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Abstract

Many high-dimensional decision-making problems can be modeled as stochas-1

tic sparse linear bandits. Most existing algorithms are designed to achieve op-2

timal worst-case regret in either the data-rich regime, where polynomial depen-3

dence on the ambient dimension is unavoidable, or the data-poor regime, where4

dimension-independence is possible at the cost of worse dependence on the num-5

ber of rounds. In contrast, the Bayesian approach of Information Directed Sam-6

pling (IDS) achieves the best of both worlds: a Bayesian regret bound that has7

the optimal rate in both regimes simultaneously. In this work, we explore the use8

of Sparse Optimistic Information Directed Sampling (SOIDS) to achieve the best9

of both worlds in the worst-case setting, without Bayesian assumptions. Through10

a novel analysis that enables the use of a time-dependent learning rate, we show11

that SOIDS can optimally balance information and regret. Our results extend the12

theoretical guarantees of IDS, providing the first algorithm that simultaneously13

achieves optimal worst-case regret in both the data-rich and data-poor regimes. In14

addition, we empirically demonstrate the good performance of SOIDS.15

1 Introduction16

In stochastic linear bandits, one assumes that the mean reward associated with each action is linear17

in an unknown d-dimensional parameter vector [Abe and Long, 1999, Auer, 2002, Dani et al., 2008,18

Abbasi-Yadkori et al., 2011]. Under standard conditions, it is known that the minimax regret in this19

setting is of the order O(d
√
T ) [Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010]. Nu-20

merous follow-up works have investigated the possibility of reduced regret under various structural21

assumptions on the unknown parameter vector, the noise, or the shape of the decision set [Valko22

et al., 2014, Chu et al., 2011, Kirschner and Krause, 2018], [Lattimore and Szepesvári, 2020, Chap-23

ter 22]. One such assumption is that the unknown parameter vector is sparse, which means that it24

has only s� d non-zero components. This setting is called sparse linear bandits and s is referred to25

as the sparsity level. In this setting, previous work has established the existence of algorithms with26

regret scaling as O(
√
sdT ) [Abbasi-Yadkori et al., 2012]. This result is complemented by a lower27

bound, which says that this rate cannot be improved as long as T ≥ dα for some α > 0 [Lattimore28

and Szepesvári, 2020]. We refer to this scenario as the data-rich regime. Since this bound scales29

polynomially with the dimension d, many researchers have considered this to be a negative result,30

interpreting it as a sign that sparsity cannot be effectively exploited in linear bandit problems. This31

interpretation has been challenged by a more recent observation that, when the action set admits32

an exploratory distribution, simple “explore-then-commit” algorithms enjoy regret bounds of order33

O(poly(s)T
2
3 ) [Hao et al., 2020, Jang et al., 2022]. These bounds scale only logarithmically with34

the dimension, and constitute a major improvement over the previously mentioned rate in the data-35

poor regime, where T �
(
d
s

)3
. Most known algorithms are specialized to either the data-poor or36

data-rich regime, and perform poorly in the other one. A notable exception is the sparse Information37

Directed Sampling algorithm introduced in Hao et al. [2021], which performs almost optimally in38

both regimes. However, Hao et al. [2021] only provide Bayesian regret bounds for sparse IDS.39
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In this work, we lift this assumption and develop an algorithm that can adapt to both regimes in a40

“frequentist” sense. The algorithm is an adaptation of the Optimistic Information Directed Sampling41

(OIDS) algorithm of Neu, Papini, and Schwartz [2024]. Our contribution is as follows:42

• We extend the analysis of the optimistic posterior to allow the use of time-dependent learn-43

ing rates and history-dependent learning rates. This removes the need to know the horizon44

in advance and allows us to update the learning rate based on data observed by the agent45

instead of some loose theoretical constant, a necessity for efficient algorithms.46

• We demonstrate that the SOIDS algorithm recovers almost optimal rates in both the data-47

poor and data-rich regimes. This is the first algorithm to do so in a frequentist setting.48

2 Preliminaries49

Sparse linear bandits. We consider the following decision-making game, in which a learning50

agent interacts with an environment over a sequence of T rounds. At the start of each round t, the51

learner selects an action At ∈ A ⊂ Rd according to a randomized policy πt ∈ ∆(A). In response,52

the environment generates a stochastic reward Yt = r(At) + εt, where r : A → R is a fixed reward53

function and εt is zero-mean, conditionally 1-sub-Gaussian noise. We assume that the action set A54

is finite, and that the reward function can be written as55

r(a) = 〈θ0, a〉 ,

where θ0 ∈ Rd is an unknown parameter vector. We make the mild boundedness assumptions56

that maxa∈A ‖a‖∞ ≤ 1 and ‖θ0‖1 ≤ 1. We study the special case of this problem in which the57

parameter vector θ0 is s-sparse in the sense that at most s � d of its components are non-zero. In58

other words, we assume that θ0 belongs to the following sparse parameter space:59

Θ =
{
θ ∈ Rd :

∑d
j=1I{θj 6=0} ≤ s, ‖θ‖1 ≤ 1

}
.

We assume that the sparsity level s is known to the agent. The performance of the agent is evaluated60

in terms of the regret, which is defined as61

RT = T max
a∈A

〈θ0, a〉 − E
[∑T

t=1r(At, θ0)
]
, (1)

where the expectation is taken with respect to both the random choices of the agent and the random62

noise in the observed rewards. We note that the regret is implicitly a function of the true parameter63

θ0. Our focus is on proving regret bounds that hold for arbitrary choices of θ0 ∈ Θ.64

The data-rich and data-poor regimes. As mentioned in the introduction, it is known there exist65

algorithms for sparse linear bandits with worst-case regret of the order O(
√
sdT ) [Abbasi-Yadkori66

et al., 2012]. This regret bound is only meaningful when the dimension d is smaller than the number67

of rounds T , a situation referred to as the data-rich regime. Under the assumption that there exists68

an exploratory policy, Hao et al. [2020] showed that there is a simple algorithm that satisfies a69

problem-dependent regret bound, which can be meaningful in the so-called data-poor regime, where70

d is much larger than T . Formally, we say that there exists an exploratory policy if the action set A71

is such that72

Cmin := max
µ∈∆(A)

σmin

(∫
Aaa

> dµ(a)
)
> 0 ,

which is equivalent to the condition that A spans Rd. The exploratory policy, is the distribution73

on A that achieves the maximum (which is guaranteed to exist when A is finite). The Explore74

the Sparsity Then Commit (ESTC) algorithm was shown to satisfy a regret bound of the order75

O(s2/3T 2/3C
−2/3
min ) [Hao et al., 2020]. The transition between the T 2/3 rate in the data-poor76

regime and the
√
T rate in the data-rich regime also appears in an existing lower bound of the77

order Ω(min(s1/3T 2/3C
−1/3
min ),

√
dT ) [Hao et al., 2020].78

The sparse optimal action condition. Part of our analysis requires that a certain technical condi-79

tion is satisfied. This condition comes from prior work [Hao et al., 2021], and is used to bound the80

regret in the data-poor regime (cf. Lemma 7).81
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Definition 1. For a given prior Q+
1 , an action set A has sparse optimal actions if with probability 182

over the random draw of θ from Q+
1 , there exists a′ ∈ arg maxa∈A r(a, θ) such that ‖a′‖0 ≤ s.83

We use a prior that only assigns positive probability to s-sparse vectors, which means the sparse84

optimal action property is satisfied whenever the action set is an `p ball. Note that the hard in-85

stances in both the
√
sdT lower bound in Theorem 24.3 of Lattimore and Szepesvári [2020] and the86

s2/3T 2/3 lower bound in Theorem 5 of Jang et al. [2022] satisfy the sparse optimal action property1.87

Therefore, this additional condition does not trivialize the problem.88

Notation. We conclude this section by introducing some additional notation that will be used in the89

subsequent sections. For any candidate parameter vector (or model) θ ∈ Rd, we let r(a, θ) = 〈θ, a〉90

denote the corresponding linear reward function. In addition, we define a∗(θ) = arg maxa∈A r(a, θ)91

(with ties broken arbitrarily) and r∗(θ) = r(a∗(θ), θ) to be the optimal action and maximum reward92

for the model θ. The gap of an action a for a model θ is ∆(a, θ) = r∗(θ) − r(a, θ). Similarly, the93

gap for a policy π ∈ ∆(A) and a model distribution Q ∈ ∆(Θ) is ∆(π,Q) =
∫
A×Θ

∆(a, θ) dπ ⊗94

Q(a, θ), and we let ∆t = ∆(πt, θ0) denote the gap of the policy played by the agent in round t95

under the true model θ0. Using this notation, the regret can be written as RT = E[
∑T

t=1 ∆t]. We96

define the unnormalized Gaussian likelihood function p(y|θ, a) = exp(− (y−〈θ,a〉)2
2 ). Finally, we97

let Ft = σ(A1, Y1, . . . , At, Yt) denote the σ-algebra generated by the interaction between the agent98

and the environment up to the end of round t.99

3 Sparse Optimistic Information Directed Sampling100

We develop an extension of the Optimistic Information Directed Sampling (OIDS) algorithm pro-101

posed by Neu, Papini, and Schwartz [2024]. The main difference between OIDS and IDS is that102

the Bayesian posterior is replaced by an appropriately adjusted optimistic posterior. For an arbitrary103

prior Q+
1 ∈ ∆(Θ), the optimistic posterior is defined by the following update rule:104

dQ+
t+1

dQ+
1

(θ) ∝
∏t

s=1(p(Ys | θ,As))
η · exp

(
λt
∑t

s=1∆(As, θ)
)
. (2)

Here, η is a positive constant that should be thought of as “large”, and (λt)t is a decreasing se-105

quence of positive real numbers that decays to 0, and should be thought of as “small”. Note that106

when η = 1 and λt = 0, the optimistic posterior coincides with the Bayesian posterior. When107

λt > 0, the ∆(As, θ) term promotes “overestimation” of the true gaps, driving exploration towards108

parameters that promise rewards much higher than whatever would have been accrued by the agent.109

This construction is closely related to the optimistic posterior update described in Zhang [2022] and110

Neu, Papini, and Schwartz [2024]. To describe our algorithm, we must first define the surrogate111

information gain and the surrogate regret. For any round t and any policy π ∈ ∆(A), the surrogate112

information gain is defined as113

IGt(π) =
1

2

∑
a∈Aπ(a)

∫
Θ

(
〈θ − θ̄(Q+

t ), a〉
)2

dQ+
t (θ) ,

where for any Q ∈ ∆(Θ), θ̄(Q) = Eθ∼Q [θ] is the mean parameter under distribution Q. The114

surrogate regret is defined as115

∆̂t(π) =
∑

a∈Aπ(a)
∫
Θ
∆(a, θ) dQ+

t (θ) .

For any policy π and any γ ≥ 2, we define the surrogate generalized information ratio as116

IR
(γ)
t (π) =

(∆̂t(π))
γ

IGt(π)
= 2 ·

(∑
a∈A π(a)

∫
Θ
〈θ, a∗(θ)− a〉 dQ+

t (θ)
)γ∑

a∈A π(a)
∫
Θ
(〈θ − θ̄(Q+

t ), a〉)2 dQ+
t (θ)

. (3)

We can at last define our algorithm: Sparse Optimistic Information Directed Sampling (SOIDS). In117

each round t, the policy played by SOIDS is defined to be the distribution on A that minimizes the118

2-information ratio:119

π
(SOIDS)
t = arg min

π∈∆(A)

IR
(2)
t (π) . (4)

The choice of γ = 2 is motivated by the fact that the minimizer of the 2-information ratio is an120

approximate minimizer of surrogate generalized information ratio for all γ ≥ 2.121

1The optimal actions in the hard instance used to prove Theorem 5 in Jang et al. [2022] are 2s-sparse, which
still allows us to prove the same bound on the surrogate 3-information ratio, up to constant factors.
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Lemma 1. For all γ ≥ 2,122

IR(γ)
t (π

(SOIDS)
t ) ≤ 2λ−2 min

π∈∆(A)
IR(γ)

t (π) .

