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Abstract

Most recent natural language generation mod-
els only focus on the quality of the generated
text, which is usually measured against a set
of reference sentences. This causes the models
to generate similar sentences given the same
context and thus leads to low diversity in the
generated content. In this paper, we propose a
model named VOLTA that leverages the Varia-
tional Autoencoder framework to improve the
diversity of large-scale language models. Un-
like the prior attempts, we use a shared GPT-2
backbone network for both the encoder and the
decoder because it has proved to be effective in
both natural language understanding and gen-
eration. In addition, we propose to add latent
codes that originated from InfoGAN to enable
input-independent controllability. Our model
architecture can be used for any typical lan-
guage generation tasks, but we test it on the
question-answer pair generation task as it has
series of well-established evaluation metrics.
Experimental results show that our model can
significantly improve the generative diversity
over previous models.

1 Introduction

Natural language generation (NLG) is an impor-
tant aspect of natural language processing (NLP),
including tasks such as question generation (Xiao
et al., 2020a), dialog generation (Liu et al., 2020)
and machine translation (Edunov et al., 2018), etc.
A series of pre-trained language models (PLMs)
based on Transformers (Radford et al., 2019; De-
vlin et al., 2019) were introduced for the NLG tasks,
such as GPT (Radford et al., 2019).

Although many PLMs achieved good perfor-
mance on the NLG tasks, the top generated sen-
tences are usually very similar to each other. The
cause is that regular PLMs do not have a dedicated
structure to adjust the embeddings of the input and,
in turn, to change the generated text. Variational
Autoencoders (VAE) (Kingma and Welling, 2014)

Context Architecturally, the school has a Catholic
character. Atop the Main Building’s gold dome is
a  golden statue of the Virgin Mary . Immediately
in front of the Main Building and facing it, is
a copper statue of Christ with arms upraised with the
legend "Venite Ad Me Omnes".
Next to the Main Building is the Basilica of the Sacred
Heart. Immediately behind the basilica is the Grotto , a
Marian place of prayer and reflection. ......
Q1 What type of statue is on the main building?
A1l golden statue of the Virgin Mary
Q2 What is the name of the copper statue on the main
building?
A2 @ copper statue of Christ with arms upraised

with the legend "Venite Ad Me Omnes".
Q3 What is next to the main building?
A3 Grotto

Table 1: An example of diverse QAG by VOLTA.

provides a framework where, with the addition of
low-dimensional latent variables, the model can
encode input into an organized latent space, which
can then be used to dictate the decoding process.
By perturbing the latent variables, the generated
sentences can divert away from the few best sen-
tences, which corresponds to improved diversity.

The challenge of introducing Transformer mod-
els into the VAE framework lies in that they
are highly parallelized models where a sequence
of contextualized token embeddings are passed
through the model simultaneously. In this scenario,
it is difficult to add a bottleneck layer of latent vari-
ables to the Transformer model itself. Optimus (Li
et al., 2020) used BERT (Devlin et al., 2019) as
the encoder and GPT-2 (Radford et al., 2019) as
the decoder, and proposed two ways to connect
latent variables to the two Transformer models:
“embedding” and “memory”. It is the first large-
scale PLM built under the VAE framework and
achieved the state-of-the-art performance on sev-
eral NLG tasks, such as dialog response generation,
stylized response generation, label-conditional text



generation, etc. Our model differs from Optimus
in that we do not use BERT as the VAE encoder.
Instead, we share a GPT-2 backbone for both the
encoder and the decoder. The reason why this is
possible is that GPT-2 has proved to be effective
in both natural language understanding and natural
language generation (Radford et al., 2018, 2019;
Brown et al., 2020). By doing this, we can vastly
decrease the model size by half. In addition, it also
simplifies the tokenization process.

Besides text generation diversity, VAE also pro-
vides a certain degree of controllability. For in-
stance, one can interpolate between two latent vari-
ables to generate a series of different text. How-
ever, the latent variables are largely dependent
on the input context. To introduce another input-
independent method to control the generation pro-
cess, we draw inspiration from InfoGAN (Chen
et al., 2016). It proposed to add latent codes to the
input noise when training a GAN model (Good-
fellow et al., 2020). By optimizing a novel Varia-
tional Mutual Information Maximization objective,
the generator can automatically discover different
types of semantic features via the latent codes, and
the generated content can be controlled by the la-
tent codes. For the MNIST dataset (LeCun et al.,
1998), the discrete latent codes can vary the type of
the generated digits and the continuous latent codes
can adjust their rotation and width. Our model does
not follow the GAN framework but leverages latent
codes to inject controllability into the PLMs. To
the best of our knowledge, our work is the first one
to add latent codes to PLMs. Because our model
follows the VAE framework and uses the Varia-
tional Mutual Information Maximization objective
from InfoGAN, we name it VOLTA (VariatiOnal-
MutuaL-InformaTion-Maximizing VAE).

