal ized score matr ix , hypotheses , a c t i o n s
67 )
68

69 re turn bes t hypo thes i s , be s t a c t i on , b e s t o v e r a l l s c o r e ,
b e s t a c t i o n i n d i c e s

70

71 def ucb hypo the s i s e l im ina t i on ( s e l f , s core matr ix , hypotheses ,
a c t i o n s ) :

72 # Get the maximum score f o r each row ( hypothes i s )
73 max scores per row = np . max( score matr ix , a x i s =1)
74

75 # Find the h ighes t score value
76 h i g h e s t s c o r e = np . max( max scores per row )
77

78 # Get i n d i c e s of rows tha t have the h ighes t score
79 s e l e c t e d r o w i n d i c e s = np . where ( max scores per row ==

h i g h e s t s c o r e ) [0]
80

81 # S e l e c t the hypotheses corresponding to these rows
82 s e l e c t ed hypo the se s = [ hypotheses [ i ] f o r i in

s e l e c t e d r o w i n d i c e s ]
83 # we only e l im ina te hypotheses , not a c t i o n s
84

85 # Create a new score matr ix with only the s e l e c t e d rows and
columns

86 new score matr ix = score mat r i x [ s e l e c t ed row ind i c e s , : ]
87

88 re turn new score matr ix , se l ec ted hypotheses , a c t i o n s
89

90 def two t iered argmax sampl ing ( s e l f , s core matr ix , hypotheses ,
a c t i o n s ) :

91 # we take the h ighes t score hypothes i s , then sample i t s h ighes t
ac t i on

92 a s s e r t s co re mat r i x . shape [0] == len ( hypotheses )
93

94 bes t hypo idx = np . argmax(np . max( score matr ix , a x i s =1)) # b ia s
towards f i r s t hypothes i s

95 b e s t a c t i o n i d x = np . argmax( s co re mat r i x [ bes t hypo idx , : ] )
96

97 b e s t a c t i o n = a c t i o n s [ b e s t a c t i o n i d x ]
98 b e s t h y p o t h e s i s = hypotheses [ bes t hypo idx ]
99 b e s t o v e r a l l s c o r e = score mat r i x [ bes t hypo idx , b e s t a c t i o n i d x ]

100

101 re turn bes t hypo thes i s , be s t a c t i on , b e s t o v e r a l l s c o r e , [
b e s t a c t i o n i d x ]

G FAQ FOR REVIEWERS

We compile a list of FAQs from previous interactions with reviewers, with the hope of resolving
common questions and providing a clearer perspective on our contributions.

Q: This work assumes that the agent has access to an effective verifier. Is this assumption necessary
or realistic?
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A (Verifier assumption): This assumption is motivated by empirical evidence that LLMs are
generally stronger at verification than generation. It captures the ability of an LLF agent to decode
textual feedback and assess its consistency, rather than being a mere mathematical simplification.
In practice, for instance, an LLM verifier can be prompted to judge whether an observed (action,
feedback) pair is consistent with a text hypothesis, acting as the verifier loss. For the simplest case,
the LLM judge outputs 0 if it deems these consistent, and 1 otherwise. This verifier loss satisfies
the boundedness and consistency properties (Assumption 2). The unbiased feedback assumption
(Assumption 3) can be satisfied by considering a large enough hypothesis space. Our experiments
further support that these assumptions hold in practice.

Since classical no-regret literature has no formal structure or tools to analyze text-based interactions,
some assumptions must be made to develop rigorous theoretical understanding in this space. Our
work takes an initial step towards such an attempt by making assumptions on the verification capa-
bility of text models only, rather than on their generation capability. We would like to highlight that
the verifier is a natural structure to reduce the problem to solvable problems and hence derive prov-
able algorithms. In particular, we can view the verifier loss as a generalization of a loss of reward
fitting in a classical bandit setting (e.g., one way is to identify O = R as the observed reward and
η = r̂(·) as the reward model, and then use a square loss ℓ(a,O, η) = (R − r̂(a))2. The unbiased
feedback assumption (Assumption 3) is equivalent to using a proper loss function for reward fitting
in this case.