This fact was discovered for the Bayesian IDS policy by Lattimore and György [2021]. We provide123

a proof in Appendix F.2 for completeness. Finally, we remark that the "sparse" part of the name124

SOIDS refers to the choice of the prior Q+
1 . We use the subset selection prior from Section 3 of125

Alquier and Lounici [2011], which is described in Appendix B.2.126

4 Main results127

In this section, we state our main results. First, we relate the true regret of any policy sequence to128

the surrogate regret of the same policy sequence. In combination with Lemma 1 and the fact that the129

surrogate regret is controlled by both the 2 and 3-information ratios, this allows us to show that with130

properly tuned parameters, SOIDS has optimal worst-case regret in both the data-poor and data-rich131

regimes. Finally, we show that SOIDS can be tuned in a data-dependent manner, such that its regret132

bound scales with the cumulative observed information ratio instead of the time horizon. The strong133

empirical performance of SOIDS is demonstrated in Appendix J.134

4.1 General bound for the optimistic posterior135

We start with a generic worst-case regret bound relating the true regret of any algorithm to its sur-136

rogate regret. Since the surrogate regret is defined with respect to the optimistic posterior, which137

is known to the learner, it can be controlled with standard Bayesian techniques. This result is an138

extension of the bounds stated in Neu et al. [2024], Zhang [2022]. To our knowledge it is the first139

result of its kind which is compatible with time-dependent or data-dependent learning rates. The140

stated result is specialized to the setting of sparse linear bandits, but the techniques used to deal with141

time-dependent and data-dependent learning rates are applicable beyond this setting.142

Theorem 1. Assume that the optimistic posterior is computed with η = 1
4 and a sequence of de-143

creasing learning rates λt satisfying ∀t ≥ 1, λt ≤ 1
2 . Set λ0 = 1

2 . If the learning rates do not144

depend on the history, then the regret of any sequence of policies πt satisfies145

RT ≤ E
[
5+2s log edT

s

λT−1
−
∑T

t=1
3
32 · IGt(πt)

λt−1
+ 2
∑T

t=1∆̂t(πt)
]
. (5)

Otherwise, if the learning rates depend on the history, let C1,T be a deterministic upper bound on146
1
λt

− 1
λt−1

valid for all t ≤ T , and C2,T be a deterministic upper bound on 1
λT−1

. The regret of any147

sequence of policies πt satisfies148

RT ≤ E

[
2+s log

4e3d2T3C2
1,T C2,T

s2

λT−1
−
∑T

t=1
3
32 · IGt(πt)

λt−1
+ 2
∑T

t=1∆̂t(πt)

]
+ 2. (6)

4.2 Best of both worlds guarantees for Sparse Optimistic Information Directed Sampling149

Next, we show that the SOIDS algorithm with properly tuned parameters achieves the optimal rate150

in both the data-rich and data-poor regimes.151

Theorem 2. Assume that our problem satisfies the spare optimal action condition described in152

definition 1. Let λ(2)t =
√

3Ct+1

128d(t+1) and λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

, with Ct = 5 + 2s log edt
s .153

Now, set λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), then the regret of SOIDS run with parameter λt is upper154

bounded by155

RT ≤ min

(
27
√(

5 + 2s log edT
s

)
dT , 30

(
5 + 2s log edT

s

) 1
3

(
T
√
s√

Cmin

) 2
3

)
+O(

√
s log d√

s
) (7)

= min

(
O
(√

sdT log edT
s

)
,O
(
(sT )

2
3

(
log edT

s

) 1
3

))
,

where O(
√
s log d√

s
) represents an absolute constant independent of T.156
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We observe that our algorithm enjoys both the Õ(
√
sdT ) and the Õ(s

2
3T

2
3 ) rates. Unlike the157

Bayesian regret bound for the sparse IDS algorithm of Hao et al. [2021], our regret bound holds158

in a “worst-case” sense for any value of θ0 ∈ Θ. To our knowledge, this makes our method the first159

algorithm to achieve optimal worst-case regret in both regimes simultaneously.160

4.3 Instance dependent guarantees161

The bounds presented in the previous sections are minimax in nature, meaning they hold uniformly162

over all problem instances. We present a bound in which the scaling with respect to the horizon163

T is replaced with the cumulative surrogate-information ratio. Those quantities are always upper164

bounded by Lemma 7 but could be much smaller in “easier” instances leading to better guarantees.165

Theorem 3. Assume that our problem satisfies the sparse optimal action condition described in def-166

inition 1 and that s ≤ d
2 . Let λ(2)t =

√
s

2d+
∑t

s=1 IR(2)
s (πs)

and λ(3)t =

(
s

3
√

6s√
Cmin

+
∑t

s=1

√
IR(3)

s (πs)

) 2
3

.167

Then the regret of SOIDS run with parameter λt = max(λ
(3)
t , λ

(2)
t ) satisfies the following regret168

bound169

RT ≤
(
2
s + 80

3 + 5 log edT
s

)
min

(√
s
(
2d+

∑T−1
t=1 IR(2)

t (πt)
)
, s

1
3

(
3
√
6s√

Cmin
+
∑T

t=1

√
IR(3)

t (πt)

) 2
3

)
(8)

= O

(
log edT

s min

(√
s
(
d+

∑T−1
t=1 IR(2)

t (πt)
)
, s

1
3

(
s√

Cmin
+
∑T

t=1

√
IR(3)

t (πt)

) 2
3

))
.

History dependent learning rates can be used with our novel analysis, making this type of result170

possible. A full proof of that result is provided in Appendix D. Note that this means that our algo-171

rithm is fully adaptive to which of the two regimes is best. Because our analysis requires decreasing172

learning rates, we are forced to leave the log(t) terms out of the learning rates and our logarithmic173

term has a worse power than in the bound of Theorem 2. An interesting open question is whether174

it is possible to improve the dependency on this logarithmic term while still using data-dependent175

learning rates.176

5 Analysis177

5.1 Proof of Theorem 1178

A key observation is that the optimistic posterior can be interpreted as a learner playing an auxiliary179

online learning game over distributions ∆(Θ). The loss of that game is a weighted sum of neg-180

ative log-likelihood and estimation error losses. We define L(1)
t (θ) =

∑t
s=1 log

(
1

p(Ys|θ,As)

)
=181 ∑t

s=1
1
2

(
〈θ,As〉 − Ys

)2
to be the cumulative negative log-likelihood loss of θ and L

(2)
t (θ) =182 ∑t

s=1 −∆(As, θ) to be the cumulative estimation error loss of θ. In addition, we define the regular-183

izer Φ : ∆(Θ) → R by the mapping P 7→ DKL
(
P
∥∥Q+

1

)
, which is the KL-divergence with respect184

to the prior Q+
1 . With those notations, the optimistic posterior can be understood as an instance185

of the Follow the Regularized Leader (FTRL) algorithm introduced by Hazan and Kale [2010] and186

Abernethy et al. [2008]. In particular, the optimistic posterior can be written as187

Q+
t+1 = arg min

P∈∆(Θ)

〈P, ηL(1)
t + λtL

(2)
t 〉+Φ(P ).

This formulation enables the application of tools from convex analysis and online learning, such as188

Fenchel duality, to derive regret bounds for this auxiliary online learning game and to understand189

the interplay between the two losses under the learning rates η and λt. Here, we focus on the case in190

which the learning rates λt are history-independent, and relegate the analysis of history-dependent191

learning rates to Appendix C. The following lemma provides a bound on the regret under an arbitrary192

comparator distribution P .193

Lemma 2. Let P ∈ ∆(Θ) be any comparator, then the following bound holds194 ∑T
t=1∆(P,At) ≤

DKL

(
P
∥∥∥Q+

1

)
λT

+
Φ∗(η(L

(1)
T (θT )−L

(1)
T (·))−λTL

(2)
T (·))

λT
+ η

λT
(P · L(1)

T − L
(1)
T (θT )).

5



Here θt = arg minθ∈Θ L
(1)
t (θ) is the maximum likelihood estimator at time t, and Φ∗(L) =195

log
∫
Θ
exp(L(θ))dQ+

1 (θ) is the Fenchel dual of the regularizer Φ. A proof is provided in ap-196

pendix B.1.1. We aim to choose the comparator P and the prior Q+
1 such that P is concentrated197

around θ0 and DKL
(
P
∥∥Q+

1

)
is small. To achieve this, we exploit the sparsity of θ0. We choose Q+

1198

to be a subset-selection prior and P to be the uniform distribution on a sparse neighborhood of θ0.199

Lemma 3. The subset-selection prior Q+
1 ∈ ∆(Θ) verifies that for any ε > 0 and θ ∈ Θ, there is a200

comparator P (θ) ∈ ∆(Θ) satisfying both201

∀θ′ ∈ supp(P (θ)), ‖θ − θ′‖1 ≤ ε and DKL
(
P (θ)

∥∥Q+
1

)
≤ s log 2ed

εs .

The proof of this lemma, as well as the exact choice of the prior Q+
1 and the comparator P (θ0),202

are provided in Appendix B.2. In Appendix I (cf. Lemma 21), we establish that both L(2)
T (·) and203

E
[
L
(1)
T (·)

]
are 2T -Lipschitz with respect to the `1-norm. Hence,204

E
[
|P ·L(1)

T −L
(1)
T (θ0)|

λT

]
≤ 2Tε

λT
, and

∑T
t=1|∆(θ0, At)−∆(P,At)| ≤ 2Tε.

In combination with Lemma 2, we obtain the following bound on the cumulative regret:205

RT ≤ E
[
s log 2ed

εs +2T (λT+η)ε

λT
+

Φ∗(−η(L
(1)
T (·)−L

(1)
T (θT ))−λTL

(2)
T (·))

λT

]
+ E

[
η
λT

(L
(1)
T (θ0)− L

(1)
T (θT ))

]
.

The first term balances model complexity and approximation via ε. In the usual FTRL analysis,206

λ → φ∗(λL)
λ is non decreasing for any L ∈ RΘ, and the term involving Φ∗ can be telescoped.207

Things are more complex here because only part of the loss is weighted by the time varying learning208

rate λT . Through a careful analysis involving the maximum likelihood estimator, we can decompose209

the Φ∗ term into a telescoping sum and a remainder term.210

Lemma 4.

Φ∗(η(L
(1)
T (θT )−L

(1)
T (·))−λTL

(2)
T (·))

λT

≤ E
[∑T

t=1
Φ∗(η(L

(1)
t (θ0)L

(1)
t (·))−λt−1L

(2)
t (·))

λt−1
− Φ∗(η(L

(1)
t−1(θ0)−L

(1)
t−1(·))−λt−1L

(2)
t−1(·))

λt−1

]
(9)

+
η(6+s log edT

s )

λT
. (10)

A detailed proof of this result is provided in Appendix B.1.4. Finally, the remaining sum can be211

handled by looking at the explicit formula for Φ∗. The terms related to the likelihood and the gap212

estimates can be separated using Hölder’s inequality, as is done in Zhang [2022] and Neu, Papini,213

and Schwartz [2024]. More explicitly, by choosing η = 1
4 , we obtain the following result.214

Lemma 5.

E
[∑T

t=1
Φ∗(η(L

(1)
t (θ0)−L

(1)
t (·))−λt−1L

(2)
t (·))

λt−1
− Φ∗(η(L

(1)
t−1(θ0)−L

(1)
t−1(·))−λt−1L

(2)
t−1(·))

λt−1

]
≤ E

[
−
∑T

t=1
3IGt(πt)
32λt−1

+ 2

T∑
t=1

∆̂(πt)

]
. (11)

A full proof of this result is provided in Appendix B.1.4. Combining Lemmas 2, 3, 4 and 5, and215

setting ε = 2
T , we obtain the desired regret bound stated in Theorem 1.216

5.2 Proof of Theorem 2217

We show how Theorem 1 can be combined with bounds on the surrogate regret to control the true218

regret. The first important fact is that the surrogate regret of any policy can always be controlled in219

terms of the 2 or the 3-surrogate information ratio of that policy.220
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Lemma 6. Let λ > 0, then we have that for any policy π ∈ ∆(A)221

∆̂t(π) ≤ IGt(π)
λ +min

(
1
4λIR(2)

t (π), c∗3

√
λIR(3)

t (π)

)
,

where c∗3 < 2 is an absolute constant defined in Lemma 27.222

This result is a consequence of a simple generalization of the AM-GM inequality, and is proved in223

Appendix F.1. Combining this lemma with λ = 64
3 λt−1 and Theorem 1, we can further upper bound224

the regret of a sequence of policies πt as225

RT ≤ E
[
5+2s log edT

s

λT−1
−
∑T

t=1
3IGt(πt)
32λt−1

+ 2
∑T

t=1∆̂t(πt)
]

≤ E
[

CT

λT−1
+
∑T

t=1 min

(
32
3 λt−1IR

(2)
t (πt),

16
3 c

∗
3

√
3λt−1IR

(3)
t (πt)

)]
, (12)

where CT = 5+2s log edT
s . Usually, bounds on the 2-information ratio can be converted to O(

√
T )226

bounds and bounds on the 3-information ratio can be converted to O(T
2
3 ) bounds. Hence we will227

use the 2-information ratio to control the regret in the data-rich regime and the 3-information ratio228

to control the regret in the data-poor regime. Due to Lemma 1, the SOIDS policy minimizes the229

2-information ratio and approximately minimizes the 3-information ratio. As a result, if there exists230

a "forerunner" algorithm with bounded 2-information ratio or 3-information ratio, SOIDS inherits231

these bounds automatically. In particular, we can use a different forerunner for each regime and232

SOIDS will match the regret guarantees of the best forerunner in each regime. The forerunner233

we consider for the 2-information ratio is the Feel-Good Thompson Sampling (FGTS) algorithm234

of Zhang [2022]. For the 3-information ratio, we consider a mixture of the FGTS policy and an235

exploratory policy. The following lemma provides bounds on the surrogate information ratios of the236

SOIDS algorithm.237

Lemma 7. The 2- and 3-surrogate-information ratio of the SOIDS algorithm satisfy for any t ≥ 0238

IR(2)
t (π

(SOIDS)
t ) ≤ IR(2)

t (π
(FGTS)
t ) ≤ 2d , (13)

and239

IR(3)
t (π

(SOIDS)
t ) ≤ 2IR(3)

t (π
(mix)
t ) ≤ 54s

Cmin
. (14)

The explicit definition of both forerunner algorithms as well as the proof of this lemma are deferred240

to appendix F.3. Note that this bound on the 3-information ratio is the only part of our analysis in241

which the sparse optimal action condition (cf. Definition 1) is required. Finally, we must pick the242

learning rate λt. The following lemma describes the appropriate learning rate for the data-poor and243

the data-rich regimes separately.244

Lemma 8. The learning rates λ(2)t =
√

3Ct+1

128d(t+1) and λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

guarantee245

CT

λ
(2)
T−1

+ 32
3

∑T
t=1λ

(2)
t−1IR(2)

t (πt) ≤ 16
√

2
3CT dT ,

and246

CT

λ
(3)
T−1

+ 16
3 c

∗
3

∑T
t=1

√
3λ

(3)
t−1IR(3)

t (πt) ≤ 12 · 6 1
3 (CT )

1
3

(
T
√
s√

Cmin

) 2
3

.

