
Functional Acceleration for Policy Mirror Descent

Veronica Chelu❀, ✿ and Doina Precup❀, ✿, ❁, ❃

❀McGill University, ✿Mila Quebec AI Institute, ❁Google DeepMind, ❃CIFAR AI Chair

Abstract

We apply functional acceleration to the Policy Mirror Descent (PMD) general
family of algorithms, which cover a wide range of novel and fundamental methods
in Reinforcement Learning (RL). Leveraging duality, we propose a momentum-
based PMD update. By taking the functional route, our approach is independent
of the policy parametrization and applicable to large-scale optimization, covering
previous applications of momentum at the level of policy parameters as a special
case. We theoretically analyze several properties of this approach and complement
with a numerical ablation study, which serves to illustrate the policy optimization
dynamics on the value polytope, relative to different algorithmic design choices
in this space. We further characterize numerically several features of the problem
setting relevant for functional acceleration, and lastly, we investigate the impact of
approximation on their learning mechanics 1.

1 Introduction

The RL framework (Sutton and Barto, 2018) refers to the problem of solving sequential decision
making tasks under uncertainty, together with a class of solution methods tailored for it. The RL
problem has found applications in games (Tesauro, 1994; Mnih et al., 2013; Silver et al., 2014; Mnih
et al., 2016; Silver et al., 2017; Hessel et al., 2017; Bellemare et al., 2017; Schrittwieser et al., 2019;
Zahavy et al., 2023), robotic manipulation (Schulman et al., 2015, 2017; Haarnoja et al., 2018),
medicine (Jumper et al., 2021; Schaefer et al., 2004; Nie et al., 2020) and is formally described
by means of discounted Markov Decision Processes (MDPs) (Puterman, 1994). On the solution
side, increased interest has been devoted to the study of policy-gradient (PG) approaches based on
optimizing a parameterised policy with respect to an objective (Williams, 1992; Konda and Borkar,
1999; Sutton et al., 1999; Agarwal et al., 2019; Bhandari and Russo, 2019; Kakade, 2001; Bhandari
and Russo, 2021; Mei et al., 2020b,a).

Policy Mirror Descent (PMD) (Agarwal et al., 2019; Bhandari and Russo, 2021; Xiao, 2022; Johnson
et al., 2023; Vaswani et al., 2021) is a general family of algorithms, specified by the choice of mirror
map covering a wide range of novel and fundamental methods in RL. PMD is a proximal algorithm
(Parikh et al., 2014) and an instance of Mirror Descent (MD) (Beck and Teboulle, 2003) on the policy
simplex (Bhandari and Russo, 2021), which applies a proximal regularization to the improvement step
of Policy Iteration (PI), and converges to it as regularization decreases. In the γ-discounted setting,
with an adaptive step-size, it converges linearly at the optimal γ-rate, independent of the dimension
of the state space or problem instance (Johnson et al., 2023), recovering classical approaches, like PI
and VI, as special cases. PMD has been extended to linear approximation by Yuan et al. (2023) and to
general function approximation by Alfano et al. (2024). The latter uses the L2-norm to measure the
function approximation error and applies the PMD update in the dual form, as (generalized) Projected
Gradient Descent (PGD), i.e. a gradient update in the dual space followed by a projection (Bubeck,
2015), rather than in proximal form (Beck and Teboulle, 2003), as extended by Tomar et al. (2020),
and later analyzed by Vaswani et al. (2021), who treat the PMD surrogate objective as a nonlinear

1Code is available at https://github.com/veronicachelu/functional-acceleration-for-pmd

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

https://github.com/veronicachelu/functional-acceleration-for-pmd

optimization problem, that of approximately minimizing at each iteration, a composite proximal
objective, denoted ℓ(πθ) with respect to the policy parameter θ. Vaswani et al. (2023) further relies
on a dual policy norm, induced by the chosen mirror map of an approximate PMD update, to measure
the critic’s evaluation error in a decision-aware actor-critic algorithm. Similarly, we too leverage
critic differences in dual space to gain momentum and accelerate the optimization.

Motivation The running time of PMD algorithms scales with the number of iterations. In addition,
with a parametrized policy class, each iteration of an approximate PMD method may become sample-
inefficient, requiring multiple “inner-loop” updates to the policy parameter (e.g., Vaswani et al.
(2021)). Actor-critic (AC) methods (Sutton et al., 1999; Konda and Borkar, 1999) additionally require
the computation of an inexact critic corresponding to the action-value function, which may further
increase the sample complexity per iteration. It is therefore desirable to design algorithms which
converge in a smaller number of iterations, resulting in significant empirical speedups, as has been
previously argued by Johnson et al. (2023); Xiao (2022); Goyal and Grand-Clement (2021); Russo
(2022).

In this work, we leverage duality and acceleration to build a novel surrogate objective for momentum-
based PMD, leading to faster learning in terms of less iterations necessary to converge. The novelty
of our approach is the application of acceleration mechanics to the direct or functional policy
representation π—hence named functional acceleration, as opposed to classic acceleration applied
to the policy parameter θ (e.g., Mnih et al. (2016); Hessel et al. (2017); Schulman et al. (2017) use
Adam (Kingma and Ba, 2015) or RMSProp (Hinton et al., 2012)). Specifically, we use momentum
in the dual policy space to accelerate on “long ravines” or decelerate at “sharp curvatures” at the
functional level of the policy optimization objective. Intuitively, adding momentum to the functional
PG (the gradient of the policy performance objective with respect to the direct policy representation
π) means applying, to the current directional policy derivative, a weighted version of the previous
policy ascent direction, encouraging the method to adaptively accelerate according to the geometry
of the optimization problem.

Contributions

✿ We illustrate and analyze theoretically the impact of applying functional acceleration on the
optimization dynamics of PMD, leading to a practical momentum-based PMD algorithm.

❀ We characterize the properties of the problem setting, and those intrinsic to the algorithm,
for which applying functional acceleration is conducive to faster learning.

❁ We study the influence of an inexact critic on the acceleration mechanism proposed.

Outline This document is organized as follows. After placing our work in existing literature in
Sec. 2, and setting up the context in which it operates in Sec. 3, we introduce our main ideas in Sec. 4.
We complement with numerical studies in Sec. 5, ending with a short closing in Sec.6.

2 Related Work

Accelerated optimization methods have been at the heart of convex optimization research, e.g.,
Nesterov’s accelerated gradients (NAG) (Nesterov, 1983; Wang and Abernethy, 2018; Wang et al.,
2021), extra-gradient (EG) methods (Korpelevich, 1976), mirror-prox (Nemirovski, 2004; Juditsky
et al., 2011), optimistic MD (Rakhlin and Sridharan, 2013; Joulani et al., 2020b), AO-FTRL (Rakhlin
and Sridharan, 2014; Mohri and Yang, 2015), Forward-Backward-Forward (FBF) method (Tseng,
1991).

As far as we know, our idea of applying acceleration to the direct (functional) policy representation
πθ—independent of the policy parametrization θ—is novel. This is important because it means
universality of the approach to any kind of parameterization and functional form a practitioner
requires. Within the context of RL, acceleration has only been applied to value learning (Vieillard
et al., 2019; Farahmand and Ghavamzadeh, 2021; Goyal and Grand-Clement, 2021), or in the context
of PG methods, classic acceleration is applied to the policy parameter θ—all recent deep RL works
(e.g. Mnih et al. (2016); Hessel et al. (2017); Schulman et al. (2017)) use some form of adaptive
gradient method, like Adam (Kingma and Ba, 2015) or RMSProp (Hinton et al., 2012). The idea of
acceleration generally relies on convexity of the objective relative to the representation of interest.
The transformation from parameters θ to functional representation of the policy as probabilities πθ,
can be highly complex, non-linear, and problem-dependent. Proximal algorithms operate on this

2

functional representation, and rely on relative-convexity and relative-smoothness (Lu et al., 2017)2 of
the objective with respect to π when constructing surrogate models (Bhandari and Russo, 2019, 2021;
Agarwal et al., 2019; Vaswani et al., 2021). These properties suggests the functional acceleration
mechanism is feasible and promising in our setting, since it is able to successfully accelerate convex
optimization (Joulani et al., 2020b).

Limitations & Future Work Our focus is on developing a foundation that motivates further study.
A translation to practical large-scale implementations and deep RL remains for further investigation,
i.e. with non-standard proximal methods, e.g., TRPO (Schulman et al., 2015), PPO (Schulman et al.,
2017), MDPO (Tomar et al., 2020), MPO (Abdolmaleki et al., 2018)). Additional guarantees of
accelerated convergence for general policy parametrizations using the dual policy norm, as well as
theoretical analysis for the stochastic setting, are also deferred for future work.

3 Background & Preliminaries

RL We consider a standard RL setting described by means of a Markov decision process (MDP)
(S,A, r, P, γ, ρ), with state space S, action space A, discount factor γ ∈ [0, 1), initial state distribution
ρ ∈ ∆(S) (∆(X)—the probability simplex over a set X), rewards are sampled from a reward function
R ∼ r(S,A), r : S × A → [0, Rmax], and next states from a transition probability distribution
S′ ∼ P (·|S,A) ∈ ∆(S). The RL problem (Sutton and Barto, 2018) consists in finding a policy
π : S → ∆A ∈ Π = ∆

|S|
A , maximizing the performance objective defined as the discounted

expected cumulative reward V π
ρ

.
= Es∼ρV

π
s ∈ R, where V π ∈ R|S| and Qπ ∈ R|S|×|A| are the

value and action-value functions of a policy π, such that V π
s = Eπ[

∑∞
i=0 γ

iRi+1|S0 = s], Qπ
s,a

.
=

Eπ

[∑∞
i=0 γ

iRi|S0 = s,A0 = a
]

and V π
s

.
= Eπ [Q(s,A)]. There exists an optimal deterministic

policy π∗ that simultaneously maximises V π and Qπ (Bellman, 1957). Let dπ be the discounted
visitation distribution dπs =(1−γ)

∑∞
i=0 γ

i Pr(Si = s|S0 ∼ ρ,Aj ∼ πsj ,∀j ≤ i).

We use the shorthand notation ⟨·, ·⟩—the dot product, ∇f(x) .
= ∇xf(x)—gradients and partial

derivatives, ∇f(x, y) .
= ∇xf(x, y), πt .

= πθt , Qt .
= Qπt , V t .

= V πt , dtρ
.
= dπ

t

ρ , πs
.
= π(·|s),

Qs
.
= Q(s), Vs

.
= V (s), rs

.
= r(s), πa|s

.
= π(a|s), Qs,a

.
= Q(s, a).

PG Algorithms update the parameters θ ∈ Θ of a parametric policy πθ using surrogate objectives that
are local approximations of the original performance. In the tabular setting, the direct parameterisation
associates a parameter to each state-action pair, allowing the shorthand notation π .

= πθ. The gradient
of the performance V π

ρ with respect to the direct representation π (Sutton et al., 1999; Agarwal et al.,
2019; Bhandari and Russo, 2019)—which we call the “functional” gradient, to distinguish it from
the gradient ∇θV

πθ
ρ relative to a policy parameter θ, is ∇πsV

π
ρ = 1/(1−γ)dπs,ρQ

π
s,a ∈ R|A|. Then,

we define ∇V π
ρ ∈ R|S|×|A| as the concatenation of ∇πsV

π
ρ ,∀s ∈ S (yielding a PGT for directional

derivatives in Lemma 2 in Appendix B.1.1).

Mirror Descent (MD) is a general gradient descent algorithm, applicable to constrained spaces
C, which relies on Fenchel conjugate duality to map the iterates of an optimization problem x∗ =
argminx∈X∩C f(X), back and forth between a primal X and a dual space X ∗. The algorithm
uses a convex function of the Legendre-type 3, called a mirror map h, to map the MD iterates x
to the dual space where the gradient update is performed ∇h(y) .

= ∇h(x) − η∇f(x), with η a
step size. A new iterate satisfying the primal constraints C is obtained using a Bregman projection
x′

.
= projhC(y) = argminx∈C Dh(x,∇h∗(∇h(y))) of the updated dual iterate ∇h(y) mapped back

in the primal space using the conjugate function of h, h∗(x∗) = supx∈X ⟨x, x∗⟩ − h(x). This
projection relies on a Bregman divergence Dh(x, y)

.
= h(x)− h(y)− ⟨∇h(y), x− y⟩ (Amari, 1998;

Bubeck, 2015; Banerjee et al., 2005). Furthermore, cf. Amari (2016), the divergences derived from
the two convex functions are substantially the same, except for the order Dh(x,∇h∗(∇h(y))) =
Dh∗(∇h(y),∇h∗(x)). The proximal formulation of mirror descent merges the update and projection
steps of MD to x′ .= argminx̄∈X∩C η⟨∇f(x), x̄⟩+Dh(x̄, x) (see Lemma 3 in Appendix B.1).

2relative to the mirror map h.
3We require h to be strictly convex and essentially smooth (differentiable and ∥∇h(xt)∥ → ∞ for any

sequence xt converging to a point on the boundary of domh) on the relative interior (rint) of domh.

3

PMD is an instance of MD (Beck and Teboulle, 2003), applying GD in a non-Euclidean geometry,
using the proximal perspective of MD, πt+1 .