Our model can be used for any typical NLG
tasks, but we apply it to the question-answer pair
generation task (QAG) because it has a variety of
well-established metrics for evaluating the quality
and diversity of the generated content. QAG aims
to generate a pair of a question and an answer based
on the a provided context. The answer is a text
span in the context, while the question should be
closely related to the answer. A QAG model can
be used to augment a question-answering dataset
by generating new question-answer pairs, enabling
semi-supervised learning for downstream question-
answering models.

The main contributions of this paper are:

* VOLTA is the first to introduce a large-
scale PLM under the VAE framework for the
question-answer pair generation task; in ad-
dition, it reduces the model size by half com-
pared to Optimus (Li et al., 2020) with the
shared GPT-2 backbone;

* We are the first to propose adding latent codes
to PLMs for input-independent controllability;
this is also the first work that combines latent
codes with VAE latent variables in the field of
NLP;

* Comprehensive experimental results on the
question-answer pair generation task show the
effectiveness of our model in improving diver-
sity and controllability.

2 Related Work

Many Transformer-based PLM models with a large
variety of configurations were introduced in recent
years, including BERT (Devlin et al., 2019), GPT-2
(Radford et al., 2019), BART (Lewis et al., 2020),
T5 (Raffel et al., 2020), etc. But most of them do
not focus on the diversity or the controllability of
the generative process.

Variational Autoencoders (VAE) (Kingma and
Welling, 2014) differ from Autoencoders (AEs)
(Hinton and Salakhutdinov, 2006) in the addition
of the low-dimensional latent variables. It was orig-
inally used in Computer Vision and then adapted to
NLP. Early attempts (Rezende et al., 2014; Kingma
et al., 2016; Bahuleyan et al., 2018) used LSTM
(Hochreiter and Schmidhuber, 1997) as the encoder
and the deocder, such as Info-HCVAE (Lee et al.,
2020). They were mostly successful in achieving
guided sentence generation but also inherit the lim-
itations of LSTM. Recent works combined large
PLMs with VAE and generated better results. For
example, Optimus (Li et al., 2020) used BERT as
the encoder and GPT-2 as the decoder. Optimus
outperforms LSTM-based models in VAE language
modeling.

To achieve controllable language generation,
some methods add special prompt tokens or con-
trol phrases to control the generated sentences. For
example, SimpleTOD (Hosseini-Asl et al., 2020)
adds different prompt tokens to make GPT-2 gen-
erate different dialogue responses. Similar meth-
ods include CTRL (Keskar et al., 2019), Soloist
(Peng et al., 2021), CGRG (Wu et al., 2021), and
MEGATRON-CNTRL (Xu et al., 2020). Dathathri



et al. (2020) proposed the Plug and Play Language
Model (PPLM) to guide language generation by
plugging simple attribute classifiers into existing
language models and it does not need re-training
the models. These methods require little to none
modification to the Transformer models because
they mainly rely on changing the input sequences
and the output targets.

InfoGAN (Chen et al., 2016) was first introduced
to discover latent modalities in the MNIST dataset
(LeCun et al., 1998) in an unsupervised manner.
The generated images can be controlled by latent
codes after training InfoGAN with the Variational
Mutual Information Maximization objective. There
are also attempts to combine InfoGAN with VAE
to create diverse and controllable generative mod-
els, such as VAE-Info-cGAN (Xiao et al., 2020b)
and InfoVAEGAN (Ye and Bors, 2021). But nei-
ther of then are for NLP. There are also works that
apply mutual information to VAE, such as Info-
VAE (Zhao et al., 2019) and InfoMax-VAE (Lotfi-
Rezaabad and Vishwanath, 2020). However, they
maximize mutual information to solve the latent
variable collapse problem (Chen et al., 2017) and
there is no addition of the desired latent codes. To
the best of our knowledge, our model is the first to
combine large PLMs with VAE and InfoGAN.

3 Our Method

We design our model to enable diverse and control-
lable language generation using the Variational Au-
toencoder framework (Kingma and Welling, 2014)
and latent codes from InfoGAN (Chen et al., 2016).
The VAE framework produces latent variables that
encode the input information. By perturbing the la-
tent variables, one can change the decoded content
slightly and achieve more diversity. Unlike VAE
latent variables, InfoGAN latent codes is input-
independent. That is, their values are not deter-
mined by the input but by human. This provides
another way to control the generated sequence. The
overview of our model is shown in Figure 2.