The proof is deferred to appendix G.2. It remains to analyze what happens when the learning rate247

λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )) is chosen. We defer this to appendix G.4.248

6 Conclusion249

There remain several interesting questions that our work leaves open for future research. In our250

experiments, we have made use of an approximate implementation of OIDS adapted from Hao et al.251

[2021]. The initial success we have seen in our experiments suggests that this approximation might252

be viable in more challenging settings, and worthy of an attempt at a solid theoretical analysis. More253

broadly, the results indicate a potential advantage of IDS-style methods over DEC-inspired methods254

[Foster et al., 2022b, Kirschner et al., 2023]. Indeed, we are not aware of any general methods for255

approximating the optimization problems that the E2D algorithm of Foster et al. [2022b] requires to256

solve, in contrast to our results that indicate that IDS-inspired algorithms may very well be amenable257

to practical implementation. Whether the concrete approximation we used in our experiments is the258

best possible one or not remains to be seen.259
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A Related work369

The first algorithms and regret bounds for sparse linear bandits were designed for the data-rich370

regime. Abbasi-Yadkori et al. [2012] developed an online-to-confidence-set conversion for linear371

models, which converts any algorithm for online linear regression into a linear bandit algorithm372

whose regret depends on the regret of the online regression algorithm. When the SeqSEW algorithm373

[Gerchinovitz, 2013] is used in this conversion, the result is a sparse linear bandit algorithm with374

a regret bound of the order O(
√
sdT ) (ignoring logarithmic factors). Lattimore and Szepesvári375

[2020] established a matching lower bound for the data-rich regime, showing that this rate cannot376

be improved.377

More recently, several works have studied the data-poor regime, in which the dimension d is much378

larger than the number of rounds T . Hao et al. [2020] showed that an explore-then-commit algorithm379

satisfies a regret bound of the order O((sT )2/3C
−2/3
min ), and established a lower bound of order380

Ω(min(s1/3T 2/3C
−1/3
min ,

√
dT ). Subsequently, Jang et al. [2022] proposed the PopArt estimator for381

sparse linear regression, and showed that an explore-then-commit algorithm that uses this estimator382

achieves a regret bound of the order O(s2/3T 2/3H
2/3
? ), where H? is another problem-dependent383

quantity that satisfies H2
? ≤ C−1

min. In addition, Jang et al. [2022] established a lower bound of order384

Ω(s2/3T 2/3C
−1/3
min ), showing that the optimal rate for the data-poor regime is s2/3T 2/3. Hao et al.385

[2021] showed that sparse IDS has a Bayesian best of both worlds/regimes regret bound.386

A number of works have considered the setting of sparse contextual linear bandits, in which the387

action set A changes in each round t. In the case where the actions sets are chosen by an adaptive388

adversary, the upper and lower bounds of the order
√
sdT by Abbasi-Yadkori et al. [2012] and Lat-389

timore and Szepesvári [2020] respectively still hold. Under the assumption that the action sets are390

generated randomly, and such that either a uniform or greedy policy is (with high probability) ex-391

ploratory, several methods have been shown to achieve nearly dimension-free regret bounds Bastani392

and Bayati [2020], Wang et al. [2018], Kim and Paik [2019], Oh et al. [2021], Chakraborty et al.393

[2023].394

The concept of balancing instantaneous regret and information gain through the information ratio395

was first introduced by Russo and Roy [2016] in the context of analyzing Thompson Sampling.396

Building upon this, the Information-Directed Sampling (IDS) algorithm was proposed by Russo and397

Van Roy [2017] to directly minimize the information ratio, thereby optimizing the trade-off between398

regret and information gain. These foundational ideas have since been extended and applied to399

a variety of settings including bandits [Bubeck and Sellke, 2022], contextual bandits [Neu et al.,400

2022, Hao et al., 2022], reinforcement learning [Hao and Lattimore, 2022], and sparse linear bandits401

[Hao et al., 2021]. However, these works are primarily situated in the Bayesian framework and focus402

on Bayesian regret bounds that hold only in expectation with respect to the prior distribution.403

A key challenge in extending these methods to the frequentist setting lies in estimating the instanta-404

neous regret and define a meaningful notion of information gain. Both of those things are naturally405

possible in Bayesian analysis but difficult when the true model is unknown. Moreover, Bayesian406

posteriors may inadequately represent model uncertainty from a frequentist perspective. We high-407

light three strands of research that have attempted to address this challenge:408

Confidence-set based information ratio approaches: Works such as Kirschner and Krause [2018],409

Kirschner et al. [2020], and Kirschner et al. [2021] extend the notion of the information ratio to410

frequentist settings by constructing high-probability confidence sets for the instantaneous regret and411

information gain. These results are mostly limited to setting with some linear structure.412

Distributionally robust and worst-case information-regret trade-offs: The Decision-to-Estimation-413

Coeffiecient(DEC) line of work of [Foster et al., 2022b, Foster and Rakhlin, 2020, Foster et al.,414

2022c,a, Kirschner et al., 2023] explores the frequentist setting by analyzing worst-case trade-offs415

between regret and information gain. One limitation is that the DEC is an inherently worst-case416

measure of comlexity. Moreover, algorithms based on the DEC usually require solving complex417

min-max optimization problems at each time step, making their practical implementation challeng-418

ing and unclear.419

Optimistic posterior approaches for frequentist guarantees: The approach most closely related to420

our work modifies the Bayesian posterior to provide frequentist guarantees. Introduced by Zhang421

[2022], the optimistic posterior is a modification of the Bayesian posterior which enables frequentist422

regret bounds for a variant of Thompson Sampling. Subsequently, Neu et al. [2024] studied the423
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optimistic posterior framework in greater depth, defining a frequentist analog of the information424

ratio to extend IDS to frequentist settings. A notable limitation of these works is their restriction to425

constant learning rates in the optimistic posterior, which limits adaptivity, an issue that we address426

in this paper.427

B Analysis of the Optimistic posterior428

This section provides further details about the prior underlying the optimistic posterior and guaran-429

tees on the posterior updates.430

B.1 Follow the regularized leader analysis431

The main step in our analysis of the optimistic posterior is to leverage the follow the regularized432

leader formulation of our optimistic posterior update433

Q+
t+1 = arg min

P∈∆(Θ)

〈P, ηL(1)
t + λtL

(2)
t 〉+Φ(P ).

B.1.1 Proof of lemma 2434

As is usual in the analysis of the follow the regularized leader algorithm, we introduce the Fenchel435

conjugate of the regularization function Φ = DKL
(
·
∥∥Q+

1

)
as the function Φ∗ : RΘ → R taking436

values Φ∗(L) = supP∈∆(Θ) {〈P,L〉 − φ(P )}. The Fenchel–Young inequality guarantees that for437

any P ∈ ∆(Θ), L ∈ RΘ, we have438

〈P,L〉 ≤ Φ(P ) + Φ∗(L)

We now introduce the maximum likelihood estimator θt = arg minθ∈Θ L
(1)
t (θ) and let L =439

−η(L(1)
T (·) − L

(1)
T (θT )) − λTL

(2)
T (·). Since λT is never used by the algorithm, we can further440

assume that λT = λT−1. The role of the maximum likelihood estimator is to make sure that the441

term L
(1)
t (θ)−L

(1)
t (θt) is always non-negative. Applying Fenchel–Young to L gives us the follow-442

ing bound:443

η
(
L
(1)
T (θT )−

〈
P,L

(1)
T

〉)
− λT

〈
P,L

(2)
T

〉
≤ Φ(P ) + Φ∗

(
−η(L(1)

T (·)− L
(1)
T (θT ))− λTL

(2)(·)
)

Noticing that
〈
P,L

(1)
T

〉
= −

∑T
t=1 ∆(P,At) and rearranging the terms concludes the proof.444

B.1.2 Proof of Lemma 4445

We start by rewriting the potential function in the form of the following telescopic sum:446

Φ∗(−η(L(1)
T (·)− L

(1)
T (θT ))− λTL

(2)
T (·))

λT

=

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λt−1L

(2)
t−1(·))

λt−1
.

In the usual follow-the-regularized-leader analysis, we use the fact that λ → φ∗(λL)
λ is non-447

decreasing for any L ∈ RΘ. Here however, only some of the linear loss is scaled by λt and the448

usual FTRL analysis fails. Crucially, because we introduced the maximum likelihood estimator θt,449

we have that L(1)
t (·) − L

(1)
t (θt) ≥ 0 and we can instead use the following lemma that guarantees450

that a scaled and shifted dual is monotonous.451

Lemma 9. Let Φ ≥ 0,Φ∗ be a convex function and its dual as defined previously, L1, L2 ∈ RΘ452

with L1 ≥ 0, then λ ∈ R+∗ → Φ∗(−L1+λL2)
λ is a non-decreasing function.453

Proof. By definition, we have454

Φ∗(−L1 + λL2)

λ
=

supP∈∆(Θ)〈P,−L1 + λL2〉 − Φ(P )

λ

= sup
P∈∆(Θ)

〈P,L2〉 −
〈P,L1〉+Φ(P )

λ
.
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For any P ∈ ∆(Θ), we have that Φ(P ) + 〈P,L1〉 ≥ 0 and the term inside the supremum is455

non-decreasing with respect to lambda. Since the supremum of non-decreasing functions is also456

non-decreasing, this concludes the proof.457

Applying the previous lemma, we upper bound the previous sum by replacing each λt factor by458

λt−1 (using the convention λ0 = 1/2), and then we replace the maximum likelihood estimator θt459

by θ0 inside Φ∗ to obtain460

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λt−1L

(2)
t−1(·))

λt−1

≤
T∑

t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λtL

(2)
t−1(·))

λt−1

=

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θ0))− λtL

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θ0))− λtL

(2)
t−1(·))

λt−1

+
η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)).

It remains to bound the difference of the negative log likelihood of the true parameter and the max-461

imum likelihood estimator. This is done via the following result (whose proof we relegate to ap-462

pendix E.1.1).463

Lemma 10. For any t ≥ 1, we have464

0 ≤ E
[
L
(1)
t (θ0)− L

(1)
t (θt)

]
≤ inf

ρ

{
2ρt+ s log

ed(1 + 2/ρ)

s

}
≤ 6 + s log

edt

s
(15)

Using this lemma, we can further bound the previously considered expression as the following465

telescopic sum:466

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)) +

η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

= E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0))−

T∑
t=1

η

λt
(L

(1)
t (θt)− L

(1)
t (θ0))

]

≤ η ·
T∑

t=1

E
[
(L

(1)
t (θ0)− L

(1)
t (θt))

]( 1

λt
− 1

λt−1

)

≤
η(6 + s log edT

s )

λT
.

Here, the first inequality comes from the non-negativity of L(1)
t (θ0) − L

(1)
t (θt) by definition of θt467

and the second one is from Lemma 10 just above and a telescoping argument. Finally we obtain the468

claim of Lemma 4.469

B.1.3 Controlling the losses separately470

The focus of this section is to understand how to control Φ∗(−L) where L is either the negative-471

likelihood loss or the estimation-error loss. We start by analyzing the negative-likelihood loss. As472

was done in Neu, Papini, and Schwartz [2024], we will relate the negative-likelihood loss to the473

surrogate information gain.474

For this analysis, we define the true information gain as475

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(〈θ − θ0, a〉)2 dQ+
t (θ), (16)

and note that, by linearity reward function, the surrogate information gain is always smaller than the476

true information gain. This is stated formally below.477
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Proposition 1. For any policy π ∈ ∆(A) and any t ≥ 1 we have that478

IGt(π) ≤ IGt(π) (17)

The proof is provided in Appendix I.1. This result can then be used to relate the surrogate and the479

true information gain to the negative-likelihood loss. This result and its proof are identical to the480

proof of Lemma 17 in Neu, Papini, and Schwartz [2024].481

Lemma 11. Assume that the noise εt is conditionnally 1-sub-Gaussian, then for any t ≥ 1, η, α ≥ 0482

such that γ = ηα
2 (1− ηα) > 0, the following inequality holds483

E
[
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

dQ+
t (θ)

]
≤ −2γ(1− 2γ)E [IGt(πt)] (18)

≤ −2γ(1− 2γ)E
[
IGt(πt)

]
. (19)

In particular, the constant 2γ(1− 2γ) can be maximized to the value 3
16 by the choice ηα = 1

2 .484

Proof. By the tower rule of expectation and Jensen’s inequality applied to the logarithm, we have485

E
[
− log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα]
= E

[
E
[
− log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα∣∣∣∣Ft, At

]]
≤ E

[
− logE

[∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα∣∣∣∣Ft, At

]]
= E

[
− log

∫
Θ

E
[
exp

(
−ηα

(
(Yt − 〈θ,At〉)2

2
− (Yt − 〈θ0, At〉)2

2

))∣∣∣∣Ft, At

]]
.

Now, we fix some θ ∈ Θ and to simplify the notation, we let r0 = 〈θ0, At〉 and r = 〈θ,At〉. Using486

some elementary manipulations and the conditional sub-gaussianity of εt and Yt = r0+εt which im-487

plies that for any (Ft, At)-measurable ζt, E [exp (Ytζt)|Ft, At] = exp(r0ζt)E [exp (εtζt)|Ft, At] ≤488

exp(r0ζt) exp
(

ζ2
t

2

)
, we have489

E
[
exp

(
−ηα

(
(Yt − r)2

2
− (Yt − r0)

2

2

))∣∣∣∣Ft, At

]
= E

[
exp

(
−ηα

2
(2Yt − r − r0)(r0 − r)

)∣∣∣Ft, At

]
= exp

(
ηα
r20 − r2

2

)
E [exp (ηαYt(r − r0))|Ft, At]

≤ exp

(
ηα
r20 − r2

2

)
· exp (ηαr0(r − r0)) exp

(
η2α2

2
(r − r0)

2)

)
= exp

(
−(r − r0)

2 · ηα
2

(1− ηα)
)
.

Further, defining γ = ηα
2 (1− ηα), we have490

E
[
exp

(
−ηα

(
(Yt − r)2

2
− (Yt − r0)

2

2

))∣∣∣∣Ft, At

]
≤ exp(−γ(r − r0)

2)

≤ 1− γ(r − r0)
2 +

γ2

2
(r − r0)

4

≤ 1− γ(r − r0)
2 + 2γ2(r − r0)

2

≤ 1− γ(1− 2γ)(r − r0)
2.

Here, we used the elementary inequality exp(x) ≤ 1+x+ x2

2 for x ≤ 0 and then used |r− r0| ≤ 2.491

Finally, using that log x ≤ x− 1 for any x > 0, and taking the integral over Θ, we get that492

E
[
− log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα]
≤ −γ(1− 2γ)E

[∑
a∈A

πt(A)

∫
Θ

(〈θ − θ0, a〉)2
]
dQ+

t (θ)

= −2γ(1− 2γ)E [IGt(πt)] .