= argminπ∈Π −⟨∇V t
ρ , π⟩ + 1/ηtDh(π, π

t) for some
sequence of step-sizes ηt > 0 and initial policy π0. The visitation-distribution dtρ in the gradient of
the surrogate objective can lead to vanishing gradients in infrequently visited states under πt (Mei
et al., 2020a; Bhandari and Russo, 2021; Johnson et al., 2023), so PMD iteratively applies a variant
that separates the objective per state

πt+1
s

.
= argminπs∈∆(A) −⟨Q̂t

s, πs⟩+ 1/ηtDh(πs, π
t
s)

where Q̂t
s corresponds to Qt

s (a preconditioned gradient cf. Kakade (2001)) or some approximation
thereof, for the exact and inexact versions, respectively. Using the negative Boltzmann-Schannon
entropy (Shannon, 1948) as mirror map yields the Natural Policy Gradient (NPG) (Kakade, 2001).
With a null Bregman divergence, it recovers PI (Johnson et al., 2023).

Approximate PMD The standard PMD algorithm is adapted by Tomar et al. (2020) and
Vaswani et al. (2021) to general policy parametrizations πθ, by updating the parameters θ us-
ing the PMD surrogate objective, which can be expressed as a composite objective θt+1 =

argminθ∈Θ Es∼dt
ρ
[−Ea∼πθ

s
[Q̂t

s,a] + 1/ηtDh(π
θ
s , π

t
s)]. Alfano et al. (2024) introduces the concept of

Bregman policy class {πθ : πθ
s = projh∆(A)(∇h∗(fθs)), s ∈ S}, and uses a parametrized function fθ

to approximate the dual update of MD f t+1
s

.
= ∇h(πt

s)− ηtQ̂t
s. To satisfy the simplex constraint,

a Bregman projection is used on the dual approximation mapped back to the policy space πθ
s =

projh∆(A)(∇h∗(f t+1
s)), equivalent to θt+1 = argminθ∈ΘDh(π

θ
s ,∇h∗(f t+1

s)). Using the negative
Boltzmann-Shannon entropy, yields the softmax policy class πθ

s,a
.
= exp fθ

s,a/∥ exp fθ
s∥1,∀s, a ∈ S×A.

4 Functional Acceleration for PMD

In this work, we primarily focus on a momentum-based PMD update. To build some intuition around
the proposed update, consider first an idealized update, called PMD(+lookahead), anticipating one
iteration ahead on the optimization path using the lookhead return Q̃t

s, ∀s ∈ S

π̃t
s = greedy(Q̂t

s) Q̃t
s = E[rs + γ⟨Q̂t

s′ , π̃
t
s′⟩] (1)

where Q̃t
s is the expected return of acting greedily with π̃t for one iteration, and follow-

ing πt thereafter. With η̃t an adaptive step-size, it leads to the PGD update πt+1 =
argminπs∈∆(A)Dh(πs,∇h∗(∇h(πt

s) − η̃tQ̃t
s)) (cf. Alfano et al. (2024)), and to the proximal

update (cf. Johnson et al. (2023))

πt+1
s = argminπs∈∆(A) −⟨Q̃t

s, πs⟩+ 1/η̃tDh(πs, π
t
s) (2)

Prop. 1 indicates PMD(+lookahead) (Eq. 1 & Eq. 2) accelerates convergence by changing the
contraction rate via the discount factor γ2, instead of the traditional γ, corresponding to the one-step
lookahead horizon chosen here, H=1 (generalizing to γH+1 for multi-step). Proof in Appendix B.2.
Proposition 1. (Functional acceleration with exact PMD(+lookahead)) The policy iterates πt+1

of PMD(+lookahead) satisfy ∥V ∗−V t∥∞ ≤ (γ2)t(∥V ∗−V 0∥∞ +
∑

i≤t
ϵi/(γ2)i), with step-size

adaptation, η̃t ≥ 1/ϵtDh(greedy(Q̃
t
s), π

t
s), ∀ϵt arbitrarily small.

For inexact critics Q̂t, it is known that the hard greedification operator π̃t
s = greedy(Q̂t

s) can yield
unstable updates. Taking inspiration from the “mirror prox” method of Nemirovski (2004) (aka the
“extragradient” (extrapolated gradient) method), we further relax the lookahead by replacing the hard
greedification in Eq. 1 with another PMD update

π̃t
s = argminπs∈∆(A) −⟨Q̂t

s, πs⟩+ 1/ηtDh(πs, π
t
s) (3)

We denote PMD(+extragradient) the combination of Eq. 3 & 2. Prop. 2 confirms the acceleration
property of PMD(+lookahead) is maintained.
Proposition 2. (Functional acceleration with PMD(+extragradient)) The policy iterates πt+1 of
PMD(+extragradient) satisfy ∥V ∗−V t∥∞≤(γ2)t(∥V ∗−V 0∥∞+

∑
i≤t

(ϵi+γϵ̃t)/(γ2)i), with step-

size adaptation, ηt≥1/ϵ̃tDh(greedy(Q̂
t
s), π

t
s), and η̃t≥1/ϵtDh(greedy(Q̃

t
s), π

t
s), ∀ϵt, ϵ̃t arbitrarily

small.

4

This algorithm uses intermediary policies π̃t
s to look ahead, but the next policy iterate is obtained from

πt
s, so it requires keeping two policies for each iteration. The next proposition shows that the solutions
πt+1
s of PMD(+extragradient) subsume those of another update, called PMD(+correction)

(Eq. 3 & Eq. 4), which relaxes this requirement by obtaining the next policy directly from π̃t. It does
this by using a lookahead correction η̃tQ̃t

s − ηtQ̂t
s (rather than using the lookahead η̃tQ̃t

s). The PGD
update is πt+1 = argminπs∈∆(A)Dh(πs,∇h∗(∇h(π̃t

s)− [η̃tQ̃t
s − ηtQ̂t

s])), whereas the proximal
perspective is

πt+1
s = argminπs∈∆(A) −⟨Q̃t

s − ηt
/η̃tQ̂t

s, πs⟩+ 1/η̃tDh(πs, π̃
t
s) (4)

Proposition 3. (Extrapolation from the future) The solutions of PMD(+extragradient) subsume
those of PMD(+correction).

The update of PMD(+correction) in Eq. 4 is a relaxation of the update of PMD(+extragradient)
in the sense that we no longer need to rollback to πt to perform the update, rather, we can use the
freshest policy iterate available, which is π̃t, keeping around a single policy at a time. However,
this also means potentially missing out some solutions due to the extra intermediary projection via
π̃t. This update takes inspiration from the “forward-backward-forward” and “predictor-corrector”
methods of of Tseng (1991), and Cheng et al. (2018), respectively.

At this point, we still need two evaluations per iteration, that of the action-value function Q̂t
s ≈ Qt

s,
and the lookahead Q̃t

s, which is inefficient without model-based access. The following lazy coun-
terparts further relax this assumption, using a single evaluation per iteration, at the expense of extra
memory, performing “extrapolation from the past” (Gidel et al., 2018; Böhm et al., 2020), by delay-
ing the correction and recycling previous Q-functions. In other words, we may apply the correction
for timestep t−1 with delay, at timestep t, and we may use a single set of Q-function corresponding to
the policy sequence {πt}t≥0, leading to an update called Lazy PMD(+correction)(Eq. 5 & Eq. 6)

π̃t
s = argminπs∈∆(A) −⟨ηt−1

/ηt(Q̂
t
s − Q̂t−1

s), πs⟩+ 1/ηt−1Dh(πs, π
t
s) (5)

πt+1
s = argminπs∈∆(A) −⟨Q̂t

s, πs⟩+ 1/ηtDh(πs, π̃
t
s) (6)

Finally, by relying on a single set of policy iterates, we may merge the two updates in Eq. 5 and 6,
into a momentum-based PMD update, denoted Lazy PMD(+momentum) (Eq. 7),

πt+1
s =argmin

πs∈∆(A)

−⟨Q̂t
s+ηt−1

/ηt(Q̂t
s−Q̂t−1

s), πs⟩+1/ηtDh(πs, π
t
s) (7)

An update akin to Eq. 7 is called “optimistic” mirror descent by Joulani et al. (2020b,a); Rakhlin
and Sridharan (2013, 2014) and a “forward-reflected-backward” method by Malitsky and Tam
(2020). Prop. 4 shows the iterates of Lazy PMD(+momentum) fortunately subsume those of Lazy
PMD(+correction).

Proposition 4. (Extrapolation from the past) The solutions of Lazy PMD(+momentum) subsume
those of Lazy PMD(+correction).

Alg. 2 in Appendix C summarizes the aforementioned updates.

4.1 Approximate Functional Acceleration for Parametric Policies

We are interested in designing algorithms feasible for large-scale optimization, so we further consider
parametrized versions of the functional acceleration algorithms introduced, which we illustrate
numerically in Sec. 5.

Q-function Approximation For the exact setting, we compute model-based versions of all updates,
Q̂t .= Qt. For the inexact setting, we consider approximation errors between Q̂t and Qt (Sec.5.3).

5

Algorithm 1 Approximate Lazy PMD(+momentum)
1: Initialize policy parameter θ0 ∈ Θ, mirror map h, small constant ϵ0, learning rate β
2: for t = 1, 2 . . . T do
3: Find Q̂t approximating Qt (critic update)
4: Compute adaptive step-size ηt = Dh(greedy(Q̂t),πt)/γ2(t+1)ϵ0

5: Find πt+1 .
= πθt+1 by solving the surrogate problem (approximately with k GD updates)

6: minθ∈Θ ℓ(θ) ℓ(θ)
.
=−Es∼dtρ

[Ea∼πθ [Q̂t
s,a + ηt−1/ηt(Q̂

t
s,a − Q̂t−1

s,a)] + 1/ηtDh(π
θ
s , π

t
s)]

7: (init) θ(0) .
= θt (for i ∈ [0..k−1]) θ(i+1) = θ(i) − β∇θ(i)ℓ(θ

(i)) (final) θt+1
.
= θ(k)

8: end for

Policy Approximation We parametrize the policy iterates using a Bregman policy class {πθ : πθ
s =

projh∆(A)(∇h∗(fθs)), s ∈ S}, a tabular parametrization for the dual policy representation fθs,a
.
= θs,a,

and the negative Boltzmann-Shannon entropy as mirror map h, which leads to the softmax policy
class πθ .

= exp θs,·/Σa∈A exp θs,a. There are two ways of updating the parameter vector θ (cf.
Lemma 3 (Bubeck, 2015)): (i) the PGD perspective of MD (Alfano et al., 2024; Haarnoja et al., 2018;
Abdolmaleki et al., 2018) (see Appendix E), or (ii) the proximal perspective (Tomar et al., 2020;
Vaswani et al., 2021, 2023). The latter is used and described in Alg. 1. We execute the parameter
optimization in Alg. 1 in expectation over the state-action space—in full-batch (computing dπρ exactly
and in expectation for all actions) to showcase the higher-level optimization that is the spotlight of this
work and remove any other collateral artifacts or confounding effects from exploration of the state
space or too early committal to a strategy (Mei et al., 2021). Practical large-scale algorithms apply
mini-batches sampled from a reply buffer, with the updates somewhere between full-batch and online.
In making this simplification, we inevitably leave complementary investigations on the influence
of stochasticity and variance of the policy gradient for future work. The rest of the algorithms use
surrogate objectives cf. Sec. 4 (details in Appendix D).

5 Numerical Studies

In this section, we investigate numerically the aforementioned algorithms, focusing on the fol-
lowing questions: (i) When is acceleration possible?—Sec. 5.1 investigates for which settings is
functional acceleration opportune, and attempts to characterize properties of the problem which
make it advantageous. (ii) What are the policy optimization dynamics of each functional acceler-
ation method?—Sec. 5.2 illustrates the policy optimization dynamics of the methods introduced
on the space of policy value. (iii) Should we expect acceleration to be effective with an inexact
critic?—Sec. 5.3 investigates the implications of using value approximation.

5.1 When is Acceleration Possible?

Experimental Setting We consider randomly constructed finite MDPs—Random MDP problems
(Archibald et al., 1995), abstract, yet representative of the kind of MDP encountered in practice,
which serve as a test-bench for RL algorithms (Goyal and Grand-Clement, 2021; Scherrer and Geist,
2014; Vieillard et al., 2019). A Random MDP generator M .

= (|S|, |A|, b, γ) is parameterized by
4 parameters: number of states |S|, number of actions |A|, branching factor b specifying for each
state-action pair the maximum number of possible next states, chosen randomly. We vary b, γ, and
|A| to show how the characteristics of the problem, and the features of the algorithms, impact learning
speed with or without functional acceleration. Additional details in Appendix G.2.

Metrics We measure the following quantities. (i) The optimality gap or cumulative regret after T
iterations, Regrett

.
=

∑
t≤T V

∗
ρ − V πt

ρ . The relative difference in optimality gap between the PMD
baseline and PMD(+mom) (henceforth used as shorthand for Lazy PMD(+momentum)) shows whether
functional acceleration speeds up convergence. To quantify the complexity of the optimization
problem and ill-conditioning of the optimization landscape (significant difference in scaling along
different directions) for a Random MDP instance, we use the dual representation form of Wang et al.
(2008) for policies, aka the successor representation (Dayan, 1993) or state-visitation frequency.
Specifically, we define the matrix Ψπ .