3.1 Preliminaries

The question-answer pair generation task aims to
generate a pair of question x4, and answer X,
based on the given context x.,. The context
ZTetw = (T1,...,%m) and the question xgyy, =

(x),...,x]) are both sequences of tokens, while

rrn

the answer x.,s = (start,end) € Z? is a pair of
integer indices, specifying the start and the end of

the answer span in the context. That is, the answer
sequence (Zstart, - - - » Lend) can be found by look-
ing into the context sequence oy = (1, ..., Tm)
based on the answer span x,,s. The goal is to
find a model f that can generate a pair of question
and answer using the known context: f(x.t;) —
(Tgtn, Tans). We use & = [Tea, Tgin, Tans| tO
denote the input containing context, question and
answer.

3.2 Latent Variables

Similar to Optimus (Li et al., 2020), our model
follows the Variational Autoencoder (VAE) frame-
work (Rezende et al., 2014; Kingma et al., 2016;
Bahuleyan et al., 2018), where the encoder fy and
the decoder f,; are both Transformer models. Both
our model and Optimus use GPT-2 as the decoder
f¢ but the difference is that Optimus uses a separate
BERT (Devlin et al., 2019) model as the encoder
fo while our model shares a GPT-2 (Radford et al.,
2019) backbone network for both the encoder and
decoder.

The encoder encodes the question and the answer
into two different sets of latent variables. We use
a set of continuous latent variables to capture the
question information while we model answers with
a set of discrete latent variables:

pt, 0% = MLP(fo(2qn))
1, ..., T = MLP(fo(Zcta, Tgtn, Tans))
Zq ™~ N(p,o?)
zq ~ [Cat(7y),. .., Cat(m,)],

ey

where MLP(+) is a fully-connected layer and each
instance is distinct and has a different set of learn-
able parameters; /() is the multivariate Gaussian
distribution and its parameters are p and o?; Cat(-)
is the categorical distribution whose parameters
7 represent the event probabilities of k categories,
and the encoder produces p independent such latent
variables. To allow gradient to be back-propagated
through the latent variables, the Gaussian distribu-
tion reparametrization trick (Wolpe and de Waal,
2019) is used for z,; for z,, we use Gumbel-
Softmax (Maddison et al., 2017; Jang et al., 2017)
to reparameterize the categorical distribution.
Since the Kullback—Leibler divergence between
the learned distribution and the prior distribution
cannot be optimized directly, we use the Evidence



To whom did the Virgin Mary
allegedly appear in 1858 in
Lourdes France?

Immediately in front of the
Main Building and facing it, is
a copper statue of Christ

with arms upraised with the
legend “Venite Ad Me Omnes”

To whom did the Virgin Mary
allegedly appear in 1858 in
Lourdes France?

a copper statue of Christ

Figure 1: The overview of VOLTA.

Figure 2: The graphical model for VOLTA.

Lower Bound (ELBO) objective:

ELBO(x) = Ey, (2 |z) [l0g py(|2)]
— Dxe(qo(z]) || p(2))  (2)
= — Lag(x) — Lrec(x)

where we define the likelihood as the Autoencdoer
(AE) reconstruction loss and the KL divergence as
the regularization loss; the minus signs in front of
the losses are because of the fact that we maximize
the ELBO but minimize the losses.

The AE reconstruction loss will be introduced
later in Section 3.4 because it involves the decoding
step. The KL divergence can be used to regularize
the posterior distributions gy (z|z) with the prior
distribution p(z). The KL divergence of a continu-
ous latent variable is:

Dxr(qo(z|2) || p(2))

oy ot m) 1 B)
= log + 2 )
Oq 205 2

where we assume that p(z) is N (up,af,) and
qo(z|x) is N(pg,02). The KL divergence of a
discrete latent variable is:

k
Dw(as(2|2) | p(2)) = gilog Z%, )
i=1 v

where the event probabilities of the prior p(z) are
(p1, ..., pr) and those of the posterior gg(z|x) are
(q1, ..., qx). The derivation of those results can be
found in Appendix A.2, A.3

3.3 Latent Codes

In addition to latent variables, we add latent codes
to inject controllability into the model, which was
originally proposed in InfoGAN (Chen et al., 2016)
from the field of Computer Vision. There are also
two types of latent codes: continuous and dis-
crete. Continuous latent codes can follow either
the uniform distribution or the Gaussian distribu-
tion, while discrete latent codes can still use the
categorical distribution. In our model, we draw
¢q ~ Uni(—1,1) and ¢, ~ Cat(p), where Uni(-)
is the uniform distribution; Cat(-) is the categori-
cal distribution with parameters p = %1 that uses
the same number of categories k as the discrete
latent variables, because they will be concatenated
together.