Rearranging and combining the result with Proposition 1 yields the claim of the lemma.493
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We now turn our focus to the estimation error loss and relate it to the surrogate regret through the494

following lemma, whose proof is a straightforward application of Lemma 23.495

Lemma 12. For any t ≥ 1, β > 1, if βλt−1 ≤ 1, we have496

E
[

1

βλt−1
log

∫
Θ

exp(βλt−1∆(at, θ)) dQ
+
t (θ)

]
≤ E

[
2∆̂t(πt)

]
. (20)

B.1.4 Separation of the two losses: proof of Lemma 5497

We now make use of the fact that the Fenchel dual of Φ can be explicitly written as Φ∗(L) =498

log
∫
Θ
exp(L(θ)) dQ1(θ) . As a result, we have499

E

[
T∑

t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θ0))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θ0))− λt−1L

(2)
t−1(·))

λt−1

]

= E

 T∑
t=1

1

λt−1
log

∫
Θ

(
p(Yt|θ,at)
p(Yt|θ0,At)

)η
exp (λt−1∆(At, θ)) exp

(
−ηL(1)

t−1(θ)− λt−1L
(2)
t−1(θ)

)
dQ1(θ)∫

Θ
exp

(
−ηL(1)

t−1(θ)− λt−1L
(2)
t−1(θ)

)
dQ1(θ)


= E

[
T∑

t=1

1

λt−1
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)η

exp (λt−1∆(At, θ)) dQ
+
t (θ)

]

≤ E

[
T∑

t=1

1

αλt−1
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

+
1

βλt−1
log

∫
Θ

exp (βλt−1∆(At, θ)) dQ
+
t (θ)

]
,

where the last equality is by definition of the optimistic posterior and the last inequality follows from500

using Hölder’s inequality with the two real numbers α, β > 1 that satisfy 1
α + 1

β = 1. Combining501

Lemma 11 and Lemma 12 with the choice α = β = 2, the fact that η = 1
4 and the last inequality502

yields the claim of the Lemma.503

B.2 Choice of the prior and comparator distribution: proof of Lemma 3504

In order to construct the prior Q1 and the comparator P for the regret analysis, we need to take into505

account two criteria: that DKL (P‖Q1) be controlled and that |〈P,L〉 − L(θ0)| be small. Note that506

the comparator should be a function of the unknown parameter θ0, and thus we denote it by P (θ0).507

As for the prior, it should take into account the sparsity level of the unknown θ0, but should have no508

access to its support.509

For the prior, we first design a distribution Π over the set of all subsets of [d] = {1, . . . , d}, which510

have cardinality at most s. We choose the distribution such that: a) the probability assigned to each511

subset depends only on its cardinality; b) the probability assigned to the set of all subsets of size k512

is proportional to 2−k, where 1 ≤ k ≤ s. In other words, we prefer smaller subsets and have no513

preference over which indices in [d] are included. The distribution that satisfies these requirements is514

Π(S) =
2−|S|(

d
|S|
)∑s

k=1 2
−k

. (21)

For S = ∅, we set Π(S) = 0. Doing so only complicates matters if the support of θ0 is empty (i.e.,515

θ0 = 0). However, in this case, the reward function is 0 everywhere, which means any algorithm516

would have 0 regret. We therefore continue under the assumption that θ0 6= 0. The most impor-517

tant property of this distribution, which we will use later, is that for any subset S of cardinality s,518

log(1/Π(S)) ≤ s log(2ed/s). For each subset S, we define QS to be the uniform distribution on519

ΘS . The prior is defined to be520

Q1 =
∑

S⊂[d]:|S|≤s

Π(S)QS .

As for the comparator distribution P (θ0), we would ideally like to take a Dirac measure on θ0, but521

this would make the KL divergence appearing in the bound blow up. Thus, we pick a comparator522

P which dilutes its mass around θ0. For any θ̄ ∈ Θ, with support S̄, and any ε ∈ (0, 1), we define523

the set (1 − ε)θ̄ + εΘS̄ = {(1 − ε)θ̄ + εθ′ : θ′ ∈ ΘS̄} ⊂ ΘS̄ . We will choose P to be the uniform524

distribution on (1− ε)θ0 + εΘS0
. We now bound Φ(P ) = DKL (P‖Q1) for this choice of P in the525

following lemma, from which the claim of Lemma 3 then directly follows.526
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Lemma 13. For any θ̄ ∈ Θ, let S̄ denote its support, and let |S̄| = s. If, for ε ∈ (0, 1), P =527

U((1− ε)θ̄ + εΘS̄) and Q1 =
∑

S⊂[d]:|S|=s Π(S)QS , then DKL (P‖Q1) ≤ s log 2ed
εs .528

Proof. We notice that (1− ε)θ̄+ εΘS̄ is an s-dimensional L1 ball of radius ε, which is contained in529

ΘS̄ . Therefore, on the support of P , dP
dQS̄

is equal to the ratio of the volumes of a unit L1 ball and530

an L1 ball of radius ε, which is (1/ε)s. Thus,531

DKL (P‖Q1) =

∫
log

dP∑
S Π(S)dQS

dP ≤
∫

log
dP

Π(S̄)dQS̄

dP ≤ s log
1

ε
+ log

1

Π(S̄)
.

Using the definition of Π and the bound
(
d
s

)
≤ ( eds )

s on the binomial coefficient, we have532

log
1

Π(S̄)
= log

(
d

s

)
+ s log(2) + log

s∑
k=1

2−k ≤ s log
2ed

s
.

Combining everything, we obtain533

DKL (P‖Q1) ≤ s log
1

ε
+ s log

2ed

s
= s log

2ed

εs
, (22)

as advertised.534

C Proof of the history-dependent part of Theorem 1535

We now focus on the case in which λt is allowed to depend on the history. Following the original536

analysis, we arrive again at equation 2537

∆(P, at) ≤
DKL (P‖Q1)

λT
+

Φ∗(−ηL(1)
T (·) + ηL

(1)
T (θT ) + λTL

(2)
T (·))

λT
+

η

λT
(P ·L(1)

T −L(1)
T (θT )),

where P ∈ ∆(Θ) can be any comparator distribution. Lemma 3 is still valid and we can chose the538

same prior as before. We can still choose a comparator distribution supported on an ε-ball around θ0.539

However, because λt depends on the history, we can no longer upper bound E
[
|P ·L(1)

T −L
(1)
T (θ0)|

λT−1

]
540

by E
[
2Tε
λT

]
. Using Lemma 21, we still have that L(2)

T (·) is 2T -Lipschitz and E
[
L
(1)
T (·)

]
is 2T -541

Lipschitz. Hence,542

E

[
|P · L(1)

T − L
(1)
T (θ0)|

λT−1

]
≤ 2TεC2,T , and

T∑
t=1

|∆(θ0, at)−∆(P, at)| ≤ 2Tε,

where we used C2,T , a deterministic upper bound on 1
λT−1

. Exactly the same telescoping of Φ∗ can543

be done, however because the learning rate is history-dependent, the difference between the negative544

log likelihood of θ0 and θt must be treated with more care. We have the following lemma545

Lemma 14. Let C1,T be a deterministic upper bound on
(

1
λt+1

− 1
λt

)
that holds for all t < T , then546

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)) +

η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

≤ E

η(12 + 3s log
2e2dT 2C2

1,T

s )

2λT−1

 . (23)

A complete proof of that result can be found in appendix E.2.1.547

Finally, as was the case in the history independent version the telescoping sum can be handled by548

looking at the explicit formula for Φ∗ and Lemma 5 still holds. Applying Lemma 5 and setting549

ε = 1
TC2,T

yields the claim of the theorem.550
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D Proof of Theorem 3551

We turn our attention to data-dependent bounds (that will scale with the cumulative information552

ratio rather than the time horizon). Combining the second part of Theorem 1 with Lemma 6 and the553

choice λ = 64
3 λt−1, we have that for any non-increasing sequence of learning rates λt satisfying554

λ0 ≤ 1
2 , the following holds555

RT ≤ E

[
CT

λT−1
+min

(
T∑

t=1

32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]
, (24)

where CT = 2+ s log
4e3d2T 3C2

1,TC2,T

s2 and C1,T , respectively C2,T are deterministic upper bounds556

on 1
λt

− 1
λt−1

, respectively 1
λT−1

.557

We let λ(2)t =
√

s

2d+
∑t

s=1 IR(2)
s (πs)

and λ(3)t =

(
s

3
√

6s√
Cmin

+
∑t

s=1

√
IR(3)

s (πs)

) 2
3

, and verify that λt =558

max(λ
(2)
t , λ

(3)
t ) is decreasing and always smaller than 1

2 . We also verify that C1,T = C2,T =
√

dT
s559

are valid upper bounds. As a result, we have the following upper bound560

CT = 2 + s log
4e3d2T 3C2

1,TC2,T

s2
≤ 2 + s log 4e3T 4.5

(
d

s

)3.5

≤ 2 + 5s log(
edT

s
). (25)

We know focus on bounding the sum containing the information ratios. Applying Lemma 7, we561

obtain that for all t ≥ 1, IR
(2)
t (πt) ≤ 2d and for any T ≥ 1562

T∑
t=1

λ
(2)
t−1IR

(2)
t (π) =

√
s

T∑
t=1

IR
(2)
t (πt)√

2d+
∑t−1

s=1

≤
√
s

T∑
t=1

IR
(2)
t (πt)√∑t

s=1 IR
(2)
s (πs)

≤ 2

√√√√s

T∑
t=1

IR
(2)
t (πt)

≤ 2

√√√√s

(
2d+

T−1∑
t=1

IR
(2)
t (πt)

)
,

where we applied Lemma 19 with the function f(x) = 1√
x

and ai = IR
(2)
i (πi) to get the second563

inequality. This can be seen as a generalization of the usual
∑T

t=1
1√
t
≤ 2

√
T inequality. We564

now define R(2)
T =

√
s
(
2d+

∑T−1
t=1 IR

(2)
t (πt)

)
, the constant-free regret rate associated to the 2-565

surrogate-information ratio.566
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We now turn our attention to the 3-information ratio. Applying Lemma 7 we obtain that for all567

t ≥ 1, IR
(3)
t (πt) ≤ 54 s

Cmin
≤ 54 s2

Cmin
and for any T ≥ 1568

T∑
t=1

√
λ
(3)
t−1IR

(3)
t (πt) = s

1
3

T∑
t=1

√
IR

(3)
t (πt)(

3
√
6s√

Cmin
+
∑t−1

s=1

√
IR

(3)
s (πs)

) 1
3

≤ s
1
3

T∑
t=1

√
IR

(3)
t (πt)(∑t

s=1

√
IR

(3)
s (πs)

) 1
3

≤ 3

2
s

1
3

(
T∑

t=1

√
IR

(3)
t (πt)

) 2
3

≤ 3

2
s

1
3

(
3
√
6s√

Cmin

+

T−1∑
t=1

√
IR

(3)
t (πt)

)
,

where we applied Lemma 19 with the function f(x) = 1

x
1
3

and ai =

√
IR

(3)
i (πi) to get the569

second inequality. This can be seen as a generalization of the usual
∑T

t=1
1

t
1
3

≤ 3
2T

2
3 . We570

now define R(3)
T = s

1
3

(
3
√
6s√

Cmin
+
∑T−1

t=1

√
IR

(3)
t (πt)

) 2
3

, the constant-free regret rate associated571

to the 3-surrogate-information ratio. We now consider the last time that the learning rates λ(3)t572

and λ(2)t have been used. More specifically, we denote T2 = max{t ≤ T, λ
(2)
t−1 ≥ λ

(3)
t−1}, and573

T3 = max{t ≤ T, λ
(3)
t−1 ≥ λ

(2)
t−1}. Coming back to the bound of Equation 24 and using the defini-574

tion λt = max(λ
(2)
t , λ

(3)
t )), the following bound holds575

RT

≤ E

[
CT

λT−1
+

T∑
t=1

min

(
32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]

≤ E

[
CT min

(
1

λ
(2)
T−1

,
1

λ
(3)
T−1

)
+

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)]
.

We can now separate the sum obtained at the last line based on which learning rate was used at time576

t.577

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)
≤

∑
λ
(2)
t−1≥λ

(3)
t−1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

∑
λ
(3)
t−1≥λ

(2)
t−1

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt)

≤
T2∑
t=1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

T3∑
t=1

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt).