= (I − γPπ)−1, with PπVs = Eπ[Vs′ |s]. Policy iteration
is known to be equivalent to the Newton-Kantorovich iteration procedure applied to the functional
equation of dynamic programming (Puterman and Brumelle, 1979), V πt+1

= V πt − Ψ∇f(V πt

),
where ∇f(V) = (I − T)(V)—with T the Bellman operator—can be treated as the gradient

6

operator of an unknown function f : R|S| → R (Grand-Clément, 2021) (see Appendix F). From this
perspective, the matrix Ψ can be interpreted as a gradient preconditioner, its inverse is the Hessian
∇2f(V), the Jacobian of a gradient operator ∇f . We use the condition number of this matrix, defined
as κ(Ψ)

.
= |λmax|/|λmin|, for λmax, λmin the max and min eigenvalues in the spectrum spec(Ψ). We

measure (ii) the condition number κ0 = κ(Ψπ0

) of a randomly initialized (diffusion) policy π0

(Fig. 1(a-b)) and (iii) the average condition number κt≤T = 1/T
∑

t≤T κ(Ψ
πt

), for policies on the
optimization path of an algorithm (Fig. 1(c)). Lastly, we also measure (iv) the mean entropy of a
randomly initialized policy H0 ∝

∑
s,a π

0
s,a log π

0
s,a (Fig. 1(d)), inversely correlated with κ0. Similar

observations can be made using the condition number of Ψ−1 or the spectral radius ρ(Ψ).

Fig. 1: The left y-axis shows the optimality gap or cumulative regret of the updates: PI, PMD and PMD(+mom),
after T iterations (T = 10 (a-c), T = 20 (d)) relative to changing the hyperparameters: (a) b—the branching
factor of the Random MDP, (b) γ—the discount factor, (c) k—the number of parameter updates, (d) |A|—the
number of actions. Shades denote standard deviation over 50 sampled MDPs. The right y-axis and dotted curves
measure: (a-b)—the condition number κ0, (c) the average condition number κt≤T , (d) the entropy H0.

Hypothesis & Observations In Fig. 1 we show the relative difference in optimality gap (Regrett)
between PMD(+mom) and the PMD baseline, as we change the features of the algorithms and the
complexity of the problem. First, we highlight two cases that lead to ill-conditioning—indicated
by the condition number κ0: (a) sparse connectivity of the underlying Markov chain controlled
by decreasing the branching factor b, which represents the proportion of next states available at
every state-action pair; (b) increasing the effective horizon via the discount factor γ. We illustrate
the relative difference in optimality gap between the two updates correlates with ill-conditioned
policy optimization landscapes, supporting the hypothesis that functional acceleration leads to
faster navigation, relative to the baseline, particularly on such landscapes characterized by “long
ravines” or “sharp curvatures” at the functional level. In (c), we show the relative difference
in optimality gap between the two updates correlates also with the magnitude of the directional
derivative, captured via the number of parameter updates k used in the “inner-loop“ optimization
procedure. Intuitively, as k → ∞ it will approach the exact solutions of the surrogate models from
Sec. 4. As k decreases, the added momentum will shrink too, becoming negligible, defaulting to the
classic parameter-level momentum in the limiting case of k=1 (the online setting). In (d), as we
increase the number of actions, the optimization problem becomes more challenging, as indicated by
the increasing entropy of policies and overall suboptimality. However, we also observe the relative
difference between PMD(+mom) and the baseline PMD increases, suggesting the increasing advantage
of functional acceleration. Appendix H.1 illustrates additional statistics on the learning performance.

Implications These studies indicate (i) that it is possible to accelerate PMD, that the advantage
of functional acceleration is proportional to: (ii) the policy improvement magnitude, and (iii) the
ill-conditioning of the optimization surface, induced by the policy and MDP dynamics.

5.2 Policy Dynamics in Value Space

We study the map π → V π from stationary policies to their respective value functions. This functional
mapping from policies to values has been characterized theoretically as a possibly self-intersecting,
non-convex polytope (Dadashi et al., 2019). Specifically, we illustrate the expected dynamics of
the functional acceleration algorithms introduced in Sec. 4 (summarized in Alg. 2 in Appendix C),
over the joint simplex describing all policies. The space of value functions V is the set of all value
functions that are attained by some policy and corresponds to the image of Π under the functional
mapping π → V π: V .

= {V π|π ∈ Π}.

Experimental Setting We use two-state MDPs (see Appendix G.1 for specifics and Appendix H.2
for additional illustrations on other MDPs). We initialize all methods at the same starting policies

7

Fig. 2: Shows the policy optimization dynamics of the PMD family of algorithms on the value polytope. Gray
points denote the boundaries—corresponding in this case to deterministic value functions, gray dotted lines
are associated hyperplanes. (a-f,i) Arrows denote policy improvement between consecutive policies on
the optimization path. (g-h) Color points denote values associated with policies on the path, color gradient
indicates iteration number t, star ⋆ marks the value of the final policy πT . Top-left annotation indicates the
policy initialization, and bottom-right the final iteration number T of the snapshot.

π0: (i) center—in the interior of the polytope, (ii) boundary—near a boundary of the polytope,
close to the adversarial corner relative to the optimum. We use the value polytope to visualize three
aspects of the learning dynamics: (1) the policy improvement path through the polytope, (2) the
speed at which they traverse the polytope, and (3) sub-optimal attractors with long escape times that
occur along this path, making the policy iterates accumulate (cf. Mei et al. (2020a)). We compute
model-based versions of all relevant updates. We keep the policies π̃w and πθ separately parametrized
when we compare the policy optimization dynamics of updates using two sets of policy iterates. The
optimization procedure for w is analogous to θ using n updates. We use β = 0.1 for the “inner” loop
optimization procedure and shorthand notation PMD(+loo), PMD(+ext), PMD(+cor), PMD(+lzc).

Observations & Insights Fig. 2 illustrates (a-f) the policy dynamics of all algorithms for a
default value of k = 50 corresponding to an update close to being exact, (g-h) the impact of policy
approximation through k, and (c,i) the benefit of approximate functional acceleration relative to
the baselines: PMD (without acceleration) and PMD(+loo) (idealized acceleration).

We make the following observations: (a) PMD’s dynamics follow a straight path between the iterates
of PI, consistent with the former being an approximation of the latter. In particular, we may infer
from the accumulation points in (g) the dependence of the convergence speed on the approximation
quality through k—the number of parameter updates per iteration. PMD with k = 1 corresponds to
online PG, which depends strongly on initialization, a known issue caused by vanishing gradients
at the boundary of the polytope, as we may observe in (g) for the π0 : boundary initialization. In
contrast, as we increase k, the steps become larger, and the rate of convergence is higher, revealed

8

by the accumulation points and the faster escape from sub-optimal attractors—the corners of the
polytope. Increasing k → ∞, PMD resembles PI, for which the policy iterates jump between values
of deterministic policies, corresponding, in this MDP, to the corners of the polytope (a).

(b) PMD(+loo) follows a different trajectory through the value polytope compared to PMD and PI.
Notably, for the π0 : boundary, initialization, the optimization path starts in the opposite direction,
guided by the lookahead (left-bottom corner) and then course-corrects. (d) PMD(+ext) accelerates
toward the optimum relative to PMD. The speed of PMD(+cor) is very similar to PMD(+ext), but the
optimization dynamics differ (d-e). An analogous statement applies to PMD(+lzc) vs PMD(+mom)
with respect to speed similarity and dynamics difference (c,f), and correspondingly we observe
acceleration for PMD(+mom) relative to PMD in (c), and suboptimality relative to the idealized
acceleration of PMD(+loo) in (i).

5.3 Functional Acceleration with an Inexact Critic

For the same experimental setting as Sec. 5.2, Fig. 3 illustrates the impact of an inexact critic on
the relative advantage of functional acceleration, in two settings: (Left) controlled—the critic’s
error is sampled from a random normal distribution with mean 0 and standard deviation τ , such
that Q̂t

s = Qt
s +N (0, τ), ∀s. (Right) natural—the critic is an empirical estimate of the return

obtained by Monte-Carlo sampling, and its error arises naturally from using m truncated trajectories
up to horizon 1/1−γ, i.e. Q̂t

s
.
= 1/m

∑
i≤m

Gi
s/Ni

s, where Gi
s is the ith empirical return sampled with

πt
s and N i

s is the empirical visitation frequency of s.

Fig. 3: Shows the cumulative regret of the updates, PI, PMD and PMD(+mom), on the y-axis, after T = 50
iterations, relative to changing the hyperparameter k—the number of parameter updates for PMD and PMD(+mom),
with n = 0, in the inexact setting: (Left) controlled—τ , the scale of the critic’s error, and (Right)
natural—m, the number of trajectories used in the Monte-Carlo estimation of the return. Error bars denote
standard deviation over 50 seeds using policies initialized from a random uniform distribution U(0, 1).

We observe a larger relative difference in suboptimality between PMD(+mom) and PMD for higher
values of k, highlighting the difference between functional acceleration (cf. Sec.4) and classic
acceleration (applied to the parameter vector θ), corresponding to k = 1, reinforcing evidence from
Sec. 5.1. Further, we confirm PI performs increasingly poor when paired with an inexact critic with
growing error. Then, we observe a range in which functional acceleration is particularly advantageous,
which extends from having negligible benefit, for small k, to more impactful differences in optimality
gap for larger k. Beyond a certain sweet spot, when it is maximally advantageous, the critic’s error
becomes too large, leading to oscillations and considerable variance. Additional illustrations of this
phenomenon in Appendix H.3.

6 Closing

Inspired by functional acceleration from convex optimization theory, we proposed a momentum-based
PMD update applicable to general policy parametrization and large-scale optimization. We analyzed
several design choices in ablation studies designed to characterize qualitatively the properties of the
resulting algorithms, and illustrated numerically how the characteristics of the problem influence
the added benefit of using acceleration. Finally we looked at how inexact critics impact the method.
Further analysis with these methods using stochastic simulation and function approximation would
be very useful.

9

Acknowledgments and Disclosure of Funding

The authors thank Jincheng Mei, Hado van Hasselt and all our reviewers for feedback and insights.
Veronica Chelu is grateful for support from IVADO, Fonds d’excellence en recherche Apogée Canada,
Bourse d’excellence au doctorat.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. A.

(2018). Maximum a posteriori policy optimisation. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. (2019). Optimality and approximation with
policy gradient methods in markov decision processes. CoRR, abs/1908.00261.

Alfano, C., Yuan, R., and Rebeschini, P. (2024). A novel framework for policy mirror descent with
general parameterization and linear convergence.

Amari, S.-i. (1998). Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):251–
276.

Amari, S.-i. (2016). Information Geometry and Its Applications. Springer Publishing Company,
Incorporated, 1st edition.

Anderson, D. G. M. (1965). Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547–
560.

Archibald, T. W., McKinnon, K. I. M., and Thomas, L. C. (1995). On the generation of markov
decision processes. 46(3):354–361.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with bregman divergences.
J. Mach. Learn. Res., 6:1705–1749.

Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for
convex optimization. Oper. Res. Lett., 31(3):167–175.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on reinforcement
learning. CoRR, abs/1707.06887.

Bellman, R. (1957). Dynamic Programming. Dover Publications.

Bhandari, J. and Russo, D. (2019). Global optimality guarantees for policy gradient methods. CoRR,
abs/1906.01786.

Bhandari, J. and Russo, D. (2021). On the linear convergence of policy gradient methods for finite
mdps. In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research,
pages 2386–2394. PMLR.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee, M. (2009). Natural actor–critic algorithms.
Automatica, 45(11):2471–2482.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Found. Trends Mach. Learn.,
8(3-4):231–357.

Böhm, A., Sedlmayer, M., Csetnek, E. R., and Boţ, R. I. (2020). Two steps at a time – taking gan
training in stride with tseng’s method.

Chen, G. and Teboulle, M. (1993). Convergence analysis of a proximal-like minimization algorithm
using bregman functions. SIAM J. on Optimization, 3(3):538–543.

Cheng, C., Yan, X., Ratliff, N. D., and Boots, B. (2018). Predictor-corrector policy optimization.
CoRR, abs/1810.06509.

10

Dadashi, R., Taïga, A. A., Roux, N. L., Schuurmans, D., and Bellemare, M. G. (2019). The value
function polytope in reinforcement learning.

Dayan, P. (1993). Improving Generalization for Temporal Difference Learning: The Successor
Representation. Neural Computation, 5(4):613–624.

Farahmand, A.-M. and Ghavamzadeh, M. (2021). Pid accelerated value iteration algorithm. In Meila,
M. and Zhang, T., editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 3143–3153. PMLR.

Gidel, G., Berard, H., Vincent, P., and Lacoste-Julien, S. (2018). A variational inequality perspective
on generative adversarial nets. CoRR, abs/1802.10551.

Goyal, V. and Grand-Clement, J. (2021). A first-order approach to accelerated value iteration.

Grand-Clément, J. (2021). From convex optimization to mdps: A review of first-order, second-order
and quasi-newton methods for mdps.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In Dy, J. G. and Krause, A.,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 1856–1865. PMLR.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M. G., and Silver, D. (2017). Rainbow: Combining improvements in deep reinforcement
learning. CoRR, abs/1710.02298.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. CSC321.

Johnson, E., Pike-Burke, C., and Rebeschini, P. (2023). Optimal convergence rate for exact policy
mirror descent in discounted markov decision processes.

Joulani, P., György, A., and Szepesvári, C. (2020a). A modular analysis of adaptive (non-)convex
optimization: Optimism, composite objectives, variance reduction, and variational bounds. Theor.
Comput. Sci., 808:108–138.

Joulani, P., Raj, A., Gyorgy, A., and Szepesvari, C. (2020b). A simpler approach to accelerated
optimization: iterative averaging meets optimism. In III, H. D. and Singh, A., editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 4984–4993. PMLR.