Our set of assumptions is not the only path towards a rigorous understanding of LLF problems, and
it remains an open question if weaker or other forms of assumptions could be made instead. In the
current framework, we can easily relax the verifier assumption to use a ∆-approximately correct
verifier to model mistakes LLM can make (modify assumption 3 to have EO∼fη(a)[ℓ(a,O, η)] ≤
ℓmin
η (a) + ∆), and this will induce a linear bias of O(

√
∆) term in the final regret.

Q: What is the main technical contributions made by this work?

A (Framework construction as a technical contribution):Beyond proving theorems, our primary
contribution is the rigorous framework for LLF, together with principled assumptions under which
such problems are tractable. We view this foundational structure as critical for enabling future
advances in the field.

We would like to emphasize that technical results are not just limited to theorems and lemmas, as
those regarding the regret bound you have pointed out. We believe that technical papers include two
types of technical contributions: those that define the right problem to set the stage, and those that
attempt to solve pre-defined problems.

In fact, in many foundational papers, the primary novelty lies in identifying and formalizing the
right abstraction, one that captures the essential difficulty of a new class of problems and allows
for rigorous analysis. Once such a framework is set, some theory in the traditional sense (upper
bounds, sanity checks in carefully presented examples) shows that it is well-posed, but the heavy
lifting is really in the conceptualization. Our paper can be cast in this category. LLF problems have
been studied largely empirically, and we contribute a formal problem definition, a complexity mea-
sure (TED) to capture learnability, and an efficient algorithm to show the utility of the framework.
We believe that this kind of framework with inspired algorithm work constitutes a solid technical
contribution, even if the theorem-proving part does not contain particularly extensive results.

Q: How does this work compare to other frameworks on learning beyond rewards?

A (Comparison to existing frameworks): We provide detailed discussion (Appendix C) of how
LLF extends frameworks such as IGL. While IGL emphasizes decodability of realized rewards, LLF
leverages richer textual information beyond realized rewards to accelerate learning.

Q: Why doesn’t the obtained regret rate in Theorem 1 match the usual Õ
√
T rate in the bandit

literature?

A (Regret rate): Achieving the optimal rate requires assuming favorable loss structures (e.g.,
squared loss with sub-Gaussian noise). In Theorem 4, we show that when additional structural
assumptions are made, we can recover the Õ

√
T regret rate.

38


	Introduction
	Related Work
	Formulating Learning from Language Feedback
	Formal Setup of LLF
	Environment Model and Text Hypothesis
	Measuring Information in Feedback

	Learnability and Provable Algorithm
	Transfer Eluder Dimension
	Informative Feedback Reduces Learning Complexity Exponentially
	Learning from Feedback Is No Harder Than Learning from Reward
	HELiX Algorithm

	Empirical Studies
	Discussion
	LLF and its relationship to existing paradigms
	Regret Analysis
	Proof Sketch
	Full Analysis
	Version Space Construction for General Bounded Loss
	Rate-Optimal Bound for Squared Loss

	Proofs for Supporting Lemmas and Propositions
	Proof for Proposition 1
	Proof for Lemma 5
	Proof of the Discriminative Feedback Example
	Proof of Reasoning Example
	Proof for Lemma 6

	Extensions
	Special Case of Reward-Agnostic Feedback
	Extension to Contextual Bandits and Stateful Interactions
	Alternative Formulation of Feedback Generation

	Implementing HELiX with Large Language Models
	Experiment Details
	Baselines
	Experimental Setup
	Discussion of Results
	Discussion of Computational Cost
	Assumption Satisfaction
	Reasoning Traces for Battleship
	Prompt Templates
	Code Implementation

	FAQ for Reviewers