We further bound
∑T2

t=1
32
3 λ

(2)
t−1IR

(2)
t (πt) ≤ 64

3 R
(2)
T2

and
∑T3

t=1
16
3 c

∗
3

√
3λ

(3)
t−1IR

(3)
t (πt) ≤ 16

3 R
(3)
T3

578

(Using the explicit value c∗3 = 2

3
3
2

).579

The crucial observation is that which of λ(3)T or λ(2)T is bigger will determine whether R(2)
T or580

R
(3)
T is the term of leading order (up to some constants). More specifically, Let T be such that581
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λ
(2)
T−1 ≥ λ

(3)
T−1 which means that

√
s

2d+
∑T−1

t=1 IR(2)
t (πt)

≥

(
s

3
√

6s√
Cmin

+
∑T−1

t=1

√
IR(3)

t (πt)

) 2
3

. Rearrang-582

ing, this implies that
√
s
(
2d+

∑T−1
s=1 IR

(2)
t (πt)

)
≤ s

2
3

(
3
√
6s√

Cmin
+
∑T−1

t=1

√
IR

(3)
t (πt)

) 2
3

, which583

means that R(2)
T ≤ R

(3)
T . Following the exact same steps, we also have that λ(3)T−1 ≥ λ

(2)
T−1 implies584

that R(3)
T ≤ R

(2)
T . We apply this to the time T2 in which λ(2)T2−1 ≥ λ

(3)
T2−1 by definition. we have that585

R
(2)
T2

≤ R
(3)
T2

and putting this together with the previous bound, we have586

RT ≤ E

[
CT

λ
(3)
T−1

+
64

3
R

(2)
T2

+
16

3
R

(3)
T3

]

≤ E
[
CT

s
R

(3)
T +

64

3
R

(2)
T2

+
16

3
R

(3)
T3

]
≤ E

[
CT

s
R

(3)
T +

64

3
R

(3)
T2

+
16

3
R

(3)
T3

]
≤ E

[
CT

s
R

(3)
T +

64

3
R

(3)
T +

16

3
R

(3)
T

]
≤ E

[(
CT

s
+

80

3

)
R

(3)
T

]
,

where we use the fact that T → R
(2)
T and T → R

(3)
T are non-decreasing and T2 ≤ T, T3 ≤ T587

Similarly by definition of T3, we have that λ(3)T3−1 ≥ λ
(2)
T3−1 and we can conclude that R(3)

T3
≤ R

(2)
T3

.588

Putting this together, with the previous bound, we have589

RT ≤ E

[
CT

λ
(3)
T−1

+
64

3
R

(2)
T2

+
16

3
R

(3)
T3

]

≤ E
[
CT

s
R

(2)
T +

64

3
R

(2)
T2

+
16

3
R

(3)
T3

]
≤ E

[
CT

s
R

(2)
T +

64

3
R

(2)
T2

+
16

3
R

(2)
T3

]
≤ E

[
CT

s
R

(2)
T +

64

3
R

(2)
T +

16

3
R

(2)
T

]
≤ E

[
(
CT

s
+

80

3
)R

(2)
T

]
,

where we use the fact that T → R
(2)
T and T → R

(3)
T are non-decreasing and T2 ≤ T, T3 ≤ T .590

Putting both of those bounds together with Equation 25 yields the claim of the Theorem.591

E Maximum likelihood estimation592

The focus of this section is to bound the difference between the log-likelihoods associated with the593

true parameter and the maximum likelihood estimator (MLE). We start by establishing an upper594

bound that holds in expectation which suffices to handle history-independent learning rates. Then,595

we move on to high-probability bounds that will allow us to deal with data-dependent learning rates.596

E.1 Bound in expectation597

We start with the case in which the maximum likelihood estimator is computed on a finite subset of598

the parameter space Θ.599

Lemma 15. Let t ≥ 1, and Θ′ be a finite subset of Θ, we define the MLE over Θ′ as600

θMLE,t(Θ
′) = arg min

θ∈Θ′
L
(1)
t (θ).
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Then,601

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ log |Θ′| (26)

Proof. By the concavity of the logarithm and Jensen’s inequality, we have602

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ logE

[
t∏

s=1

p(Ys|θMLE,t(Θ
′), As)

p(Ys|θ0, As)

]

= logE

[
max
θ∈Θ′

t∏
s=1

p(Ys|θ,As)

p(Ys|θ0, As)

]
≤ logE

[∑
θ∈Θ′

t∏
s=1

p(Ys|θ,As)

p(Ys|θ0, As)

]

= log
∑
θ∈Θ′

E

[
t∏

s=1

p(Ys|θ,As)

p(Ys|θ0, As)

]

By Lemma 25, we have that exp
(
L
(1)
t (θ0)− L

(1)
t (θ)

)
=
∏t

s=1
p(Ys|θ,As)
p(Ys|θ0,As)

is a non-negative su-603

permartingale with respect to the filtration F ′
t = σ(Ft−1, At). That implies that each term in the604

sum is upper bounded by 1. Hence,605

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ log

∑
θ∈Θ′

1 = log |Θ′|,

which proves the claim.606

To extend the previous bound to the full parameter space, we use a covering argument. A subset607

Θ′ ⊂ Θ is said to be a valid ρ-covering of Θ with respect to the `1 norm if for every θ ∈ Θ, there608

exists a θ′ ∈ Θ′ such that ‖θ − θ′‖1 ≤ ρ. We denote by N (Θ, ‖ · ‖1, ρ) the smallest possible609

cardinality of a valid ρ covering. We have the following bound on this quantity.610

Lemma 16. For every ρ > 0,611

logN (Θ, ‖ · ‖1, ρ) ≤ log

(
d

s

)
(1 + 2

ρ )
s ≤ s log

ed(1 + 2/ρ)

s
.

612

Proof. For each subset S ⊂ [d] of cardinality |S| = s, there is a surjective isometric embedding613

from (ΘS , ‖ · ‖1) to (Bs
1(1), ‖ · ‖1). In particular, to embed θ ∈ ΘS into Bs

1(1), one can simply614

remove all the components of θ corresponding to indices not in S. Therefore, for every ρ > 0,615

N (ΘS , ‖ · ‖1, ρ) ≤ N (Bs
1(1), ‖ · ‖1, ρ). Moreover, via a standard argument, we have N (Bs

1(1), ‖ ·616

‖1, ρ) ≤ (1 + 2
ρ )

s (see, e.g., Lemma 5.7 in Wainwright, 2019). Now, let ΘS,ρ denote any minimal617

ρ-covering of ΘS and notice that for an arbitrary θ ∈ Θ with support S, there exists a subset S̃618

such that S ⊆ S̃ and |S̃| = s. Therefore, there exists θ̃ ∈ ΘS̃,ρ such that ‖θ − θ̃‖1 ≤ ρ. Hence,619

∪S⊂[d]:|S|=sΘS,ρ forms a valid ρ-covering of Θ and its cardinality is bounded by620

N (Θ, ‖ · ‖1, ρ) ≤
∣∣∪S⊂[d]:|S|=sΘS,ρ

∣∣ ≤ ∑
S⊂[d]:|S|=s

(
1 + 2

ρ

)s
=

(
d

s

)(
1 + 2

ρ

)s
.

and we conclude by the elementary inequality
(
d
s

)
≤
(
de
s

)s
.621

E.1.1 Proof of Lemma 10622

We bound the difference between the log-likelihood of the true parameter and that of the maximum623

likelihood estimator on the full parameter space. To this end, let ρ > 0 and Θ′ be a minimal valid624

ρ-cover of Θ as is defined in Lemma 16, and θ′ ∈ Θ′ be such that ‖θ′ − θt‖ ≤ ρ, which exists by625
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definition of a ρ-covering. Then,626

E
[
L
(1)
t (θ0)− L

(1)
t (θt)

]
=E

[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]

+ E
[
L
(1)
t (θMLE,t(Θ

′))− L(1)(θ′)
]

+ E
[
L
(1)
t (θ′)− L(1)(θt)

]
≤ log(N (Θ, ‖·‖1 , ρ) + 0 + 2ρt,

where the first term is bounded by Lemma 26, the second term is non-positive by definition of627

the maximum likelihood estimator because θ′ ∈ Θ′ and the third term is bounded because the628

mapping θ 7→ E
[
L
(1)
t (θ)

]
is 2t-Lipschitz with respect to the 1-norm by Lemma 21. Finally applying629

Lemma 16 and setting ρ = 2
t yields the desired bound.630

E.2 High-probability bounds631

We begin with the case where the maximum likelihood estimator is computed over a finite subset of632

the parameter space Θ and provide a corresponding high-probability bound.633

Lemma 17. Let Θ′ be a finite subset of Θ, we define θMLE,t(Θ
′) = arg minθ∈Θ′ L

(1)
t (θ). Then634

P
[
∃t ≥ 1, L

(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′)) ≥ log
|Θ′|
δ

]
≤ δ. (27)

Proof. Fix θ ∈ Θ′. By Lemma 25, we have that exp
(
L
(1)
t (θ0)− L

(1)
t (θ)

)
=
∏t

s=1
p(Ys|θ,As)
p(Ys|θ0,As)

is a635

non-negative supermartingale with respect to the filtration F ′
t = σ(Ft−1, At), allowing us to invoke636

Ville’s inequality to get the following guarantee:637

P
[
∃t ≥ 1, exp(L

(1)
t (θ0)− L

(1)
t (θ)) ≥ 1

δ

]
≤ δ.

Taking the logarithm and a union bound on Θ′ yields the desired result.638

We now provide a bound on the expected product of a bounded random variable with the differenece639

in log-likelihood between the true parameter and the maximum likelihood estimator.640

Lemma 18. Let B ∈ R and X be a random variable satisfying 0 ≤ X ≤ B almost surely. Then641

for any t ≥ 1,642

E
[
X(L

(1)
t (θ0)− L

(1)
t (θt))

]
≤ inf

δ,ρ>0

{
E

[
Xs log

ed(1 + 2
ρ )

sδ
1
s

]
+ 2Bρt+Bδs log

e1+
1
s d(1 + 2

ρ )

sδ
1
s

}

≤ 4 + s log
2e2dT 2B2

s
E
[
X +

1

T

]
. (28)

Proof. Let δ, ρ > 0 and Θ′ be a minimal valid ρ-cover of Θ as defined in Lemma 16, N = |Θ′|,643

let θ′ = θMLE,t(Θ
′) and let θ̄ ∈ Θ′ be such that

∥∥θ̄ − θt
∥∥ ≤ ρ, which exists by definition of a valid644

ρ-cover. We have the following decomposition:645

E
[
X(L

(1)
t (θ0)− L

(1)
t (θt))

]
≤E

[
X(L

(1)
t (θ0)− L

(1)
t (θ′))1{L(1)

t (θ0)−L
(1)
t (θ′)≤log N

δ }

]
+BE

[
(L

(1)
t (θ0)− L

(1)
t (θ′))1{L(1)

t (θ0)−L
(1)
t (θ′)>log N

δ }

]
+BE

[
(L

(1)
t (θ̄)− L

(1)
t (θt))

]
+BE

[
(L

(1)
t (θ′)− L

(1)
t (θ̄))

]
.

The first term is upper bounded by E
[
X log N

δ

]
, the third term is upper bounded by 2Bρt because646

E
[
L
(1)
t (·)

]
is 2t-Lipschitz by Lemma 21. The fourth term is non-positive because θ′ minimizes the647

negative log likelihood on Θ′. Finally, we turn our attention to the second term. To simplify the648
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computations, we let Y = L
(1)
t (θ0) − L

(1)
t (θ′), and compute E

[
Y 1{Y >log N

δ }

]
. Conditionting on649

wheter ε is larger or smaller than log N
δ yields the following identity650

P
[
Y 1{Y≥log N

δ } ≥ ε
]
=

{
P [Y ≥ ε] if ε ≥ log N

δ ,

P
[
Y ≥ log N

δ

]
otherwise.

We can now upper bound the expectation as follows651

E
[
Y 1{Y≥log N

δ }

]
=

∫ ∞

0

P
[
Y 1{Y≥log N

δ
} ≥ ε

]
dε

= log
N

δ
P
[
Y ≥ log

N

δ

]
+

∫ ∞

log N
δ

P [Y ≥ ε] dε

= log
N

δ
P
[
Y ≥ log

N

δ

]
+

∫ δ

0

1

δ′
P
[
Y ≥ log

N

δ′

]
dδ′

≤ δ log
N

δ
+ δ,

where we used the change of variable ε = log N
δ′ and used P

[
Y ≥ log N

δ

]
≤ δ by Lemma 17.652

Finally, putting everything together and using N ≤ N (Θ, ‖·‖1 , ρ) ≤
(

ed(1+ 2
ρ )

s

)s
, by Lemma 16,653

we get654

E
[
X(L

(1)
t (θ0)− L

(1)
t (θt))

]
≤ E

[
Xs log

ed(1 + 2
ρ )

sδ
1
s

]
+ 2Bρt+Bδs log

e1+
1
s d(1 + 2

ρ )

sδ
1
s

.

To balance the trade-off between the approximation error and the covering complexity, we choose655

ρ = 2
BT , and δ = 1

BT which yields the desired form of the logarithmic factors. Subsituting these656

into the bound completes the proof.657

E.2.1 Proof of Lemma 14658

As was noted in the analysis, since λT is not used by the algorithm, we can replace λT by λT−1 in659

our computations. We have660

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
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η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

= E
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η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0))−

T∑
t=1

η

λt
(L

(1)
t (θt)− L

(1)
t (θ0))

]

= η ·
T∑

t=1

E
[
(L

(1)
t (θ0)− L

(1)
t (θt))

(
1

λt
− 1

λt−1

)]
.

Let C1,T be a deterministic upper bound on
(

1
λt+1

− 1
λt

)
. Applying Lemma 28 to X =661 (

1
λt+1

− 1
λt

)
and telescoping, we get662

η ·
T∑

t=1

E
[
(L

(1)
t (θ0)− L

(1)
t (θt))

(
1

λt
− 1

λt−1

)]

. ≤ η

(
4 + s log

2e2dt2C2
1,T

s

)
T∑
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E
[(

1

λt
− 1

λt−1

)
+

1

T

]

≤ η

(
4 + s log

2e2dt2C2
1,T

s

)
E
[(

1

λT
+ 1

)]

≤ E

η(12 + 3s log
2e2dt2C2
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s )

2λT−1

 ,
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where in the last step, we used 1 ≤ 1
2λT

which implies 1
λT

+ 1 ≤ 3
2λT

. This finishes the proof.663

F Bounding the surrogate information ratio664

F.1 Proof of Lemma 6665

The surrogate regret of a policy is directly related to its 2- and 3-information ratio by definition666

∆̂t(π) =

√
IGt(π)IR

(2)
t (π) =

(
IGt(π)IR

(3)
t (π)

) 1
3

.

By the AM-GM inequality, we have that for any λ > 0, the surrogate regret is controlled as follows667

∆̂t(π) ≤
IGt(π)

λ
+
λ

4
IR

(2)
t (π).