Juditsky, A., Nemirovskii, A. S., and Tauvel, C. (2011). Solving variational inequalities with
stochastic mirror-prox algorithm.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J.,
Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman,
D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S.,
Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021). Highly
accurate protein structure prediction with alphafold. Nature, 596(7873):583–589.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, ICML ’02, page
267–274, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Kakade, S. M. (2001). A natural policy gradient. In Dietterich, T., Becker, S., and Ghahramani, Z.,
editors, Advances in Neural Information Processing Systems, volume 14. MIT Press.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and
LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

11

Konda, V. R. and Borkar, V. S. (1999). Actor-critic–type learning algorithms for markov decision
processes. SIAM Journal on Control and Optimization, 38(1):94–123.

Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other problems.

Lu, H., Freund, R. M., and Nesterov, Y. (2017). Relatively-smooth convex optimization by first-order
methods, and applications.

Malitsky, Y. and Tam, M. K. (2020). A forward-backward splitting method for monotone inclusions
without cocoercivity.

Mei, J., Dai, B., Xiao, C., Szepesvári, C., and Schuurmans, D. (2021). Understanding the effect of
stochasticity in policy optimization. CoRR, abs/2110.15572.

Mei, J., Xiao, C., Dai, B., Li, L., Szepesvári, C., and Schuurmans, D. (2020a). Escaping the
gravitational pull of softmax. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Mei, J., Xiao, C., Szepesvári, C., and Schuurmans, D. (2020b). On the global convergence rates of
softmax policy gradient methods. CoRR, abs/2005.06392.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu,
K. (2016). Asynchronous methods for deep reinforcement learning. CoRR, abs/1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller,
M. A. (2013). Playing atari with deep reinforcement learning. CoRR, abs/1312.5602.

Mohri, M. and Yang, S. (2015). Accelerating optimization via adaptive prediction.

Nemirovski, A. (2004). Prox-method with rate of convergence o(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM
J. Optim., 15(1):229–251.

Nesterov, Y. (1983). A method for solving the convex programming problem with convergence rate
O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547.

Nie, X., Brunskill, E., and Wager, S. (2020). Learning when-to-treat policies.

Parikh, N., Boyd, S., et al. (2014). Proximal algorithms. Foundations and trends® in Optimization,
1(3):127–239.

Puterman, M. L. (1994). Markov Decision Processes. Wiley.

Puterman, M. L. and Brumelle, S. L. (1979). On the convergence of policy iteration in stationary
dynamic programming. Mathematics of Operations Research, 4(1):60–69.

Rakhlin, A. and Sridharan, K. (2013). Online learning with predictable sequences. In Shalev-Shwartz,
S. and Steinwart, I., editors, COLT 2013 - The 26th Annual Conference on Learning Theory,
June 12-14, 2013, Princeton University, NJ, USA, volume 30 of JMLR Workshop and Conference
Proceedings, pages 993–1019. JMLR.org.

Rakhlin, A. and Sridharan, K. (2014). Online learning with predictable sequences.

Russo, D. (2022). Approximation benefits of policy gradient methods with aggregated states.

Schaefer, A. J., Bailey, M. D., Shechter, S. M., and Roberts, M. S. (2004). Modeling Medical
Treatment Using Markov Decision Processes, pages 593–612. Springer US, Boston, MA.

Scherrer, B. and Geist, M. (2014). Local policy search in a convex space and conservative policy
iteration as boosted policy search. In Machine Learning and Knowledge Discovery in Databases,
page 35–50, Berlin, Heidelberg. Springer-Verlag.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T. P., and Silver, D. (2019). Mastering atari, go, chess and
shogi by planning with a learned model. CoRR, abs/1911.08265.

12

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2015). Trust region policy
optimization. CoRR, abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal,
27(3):379–423.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic
policy gradient algorithms. In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ICML’14, page I–387–I–395. JMLR.org.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel,
T., and Hassabis, D. (2017). Mastering the game of go without human knowledge. Nature,
550(7676):354–359.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for
reinforcement learning with function approximation. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, NIPS’99, page 1057–1063, Cambridge,
MA, USA. MIT Press.

Tesauro, G. (1994). TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level
Play. Neural Computation, 6(2):215–219.

Tomar, M., Shani, L., Efroni, Y., and Ghavamzadeh, M. (2020). Mirror descent policy optimization.
CoRR, abs/2005.09814.

Tseng, P. (1991). Applications of a splitting algorithm to decomposition in convex programming and
variational inequalities. SIAM Journal on Control and Optimization, 29(1):119–138.

Vaswani, S., Bachem, O., Totaro, S., Mueller, R., Geist, M., Machado, M. C., Castro, P. S., and
Roux, N. L. (2021). A functional mirror ascent view of policy gradient methods with function
approximation. CoRR, abs/2108.05828.

Vaswani, S., Kazemi, A., Babanezhad, R., and Roux, N. L. (2023). Decision-aware actor-critic with
function approximation and theoretical guarantees.

Vieillard, N., Scherrer, B., Pietquin, O., and Geist, M. (2019). Momentum in reinforcement learning.
CoRR, abs/1910.09322.

Wang, J. and Abernethy, J. D. (2018). Acceleration through optimistic no-regret dynamics. CoRR,
abs/1807.10455.

Wang, J., Abernethy, J. D., and Levy, K. Y. (2021). No-regret dynamics in the fenchel game: A
unified framework for algorithmic convex optimization. CoRR, abs/2111.11309.

Wang, T., Lizotte, D. J., Bowling, M., and Schuurmans, D. (2008). Dual representations for dynamic
programming.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8:229–256.

Xiao, L. (2022). On the convergence rates of policy gradient methods.

Yuan, R., Du, S. S., Gower, R. M., Lazaric, A., and Xiao, L. (2023). Linear convergence of natural
policy gradient methods with log-linear policies. In The Eleventh International Conference on
Learning Representations.

Zahavy, T., Veeriah, V., Hou, S., Waugh, K., Lai, M., Leurent, E., Tomasev, N., Schut, L., Hassabis,
D., and Singh, S. (2023). Diversifying ai: Towards creative chess with alphazero.

13

A Notation

t iteration number
T max number of iterations
k, n number of GD updates for the “inner-loop” proximal optimization procedure
η, η̃ step sizes for the proximal update (regularization strength of the divergence)
β step size for the “inner-loop” parameter-level optimization procedure
h the mirror map
Dh(π, π̃) Bregman divergence associated with the mirror map h

Table 1: Notation

B Proofs and derivations

B.1 Proofs and Derivations for Sec.3: Background & Preliminaries

B.1.1 Functional Policy Gradient

The Performance Difference Lemma (PDL) is a property that relates the difference in values of
policies to the policies themselves.

Lemma 1. (Performance Difference Lemma from Kakade and Langford (2002)) For any policies
πt+1 and πt, and an initial distribution ρ

V t+1
ρ − V t

ρ = 1/1−γ

∑
s

∑
a∈A

dt+1
s,ρ (πt+1

s,a − πt
s,a, Q

t
s,a) = 1/1−γEs∼dt+1

ρ

[
⟨Qt

s, π
t+1
s − πt

s⟩
]

Proof. According to the definition of the value function

V t+1
s − V t

s = ⟨Qt+1
s , πt+1

s ⟩ − ⟨Qt
s, π

t
s⟩

= ⟨Qt
s, π

t+1
s − πt

s⟩+ ⟨Qt+1
s −Qt

s, π
t+1
s ⟩

= ⟨Qt
s, π

t+1
s − πt

s⟩+ γ
∑
s′

∑
a

P (s′|s, a)πt+1
s,a [V t+1

s′ − V t
s′]

= 1/1−γ

∑
s′

dt+1
s→s′⟨Q

t
s′ , π

t+1
s′ − πt

s′⟩

The following lemma is a version of the policy gradient theorem (Sutton et al., 1999) applied to
the direct policy representation—the functional representation of the policy probabilities, and has
appeared in various forms in Agarwal et al. (2019); Bhandari and Russo (2019, 2021); Russo (2022).

Lemma 2. (Policy Gradient Theorem for Directional Derivatives) For two policies πt+1, πt ∈ Π

⟨∇V t
ρ , π

t+1 − πt⟩ =
∑
s∈S

∑
a∈A

dπ
t

s Q
t
s,a(π

t+1
s,a − πt

s,a) = Es∼dt

[
⟨Qt

s, π
t+1
s − πt

s⟩
]

Proof. A Taylor expansion using the Performance Difference Lemma 1 reveals

V t+1
ρ − V t

ρ = 1/1−γ

∑
s

∑
a∈A

dt+1
s,ρ (πt+1

s,a − πt
s,a, Q

t
s,a) = Es∼dt+1

ρ

[
⟨Qt

s, π
t+1
s − πt

s⟩
]

= 1/1−γEs∼dt
ρ

[
⟨Qt

s, π
t+1
s − πt

s⟩
]
+ 1/1−γ

∑
s∈S

(dt+1
s,ρ − dts,ρ)⟨Qt

s, π
t+1
s − πt

s⟩︸ ︷︷ ︸
=O(∥πt+1

s −πt
s∥2)

The last error term is second-order since Pπ is linear in π and then dπρ is differentiable in π.

14

The next lemma states that the MD method minimizes the local linearization of a function while not
moving too far away from the previous point, with distances measured via the Bregman divergence
of the mirror map.
Lemma 3. (Proximal perspective on mirror descent) The MD update for x ∈ X ∩ C, with mirror
map h : X → R for the minimization problem minx∈X∩C f(x), with f : X → R can be rewritten in
the following ways, for step-size η ≥ 0 and t ≥ 0

xt+1 = argminx∈X∩C Dh(x,∇h∗(∇h(xt) + η∇f(xt))) (PGD)
= argminx∈X∩C η ⟨∇f(xt), x⟩+Dh(x, xt) (proximal perspective)

Proof.
xt+1 = argminx∈X∩C Dh(x,∇h∗(∇h(xt) + η∇f(xt))) (generalized GD)

= argminx∈X∩C h(x)− ⟨∇h(∇h∗(∇h(xt) + η∇f(xt))), x⟩
= argminx∈X∩C h(x)− ⟨∇h(xt) + η∇f(xt), x⟩
= argminx∈X∩C η⟨∇f(xt), x⟩+Dh(x, xt) (proximal perspective)

B.1.2 Helpful Lemmas for Policy Mirror Descent

Key to the analysis of Xiao (2022) and Johnson et al. (2023) is the Three-Point Descent Lemma, that
relates the improvement of the proximal gradient update compared to an arbitrary point. It originally
comes from Chen and Teboulle (1993) (Lemma 3.2).
Lemma 4. (Three-Point Descent Lemma, Lemma 6 in Xiao (2022)). Suppose that X ⊂ Rn is a
closed convex set, ψ : X → R is a proper, closed convex function, Dh(·, ·) is the Bregman divergence
generated by a function h of Legendre type and rint domh ∩ X ̸= ∅. For any xt ∈ rint domh, let

xt+1 = argminx∈X ψ(x) +Dh(x, x
t)

Then xt+1 ∈ rint domh ∩ X and ∀x ∈ X ,
ψ(xt+1) +Dh(x

t+1, xt) ≤ ψ(x) +Dh(x, x
t)−Dh(x, x

t+1)

The PMD update is an instance of the proximal minimisation with X = ∆(A), xt = πt
s and

ψ(x) = −ηt⟨Qt
s, x⟩. Plugging these in, the Three-Point Descent Lemma relates the decrease in the

proximal objective of πt+1
s to any other policy, i.e. ∀πs ∈ ∆(A),

−ηt⟨Qt
s, π

t+1
s − πs⟩ ≤ Dh(πs, π

t
s)−Dh(π

t+1
s , πt

s)−Dh(πs, π
t+1
s)

This equation is key to the analysis of convergence of exact PMD, leading to Lemma 6 regarding the
monotonic improvement in Q-functions of PMD iterates.
Lemma 5. (Descent Property of PMD for Q-functions, Lemma 7 in Xiao (2022) Consider the
policies produced by the iterative updates of exact PMD. For any t ≥ 0

⟨Qt
s, π

t+1
s − πt

s⟩ ≥ 0, ∀s ∈ S,

Proof. From the Three-Point Descent Lemma 4 of Xiao (2022) with πs = πt
s,

ηt⟨Qt
s, π

t+1
s − πt

s⟩ ≥ Dh(π
t
s, π

t+1
s) +Dh(π

t+1
s , πt

s)

since the Bregman divergences are non-negative and ηt > 0,
⟨Qt

s, π
t+1
s − πt

s⟩ ≥ 0

Lemma 6. (Descent Property of PMD for Value Functions, Lemma A.2. from Johnson et al.
(2023)) Consider the policies produced by the iterative updates of exact PMD. Then for any t ≥ 0,

Qt+1
s ≥ Qt

s, ∀s ∈ S
V t+1
ρ ≥ V t

ρ , ∀ρ ∈ ∆(S)

Proof. Follows from Lemma 5 by an application of the Performance Difference Lemma 1, for an
initial state distribution ρ

V t+1
ρ − V t

ρ =
1

1− γ
Es∼dt+1

ρ

[
⟨Qt

s, π
t+1
s − πt

s⟩
]
≥ 0

15

B.1.3 Detailed Derivation of the Suboptimality Decomposition and Convergence of PMD

Suboptimality decomposition Fix a state s. For any πs, π̃s, let D−V (πs, π̃s) be analogous to a
standard Bregman divergence with mirror map −V , capturing the curvature of −V at πs

D−V (πs, π̃s)
.
= −V πs

s − (−V π̃s
s)− ⟨−Qπ̃s

s , πs − π̃s⟩
.
= −V πs

s + V π̃s
s + ⟨Qπ̃s

s , πs − π̃s⟩
= −⟨Qπ

s −Qπ̃
s , πs⟩ (8)

(using Holder’s inequality) (9)

≥ −∥Qπ
s −Qπ̃

s ∥∞∥πs∥1
≥ −γ∥V π − V π̃∥∞ (10)

For the general case, using the approximation Q̂t
s ≈ Qt

s, the per-iteration suboptimality is

V ∗
s − V t

s = −⟨Q̂t
s, π

t+1
s − π∗

s ⟩ − ⟨Q̂t
s, π

t
s − πt+1

s ⟩ −D−V (π
∗
s , π

t
s)− ⟨Qt

s − Q̂t
s, π

t
s − π∗

s ⟩ (11)

The first term, −⟨Q̂t
s, π

t+1
s − π∗

s ⟩, is the forward regret (cf. Joulani et al. (2020a)), defined as the
regret of a “cheating” algorithm that uses the πt+1 at time t, and depends only on the choices of the
algorithm and the feedback it receives. This quantity can be can be upper-bounded using an idealized
lookahead policy, π̄t+1

s —greedy with respect to Q̂t
s (cf. Johnson et al. (2023)).