To prevent the model from ignoring the latent
codes, we encourage the model to recover the input
latent code at the generation step. To achieve that,
we add the Variational Mutual Information Maxi-



mization (VMIM) objective (Chen et al., 2016):

(s fol2,€))
= H() + Bqup, o) | DrL(P(J2) | Po(|2))
+ EC/NP(C|:E) [IOg P¢(Cl|x)]} Q)

ZH(C) + E$~f¢(z,c) [EC’NP(C\:B) [log P¢(C,‘CL‘)]]
::H(C) + 'CVMIM(C)

Because the posterior P(c|x) is difficult to obtain,
an auxiliary distribution Py (c|z) based on fy is
added to approximate P(c|x). The entropy of la-
tent codes H (c) is a constant and thus it is excluded
from the VMIM objective. The derivation of this
objective is included in Appendix A.4.

In practice, a fully-connected layer is added to
the decoder for each latent code whose objective is
to recover the original latent code:

e, g = MLP(ftz)(zq S Cqs wctm))
pe = MLP(f4(za @ Ca, Teta))

= log P(cq; i, 07)

= log P(cq; pc)-

(6)

Lymim(cq)

Lyvmim(ca)

We have two channels to pass the latent vari-
able information to the decoder. One channel is to
use a linear layer to obtain a latent embedding that
is added to the word embedding, along with posi-
tional encoding; the other channel is to generate
a latent embedding for each Transformer decoder
block of the decoder, and those latent embeddings
are treated as the past information for the decoder
blocks. These two channels are termed “‘embed-
ding” and “memory” in Optimus.

3.4 Question & Answer Generation

To reconstruct the original questions, the Autoen-
coder is trained as a language model in an auto-
regressive manner, which predicts the next token
given all previous tokens.

pd)( ) = MLP(f¢(za ® cq, 24 D ¢y, w<t>)

wqtn

Hp |z <t) 7

where ¢, is a vector that contains multiple inde-
pendent categorical latent codes, and ¢, is a vector
that contains multiple independent uniform latent
codes; py is conditioned on x4, which is omitted
for brevity.

Therefore, the question reconstruction loss is a
cross-entropy loss over the vocabulary with respect
to all question tokens:

ZCE Po(@ile<t), ye).  (8)
t=1

Lom-AE(x

Because SQuUAD answers are annotated by two
indices, one for the start word and the other for the
end word. When the model tries to reconstruct the
answer, it also predicts those two indices. Hence,
the answer reconstruction loss is:

Dstart (mctaz) = MLP(f¢(Za @ cq, xctx))
pend(wcta:) = MLP(f(f)(za @ cq, xct:c))‘ (9)
»CAns—AE (:B) = CE(pstart(wctx)) ystart)

—+ CE(pend (a3ctx) s yend) ’

where ¢, is a vector that contains multiple indepen-
dent categorical latent codes; & is the concatena-
tion operation; Ystqr¢+ and yenq are the true answer
span; CE(-) is the cross-entropy loss.

Therefore, the overall Autoencdoer reconstruc-
tion loss is the sum of both AE losses:

Lag(x) = Lom-aE(x) + Lans-ae(xz)  (10)

3.5 QA Mutual Information

In addition, we also want to enforce the mutual
information between the generated question and
answer (QAMI). As in Info-HCVAE (Lee et al.,
2020), we base this QAMI objective on Jensen-
Shannon Divergence:

9(q,a) = o(fs(q)" W fs(a))

Loami(z) = Ellog g(q, a)]
+ %E[log(l —9(@a)l
+ %E[log(l —9(q,a))]
< I(g,a),

where ¢ is the embedding of the question by f,;, and
a is the embedding of the answer; ¢ is a negative
question sample and a is a negative answer sample.
¢g(+) adds a bilinear layer on top of f4 and classifies
whether the input question and answer is a true pair
of QA.

Therefore, by Eq. (2)(6)(10)(11), we have the
overall loss being:

Leio(r) = Lag(x) + BLrEG(T)

(12)
+ Lymmm(e) + Loami(x)