Similarly, by Lemma 27 which generalizes the AM-GM inequality, we can obtain the following668

regret bound669

∆̂t(π) ≤
IGt(π)

λ
+ c∗3

√
λIR

(3)
t (π),

where c∗3 < 2 is an absolute constant defined in Lemma 27. This concludes the proof.670

F.2 Proof of Lemma 1671

The proof of Lemma 1 is essentially the same as the proof of Lemma 5.6 in Hao et al. [2021], but we672

state it here for completeness. Throughout this proof, we use 〈p, f〉 =
∑

a∈A p(a)f(a) to denote673

the inner product between a signed measure p on A and a function f : A → R. Using this notation,674

we can, for example, write the generalized surrogate information ratio as IR
(γ)
t (π) = 〈π, IR(γ)

t 〉.675

We define π(γ)
t ∈ arg minπ∈∆(A) IR

(γ)
t (π) to be any minimizer of the generalized surrogate infor-676

mation ratio with parameter γ ≥ 2. First, we observe that677

∇πIR
(2)
t (π) =

2〈π, ∆̂t〉∆̂t

〈π, IGt〉
− (〈π, ∆̂t〉)2IGt

(〈π, IGt〉)2
.

Therefore, from the first-order optimality condition for convex constrained minimization (and the678

fact that IR
(2)
t is convex on ∆(A)), we have679

∀π ∈ ∆(A), 0 ≤ 〈π − π
(SOIDS)
t ,∇πIR

(2)
t (π

(SOIDS)
t )〉 .

In particular,680

0 ≤ 2〈π(SOIDS)
t , ∆̂t〉〈π(γ)

t − π(SOIDS), ∆̂t〉
〈π(SOIDS)

t , IGt〉
− (〈π(SOIDS)

t , ∆̂t〉)2〈π(γ)
t − π(SOIDS), IGt〉

(〈π(SOIDS)
t , IGt〉)2

.

This inequality is equivalent to681

2〈π(γ)
t , ∆̂t〉 ≥ 〈π(SOIDS)

t , ∆̂t〉

(
1 +

〈π(γ)
t , IGt〉

〈π(SOIDS)
t , IGt〉

)
≥ 〈π(SOIDS)

t , ∆̂t〉 .

From this inequality, we obtain682

(〈π(SOIDS)
t , ∆̂t〉)γ

〈π(SOIDS)
t , IGt〉

=
(〈π(SOIDS)

t , ∆̂t〉)2(〈π(SOIDS)
t , ∆̂t〉)γ−2

〈π(SOIDS)
t , IGt〉

≤ (〈π(γ)
t , ∆̂t〉)2(〈π(SOIDS)

t , ∆̂t〉)γ−2

〈π(γ)
t , IGt〉

≤ 2γ−2 (〈π
(γ)
t , ∆̂t〉)γ

〈π(γ)
t , IGt〉

= 2γ−2 min
π∈∆(A)

IR
(γ)
t (π) ,

thus proving the claim.683
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F.3 Proof of Lemma 7684

This section is focused on bounding the information ratios of the sparse optimistic information685

directed sampling policy. As is widely done in the information directed sampling literature, we will686

introduce a “forerunner” algorithm with controlled surrogate information ratio. By Lemma 1, the687

sOIDS policy will then automatically inherit the bound of the forerunner.688

As one of our forerunners, we will make use of the “Feel-Good Thompson Sampling” first intro-689

duced by Zhang [2022]. Letting θ̃t ∼ Q+
t , the FGTS policy is defined as690

π
(FGTS)
t (a) = Pt

[
a∗(θ̃t) = a

]
. (29)

Which can be seen as the policy obtained by sampling a parameter θ̃t ∼ Q+
t and then picking the691

optimal action under this parameter. Compared to the usual Thompson Sampling policy, this boils692

down to replacing the Bayesian posterior by the optimistic posterior. Whenever the optimal action693

for θ is non-unique, we define a∗(θ) to be any optimal action with minimal 0-norm. If there are694

multiple optimal actions with minimal 0-norm, ties can be broken arbitrarily.695

For the bound on the surrogate 3-information ratio, we assume that the prior Q+
1 and the action set696

A are such that for all θ in the support of the prior, there exists a′ ∈ arg maxa∈A r(a, θ) such that697

‖a′‖0 ≤ s. We refer to this as the sparse optimal action property. Since the support of our prior Q+
1698

only contains s-sparse vectors, the sparse optimal action property is satisfied whenever the action699

set is a a unit `p ball. Note also that the hard instances in both the
√
sdT lower bound in Theorem700

24.3 of Lattimore and Szepesvári [2020] and the s2/3T 2/3 lower bound in Theorem 5 of Jang et al.701

[2022] satisfy the sparse optimal action property2. Therefore, even with this addtional assumption,702

the lower bounds for both the data-rich and data-poor regimes remain meanginful. Whenever the703

optimal action for θ is non-unique, we define a∗(θ) to be any optimal action with minimal 0-norm,704

with ties broken arbitrarily.705

F.3.1 Bounding the two information ratio706

We will now prove the first part of lemma 7, by showing that the information ratio of the FGTS707

policy is bounded by the dimension. The proof is exactly the same as in the Bayesian setting as708

is done in Proposition 5 of Russo and Roy [2016], Lemma 7 of Lemma 7 in Neu et al. [2022] or709

in Lemma 5.7 of Hao et al. [2021], except the Bayesian posterior is replaced with the optimistic710

posterior. We provide the proof here for completeness.711

Since we defined the surrogate information gain in terms of the model θ, as opposed to the optimal712

action a∗(θ), we follow the proof of Lemma 7 in Neu et al. [2022]. For brevity, we let αa =713

π
(FGTS)
t (a) = Pt

[
a∗(θ̃t) = a

]
. We define the |A| × |A| matrix M by714

Ma,a′ =
√
αaαa′(Et[r(a, θ̃t)|a∗(θ̃t) = a′]− r(a, θ̄(Q+

t ))) .

Next, we relate the surrogate information gain and the surrogate regret to the Frobenius norm and715

the trace of M . First, we can lower bound the surrogate information gain of FGTS as716

IGt(π
(FGTS)
t ) =

1

2

∑
a∈A

αa

∫
Θ

(r(a, θ̄(Q+
t ))− r(a, θ))2dQ+

t (θ)

=
1

2

∑
a∈A

αa

∫
Θ

∑
a′∈A

1{a∗(θ)=a′}(r(a, θ̄(Q
+
t ))− r(a, θ))2dQ+

t (θ)

=
1

2

∑
a∈A

∑
a′∈A

αa

∫
Θ

1{a∗(θ)=a′}dQ
+
t (θ)Et[(r(a, θ̄(Q

+
t ))− r(a, θ̃t)|a∗(θ̃t) = a′]

≥ 1

2

∑
a∈A

∑
a′∈A

αaαa′

(
r(a, θ̄(Q+

t ))− Et[r(a, θ̃t)|a∗(θ̃t) = a′]
)2

=
1

2

∑
a∈A

∑
a′∈A

M2
a,a′ =

1

2
‖M‖2F .

2The optimal actions in the hard instance used to prove Theorem 5 in Jang et al. [2022] are 2s-sparse, which
still allows us to prove the same bound on the surrogate 3-information ratio, up to constant factors.
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Next, we can re-write the surrogate regret of FGTS as717

∆̂t(π
(FGTS)
t ) =

∫
Θ

r(a∗(θ), θ)dQ+
t (θ)−

∑
a∈A

αa

∫
Θ

r(a, θ)dQ+
t (30)

=

∫
Θ

∑
a∈A

1{a∗(θ)=a}r(a
∗(θ), θ)dQ+

t (θ)−
∑
a∈A

αar(a, θ̄(Q
+
t ))

=
∑
a∈A

αaEt[r(a, θ̃t)|a∗(θ̃t) = a]−
∑
a∈A

αar(a, θ̄(Q
+
t ))

= tr(M) .

Using Fact 10 from Russo and Roy [2016], we bound IR
(2)
t (π

(FGTS)
t ) as718

IR
(2)
t (π

(FGTS)
t ) =

(∆̂t(π
(FGTS)
t ))2

IGt(π
(FGTS)
t )

≤ 2(tr(M))2

‖M‖2F
≤ 2 · rank(M) .

All the remains is to show that M has rank at most d. Enumerate the actions as A = {a1, . . . , a|A|},719

and let µi = Et[θ̃t|a∗(θ̃t) = ai]. By linearity of expectation (and of the reward function), we can720

write721

Mi,j =
√
αiαj〈µi − θ̄(Q+

t ), aj〉 .
Therefore, M can be factorised as722

M =


√
α1(µ1 − θ̄(Q+

t ))
>

...√
α|A|(µ|A| − θ̄(Q+

t ))
>

 [√α1a1 · · · √
α|A|a|A|

]
.

Since M is the product of a K × d matrix and a d×K matrix, it must have rank at most min(K, d).723

F.3.2 Bounding the three information ratio724

To bound the 3 information ratio we follow Hao et al. [2021] and we introduce the exploratory policy725

µ = arg max
π∈∆(A)

σmin

(∑
a∈A

π(a)aaT

)
. (31)

We define the mixture policy π(mix)
t = (1−γ)π(FGTS)

t +γµ where γ ≥ 0 will be determined later.726

First, we lower bound the surrogate information gain of the mixture policy in the same way that we727

lower bounded the surrogate information gain of the FGTS policy previously. This time, we obtain728

the lower bound729

IGt(π
(mix)
t ) ≥ 1

2

∑
a∈A

π
(mix)
t (a)

∑
a′∈A

Pt(a
∗(θ̃t) = a′)(r(a, θ̄(Q+

t ))− Et[r(a, θ̃t)|a∗(θ̃t) = a′])2

=
1

2

∑
a∈A

π
(mix)
t (a)

∑
a′∈A

Pt(a
∗(θ̃t) = a′)〈µa′ − θ̄(Q+

t ), a〉2 ,

where µa′ = Et[θ̃t|a∗(θ̃t) = a′]. From the inequality π(mix)
t (a) ≥ γµ(a), and the definition of730

Cmin, we have731

IGt(π
(mix)
t ) ≥ γ

2

∑
a′∈A

Pt(a
∗(θ̃t) = a′)

∑
a∈A

µ(a)(µa′ − θ̄(Q+
t ))

>aa>(µa′ − θ̄(Q+
t ))

≥ γ

2

∑
a′∈A

Pt(a
∗(θ̃t) = a′)Cmin‖µa′ − θ̄(Q+

t )‖22 .

Using the expression for the surrogate regret of FGTS in (30), we obtain732

∆̂t(π
(FGTS)
t ) =

∑
a∈A

Pt(a
∗(θ̃t) = a)(Et[〈θ̃t), a〉|a∗(θ̃t) = a]− 〈θ̄(Q+

t ), a〉)

≤
√∑

a∈A
Pt(a∗(θ̃t) = a)(Et[〈θ̃t, a〉|a∗(θ̃t) = a]− 〈θ̄(Q+

t ), a〉)2 ,
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where in the last the line we used the Cathy-Schwarz inequality. Due to the sparse optimal action733

property, all actions for which Pt(a
∗(θ̃t) = a) > 0 have at most s non-zero elements. Therefore,734 ∑

a∈A
Pt(a

∗(θ̃t) = a)(Et[〈θ̃t, a〉|a∗(θ̃t) = a]−〈θ̄(Q+
t ), a〉)2 ≤

∑
a∈A

Pt(a
∗(θ̃t) = a)s‖µa−θ̄(Q+

t )‖22 .

This, combined with the lower bound on IGt(π
(mix)
t ) means that735

∆̂t(π
(FGTS)
t ) ≤

√∑
a∈A

Pt(a∗(θ̃t) = a)s‖µa − θ̄(Q+
t )‖22

=

√
2s

γCmin

γ

2

∑
a∈A

Pt(a∗(θ̃t) = a)Cmin‖µa − θ̄(Q+
t )‖22

≤
√

2s

γCmin
IGt(π

(mix)
t ) .

Choosing γ = 1, this tells us that736

(∆̂t(π
(FGTS)
t ))2 ≤ 2s

Cmin
IGt(µ) .

We bound the information ratio in three cases. First, suppose that ∆̂t(µ) ≤ ∆̂t(π
(FGTS)
t ). In this737

case,738

IR
(3)
t (µ) =

∆̂t(µ)(∆̂t(µ))
2

IGt(µ)
≤ 2(∆̂t(π

(FGTS)
t ))2

IGt(µ)
≤ 4s

Cmin
.

Next, we consider the case where ∆̂t(µ) > ∆̂t(π
(FGTS)
t ). For any γ ∈ (0, 1],739

IR
(3)
t (π

(mix)
t ) =

((1− γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3

(1− γ)IGt(π
(FGTS)
t ) + γIGt(µ)

≤ ((1− γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3

γIGt(µ)
.

We define f(γ) = ((1 − γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3/(γIGt(µ)) to be the RHS of the previous740

equation. One can verify that the derivative of f(γ) is741

f ′(γ) =
((1− γ)∆̂t(π

(FGTS)
t ) + γ∆̂t(µ))

2

γ2IGt(µ)

[
2γ(∆̂t(µ)− ∆̂t(π

(FGTS)
t ))− ∆̂t(π

(FGTS)
t )

]
,

and that f(γ) is minimised w.r.t. γ > 0 at γ̂, where γ̂ is the positive solution of f ′(γ̂) = 0, which is742

γ̂ =
∆̂t(π

(FGTS)
t )

2(∆̂t(µ)− ∆̂t(π
(FGTS)
t ))

.

That γ̂ is always positive follows from the fact that ∆̂t(µ) > ∆̂t(π
(FGTS)
t ). If γ̂ ≤ 1, then we can743

take the forerunner to be the mixture policy with γ = γ̂. In this case,744

IR
(3)
t (π

(mix)
t ) =

( 32 )
32(∆̂t(µ)− ∆̂t(π

(FGTS)
t ))∆̂t(π

(FGTS)
t )2

IGt(µ)

≤
( 32 )

38s

Cmin
=

27s

Cmin
.

Otherwise, if γ̂ > 1, then745

∆̂t(µ) ≤
3

2
∆̂t(π

(FGTS)
t ) .

In this case, we can take the forerunner to be µ. The surrogate 3-information ratio can then be upper746

bounded as747

IR
(3)
t (µ) =

∆̂t(µ)(∆̂t(µ))
2

IGt(µ)
≤

2( 32 )
2(∆̂t(π

(FGTS)
t ))2

IGt(µ)
≤

( 32 )
24s

Cmin
=

9s

Cmin
.