If πt+1
s is the result of a PMD update, then Johnson et al. (2023) show that using the Three-Point

Descent Lemma (Lemma 6, Xiao (2022), included in Appendix B.1, Lemma 4), denoting the step
sizes ηt ≥ 0, the forward regret is further upper-bounded by

−⟨Q̂t
s, π

t+1
s − π∗

s ⟩ ≤ −⟨Q̂t
s, π

t+1 − π̄t+1⟩
≤ ⟨Q̂t

s, π̄
t+1 − πt+1⟩

≤ 1/ηtDh(π̄
t+1
s , πt

s)− 1/ηtDh(π̄
t+1
s , πt+1

s)− 1/ηtDh(π
t+1
s , πt

s)

≤ 1/ηtDh(π̄
t+1
s , πt

s) (12)
The second term in Eq. 11 is

−⟨Q̂t
s, π

t
s − πt+1

s ⟩ = V t+1
s − V t

s +D−V (π
t+1
s , πt

s) + ⟨Qt
s − Q̂t

s, π
t
s − πt+1

s ⟩ (13)

The third term −D−V (π
∗
s , π

t
s) can be bounded by applying the upper-approximation from Eq.10,

resulting in
−D−V (π

∗
s , π

t
s) ≤ γ∥V ∗ − V t∥∞ (14)

Plugging Eq. 12, 13, 14 back in the suboptimality decomposition from Eq. 11, we obtain

V ∗
s − V t+1

s ≤ γ∥V ∗ − V t∥∞ + 1/ηtDh(π̄
t+1
s , πt

s) + ⟨Qt
s − Q̂t

s, π
∗
s − πt+1

s ⟩+D−V (π
t+1
s , πt

s)︸ ︷︷ ︸
ξt(iteration error)

(15)

With ξt—the iteration error, recursing Eq. 15
∥V ∗ − V t∥∞ ≤ γt

∑
i≤t

ξi/γi + γt∥V ∗ − V 0∥∞

Convergence of Exact PMD at γ-rate If the PMD update is exact, then Q̂t
s = Qt

s,∀s ∈ S. The
Three-Point Descent Lemma 4 guarantees policy improvement for an Exact PMD update, and yields
Lemma 6 stating V t+1

s ≥ V t
s , and ⟨Qt+1

s −Qt
s, π

t+1
s ⟩ ≥ 0. Consequently

D−V (π
t+1
s , πt

s) = −⟨Qt+1
s −Qt

s, π
t+1
s ⟩ ≤ 0

There remains only one term in the suboptimality from Eq. 11, namely
ξt ≤ 1/ηtDh(π̄

t+1
s , πt

s)

An optimal step-size ηt can be derived by upper-bounding it 1/ηtDh(π̄
t+1
s , πt

s) ≤ ϵt, for any arbitrary
constant ϵt. Setting ϵt = γ2(t+1)ϵ0 for some ϵ0 > 0, gives the optimal step-size with a geometrically
increasing component, which guarantees linear convergence at the γ-rate

∥V ∗ − V t∥∞ ≤ γt
(∥∥V ∗ − V 0

∥∥
∞ + ϵ0/1−γ

)
matching the bounds of PI and VI as ϵ0 goes to 0 (cf. Theorem 4.1., Johnson et al. (2023)).

16

B.2 Proofs for Sec. 4: Functional Acceleration for PMD

Definition 7. (Functional gradient of the Bregman divergence) Fix a state s. For any policies
π1
s , π

0
s , we denote the gradient of the Bregman divergence with respect to the first argument

∇Dh(π
1
s , π

0
s)

.
= ∇h(π1

s)−∇h(π0
s)

The following lemma can be also interpreted as a definition for the difference of differences of
Bregman divergences.

Lemma 8. (Four-Point Identity Lemma of Bregman divergences) For any four policies
π3, π2, π1, π0, we have

⟨∇Dh(π
1
s , π

0
s), π

3
s − π2

s⟩ = Dh(π
3
s , π

0
s)−Dh(π

3
s , π

1
s)− [Dh(π

2
s , π

0
s)−Dh(π

2
s , π

1
s)]

Proof. Immediate from the definition.

An immediate consequence is the Three-Point Identity Lemma of Bregman divergences (cf. Bubeck
(2015), Eq. 4.1, Beck and Teboulle (2003), Lemma 4.1).

Lemma 9. (Three-Point Identity Lemma of Bregman divergences) For any three policies π2, π1, π0,

⟨∇Dh(π
1
s , π

0
s), π

2
s − π1

s⟩ = Dh(π
2
s , π

0
s)−Dh(π

2
s , π

1
s)−Dh(π

1
s , π

0
s)

Proof. Apply Lemma 8 with π3
s = π2

s , π2
s = π1

s .

Proposition 10. (Extrapolation from the future) The solutions of PMD(+extragradient) subsume
those of PMD(+correction).

Proof. Fix a state s and timestep t. From the definition of PMD(+extragradient)

π̃t
s = argminπs∈∆(A) −⟨Q̂t

s, πs⟩+ 1/ηtDh(πs, π
t
s)

Q̃t
s = E[rs + γQ̂t(s′, π̃t

s)]

given step-sizes ηt, πt
s, Q̂t

s. For some Qt
s, η

t and ∀πs ∈ ∆(A), let

ℓ(πs,∇h(πt
s)− ηtQt

s)
.
= −ηt⟨Qt

s, πs⟩+Dh(πs, π
t
s)

With this notation, given step-sizes η̃t, we write the surrogate objectives for the next policy iterates of
the updates of PMD(+extragradient)

πt+1
s

.
= argminπs∈∆(A) −⟨Q̃t

s, πs⟩+ 1/η̃tDh(πs, π
t
s)︸ ︷︷ ︸

ℓ(πs,∇h(πt)−η̃tQ̃t
s)

and those of PMD(+correction),

πt+1
s

.
= argminπs∈∆(A) −⟨Q̃t

s−ηt
/η̃tQ̂t

s, πs⟩+ 1/η̃tDh(πs, π̃
t
s)︸ ︷︷ ︸

ℓ(πs,∇h(π̃t
s)−η̃t[Q̃t

s−ηt/η̃tQ̂t
s])

Using Lemma 9 with π1
s = π̃t

s, π2
s = πs π

0
s = πt

s

⟨∇Dh(π̃
t
s, π

t
s), πs − π̃t

s⟩+Dh(πs, π̃
t
s) = D(πs, π

t
s)−D(π̃t

s, π
t
s) (16)

From the optimality of π̃t
s, using the Three-Point Descent Lemma 4, ∀πs

⟨Q̂t
s, πs − π̃t

s⟩+ 1/ηtDh(πs, π̃
t
s) ≤ 1/ηt

(
⟨∇Dh(π̃

t
s, π

t
s), πs − π̃t

s⟩+Dh(πs, π̃
t
s)
)

= 1/ηt
(
Dh(πs, π

t
s)−Dh(π̃

t
s, π

t
s)
)

=⇒ ∀η ≥ 0 ⟨ηt
/ηQ̂t

s, πs − π̃t
s⟩+ 1/ηDh(πs, π̃

t
s) ≤ 1/η

(
⟨∇Dh(π̃

t
s, π

t
s), πs − π̃t

s⟩+Dh(πs, π̃
t
s)
)

= 1/η
(
Dh(πs, π

t
s)−Dh(π̃

t
s, π

t
s)
)

(17)

17

Plugging Eq. 16 and Eq. 17 in the definition of the PMD(+extragradient) update, we can observe
the objectives of PMD(+extragradient) and PMD(+correction) are related in the following way

ℓ(πs,∇h(πt)− η̃tQ̃t
s)− ℓ(π̃t

s,∇h(πt)− η̃tQ̃t
s)

= −⟨Q̃t
s, πs⟩+ 1/η̃tDh(πs, π

t
s)−

[
−⟨Q̃t

s, π̃
t
s⟩+ 1/η̃tDh(π̃

t
s, π

t
s)
]

= −⟨Q̃t
s, πs − π̃t

s⟩+ 1/η̃t
[
Dh(πs, π

t
s)−Dh(π̃

t
s, π

t
s)
]

Eq. 16
= −⟨Q̃t

s − 1/η∇Dh(π̃
t
s, π

t
s), πs − π̃t

s⟩+ 1/η̃tDh(πs, π̃
t
s)

= ℓ(πs,∇h(π̃t
s)− η̃t[Q̃t

s − 1/η̃t∇Dh(π̃
t
s, π

t
s)])− ℓ(π̃t

s,∇h(π̃t
s)− η̃t[Q̃t

s − 1/η̃t∇Dh(π̃
t
s, π

t
s)])

Eq. 17

≥ −⟨Q̃t
s − ηt

/η̃tQ̂t
s, πs − π̃t

s⟩+ 1/η̃tDh(πs, π̃
t
s)

= ℓ(πs,∇h(π̃t
s)− η̃t[Q̃t

s − ηt
/η̃tQ̂t

s])− ℓ(π̃t
s,∇h(π̃t

s)− η̃t[Q̃t
s − ηt

/η̃tQ̂t
s])

Ignoring constant terms, the ordering over objectives implies the solutions of PMD(+extragradient)
subsume those of PMD(+correction).

Proposition 11. (Extrapolation from the past) The solutions of Lazy PMD(+momentum) subsume
those of Lazy PMD(+correction).

Proof. Fix a state s and timestep t. With π̃t
s from the definition of Lazy PMD(+correction)

π̃t
s = argminπs∈∆(A) −⟨ηt−1

/ηt(Q̂
t
s − Q̂t−1

s), πs⟩+ 1/ηt−1Dh(πs, π
t
s)

given step-size ηts, πt
s, Q̂t

s. Given some Qt
s, η

t, let

ℓ(πs,∇h(πt
s)− ηQt

s)
.
= −ηt⟨Qt

s, πs⟩+Dh(πs, π
t
s)

∀πs ∈ ∆(A).

With this notation, we may write the surrogate objectives for the next policy iterates of Lazy
PMD(+correction)

πt+1
s = argminπs∈∆(A) −⟨Q̂t

s, πs⟩+ 1/ηtDh(πs, π̃
t
s)︸ ︷︷ ︸

ℓ(πs,∇h(π̃t
s)−ηtQ̂s)

and Lazy PMD(+momentum)

πt+1
s =argminπs∈∆(A)−⟨Q̂t

s+ηt−1
/ηt(Q̂t

s−Q̂t−1
s), πs⟩+1/ηtDh(πs, π

t
s)︸ ︷︷ ︸

ℓ(πs,∇h(πt
s)−ηt[Q̂t

s+ηt−1/ηt(Q̂t
s−Q̂

t−1
s))

Using Lemma 9 with π1
s = π̃t

s, π2
s = πs π

0
s = πt

s, we have

⟨∇Dh(π̃
t
s, π

t
s), πs − π̃t

s⟩+Dh(πs, π̃
t
s) = D(πs, π

t
s)−D(π̃t

s, π
t
s) (18)

From the optimality of π̃t
s, for any πs, using the Three-Point Descent Lemma 4

ℓ(π̃t
s,∇h(πt

s)− ηt−1[Q̂t
s − Q̂t−1

s]) ≤ ℓ(πs,∇h(πt
s)− ηt−1[Q̂t

s − Q̂t−1
s])

−⟨Q̂t
s − Q̂t−1

s , π̃t
s⟩+ 1/ηt−1D(π̃t

s, π
t
s)) ≤ −⟨Q̂t

s − Q̂t−1
s , πs⟩+ 1/ηt−1

(
D(πs, π

t
s)−Dh(πs, π̃

t
s)
)

1/ηt−1Dh(πs, π̃
t
s) ≤ −⟨Q̂t

s − Q̂t−1
s , πs − π̃t

s⟩+ 1/ηt−1
(
D(πs, π

t
s)−D(π̃t

s, π
t
s)
)

=⇒ 1/ηDh(πs, π̃
t
s) ≤ −ηt−1

/η⟨Q̂t
s − Q̂t−1

s , πs − π̃t
s⟩+ 1/η

(
D(πs, π

t
s)−D(π̃t

s, π
t
s)
)

(19)

Plugging in Eq. 18 and Eq. 19 in the definition of Lazy PMD(+correction), we can observe the
objectives of PMD(+extragradient) and PMD(+correction) are related in the following way