Similarity to Reference Diversity
BLEU-11 | BLEU-21 | BLEU-37 | BLEU-41 | MTR 1 | RG-L 1 | Dist-11 | Dist-217 | Dist-31 | Dist-41 | S-BLEU |
GPT-2 (Radford et al., 2019) 51.456 35.610 26.608 20.461 23.109 | 48.983 | 8.408 | 38.472 | 61.608 | 73.627 33.042
Info-HCVAE (Lee et al., 2020) | 48.167 30.200 20.522 14.321 19.865 | 43918 | 6.997 | 33.473 | 57.242 | 71.681 32.658
VOLTA (ours) 33.243 16.025 9.346 5.814 11.944 | 31.257 | 7.894 | 38.697 | 65.488 | 80.793 29.579
Small z, 32.740 16.064 9.543 5.974 11.621 | 31.798 | 7.420 | 34.191 | 58.127 | 73.210 33.435
Small z, 33.339 16.056 9.405 5.889 21.620 | 46.272 | 7.601 | 38.168 | 65.065 | 80.480 29.849
Large 2z, 33.055 16.364 9.896 6.408 11.928 | 31.755 | 7.245 | 33.081 | 55.647 | 69.922 37.539
Large z, 35.006 17.817 10.899 7.123 12.465 | 33.198 | 7.004 | 31.237 | 51.695 | 64.220 43.233
W/oc, & cq 33.677 17.048 10.426 6.806 12.366 | 31.790 | 7.870 | 37.073 | 61.864 | 76.316 33.094
QG only 50.159 32.853 23.424 17.244 | 21.620 | 46272 | 7.983 | 39.248 | 65.080 | 78.438 29.591

Table 2: Performance comparison and ablation study. “MTR” means METEOR, “RG-L” means ROUGE-L, “Dist-k”

means Distinct-k, and “S-BLEU” means Self-BLEU.

where c represents all the independent continuous
and discrete latent codes; [ is the coefficient for the
KL divergence losses. Because of the KL vanishing
issue (Bowman et al., 2016) where the decoder
ignores the latent variables, we also use a linear
annealing schedule for 5 (Li et al., 2020) and limit
its maximal value to 0.1 (Lee et al., 2020).

4 [Experiments

4.1 Implementation Details

We use the “GPT2-base” model as the backbone
network. Our model uses the following configu-
ration if not otherwise specified: the number of
Gaussian latent variables is 32; the number of cat-
egorical latent variables is 20 and each of them
has 10 categories; 4 uniform latent codes are added
alongside with the Gaussian latent variables and to-
gether they are used to handle the information from
questions; 5 categorical latent codes are concate-
nated to the categorical latent variables and they
are dedicated to process answer embeddings. The
model is trained with a learning rate of 5 x 1075
for 20 epochs. The annealing schedule for 3 in-
cludes an increasing phase that spans 25% of the
total training time, from O up to the maximal value
of 0.1, which is maintained for the rest of the train-
ing duration. The experiments are conducted using
4 TITAN V GPUs.

4.2 Question Generation Diversity

We first test the question generation quality with
BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005) and ROUGE-L (Lin, 2004) on
the SQuAD dataset (Rajpurkar et al., 2016, 2018).
The BLEU score measures the similarity between
generated sentences and the reference sentences
based on n-grams. METEOR (Banerjee and Lavie,
2005) uses the harmonic mean of the precision and
recall of unigrams instead, and it takes more fac-
tors into consideration, such as stemming and syn-

onymy. ROUGE-L (Lin, 2004) primarily considers
the longest common subsequences.

As we can see in Table 2, because the VAE
framework perturbs the latent variables, the gener-
ated questions divert from the reference questions.
This indicates that our model generation is less an-
chored at the ground truth questions and thus more
diverse. GPT-2 is not designed to generated answer
spans and thus it generates questions with ground
truth answers.

To quantify the diversity of the generated ques-
tions, we use two diversity measures: Distinct-k
(Lietal., 2016) and Self-BLEU (Zhu et al., 2018).
Distinct-k is the number of distinct k-grams di-
vided by the total number of generated words. Self-
BLEU regards every generated sentence as hypoth-
esis and the other sentences as reference to calcu-
late the BLEU score with respect to the hypothesis
sentence; then the average BLEU score over all
generated sentences is the Self-BLEU of the docu-
ment. If the generated sentences in the document
are diverse, the Self-BLEU score will be low. As
shown in Table 2, our model has higher overall
diversity.

4.3 Ablation Study

We experiment with different configurations of our
model, as shown in Table 2. “small z,”: the num-
ber of Gaussian latent variables is reduced from the
default 32 to 8 while all other components are un-
changed; “small z,”: 5 categorical latent variables
are used instead of 20; “large z,”: the model uses
64 Gaussian latent variables; “large z,”: there are
40 categorical latent variables in the model; “w/o
cq & ¢, no latent codes are added; “QG only”:
the model does not generate answers and the ques-
tions are generated based on ground truth answer
spans.

The experimental results show that when the
latent variables are too small, the encoded latent



information in them might be insufficient for the
decoder; but when the latent variables are too large,
the perturbation of the Gaussian distribution or the
categorical distribution may compound and distort
the latent information too much. By removing the
latent codes, we can see the diversity metrics drop.
This indicates that the latent codes also improve
the model diversity. When the model does not gen-
erate answers, the similarity-to-reference metrics
are much better. Because the generated answers
are very different from the original ones and the
questions are generated with respect to the gener-
ated answers, adding answer generation can pull
the generated questions away from the reference
questions, which improves the diversity while sac-
rificing the similarity to the reference questions.