Therefore, one can always find a value of γ ∈ (0, 1] such that748

IR
(3)
t (π

(mix)
t ) ≤ 27s

Cmin
.
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G Choosing the learning rates749

This section is focused on the choice of the learning rates required to obtain the bound of Theorem 2.750

G.1 Technical tools751

We start by a collection of technical results to help with choosing a time-dependent learning rate.752

Lemma 19. Let ai ≥ 0 and f : [0,∞) → [0,∞) be a nonincreasing function. Then753

T∑
t=1

atf

(
t∑

i=0

ai

)
≤
∫ ∑T

t=0 at

a0

f(x) dx. (32)

The proof follows from elementary manipulations comparing sums and integrals. The result is taken754

from Lemma 4.13 of Orabona [2019], where a complete proof is also supplied. The following755

lemma ensures that the learning rates are non-increasing.756

Lemma 20. Let C1 > e,C2 > 0 and define λt =
log(C1t)

C2t
, then λt is a non-decreasing sequence.757

Proof. Let t > 0, we have758

log(C1(t+ 1))

log(C1t)
=

log
(
C1t

(
t+1
t

))
log(C1t)

=
log(C1t) + log

(
t+1
t

)
log(C1t)

≤ 1 +
1

t log(C1t)
≤ 1 +

1

t
,

where the first inequality uses log(1 + x) ≤ x for any x > −1 and the second inequality uses759

log(C1t) ≥ log(C1) ≥ 1 because we assumed C1 ≥ e. Since C2(t+1)
C2t

= 1 + 1
t , we can conclude760

that the sequence λt is non-increasing.761

G.2 Data-rich regime: Proof of Lemma 8762

We start by focusing on the data rich regime, and we bound the following part of the regret bound763

given in Equation (12):764

CT

λT−1
+

32

3

T∑
t=1

λt−1IR
(2)
t (πt).

Here, CT = 5 + 2s log edT
s . To proceed, we let λt = α

√
Ct+1

d(t+1) , where α > 0 is a constant that we765

will optimize later. Because t → Ct is increasing, we get that λt−1 ≤ α
√

CT

dt . By Lemma 7, we766

know that for all t ≥ 1, IR
(2)
t (πt) ≤ 2d, hence767

CT

λT−1
+

32

3

T∑
t=1

λt−1IR
(2)
t (πt) ≤

1

α

√
CT dT +

64

3
α
√
CT

T∑
t=1

d√
dt

≤ 1

α

√
CT dT +

128

3
α
√
CT dT

≤
(
1

α
+

128

3
α

)√
CT dT

≤ 16

√
2

3
CT dT ,

where the second line uses the standard inequality
∑T

t=1
1√
t
≤ 2

√
T , and the last line is obtained by768

optimizing the expression
(
1
α + 128

3 α
)

with the optimal choice α =
√

3
128 which yields the value769

16
√

2
3 . This concludes the proof of the claim.770
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G.3 Data-poor regime: proof of Lemma 8771

We now focus on the data-poor regime and specifically on bounding the following part of the bound772

given in Equation (12):773

CT

λT−1
+

16

3
c∗3

T∑
t=1

√
3λt−1IR

(3)
t (πt).

Here, CT = 5 + 2s log edT
s . Now, we let λt = α

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

, where α > 0 is a constant that774

we will optimize later. Because t → Ct is increasing, we get that λt−1 ≤ α
(

CT

√
Cmin

ts

) 2
3

. By775

Lemma 7, the 3-surrogate-information ratio is bounded for all t ≥ 1 as IR
(3)
t (πt) ≤ 54s

Cmin
. Hence,776

the following holds:777

CT

λT−1
+

16

3
c∗3

T∑
t=1

√
3λt−1IR

(3)
t (πt) ≤

1

α
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

+ 48c∗3
√
2α(CT )

1
3

( √
s√

Cmin

) 2
3

T∑
t=1

1

t
1
3

≤ 1

α
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

+ 72c∗3
√
2α(CT )

1
3

(
T
√
s√

Cmin

) 2
3

≤
(
1

α
+ 72c∗3

√
2α

)
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

≤ 12 · 6 1
3 (CT )

1
3

(
T
√
s√

Cmin

) 2
3

.

Here, we have applied Lemma 19 with the function f(x) = x
1
3 and ai = 1 to bound

∑T
t=1 t

−1/3 ≤778

3
2T

2
3 in the second line, the last line comes from the choice α = 1

4·6
1
3

which optimizes the constant779 (
1
α + 144c∗3

√
2α
)

(as per Lemma 27). This proves the statement.780

G.4 Joint learning rates, end of the proof of Theorem 2781

In the section below, we present the technical derivation related to choosing the choice of learning782

rate λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), where λ(2)t =

√
3Ct+1

128d(t+1) and λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

,783

with Ct = 5+ 2s log edt
s . This choice interpolates between the data-rich and data-poor regimes. As784

a first step, we start by confirming via Lemma 20 that both λ(2)t and λ(3)t are non-increasing and the785

bound of Theorem 1 holds with our choice of λt.786

First, note that our choice of learning rates ensures that λt ≤ 1
2 holds as long as T is larger than787

an absolute constant, and thus we focus on this case here (and relegate the complete details of788

establishing this absolute constant to Appendix G.5). To proceed, we define the (constant-free)789

regret rates R(2)
t =

√
Ctdt and R(3)

t =
(
t
√
s Ct

Cmin

) 2
3

and note that they correspond to the regret790

bounds obtained when using the respective learning rates λ(2)t and λ(3)t , as per Lemma 8.791

We now consider the last time that the learning rates λ(3)t and λ(2)t have been used. More specifically,792

we denote T2 = max{t ≤ T, λ
(2)
t−1 ≥ λ

(3)
t−1}, and T3 = max{t ≤ T, λ

(3)
t−1 ≥ λ

(2)
t−1}. Combining the793

bound of Equation 12 and using the definition λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), the following bound794
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holds795

RT

≤ E

[
CT

λT−1
+

T∑
t=1

min

(
32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]

= E

[
CT

min( 12 ,max(λ
(2)
T−1, λ

(3)
T−1))

+

T∑
t=1

min

(
32

3
min(

1

2
,max(λ

(2)
t−1, λ

(3)
t−1))IR

(2)
t (πt),

16

3
c∗3

√
3min(

1

2
,max(λ

(2)
t−1, λ

(3)
t−1))IR

(3)
t (πt)

)]

≤ E

[
CT min

(
1

λ
(2)
T−1

,
1

λ
(3)
T−1

)
+

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)]
.

We can now separate the sum obtained at the last line based on which learning rate was used at time796

t.797

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)
≤

∑
λ
(2)
t ≥λ

(3)
t

32

3
λ
(2)
t−1IR

(2)
t (πt) +

∑
λ
(3)
t ≥λ

(2)
t

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt)

≤
T2∑
t=1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

T3∑
t=1

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt).

Following exactly the same step as in the proof of Lemma 8, we further bound798 ∑T2

t=1
32
3 λ

(2)
t−1IR

(2)
t (πt) ≤ 8

√
2
3R

(2)
T2

and
∑T3

t=1
16
3 c

∗
3

√
3λ

(3)
t−1IR

(3)
t (πt) ≤ 8 · 6 1

3R
(3)
T3

.799

The crucial observation is that which of λ(3)T or λ(2)T is bigger will determine whether R(2)
T or R(3)

T800

is the term of leading order (up to some constants). More specifically, Let T be such that λ(2)T−1 ≥801

λ
(3)
T−1 which means that

√
3CT

128dT ≥ 1

4·6
1
3

(
CT

√
Cmin

T
√
s

) 2
3

. Rearraging, this implies that
√
CT dT ≤802

6
5
6

4

(
T
√
s CT

Cmin

) 2
3

, which means that R(2)
T ≤ 6

5
6

4 R
(3)
T . Following the exact same steps, we also803

have that λ(3)T−1 ≥ λ
(2)
T−1 implies that R(3)

T ≤ 4

6
5
6
R

(2)
T . We apply this to the time T2 in which804

λ
(2)
T2−1 ≥ λ

(3)
T2−1 by definition. we have that R(2)

T2
≤ 6

5
6

4 R
(3)
T2

and putting this together with the805

previous bound, we have806

RT ≤ CT

λ
(3)
T−1

+ 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 8

√
2

3
· 6

5
6

4
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 4 · 6 1

3R
(3)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 4 · 6 1

3R
(3)
T + 8 · 6 1

3R
(3)
T

≤ 16 · 6 1
3R

(3)
T ,

where we use the fact that T → R
(3)
T is increasing and T2 ≤ T, T3 ≤ T .807

Using the same argument as before, we have that λ(3)T3−1 ≥ λ
(2)
T3−1, and we can conclude that R(3)

T3
≤808

4

6
5
6
R

(2)
T3

.809
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Putting this together, with the previous bound, we have810

RT ≤ CT

λ
(2)
T−1

+ 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3 · 4

6
5
6

R
(3)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T2

+ 16

√
2

3
R

(2)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T + 16

√
2

3
R

(2)
T

≤ 32

√
2

3
R

(2)
T ,

where we use the fact that T → R
(3)
T is increasing and T2 ≤ T, T3 ≤ T . Evaluating the constants811

numerically yields 16 · 6 1
3 ≈ 29.07 ≤ 30 and 32

√
2
3 ≈ 26.13 ≤ 27.812

G.5 Upper bound on the learning rates813

We now consider the case where the learning rates exceed 1
2 , and show that this only holds for small814

values of T . First, we have that λ(2)T−1 ≤ 1
2 if815 √

3CT

128dT
≤ 1

2
.

Rearranging the inequality and recalling CT = 5 + 2s log edT
s , this is equivalent to816

T ≥ 15

32d
+

3s

16d
log

edT

s
.

Using the loose inequality log edT
s ≤ dT

s , we get that this condition is satisfied for any T ≥ 1.817

Similarly, we have that λ(3)T−1 ≤ 1
2 if818

1

4 · 6 1
3

(
CT

√
Cmin

T
√
s

) 2
3

≤ 1

2
.

We note that819

Cmin = max
µ∈∆(A)

σmin(EA∼µ

[
AAT

]
) ≤ max

µ∈∆(A)

Tr(EA∼µ

[
AAT

]
)

d
≤ 1,

where the first inequality uses that the trace of a matrix is always bigger than d-times its smallest820

eigenvalue and the second inequality uses the fact that for any matrix A, we have Tr(AAT ) =821 ∑d
i=1 a

2
i ≤ dmaxi |ai| ≤ d because we assumed that all the actions are bounded in infinity norm.822

Hence the previous inequality will be satisfied if823

1

4 · 6 1
3

(
CT

T
√
s

) 2
3

≤ 1

2
.

Rearranging the inequality, this is equivalent to824

T ≥ 4

√
3

s
Ct = 8

√
3s log(eT ) +

√
3s

(
20

s
+ 8 log

d

s

)
.

Applying Lemma 24 with a = 8
√
3s and b =

√
3s
(
20
s + 8 log(ds )

)
, we find that the previous825

inequality is satisfied for all826

T ≥ 2a log ea+ 2b = 40

√
3

s
+ 16

√
3s log

8e
√
3d√
s

.
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Thus, letting Tmin = 40
√

3
s + 16

√
3s log 8e

√
3d√
s

be the constant given above, both learning rates827

stay upper bounded by 1
2 for all T ≥ Tmin and the upper bound on the regret given the previous828

subsection holds. Otherwise, we upper bound the instantaneous regret by 2 and this leads to an829

additional 2Tmin = O(
√
s log d√

s
) in the regret. Putting this together with the bound proved in the830

previous section, we thus have that the following regret bound is valid for any T ≥ 1:831

RT ≤ min

(
27

√(
5 + 2s log

edT

s

)
dT , 30

(
5 + 2s log

edT

s

) 1
3
(

T
√
s√

Cmin

) 2
3

)
+O

(√
s log

d√
s

)
.

This concludes the proof of Theorem 2.832

I Technical Results833

In this section, we state and prove the remaining technical results.834

Lemma 21. Let π ∈ ∆(A), the function θ → ∆(π, θ) is 2-Lipschitz with respect to the 1 norm. Let835

t ≥ 1, the function θ → E
[
log
(

1
pt(Yt|θ,At)

)]
is 2-Lipschitz with respect to the 1 norm.836

Proof. Let θ, θ′ ∈ Θ, we have837

|r(π, θ)− r(π, θ′)| =

∣∣∣∣∣∑
a∈A

π(a)〈θ − θ′, a〉

∣∣∣∣∣
≤
∑
a∈A

π(a)|〈θ − θ′, a〉|

≤
∑
a∈A

π(a) ‖θ − θ′‖1 ‖a‖∞

≤ ‖θ − θ′‖1 .

Similarly,838

|r∗(θ)− r∗(θ′)| = |max
a∈A

r(a, θ)−max
a∈A

r(a, θ′)| ≤ max
a∈A

|r(θ, a)− r(a, θ′)| ≤ ‖θ − θ′‖1 .

Finally839

|∆(π, θ)−∆(π, θ′)| = |r∗(θ)− r∗(θ′) + r(π, θ′)− r(π, θ)| ≤ 2 ‖θ − θ′‖1 .

For the negative log-likelihood, for simplicity, we let r = 〈θ,At〉, r′ = 〈θ′, At〉 and r0 = 〈θ0, At〉,840

E
[
log

(
1

p(Yt|θ,At)

)
− log

(
1

p(Yt|θ′, At)

)]
=

1

2
E
[
(〈θ,At〉 − Yt)

2 − (〈θ′, At〉 − Yt)
2
]

=
1

2
E
[
(r − Yt)

2 − (r′ − Yt)
2
]

=
1

2
E [(r − r′)(r + r′ − 2Yt)]

=
1

2
E [(r − r′)(r + r′ − 2r0)]

≤ 2 ‖θ − θ′‖1 .