ℓ(πs,∇h(π̃t
s)− ηQ̂s)− ℓ(π̃t

s,∇h(π̃t
s)− ηQ̂s) = −⟨Q̂t

s, πs − π̃t
s⟩+ 1/ηDh(πs, π̃

t
s)

Eq. 18
= −⟨Q̂t

s + 1/η∇Dh(π̃
t
s, π

t
s), πs − π̃t

s⟩+ 1/η(D(πs, π
t
s)−D(π̃t

s, π
t
s))

18

= −⟨Q̂t
s + 1/η∇Dh(π̃

t
s, π

t
s), πs⟩+ 1/ηD(πs, π

t
s)−

(
−⟨Q̂t

s + 1/η∇Dh(π̃
t
s, π

t
s), π̃

t
s⟩+ 1/ηD(π̃t

s, π
t
s)
)

= ℓ(πs,∇h(πt
s)− η[Q̂t

s + 1/η∇Dh(π̃
t
s, π

t
s)])− ℓ(π̃t

s,∇h(πt
s)− η[Q̂t

s + 1/η∇Dh(π̃
t
s, π

t
s)])

Eq. 19

≤ −⟨Q̂t
s + ηt−1

/η(Q̂t
s − Q̂t−1

s), πs − π̃t
s⟩+ 1/η(D(πs, π

t
s)−D(π̃t

s, π
t
s))

= −⟨Q̂t
s + ηt−1

/η(Qt
s −Qt−1

s), πs⟩+ 1/ηD(πs, π
t
s)−

(
−⟨Qs + ηt−1

/η(Qt
s −Qt−1

s), π̃t
s⟩+ 1/ηD(π̃t

s, π
t
s)
)

= ℓ(πs,∇h(πt
s)− η[Q̂t

s + ηt−1
/η(Q̂t

s − Q̂t−1
s)])− ℓ(π̃t

s,∇h(πt
s)− η[Q̂t

s + ηt−1
/η(Q̂t

s − Q̂t−1
s)])

Ignoring constant terms, the ordering over objectives implies the solutions of Lazy PMD(+momentum)
subsume those of Lazy PMD(+correction).

Lemma 12. (Descent Property of exact PMD(+lookahead)) Consider the policies produced by the
iterative updates of PMD(+lookahead)

πt+1
s = argminπ⟨Q̃t

s, π
s⟩+ 1/η̃tDh(πs, π

t
s)

where Q̃t
s
.
= E[rs + γ⟨Qt

s′ , π̃
t
s′⟩], π̃t

s is greedy with respect to Qt
s, η̃t ≥ 0. Then, for any t ≥ 0

⟨Q̃t
s, π

t+1
s − π̃t

s⟩ ≥ 0,∀s ∈ S (20)

⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩ ≥ 0,∀s ∈ S (21)

Proof. Consider first the descent property of π̃t

⟨Qt
s − Q̃t

s, π̃
t
s⟩ =

∑
a∈A

(Qt
s,a − Q̃t

s,a)π̃
t
a|s

= γ
∑
s′∈S

∑
a∈A

Ps′|s,aπ̃
t
a|s

[
⟨Qt

s′ , π
t
s′⟩ − ⟨Qt

s′ , π̃
t
s′⟩

]
≤ 0 (22)

where the last inequality follows from the definition of π̃t
s as greedy with respect toQt

s, which implies
⟨Qt

s′ , π̃
t
s′⟩ ≥ ⟨Qt

s′ , π
t
s′⟩.

Then, for the descent property of πt+1
s , we have

⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩ =

∑
a∈A

(Qt+1
s,a − Q̃t

s,a)π
t+1
a|s

= γ
∑
s′∈S

∑
a∈A

Ps′|s,aπ
t+1
a|s

[
⟨Qt+1

s′ , πt+1
s′ ⟩ − ⟨Qt

s′ , π̃
t
s′⟩

]
= γ

∑
s′∈S

∑
a∈A

Ps′|s,aπ
t+1
a|s

[
⟨Qt+1

s′ , πt+1
s′ ⟩ − ⟨Q̃t

s′ , π̃
t
s′⟩ − ⟨Qt

s′ − Q̃t
s′ , π̃

t
s′⟩

]
(Eq. 22)

≥ γ
∑
s′∈S

∑
a∈A

Ps′|s,aπ
t+1
a|s

[
⟨Qt+1

s′ , πt+1
s′ ⟩ − ⟨Q̃t

s′ , π̃
t
s′⟩

]
= γ

∑
s′

∑
a

Ps′|s,aπ
t+1
a|s

[
⟨Q̃t

s′ , π
t+1
s′ − π̃t

s′⟩+ ⟨Qt+1
s′ − Q̃t

s′ , π
t+1
s′ ⟩

]
Recursing, yields

⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩ = γ/1−γ

∑
s′

dt+1
s′→s′⟨Q̃

t
s′ , π

t+1
s′ − π̃t

s′⟩ (23)

From Lemma 4 with πs = π̃t
s and η̃t ≥ 0

⟨Q̃t
s, π

t+1
s − π̃t

s⟩ ≥ 1/η̃t
(
Dh(π̃

t
s, π

t+1
s) +Dh(π

t+1
s , π̃t

s)
)
≥ 0 (24)

This proves the first claim in Eq. 20. Plugging Eq. 24 back in Eq. 23 we show the second claim in
Eq. 21, ⟨Qt+1

s − Q̃t
s, π

t+1
s ⟩ ≥ 0

Proposition 13. (Functional acceleration with PMD(+lookahead)) Consider the policies produced
by the iterative updates of PMD(+lookahead)

πt+1
s = argminπs∈∆(A) −⟨Q̃t

s, πs⟩+ 1/η̃tDh(πs, π
t
s) (25)

19

where Q̃t
s
.
= E[rs + γ⟨Q̂t

s′ , π̃
t
s′⟩], π̃t

s is greedy with respect to Qt
s, η̃t ≥ 0 are adaptive step sizes,

such that ∀ϵt arbitrarily small, η̃t ≥ 1/ϵtDh(greedy(Q̃
t
s), π

t
s). Then,

V ∗
s − V t+1

s ≤ γ2∥V ∗ − V t∥∞ + ϵt (26)

and recursing yields

∥V ∗ − V t∥∞ ≤ (γ2)t(∥V ∗ − V 0∥∞ +
∑
i≤t

ϵi/(γ2)i) (27)

Proof. If πt+1 is the result of a PMD update which uses Q̃t
s, and step-sizes η̃t, then applying Lemma 4

for πs = π̄t+1
s greedy with respect to Q̃t

s

−⟨Q̃t
s, π

t+1
s − π̄t+1

s ⟩ ≤ 1/η̃t
(
Dh(π̄

t+1
s , πt

s)−Dh(π
t+1
s , πt

s)−Dh(π
t+1
s , π̄t+1

s)
)

(28)

≤ 1/η̃tDh(π̄
t+1
s , πt

s) (29)

Further, the suboptimality is

V ∗
s − V t+1

s = −⟨Q̃t
s, π

t+1
s − π∗

s ⟩ − ⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩+ ⟨Q∗

s − Q̃t
s, π

∗
s ⟩ (30)

Since ⟨Q̃t
s, π

∗
s ⟩ ≤ ⟨Q̃t

s, π̄
t+1
s ⟩ if π̄t+1

s is greedy with respect to Q̃t
s, then plugging Eq 29 in Eq 30

V ∗
s − V t+1

s ≤ 1/ηtDh(π̄
t+1
s , πt

s)− ⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩+ ⟨Q∗

s − Q̃t
s, π

∗
s ⟩ (31)

Next, cf. Lemma 12, ⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩ ≥ 0. Plugging this back into Eq 30

V ∗
s − V t+1

s ≤ 1/η̃tDh(π̄
t+1
s , πt

s) + ⟨Q∗
s − Q̃t

s, π
∗
s ⟩

≤ ⟨Q∗
s − Q̃t

s, π
∗
s ⟩+ ϵt (32)

where the last step follows from step-size adaptation condition η̃t ≥ 1/ϵtDh(π̄
t+1
s , πt

s).

Decomposing the remaining term

⟨Q∗
s − Q̃t

s, π
∗
s ⟩ =

∑
a∈A

(Q∗
s,a − Q̃t

s,a)π
∗
a|s

= γ
∑
s′∈S

∑
a∈A

Ps′|s,aπ
∗
a|s

[
⟨Q∗

s′ , π
∗
s′⟩ − ⟨Qt

s′ , π̃
t
s′⟩

]
= γ

∑
s′∈S

∑
a∈A

Ps′|s,aπ
∗
a|s

[
⟨Q∗

s′ −Qt
s′ , π

∗
s′⟩ − ⟨Qt

s′ , π̃
t
s′ − π∗

s′⟩
]

≤ γ
∑
s′∈S

∑
a∈A

Ps′|s,aπ
∗
a|s

[
⟨Q∗

s′ −Qt
s′ , π

∗
s′⟩

]
= γ2

∑
s′∈S

∑
a∈A

π∗
a|sPs′|s,a

∑
s′′∈S

∑
a′∈A

π∗
s′,a′Ps′′|s′,a′

[
V ∗
s′′ − V t

s′′
]

where the inequality follows due to π̃t
s being greedy with respect to Qt

s, ∀s ∈ S by definition.

Taking the max norm and applying the triangle inequality and the contraction property

∥⟨Q∗ − Q̃t, π∗⟩∥∞ ≤ γ2∥V ∗ − V t∥∞
and then plugging this back in Eq. 32

V ∗
s − V t+1

s ≤ ∥⟨Q∗
s − Q̃t, π∗⟩∥∞ + ϵt

≤ γ2∥V ∗ − V t∥∞ + ϵt

which is the first claim in Eq.26. Then recursing yields the second claim in Eq.27.

Proposition 14. (Functional acceleration with PMD(+extragradient)) Consider the policies
produced by the iterative updates of PMD(+extragradient)

π̃t
s = argminπs∈∆(A) −⟨Q̂t

s, πs⟩+ 1/ηtDh(πs, π
t
s), Q̃t

s
.
= E[rs + γ⟨Q̂t

s′ , π̃
t
s′⟩] (33)

20

πt+1
s = argminπs∈∆(A) −⟨Q̃t

s, πs⟩+ 1/η̃tDh(πs, π
t
s) (34)

where η̃t, ηt ≥ 0 are adaptive step sizes, such that ∀ϵt, ϵ̃t arbitrarily small, η̃t ≥
1/ϵtDh(greedy(Q̃

t
s), π

t
s) and ηt ≥ 1/ϵ̃tDh(greedy(Q

t), πt
s). Then

V ∗
s − V t+1

s ≤ γ2∥V ∗ − V t∥∞ + γϵ̃t + ϵt (35)
and recursing yields

∥V ∗
s − V t

s ∥∞ ≤ (γ2)t(∥V ∗ − V 0∥∞ +
∑
i≤t

(ϵi+γϵ̃t)/(γ2)i) (36)

Proof. If πt+1 is the result of a PMD update with Q̃t
s, applying Lemma 4 for π̄t+1 greedy with

respect to Q̃t
s

−⟨Q̃t
s, π

t+1
s − π̄t+1

s ⟩ ≤ 1/η̃t
(
Dh(π̄

t+1
s , πt

s)−Dh(π
t+1
s , πt

s)−Dh(π
t+1
s , π̄t+1

s)
)

(37)

≤ 1/η̃tDh(π̄
t+1
s , πt

s) (38)
Further, the suboptimality is

V ∗
s − V t+1

s = −⟨Q̃t
s, π

t+1
s − π∗

s ⟩ − ⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩+ ⟨Q∗

s − Q̃t
s, π

∗
s ⟩ (39)

Since ⟨Q̃t
s, π

∗
s ⟩ ≤ ⟨Q̃t

s, π̄
t+1
s ⟩ if π̄t+1

s is greedy with respect to Q̃t
s, then plugging Eq 38 in Eq 39 we

have
V ∗
s − V t+1

s ≤ 1/ηtDh(π̄
t+1
s , πt

s)− ⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩+ ⟨Q∗

s − Q̃t
s, π

∗
s ⟩ (40)

Next, cf. Lemma 12, ⟨Qt+1
s − Q̃t

s, π
t+1
s ⟩ ≥ 0 Plugging back into Eq 39, we obtain

V ∗
s − V t+1

s ≤ 1/ηtDh(π̄
t+1
s , πt

s) + ⟨Q∗
s − Q̃t

s, π
∗
s ⟩

≤ ⟨Q∗
s − Q̃t

s, π
∗
s ⟩+ ϵt (41)

where the last step follows from step-size adaptation condition.