4.4 Downstream Task Analysis

Although with the two diversity metrics, Distinct-k
(Lietal., 2016) and Self-BLEU (Zhu et al., 2018),
we were able to show that our model generates
more diverse questions. But a model can achieve
good results for those two metrics if it merely gener-
ates completely random tokens. Therefore, we use
two additional metrics, QAE and R-QAE, based on
an auxiliary downstream task of question answer-
ing (QA) to show that the generated questions are
diverse and non-arbitrary sequences.

QAE?t R-QAE]
EM Fl EM Fl
GPT-2 (Radford et al., 2019) | 56.6382 | 68.6164 | 67.3124 | 79.4297
Optimus (Li et al., 2020) 58.2745 | 70.5103 | 67.0479 | 78.8968
Info-HCVAE (Lee et al., 2020) | 56.9543 | 68.5626 | 40.2104 | 58.7262
VOLTA (ours) 56.9357 | 68.6692 | 19.8872 | 31.0355

Table 3: Quality-diversity trade-off of QA pair genera-
tion.

QAE Zhang and Bansal (2019) proposed
Question-Answering-based Evaluation (QAE) to
measure the quality of the generated question-
answer pairs. To measure the QAE of a model, one
need to follow four main steps: (a) sample some
unlabeled Wikipedia paragraphs with pre-extracted
answer spans from HarvestingQA dataset; (b) make
the QG model that we want to measure act as an
“annotator” to generate a question for each answer
span, which results in a synthetic QA dataset; (c)
train a separate QA model using this synthetic QA
dataset; (d) use the performance of the trained QA
model on the original SQuAD development set
(Rajpurkar et al., 2016, 2018) as the evaluation for
this QG model, which includes two measurements,

exact match (EM) and F1 (Rajpurkar et al., 2016,
2018). QAE primarily measures the quality of the
generated questions. If the generated questions
are composed of random tokens, the trained QA
model will perform badly on the development set
of SQuAD. The BERT model (Devlin et al., 2019)
is used as the QA model.

R-QAE If we train a QA model using the original
SQuAD training set but we test the trained QA
model on a synthetic QA test set, the performance
is expected to be low when the synthetic dataset is
diverse. The reason is that when the generated test
dataset has more diversity and out-of-distribution
QA pairs, the QA model is expected to perform
badly. Because the evaluated QG model is used
to annotate the test set in R-QAE rather than the
training set in QAE, it is named Reverse-QAE, or
R-QAE for short (Lee et al., 2020).

As we can observe in Table 3, our model does
not sacrifice the question generation quality while
achieving better diversity than the baselines.

4.5 Diverse & Controllable Generation

Our model architecture enables two main ways
to control the generation process. One is from
the VAE framework (Kingma and Welling, 2014),
which provides the latent variables that can be used
to interpolate between source and target examples.
The other one is based on adjusting the latent codes
from InfoGAN (Chen et al., 2016). Unlike the
latent variables, latent codes are independent of the
input context.

Latent Variable Diversity Given a context, we
can generate different z, and z, because of the na-
ture of VAE. Therefore, we can generate different
QA pairs from the same context. The shortcoming
of this approach is that the user has no control over
the latent variables. The latent variables are com-
pletely dictated by the encoder and the randomness
of the learned latent distributions. An example
of the QA pairs generated for a given context is
illustrated in Table 1.

Latent Variable Interpolation By encoding two
contexts (can be the same context) into two sets
of latent variables, we can obtain new latent vari-
ables by linearly interpolating between them. How-
ever, this method suffers from two drawbacks: first,
when we get two sets of latent variables from two
different contexts, they might be very dissimilar
to each other and the semantics of the interpolated



points is not clear; second, it is also not reasonable
to interpolate between the two categorical latent
variables. An example of interpolated results can
be found in Table 4.

Context The university is the major seat of the Congre-
gation of Holy Cross (albeit not its official headquarters,
which are in Rome). Its main seminary, Moreau Seminary,
is located on the campus across St. Joseph lake from the
Main Building. ......

Q1 What catholic denomination is the university of new
haven located in?

Q2 What is the main campus of moreau seminary?

Q3 What religious institution is located on the campus of
moreau seminary?

Q4 What former retreat center is located near the grotto?
Q5 What religious denomination does the moreau seminary
belong to?

Q6 What is the oldest building on campus?