841

Lemma 22. (Hoeffding’s Lemma) Let X be a bounded real random variable such that X ∈ [a, b]842

almost surely. Let η 6= 0, then we have843

1

η
logE [exp (ηX)] ≤ E [X] +

η(b− a)2

8
. (33)

Proof. See for instance Chapter 2 in Boucheron et al. [2013].844
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We now provide a data dependent version of Hoeffding’s lemma that is used in the analysis of the845

gaps in the optimistic posterior.846

Lemma 23. (A data dependent version of Hoeffding’s Lemma) Let X be a real random variable847

and η 6= 0 be such that ηX ≤ 1 almost surely, then we have848

1

η
logE [exp (ηX)] ≤ E [X] + ηE

[
X2
]
≤ 2E [X] . (34)

Proof. Using the elementary inequalities log(x) ≤ x− 1 for x > 0 and ex ≤ 1+ x+ x2 for x ≤ 1,849

we get that850

1

η
logE [exp (ηX)] ≤ 1

η
E [exp(ηX)− 1]

≤ 1

η
E
[
ηX + η2X2

]
≤ E [X] + ηE

[
X2
]
.

851

The following lemmas help us to analyze when the learning rates are smaller or bigger than 1
2 .852

Lemma 24. Let a ≥ 1, b ≥ 0, then, the equation t ≥ a log et+b is verified for any t ≥ 2a log ea+2b853

.854

Proof. We let f(t) = t − a log et − b, we have that f ′(t) ≥ 0 on [a,+∞) and f(a) ≤ 0. Hence855

f(t) = 0 has a unique solution α on [a,∞) such that f(t) ≥ 0 if t ≥ α. We now focus on upper856

bounding α. The equation f(α) = 0 is equivalent to857

logα =
α− b

a
− 1.

Now taking the exponential and reordering this is also equivalent to858

−α
a

exp

(
−α
a

)
=

exp
(
−a+b

a

)
a

.

Let859

g : (−∞,−1] −→ [−1

e
, 0)

x 7−→ xex.

The previous equation can be rewritten g
(−α

a

)
= −

exp
(
− a+b

a

)
a .860

We define W−1 : [− 1
e , 0) −→ (−∞, 1] as the(functional) inverse of g. g is the −1 branch of the861

Lambert W function.862

We have that for any x ≤ −1, W−1(xe
x) = x and that for any y ≥ e, −W−1(− 1

y ) ≤ 2 log(y).863

Since g is decreasing on its domain,W−1 is well-defined and decreasing. Moreover, for any x ≤ −1864

, W−1(g(x)) = x . In particular, we have that α = aW−1

(
−

exp
(
− a+b

a

)
a

)
. We will use that865

formulation to find an upper bound on α.866

We fix some y ≥ e. We have −2 log(y) ≤ −1 hence W−1

(
−2 log(y)e(−2 log(y))

)
= −2 log(y),867

which means that 2 log(y) = −W−1(− 1
y∗ ) where y∗ = e(2 log(y))

2 log(y) = y2

2 log(y) .868

Because of the elementary inequality 2 log(x) ≤ x for x > 0, we conclude that y ≤ y∗. Since869

y −→ −W−1(− 1
y ) is an increasing function we finally have that for any y ≥ e870

W−1

(
−1

y

)
≤W−1

(
− 1

y∗

)
= 2 log(y).
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Applying this to y = a exp
(
a+b
a

)
≥ e, we get871

α =W−1

(
−1

y

)
≤ 2 log(y) = 2a log ea+ 2b.

Since any t ≥ α will satisfy f(t) ≥ 0, this concludes our proof.872

873

Lemma 25. Let θ ∈ Θ, then Mt = exp(L
(1)
t (θ0)− L

(1)
t (θ)) =

∏t
s=1

p(Yt|θ,At)
p(Yt|θ0,At)

is a supermartin-874

gale with respect to the filration Ft.875

Proof. We have876

E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1, At

]
= E

[
exp

(
(〈θ0, At〉 − Yt)

2 − (〈θ,At〉 − Y 2
t )

2

)∣∣∣∣Ft−1, At

]
= E

[
exp

(
ε2t − (〈θ − θ0, At〉 − εt)

2

2

)∣∣∣∣Ft−1, At

]
= exp

(
− (〈θ − θ0, At〉)2

2

)
E [exp (εt〈θ − θ0, At〉)|Ft−1, At]

≤ exp

(
− (〈θ − θ0, At〉)2

2

)
· exp

(
(〈θ − θ0, At〉)2

2

)
= 1,

where the inequality comes from the conditional subgaussianity of εt. Finally, by the tower rule of877

conditional expectations878

E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1

]
= E

[
E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1, At

]∣∣∣∣Ft−1

]
≤ 1.

879

I.1 Proof of Proposition 1880

This is coming from the fact that the mean is the constant minimizing the mean squared error. We881

remind the reader of the definition of the surrogate information gain and the true information gain882

for a policy π ∈ ∆(A)883

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(〈θ − θ̄(Q+
t ), a〉)2 dQ(θ), (35)

where θ̄(Q+
t ) = Eθ∼Q+

t
[θ] is the mean parameter under the optimistic posterior Q+

t .884

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(〈θ, a〉 − 〈θ0, a〉)2 dQ+
t (θ), (36)

Let’s fix a ∈ A, we have that885

(〈θ − θ0, a〉)2 = (〈θ − θ̄(Q+
t ) + θ̄(Q+

t )− θ0, a〉)2

= (〈θ − θ̄(Q+
t ), a〉)2 + 2〈θ − θ̄(Q+

t ), a〉〈θ̄(Q+
t )− θ0, a〉+ (〈θ̄(Q+

t )− θ0, a〉)2

≥ (〈θ − θ̄(Q+
t ), a〉)2 + 2〈θ − θ̄(Q+

t ), a〉〈θ̄(Q+
t )− θ0, a〉

Now using that θ̄(Q+
t ) =

∫
Θ
θ dQ+

t (θ) and integrating, we get886 ∫
Θ

(〈θ − θ0, a〉)2 dQ+
t (θ) ≥

∫
Θ

(〈θ − θ̄(Q+
t ), a〉)2 dQ+

t (θ).

Multiplying by π(a) and summing over actions, we get the claim of the lemma.887
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I.2 Generalization of the AM-GM inequality888

Dealing with the generalized information ratio requires bounding the cubic root of products. While889

one could use Hölder’s inequality to deal directly with products, we find it more flexible to use a890

variational form of this inequality. In all that follows, we let p > 1 be a real number and q be such891

that 1
p + 1

q = 1. It is not hard to check that q = p
p−1 . We start by stating a direct consequence of the892

Fenchel-Young Inequality which can be seen as an extension of the AM-GM inequality.893

Lemma 26. Let x, y ≥ 0, then894

xy ≤ xp

p
+
yq

q
. (37)

With equality if and only if pxp−1 = y895

Proof. One can check that the Fenchel dual of the function896

f :R+ −→ R

x 7−→ xp

p

is exactly f∗(y) = 1
q |y|

qsgn(y). Then the Lemma is a direct consequence of the Fenchel Young897

inequality and of its equality case.898

Refining a bit this Lemma, we get the following variational form of the previous inequality :899

Lemma 27. Let x, y ≥ 0, λ > 0, then900

p
√
xy ≤ x

λ
+ c∗p(λy)

1
p−1 (38)

where c∗p = (p− 1) 1p

p
p−1 with equality if and only if x = y = 0 or λ = px

p−1
p

y
1
p

.901

Proof. We apply the previous lemma to p
√

px
λ and p

√
λy
p .902

In order to go from the variational form to the product form, we may use the following result.903

Lemma 28. Let α, β > 0, then904

inf
λ>0

α

λ
+ βλ

1
p−1 = cpα

1
p β

p−1
p , (39)

where cp = p 1
p−1

p−1
p satisfies cp ·c∗p

p−1
p = 1, and the minimum is reached at λ∗ = (p−1)

p−1
p α

p−1
p

β
p−1
p

.905

Proof. Applying the previous Lemma to x = α and y = c
p

p−1
p βp−1 yields the result.906

Remark An alternative is to pick λ to make both terms equals resulting in the same result but with907

2 as a leading constant. Now908

cp = p
1
p

p

p− 1

p−1
p

= exp

(
1

p
log p+

p− 1

p
log

p

p− 1

)
≤ 1

p
· p+ p− 1

p
· p

p− 1

= 2.

With equality if and only if p = 2. So, the choice of cp always yields a better leading constant.909

However, c3 ' 1.88 so one could argue that the gain is small. Since we will usually use Lemma 27,910

c∗p will naturally appear and cp will cancel it, ultimately making the leading constant as simple as911

possible.912
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Figure 1: Cumulative regret for d = 20 (left) 40 (middle) and 100 (right). We plot the mean ±
standard deviation over 10 repetitions.

J Experimental details913

We aim to verify that, in both the data-rich and data-poor regimes simultaneously, the regret of914

SOIDS is comparable with the regret of existing algorithms that achieve near optimal worst-case915

regret in either the data-rich or the data-poor regime. Our baseline for the data-rich regime is the916

online-to-confidence-set (OTCS) method proposed by Abbasi-Yadkori et al. [2012], which has worst917

case regret of the order
√
sdT . For a tougher comparison, we run this method with the confidence918

sets from Theorem 4.7 of Clerico et al. [2025], which have much smaller constant factors than919

those used by Abbasi-Yadkori et al. [2012]. Our baseline for the data-poor regime is the Explore920

the Sparsity Then Commit (ESTC) algorithm proposed by Hao et al. [2020], which has worst-case921

regret of the order (sT )2/3. For reference, we also compare with LinUCB Abbasi-Yadkori et al.922

[2011], which does not adapt to sparsity.923

It is generally difficult to run the SOIDS algorithm exactly because the surrogate information ra-924

tio contains expectations w.r.t. the optimistic posterior. In our implementation of SOIDS, we use925

the empirical Bayesian sparse sampling procedure of Hao et al. [2021] to draw approximate sam-926

ples from the optimistic posterior, and then approximate the surrogate information ratio via sample927

averages.928

For each d ∈ {20, 40, 100}, θ0 is the s-sparse vector in Rd, with s = d/10, in which first s com-929

ponents are 10/s and the remaining components are zero. The action set consists of 200 random930

draws from the uniform distribution on [−1, 1]d. The noise variance is 1 and we run each method931

10 times. In Figure 1, we report the cumulative regret over T = 1000 steps. As d is varied from 20932

to 100, we appear to transition from the data-rich regime to the data-poor regime: for d = 20, the933

OTCS method is the best performing baseline, whereas for d = 100, ETCS is the best performing934

baseline. As our theoretical results would suggest, SOIDS performs well in both regimes.935

To run the SOIDS algorithm, one must minimise IR
(2)
t (π) w.r.t. π in each round t. This is not936

straightforward, because IR
(2)
t (π) contains expectations w.r.t. the optimistic posterior Q+

t . When937

we use the Spike-and-Slab prior in Appendix B.2, we are not aware of any efficient method that can938

be used to maximise IR
(2)
t (π). Instead, we draw (approximate) samples θ(1), . . . , θ(M) from Q+

t939

to produce the estimates ∆̃t(π) and ĨGt(π) for the surrogate regret and the surrogate information940

respectively, where941

∆̃t(π) =
∑
a∈A

π(a)
1

M

M∑
i=1

∆(a, θ(i)), ĨGt(π) =
1

2

∑
a∈A

π(a)
1

M

M∑
i=1

(
〈θ(i) − θ̄M , a〉

)2
.

Here, θ̄M is the sample mean 1
M

∑M
i=1 θ

(i). We then maximimse the approximate surrogate infor-942

mation ratio ĨR
(2)

t (π), where943

ĨR
(2)

t (π) =
(∆̃t(π))

2

ĨGt(π)
.

To draw the samples θ(1), . . . , θ(M), we use the empirical Bayesian sparse sampling procedure pro-944

posed by Hao et al. [2021], which is designed to draw samples from the Bayesian posterior. To945

sample from the optimistic posterior, we incorporate the optimistic adjustment into the likelihood.946
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This method replaces the theoretically sound spike-and-slab prior with a relaxation in which the947

“spikes” are Laplace distributions with small variance, and the “slabs” are Gaussian distributions948

with large variance. In particular, the density of this prior is949

q1(θ) =
∑

γ∈{0,1}d

p(γ)

d∏
j=1

[γjψ1(θj) + (1− γj)ψ0(θj)] .

Here, ψ1(θ) is the density function of a univariate Gaussian distribution, with mean 0 and vari-950

ance ρ1, and ψ0 is the density function of a univariate Laplace distribution, with mean 0 and scale951

parameter ρ0. p(γ) is a product of Bernoulli distributions with mean β. In our experiments, we952

always use ρ1 = 10, ρ0 = 0.1 and β = 0.1. Also, we set the learning rates to η = 1/2 and953

λt = min( 12 ,
1
10 max(

√
s log(edt/s)

dt , ( log(edt/s)t )2/3)).954

Implementing the OTCS baseline exactly would require us to compute the means of the distributions955

played by an exponentially weighted average forecaster with a sparsity prior. These distributions are956

the same as the optimistic posterior, except λt = 0 (i.e. there is no optimistic adjustment). In our957

implementation of the OTCS baseline, we draw samples using the same empirical Bayesian sparse958

sampling procedure, and then replace the exact means with the sample means. We use the same959

choices for the parameters η, ρ1, ρ0 and β. We set the radii of the confidence sets to the values given960

in Theorem 4.7 of Clerico et al. [2025]961

For the LinUCB baseline, we set the radii of the confidence sets to the values given in Theorem 2 of962

Abbasi-Yadkori et al. [2011]. For the ESTC baseline, we set the exploration length T1 to 50 when963

d = 20, 100 when d = 40 and d = 100. These values were chosen based on a small amount of trial964

and error. The theoretically motivated values in Theorem 4.2 of Hao et al. [2020] are much larger965

than these values. Also for ESTC, we set the LASSO regularisation parameter to λ = 4
√
log(d)/T1,966

which is the value given in Theorem 4.2 of Hao et al. [2020].967
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