Applying Lemma 4 for π̌t+1
s greedy with respect to Qt,

−⟨Qt
s, π̃

t
s − π∗

s ⟩ ≤ −⟨Qt
s, π̃

t
s − π̌t+1

s ⟩ ≤ 1/ηt
(
Dh(π̌

t+1
s , πt

s)−Dh(π
t+1
s , πt

s)−Dh(π
t+1
s , π̌t+1

s)
)

≤ 1/ηtDh(π̌
t+1
s , πt

s) (42)
Further,

⟨Q∗
s − Q̃t

s, π
∗
s ⟩ =

∑
a∈A

(Q∗
s,a − Q̃t

s,a)π
∗
a|s

= γ
∑
s′∈S

∑
a∈A

Ps′|s,aπ
∗
a|s

[
⟨Q∗

s′ , π
∗
s′⟩ − ⟨Qt

s′ , π̃
t
s′⟩

]
= γ

∑
s′∈S

∑
a∈A

Ps′|s,aπ
∗
a|s

[
⟨Q∗

s′ −Qt
s′ , π

∗
s′⟩ − ⟨Qt

s′ , π̃
t
s′ − π∗

s′⟩
]

Eq. 42

≤ γ
∑
s′∈S

∑
a∈A

Ps′|s,aπ
∗
a|s

[
⟨Q∗

s′ −Qt
s′ , π

∗
s′⟩+ 1/ηtDh(π̌

t+1
s , πt

s)
]

cf. premise
≤ γ

∑
s′∈S

∑
a∈A

Ps′|s,aπ
∗
a|s

[
⟨Q∗

s′ −Qt
s′ , π

∗
s′⟩+ ϵ̃t

]
= γ2

∑
s′∈S

∑
a∈A

π∗
a|sPs′|s,a

[∑
s′′∈S

∑
a′∈A

π∗
s′,a′Ps′′|s′,a′

[
V ∗
s′′ − V t

s′′
]
+ ϵ̃t

]
Taking the max norm, using the triangle inequality and contraction property

∥⟨Q∗ − Q̃t, π∗⟩∥∞ ≤ γ2∥V ∗ − V t ∥∞ + γϵ̃t
Plugging back in Eq. 41

V ∗
s − V t+1

s ≤ ⟨Q∗
s − Q̃t

s, π
∗
s ⟩+ ϵt

≤ ∥⟨Q∗ − Q̃t, π∗⟩∥∞ + ϵt

≤ γ2∥V ∗ − V t∥∞ + γϵ̃t + ϵt
which is the first claim in Eq.35. Recursing yields the second claim in Eq.36.

21

C Details on PMD updates for Sec. 4: Functional Acceleration for PMD

Algorithm 2 PMD(++)
1: Input: π̃0, π0 ∈ rintΠ, adaptive {η̃t, ηt}t≥0

2: for t = 1, 2 . . . T do
3: PMD(+lookahead)

π̃t
s = argminπs∈∆(A) −⟨Qt

s, πs⟩, Q̃t
s
.
= E[rs + γ⟨Qt

s′ , π̃
t
s′⟩]

πt+1
s = argminπs∈∆(A) −⟨Q̃t

s, πs⟩+ 1/η̃tDh(πs, π
t
s)

4: PMD(+extragradient)

π̃t
s = argminπs∈∆(A) −⟨Qt

s, πs⟩+ 1/ηtDh(πs, π
t
s), Q̃t

s
.
= E[rs + γ⟨Qt

s′ , π̃
t
s′⟩]

πt+1
s = argminπs∈∆(A) −⟨Q̃t

s, πs⟩+ 1/η̃tDh(πs, π
t
s)

5: PMD(+correction)

π̃t
s = argminπs∈∆(A) −⟨Qt

s, πs⟩+ 1/ηtDh(πs, π
t
s), Q̃t

s
.
= E[rs + γ⟨Qt

s′ , π̃
t
s′⟩]

πt+1
s = argminπs∈∆(A) −⟨Q̃t

s − ηt/η̃tQ
t
s, πs⟩+ 1/η̃tDh(πs, π̃

t
s)

6: Lazy PMD(+correction)

π̃t
s = argminπs∈∆(A) −⟨Qt

s −Qt−1
s , πs⟩+ 1/ηt−1Dh

(
πs, π

t
s

)
πt+1
s = argminπs∈∆(A) − ⟨Qt

s, πs⟩+ 1/η̃tDh(πs, π̃
t
s)

7: Lazy PMD(+momentum)

πt+1
s = argmin

πs∈∆(A)

− ⟨Qt
s + ηt−1/ηt(Q

t
s −Qt−1

s), πs⟩+ 1/ηtDh(πs, π
t
s)

8: end for

D Details on Algorithmic Implementation for Sec. 4.1: Approximate
Functional Acceleration for Parametric Policies

We use the following shorthand notation for the updates PMD, PMD(+ext), PMD(+cor), PMD(+lzc),
PMD(+mom).

Policy approximation We parametrize the policy iterates using a Bregman policy class {πθ : πθ
s =

projh∆(A)(∇h∗(fθs)), s ∈ S} with a tabular parametrization θ. For the updates requiring two policies,
we keep them parametrized separately with π̃w and πθ.

We formulate the policy optimization problem using the extension proposed by Tomar et al. (2020).
Each iteration, in an “inner-loop” optimization procedure, we update θ and w using k and n,
respectively, updates with standard GD on the composite PMD surrogate model, denoted ℓ : Θ → R
(with Θ

.
= R|S|×|A| cf. the tabular parametrization) associated with the policy represented by those

parameters πθ, or π̃w, respectively. We execute the parameter optimization in expectation over the
state-action space. Concretely, for PMD we use the surrogate

ℓ(θ)
.
= Es∼dt

ρ

[
−⟨Q̂t

s, π
θ⟩+1/ηt

sDh(π
θ
s , π

t
s)
]

(43)

and update in an “inner-loop” optimization procedure

(init) θ(0) .= θt (for i ∈ [0..k]) θ(i+1) = θ(i) − β∇θ(i)ℓ(θ(i)) (final) θt+1
.
= θ(k)

with β—a small learning rate. The optimization procedure for w is analogous. The rest of the
algorithms use the surrogate objectives as described in Sec. 4.

22

We use state dependent step-sizes, and for step-size adaptation, we compute ηts =
Dh(greedy(Q̂

t
s),π

t
s)/γtϵ0, with ϵ0 = 10−4 a small constant according to the optimal adaptive schedule

for PMD, cf. Johnson et al. (2023). The value for η̃ts is chosen analogously. Instead of using
Q̃t

s
.
= E[rs + γ⟨Q̂t

s′ , π̃t⟩] Sec. 4, in the numerical studies, we used Q̃t
s
.
= Qπ̃t

s or approximations
thereof in the inexact settings. Similarly, Q̂t

s
.
= Qπt

s or approximations thereof.

Objectives We now describe in detail the objectives for each algorithm.

PMD—We optimize approximately the objective in Eq.43 with respect to the parameters θ of πθ with
k GD updates using a per-state step-size ηts=Dh(greedy(Q̂

t
s),π

t
s)/γtϵ0.

PMD(+loo)—We keep two policies π̃, πθ—the former is the non-parametric greedy policy

π̃t
s = max

a∈A
Q̂t

s(a)

The latter is parametrized and its parameters θ optimize the following lookahead-based surrogate
with n GD updates using step-size adaptation η̃ts=Dh(greedy(Q̃

t
s),π

t
s)/γtϵ0.

ℓ(θ)
.
= Es∼dt

ρ

[
−⟨Q̃t

s, π
θ
s⟩+1/η̃t

sDh(π
θ
s , π

t
s)
]

PMD(+ext)—The update to πθ is identical to PMD(+loo). In contrast to PMD(+lookahead), π̃w is
parametrized with parameter vector w. The update to π̃w

s uses, at each iteration, k GD updates on
the surrogate objective

ℓ(w)
.
= Es∼dt

ρ

[
−⟨Q̂t

s, π̃
w
s ⟩+1/ηt

sDh(π̃
w
s , π

t
s)
]

The step-sizes ηts are adapted using ηts = Dh(greedy(Q̂
t
s),π

t
s)/γtϵ0

PMD(+cor)—Identical to PMD(+ext) in all aspects except the update to the parameter vector θ of
πθ
s , which is now updated, at each iteration, using n GD updates on the objective

ℓ(θ)
.
= Es∼dt

ρ

[
−⟨[Q̃t

s−ηt
s/η̃t

sQ
t
s], π

θ
s⟩+1/η̃t

sDh(π
θ
s , π̃

t
s)
]

where π̃t
s
.
= π̃wt

s .

PMD(+lzc)—Each iteration, the parameter vector w is updated using n GD updates on the objective

ℓ(w)
.
= Es∼dt

ρ

[
−⟨Q̂t

s−Q̂t−1
s , π̃w

s ⟩+1/ηt−1
s Dh(π̃

w
s , π

t
s)
]

Each iteration, the parameter vector θ is updated using k GD updates on the objective

ℓ(θ)
.
= Es∼dt

ρ

[
−⟨Q̂t

s, π
θ
s⟩+1/ηt

sDh(π
θ
s , π̃

t
s)
]

PMD(+mom)—A single set of parameters θ are learned by updating, at each iteration, using (k + n)
GD updates on the objective

ℓ(θ)
.
= Es∼dt

ρ

[
−⟨Q̂t

s + ηt−1
s /ηt

s[Q̂
t
s − Q̂t−1

s], πθ
s⟩+ 1/ηt

sDh(π
θ
s , π

t
s)
]

E Approximate Policy Mirror Descent as Projected Gradient Descent (PGD)

In this section we provide an alternative perspective on PMD—cf. Lemma 3, stating that the MD
update can be rewritten in the following ways

xt+1 = argminx∈X∩C Dh(x,∇h∗(∇h(xt) + η∇f(xt))) (PGD)
= argminx∈X∩C η ⟨∇f(xt), x⟩+Dh(x, xt) (proximal perspective)

23

Algorithm 3 Approximate Lazy PMD(+momentum) (PGD perspective)
1: Initialize policy parameter θ0 ∈ Θ, mirror map h, small constant ϵ0, learning rate β
2: for t = 1, 2 . . . T do
3: Find Q̂t approximating Qt (critic update)
4: Compute adaptive step-size ηt = Dh(greedy(Q̂t)/γ2(t+1)ϵ0

5: Find πt+1 .
= πθt+1 = ∇h∗(fθt+1) by (approximately) solving the surrogate problem (with k GD

updates)
6: minθ∈Θ ℓ(θ) ℓ(θ)

.
= −Es∼dtρ

[Dh(π
θ
s ,∇h∗(∇h(πt

s)− ηtQ̂t
s − ηt−1(Q̂t

s − Q̂t−1
s))]

7: (init) θ(0) .
= θt (for i ∈ [0..k−1]) θ(i+1) = θ(i) − β∇θ(i)ℓ(θ

(i)) (final) θt+1
.
= θ(k)

8: end for

Alg. 3 describes a PGD perspective on Lazy PMD(+momentum), following Alfano et al. (2024);
Haarnoja et al. (2018); Abdolmaleki et al. (2018). At each iteration, after taking a gradient step in
dual space, a Bregman projection is used on the dual approximation mapped back to the policy space,
to satisfy the simplex constraint.

F Newton’s method

The Newton-Kantorovich theorem generalizes Newton’s method for solving nonlinear equations to
infinite-dimensional Banach spaces. It provides conditions under which Newton’s method converges
and gives an estimate of the convergence rate. Newton-Kantorovich theorem deals with the conver-
gence of Newton’s method for a nonlinear operator F : X → Y , where X and Y are Banach spaces.
The method iteratively solves F (x) = 0 using

xt+1 = xt − (∇F)−1F (xt)

where ∇F is a generalization of the Jacobian of F , provided F is differentiable. Intuitively, at
each iteration, the method performs a linearization of F (x) = 0 close to x, using a first order
Taylor expansion: F (x+∆x) ≈ F (x) +∇F (x)∆x, where F (x) +∇F (x)∆x = 0 ⇐⇒ ∆x =
−(∇F)−1F (x). For x close to x∗, x− (∇F)−1F (x) is a good approximation of x∗. The iterative
sequence {xt}t≥0 converges to x∗, assuming the Jacobian matrix exists, is invertible, and Lipschitz
continuous.

Quasi-Newton methods Any method that replaces the exact computation of the Jacobian matrices
in the Newton’s method (or their inverses) with an approximation, is a quasi-Newton method. A
quasi-Newton method constructs a sequence of iterates {xt}t≥0 and a sequence of matrices {J t}t≥0

such that J t is an approximation of the Jacobian ∇F (xt) for any t ≥ 0 and

xt+1 = xt − (J t)−1F (xt)

In Anderson’s acceleration (Anderson, 1965), information about the last iterates is used to update the
approximation of J t.