Q7 What is the main seminary in the university of kansas?
Q8 What is the main seminary of the college?

Q9 What retreat center is located near the grotto?

Table 4: An example of interpolating between latent
variables for question generation.

Latent Code Controllability Unlike latent vari-
ables that are highly dependent on the inputs, latent
codes can be set freely regardless of what the con-
text is. Because they are passed to the decoder
alongside with the latent variables, they do not de-
grade the information contained in the latent vari-
ables. They add more dimensions for controlling
the output, besides the controllability from the la-
tent variables. As we can see in Table 5 and Table 6,
the continuous latent codes can adjust question gen-
eration while the discrete latent codes can be used
to change the generated answers.

Context Holy Cross Father John Francis O’Hara was
elected vice-president in 1933 and president of Notre Dame
in 1934. During his tenure at Notre Dame, he brought nu-
merous refugee intellectuals to campus; ... ...

Q1 (¢ = —0.8)

What was O’Hara’s first name?

Q2 (¢g = —0.6)

Who was elected vice president in 19337

Q3 (¢g = —0.0)

What was O’Hara’s title prior to becoming vice president?
Q4 (cq =+404)

What was O’Hara’s first title?
Answer John Francis O’Hara

Table 5: Continuous latent code for controlling question
generation.

Context ...... During his 13 years the Irish won three
national championships, had five undefeated seasons, won
the Rose Bowl in 1925, and produced players such as
George Gipp and the "Four Horsemen". ......

Al (¢, =0) five

A2 (¢, = 3) 1925

A3 (¢, = 7) three

Table 6: Discrete latent code for controlling answer
generation.

4.6 Latent Variable Visualization

To visualize how latent variables are distributed in
the latent space, we use t-SNE to plot latent vari-
ables of questions in a 2D space. It is compared
with the GPT-2 embeddings for the same set of
questions. As we can observe in Figure 3, GPT-2
returns the same embeddings for a given question
while our model is able to encode a question into
multiple different latent variables that follows the
Gaussian distribution. Those distinct latent vari-
ables for a question then can be used to generated
various questions after being handed to the decoder,
which increases the diversity of our model.

GPT-2

Continuous Latent Variable

Figure 3: T-SNE visualization of question embeddings
by GPT-2 and the latent variables by our model.

5 Conclusion

We developed a model named VOLTA that merges
the power of Transformer models with the diversity
from the VAE framework. The latent variables di-
versify the generated questions and answers. In ad-
dition, we all latent codes from InfoGAN to inject
more dimensions of controllability. Both quantita-
tive and qualitative experiments were carried out to
show that our model indeed improves in diversity
and controllability.
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A Appendix
A.1 Basic Definitions
Information is defined as:

1
P(X)

I(X)=—log P(X) = log

Entropy is defined as:

H(X) =E[I(X)]

=E[—log(P(X))]
- / p(x) log p(x)dx
=Exy[—logP(X|Y)]

- / f(z,y)og f(zly)dzdy,

H(X|Y)

where p(z,y) is the probability mass function
of a discrete distribution, whereas f(z,y) is
the probability density function of a continuous
distribution.

Then mutual information is:

1(X:Y)
=Dy (P(X,Y) [| P(X)P(Y))
(z,

p(z,y)
/ y) log o ()dxdy

)p
= / p(z,y)log p(y)dady
+/p:1:ylog P, ))dd
/p ) log p(y
+/p z,y) log p(y|x)dady
H(Y) - H(Y|X)
H(X) ~ HX|Y),

because Kullback—Leibler divergence is defined to
be:

k(@ || P) =H(Q, P) —
=Eq[—log P(X

] = Eq[—1og Q(X)]
/Q(w) log (@)

—dx
>0

H(Q)

p(z

)

where H(Q, P) is the cross entropy of ) and P.
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We want g(z|x) =

A.2 Optimus (3-VAE)

In Optimus (Li et al., 2020; Kingma and Welling,
2014), we assume a normal distribution for a con-
tinuous latent variable:

1 z—p)2
f(gj)— e_%( au)
27
1 /fx—p 2
log f(x) = — logov2m — 3
o
1 1 (x—p 2
—loga—210g27r—2< - >
1 1 1 (z—p)°
:—210g02—210g27r—2<xau>

N(pq, ag) and the prior, p(z) =

N (pp, 03) = N(0,1), to be close

Dkr(Q
- / 4(=) log p(2)dz + / o(=) log g(2)d=
‘73 + (Nq - Np)2>

2

I P)

1 2
= <2(log 2mo,) + 202

1
- 5(1 + log 2707)

zl(log 0;12;) n g + (kg — 11p)° 1
2 03 20% 2
:110 Ip 2_'_03"_(,%_ )2_1
2 & oq 20% 2

The mutual information between z and z|x is
- H(Z‘.’IJ)’

where the negative entropy for normal distribu-
tion is (n, is the dimension of latent variable z):

H(z|z) =Eq(z|2)[log(Q(z]x))]

q(z)logq(z)dz

—~

—

(1 + log 270 7)

(1+log27r+loga )

r—t[\:)\r—l[\:ﬂ»—\

2

1
log 27 — 5(1 +log o)



H(Z) = Eq(z) [_ log Q(Z)]

— /q(z) <logaq\/ﬂ+; <

- / q(2)log oy V2ndx
Hq

()

Oq
= — Eq(z) [lOg Jq \Y 27T] — Eq(z)

Z— g
Oq

)

1

- /Q(Z)

2

Z = g

logaq\ﬁ Eq(2) [1 (

)]

q
1 [ E z — 2
—logaq\/ﬂ—< q(z) [( . 1q) ])
2 o
1 2 1 1 (2 — pg)”
:—§logaq—§log2ﬂ'—§T,

q

where E(,) [(z — 14)?] is simply the deviation of
a single sample z from the mean 4.

A.3 Info-HCVAE

According to Info-HCVAE (Lee et al., 2020), some
inputs are better suited to be encoded into discrete
latent variables. In this case, we can make use of
the categorical distribution:

flx=1i|p)

where the event probabilities p = (p1, ..., px) and
Zle p; = 1; k > 0 is the number of categories.
The Gumbel-Softmax distribution enables back-

= Pi,

propagation through discrete distributions. The
Gumbel distribution is:
1 -z
Gumbel(u, B) = f(x;p, B) = e (e,

T—p

where z =

To sample a category from the categorical distri-
bution using the Gumbel-Max re-parametrization
trick, one can follow:

arg max(G; + logp;),
i

where G; ~ Gumbel(0, 1). arg max can be made
differentiable by approximating it with the softmax
function:

i = exp((G; + logp;)/T)
t Y exp((Gy +logpy)/T)
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Given two categorical distributions P and @,
parameterized by p and g, respectively, the KL
divergence between them is:

DxiL(Q || P) Zqz 10g%-
(A

A4 InfoGAN

The input noise z is passed into the generator along
with the latent code ¢: G(z, ¢), where z is concate-
nated with c. Because the generator can simply ig-
nore the latent code ¢, InfoGAN (Chen et al., 2016)
adds Variational Mutual Information Maximization
(VMIM) to maintain the mutual information be-
tween generated sample z ~ G(z,c) and latent

code c:
I(¢;G(z,¢))
=H(c) — H(c|G(z,¢))

=H(c) + Egni(z,0)[Eenp(cla) [log P(c'|2)]]
=H(¢) + Epnii(a [Zp (¢|z) log p(e \x}
)

c
p(d|z

q(c'|x)

:H( )+Ex~G (z,¢) [Zp ‘JI log

+log q(c'|x))

:H(C) + EING(Z,C) [Zp(cl‘.%') log

C,

[E——

p(|)
q(c'|z)
+ > p( ) log a(c'|x)|

C/

=H(c) +Epug(ze) [Dxi(P(|2) | Q([))
+ IEc’wP(c\a:) [log Q(c’|x)H
ZH(C) + ExNG(z,c) [EC/NP(Clx) [log Q(CI“T)]] ’

Because the posterior P(c|z) is hard to obtain, an
auxiliary distribution Q(c|z) is added to approx-
imate P(c|z), where () is a neural network. In
practice, the entropy of latent codes H (c) is treated
as a constant and omitted in the InfoGAN objective.

A.5 InfoVAE and InfoMax-VAE
The evidence lower bound (ELBO) of regular VAE
is
LeLso(7)
=Lag(z) + Lrec(T)
=Eg, (zla) [log po(|2)] —
<log py(z).

Dxu1.(ge(2|7) [| p(2))



InfoVAE (Zhao et al., 2019) and InfoMax-VAE
(Lotfi-Rezaabad and Vishwanath, 2020) add mutual
information to the loss:

Lerpo(x) =Lag(z) + BLrEG(Z) + ady(z; 2)
=Epp (2) [E%(z\x) [log po(z|2)]]
= BE, () Dxi(gy(2]) || p(2))
—aD(g(x; 2) || a(x)ge(2)),

Because D(qy(z;2) || q(x)gs(2)) is usually
intractable; thus, it can be approximated with any
one of the following:

» KL divergence
» f-divergence (InfoMax)

* Donsker-Varadhan dual representation (Info-
Max)

* Jensen Shannon divergence (AAE)
¢ Stein Variational Gradient

* Maximum-Mean Discrepancy
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