Policy iteration as Newton’s method In the context of Markov Decision Processes (MDPs), policy
iteration may be interpreted as Newton’s method with the following notations and analogies. First,
using the Bellman optimality operator T Vs

.
= maxa[rs,a+γ

∑
s′ Ps′|s,aVs′], the aim is to find V such

that V = T V , which is akin to finding the roots V , such that F (V) = V − T V = (I − T)(V) = 0.
We interpret F = ∇f as the gradient of an unknown function f : Rn → Rn, despite the Bellman
operator being non-differentiable in general due to the max. Where the greedy policy πt attains the
max in T V , we obtain J t = I − γPπt

, which is invertible for γ ∈ (0, 1). Expanding the Bellman
operator, we have

V πt+1

= rπ
t+1

+ γPπt+1

V πt+1

=⇒ V πt+1

= (J t)−1rπ
t+1

J tV πt+1

= rπ
t+1

The values corresponding to two successive PI steps can be related in the following way by manipu-
lating the equations (Puterman and Brumelle, 1979; Grand-Clément, 2021)

V πt+1

= (J t)−1rπ
t+1

24

= V πt

− V πt

+ (J t)−1rπ
t+1

= V πt

− (J t)−1J tV πt

+ (J t)−1rπ
t+1

= V πt

− (J t)−1(−rπ
t+1

+ J tV πt

)

= V πt

− (J t)−1(−rπ
t+1

+ (I − γPπt+1

)V πt

)

= V πt

− (J t)−1(V πt

− rπ
t+1

− γPπt+1

V πt

)

= V πt

− (J t)−1(V πt

− T V πt

)

In the main text we used the notation Ψt .
= (I − γPπt

)−1 = (J t)−1, and applied the definition
∇f(V πt

)
.
= F (V πt

) = (I − T)(V πt

) = V πt − T V πt

which yielded the expression

V πt+1

= V πt

−Ψ∇f(V πt

)

25

G Experimental details for Sec. 5: Numerical Studies

G.1 Details of two-state Markov Decision Processes

In this section we give the specifics of the two-state MDPs presented in this work. We make use of
the notation

P (sk|si, aj) = P[i× |A|+ j][k], with P ∈ R|S||A|×|S|

r(si, aj) = r[i× |A|+ j], with r ∈ R|S||A|

In the main text, we used example (i), and in Appendix H.2, additionally examples (ii), (iii), and (iv)

(i) |A| = 2, γ = 0.9, r = [−0.45,−0.1, 0.5, 0.5],

P = [[−0.45, 0.3], [0.99, 0.01], [0.2, 0.8], [0.99, 0.01]]

(ii) |A| = 2, γ = 0.9, r = [0.06, 0.38,−0.13, 0.64],

P = [[0.01, 0.99], [0.92, 0.08], [0.08, 0.92], [0.70, 0.30]]

(iii) |A| = 2, γ = 0.9, r = [0.88,−0.02,−0.98, 0.42],

P = [[0.96, 0.04], [0.19, 0.81], [0.43, 0.57], [0.72, 0.28]]

(iv) |A| = 3, γ = 0.8, r = [−0.1,−1., 0.1, 0.4, 1.5, 0.1],

P = [[0.9, 0.1], [0.2, 0.8], [0.7, 0.3], [0.05, 0.95], [0.25, 0.75], [0.3, 0.7]]

G.2 Details of Random Markov Decision Processes

We consider randomly constructed finite MDPs—Random MDP problems (a.k.a. Garnet MDPs:
Generalized Average Reward Non-stationary Environment Test-bench) (Archibald et al., 1995;
Bhatnagar et al., 2009), abstract, yet representative of the kind of MDP encountered in practice,
which serve as a test-bench for RL algorithms (Goyal and Grand-Clement, 2021; Scherrer and Geist,
2014; Vieillard et al., 2019). A Random MDP generator M .

= (|S|, |A|, b, γ) is parameterized by 4
parameters: number of states |S|, number of actions |A|, branching factor b specifying how many
possible next states are possible for each state-action pair.

The transition probabilities P (s0|s, a) are then computed as follows. First, b states (s1, . . . sb) are
chosen uniformly at random and transition probabilities are set by sampling uniform random b−1
numbers (cut points) between 0 and 1 and sorted as (p0 = 0, p1, . . . pb−1, pb = 1). Then, the
transition probabilities are assigned as P (si|s, a) = pi − pi−1 for each 1 ≤ i ≤ b. The reward is
state-dependent, and for each MDP, the per-state reward rs is uniformly sampled between 0 and
Rmax, such that r ∼ (0, Rmax)

|S|. The illustrations shown use |S| = 100 and Rmax = 100. Other
choices yield similar results.

G.3 Details of Experimental Setup for Sec. 5.1

We use β = 0.5—the learning rate of the parameter “inner-loop” optimization problem, π0 : center
for all experiments of this section. We use vary one parameter of the problem while keeping all others
fixed cf. Table 2. We use 50 randomly generated MDPs for each configuration and compute the mean
and standard deviation shown in the plots.

26

Experiment Alg/MDP parameter Values

k sweep—Fig. 1(Left) k {1, 5, 10, 20, 30}
b 5
γ 0.95
|A| 10
T 10

k 100
b sweep—Fig. 1(Center-Left) b {5, 10, 20, 30, 40}

γ 0.95
|A| 10
T 10

k 30
b 5

γ sweep—Fig. 1(Center-Right) γ {0.98, 0.95, 0.9, 0.85}
|A| 10
T 10

k 100
b 5
γ 0.95

|A| sweep—Fig. 1(Right) |A| {2, 5, 10, 15}
T 20

Table 2: The parameters used for the optimization in Sec. 5.1.

27

H Supplementary Results for Sec. 5: Numerical Studies

H.1 Supplementary results for Sec. 5.1

This section presents additional results to those in Sec. 5.1. Fig. 4 shows the final performance and is
analogous to Fig.1 in the main text. Fig. 5 shows the optimality gap while learning for T iterations.

Fig. 4: The left y-axis shows the final optimality gap (regret) at timestep T (cf. Table 2) of the updates: PI,
PMD and PMD(+mom), after T iterations (T = 10 (a-c), T = 20 (d)) relative to changing the hyperparameters:
(a) b—the branching factor of the Random MDP, (b) γ—the discount factor, (c) k—the number of parameter
updates, (d) |A|—the number of actions. Shades denote standard deviation over 50 sampled MDPs. The right
y-axis and dotted curves measure: (a-b)—the condition number κ0, (c) the average condition number κt≤T ,
(d) the entropy H0.

Fig. 5: The left y-axis shows the optimality gap (regret) of the updates: PI, PMD and PMD(+mom), for T
iterations (T = 20 final column, T = 10 rest of the columns) relative to changing the hyperparameters: (a)
b—the branching factor of the Random MDP, (b) γ—the discount factor, (c) |A|—the number of actions, (d)
k—the number of parameter updates. Shades denote standard deviation over 50 sampled MDPs.

28

H.2 Supplementary results for Sec. 5.2

In this section we provide supplementary results that were omitted in the main body, related to the
policy optimization dynamics of the functional acceleration methods introduced.

Fig. 6: Compares the policy optimization dynamics of PMD and PI on the value polytope of the different example
MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

Fig. 7: Shows the policy optimization dynamics of PMD for different values of k on the value polytope of the
different example MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

PMD In Fig. 6, we compare the optimization dynamics of PMD and PI for different MDPs. We
observe the policy tends to move in a straight line between semi-deterministic policies (cf. Dadashi
et al. (2019)) on the boundary of the polytope, and when it passes over an attractor point it can get
delayed slowing down convergence. Fig. 7 shows the speed of convergence is governed by k which
reflects the inner-loop optimizationn procedure. We again observe in Fig. 7 the accummulation points
and long-escape attractor points of the optimization procedure.

PMD(+loo) In Fig. 8 we observe the dynamics of PMD(+loo) sometimes follow a different path
through the polytope compared to PMD or PI (Fig. 6), as they are following a different ascent direction,

29

Fig. 8: Shows the policy optimization dynamics of PMD(+loo) on the value polytope of the different example
MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

which may be more direct compared to that of PI. Compared to Fig. 7, in Fig. 9, we see less
accumulation points, and more jumps, i.e. the policy improvement step returns policies at further
distance apart.

Fig. 9: Shows the policy optimization dynamics of PMD(+loo)for different values of n on the value polytope of
the different example MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example
(iv).

PMD(+ext) In Fig. 10, we observe the dynamics of PMD(+ext), specifically, the role of each the
forward and backward steps. We may notice more speedup in regions where the ascent direction
aligns over consecutive steps. We chose a value of n particularly to show the difference between the
different kinds of steps. Then, in Fig. 11, we compare them against those of PMD, and find that in
some cases, particularly those in which the problem is less complex, and the optimization surface
less ill-conditioned, that using the next gradient is not better than the baseline PMD, which uses the
current gradient.

30

Fig. 10: Shows the policy optimization dynamics of PMD(+ext) on the value polytope of the different example
MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

Fig. 11: Compares the policy optimization dynamics of PMD and PMD(+ext) on the value polytope of the
different example MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

PMD(+cor) Fig. 12 shows that if the problem is too easy, and the optimal policy can be obtained in
one greedy step, functional acceleration is unnecessary, since the next gradient may not particularly
be better than the current one. Consequently, the correction of PMD(+cor) switches in the opposite
direction, causing the optimization to decelerate. Whether this is a good idea or not may depend
on the problem instance and the designer’s goals. In many cases we do not want to ever reach
stationarity annd may want to keep continually exploring. Compared to PMD(+ext), Fig. 13 shows
their dynamics are very similar.

PMD(+lzc) A similar story unfolds for PMD(+lzc) in Fig. 14, with the exception that the roles of
the forward backward steps are reversed due to the lazy correction. Fig. 15 compares the optimization
dynamics of PMD(+cor) and PMD(+lzc), illustrating the impact of laziness. We may observe that de-
spite their differences, the methods are quite similar in terms of acceleration. Notice that PMD(+cor)
moves ahead in some parts of the optimization path but PMD(+lzc) catches up immediately after.

31

Fig. 12: Shows the policy optimization dynamics of PMD(+cor) on the value polytope of the different example
MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

Fig. 13: Compares the policy optimization dynamics of PMD(+ext) and PMD(+cor) on the value polytope of
the different example MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example
(iv).

PMD(+mom) Fig. 16 compares the policy dynamics of PMD and PMD(+mom) and shows acceleration
of the latter in those directions of ascent that align over consecutive steps, and have ill-conditioned
optimization surfaces. Fig. 17 compares the optimization dynamics of PMD(+mom) with those of
PMD(+lzc), which is consistent with the solution set inclusion property from Proposition4.

H.3 Supplementary results for Sec. 5.3

Fig. 18, 19, 20, 21 illustrate the variance over 50 optimization trajectories initialized from a random
uniform distribution with mean 0 and standard deviation 1, for each of the example two-state MDPs
described in Appendix G.1. We use the same (controlled) setting as in Sec.5.3, and vary the
critic’s error τ , and the policy approximation via k.

The most illustrative example is Fig. 18, since this setting presents the most ill-conditioned surface on
which we can observe the impact of acceleration. We observe in (a) the instability of policy iteration

32

Fig. 14: Shows the policy optimization dynamics of PMD(+lzc) on the value polytope of the different example
MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

Fig. 15: Compares the policy optimization dynamics of PMD(+cor) and PMD(+lzc) on the value polytope of
the different example MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example
(iv).

with an inexact critic. As the critic’s error grows the policy iterates start to oscillate between the
corners of the polytope.

PMD is better behaved for low k values and starts to exhibit behaviour similar to PI at larger k values
(c,d). We observe PMD(+mom) is more unstable than PMD when presented with high level of errors
in the inexact critic (f), and tends to stay more on the boundary of the polytope (e), which is
consistent with having larger values of the gradient due to added momentum.

In (g,h) the learning curves show the variance over trajectories stemming from the random initial-
ization, the instability of PI, the relative improvement of PMD(+mom) over PMD, particularly striking
for larger k consistent with the theory. We observe in (h) PMD(+mom) has more variance in the
beginning, which may actually be desirable in terms of exploration, and that is achieves a similar
performance to PMD at the end of the optimization.

33

Fig. 16: Compares the policy optimization dynamics of PMD and PMD(+mom) on the value polytope of the
different example MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example (iv).

Fig. 17: Compares the policy optimization dynamics of PMD(+lzc) and PMD(+mom) on the value polytope of
the different example MDPs in Sec. G.1: (a) example (ii), (b) example (iii), (c) example (i), (d) example
(iv).

34

Fig. 18: Compares the statistics of the policy optimization dynamics of PI, PMD and PMD(+mom) subject to
variance from random initialization (π0 : random_uniform(0,1), relative to the error in the inexact critic (τ),
and over different levels of policy approximation (k). Results correspond to example (i) from Sec. G.1.

35

Fig. 19: Compares the statistics of the policy optimization dynamics of PI, PMD and PMD(+mom) subject to
variance from random initialization (π0 : random_uniform(0,1), relative to the error in the inexact critic (τ),
and over different levels of policy approximation (k). Results correspond to example (ii) from Sec. G.1.

36

Fig. 20: Compares the statistics of the policy optimization dynamics of PI, PMD and PMD(+mom) subject to
variance from random initialization (π0 : random_uniform(0,1), relative to the error in the inexact critic (τ),
and over different levels of policy approximation (k). Results correspond to example (iii) from Sec. G.1.

37

Fig. 21: Compares the statistics of the policy optimization dynamics of PI, PMD and PMD(+mom) subject to
variance from random initialization (π0 : random_uniform(0,1), relative to the error in the inexact critic (τ),
and over different levels of policy approximation (k). Results correspond to example (iv) from Sec. G.1.

38

	Introduction
	Related Work
	Background & Preliminaries
	Functional Acceleration for PMD
	Approximate Functional Acceleration for Parametric Policies

	Numerical Studies
	When is Acceleration Possible?
	Policy Dynamics in Value Space
	Functional Acceleration with an Inexact Critic

	Closing
	Notation
	Proofs and derivations
	Proofs and Derivations for Sec.3: Background & Preliminaries
	Functional Policy Gradient
	Helpful Lemmas for Policy Mirror Descent
	Detailed Derivation of the Suboptimality Decomposition and Convergence of PMD

	Proofs for Sec. 4: Functional Acceleration for PMD

	Details on PMD updates for Sec. 4: Functional Acceleration for PMD
	Details on Algorithmic Implementation for Sec. 4.1: Approximate Functional Acceleration for Parametric Policies
	Approximate Policy Mirror Descent as Projected Gradient Descent (PGD)
	Newton’s method
	Experimental details for Sec. 5: Numerical Studies
	Details of two-state Markov Decision Processes
	Details of Random Markov Decision Processes
	Details of Experimental Setup for Sec. 5.1

	Supplementary Results for Sec. 5: Numerical Studies
	Supplementary results for Sec. 5.1
	Supplementary results for Sec. 5.2
	Supplementary results for Sec. 5.3

