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Abstract

Most recent natural language generation mod-001
els only focus on the quality of the generated002
text, which is usually measured against a set003
of reference sentences. This causes the models004
to generate similar sentences given the same005
context and thus leads to low diversity in the006
generated content. In this paper, we propose a007
model named VOLTA that leverages the Varia-008
tional Autoencoder framework to improve the009
diversity of large-scale language models. Un-010
like the prior attempts, we use a shared GPT-2011
backbone network for both the encoder and the012
decoder because it has proved to be effective in013
both natural language understanding and gen-014
eration. In addition, we propose to add latent015
codes that originated from InfoGAN to enable016
input-independent controllability. Our model017
architecture can be used for any typical lan-018
guage generation tasks, but we test it on the019
question-answer pair generation task as it has020
series of well-established evaluation metrics.021
Experimental results show that our model can022
significantly improve the generative diversity023
over previous models.024

1 Introduction025

Natural language generation (NLG) is an impor-026

tant aspect of natural language processing (NLP),027

including tasks such as question generation (Xiao028

et al., 2020a), dialog generation (Liu et al., 2020)029

and machine translation (Edunov et al., 2018), etc.030

A series of pre-trained language models (PLMs)031

based on Transformers (Radford et al., 2019; De-032

vlin et al., 2019) were introduced for the NLG tasks,033

such as GPT (Radford et al., 2019).034

Although many PLMs achieved good perfor-035

mance on the NLG tasks, the top generated sen-036

tences are usually very similar to each other. The037

cause is that regular PLMs do not have a dedicated038

structure to adjust the embeddings of the input and,039

in turn, to change the generated text. Variational040

Autoencoders (VAE) (Kingma and Welling, 2014)041

Context Architecturally, the school has a Catholic
character. Atop the Main Building’s gold dome is
a golden statue of the Virgin Mary . Immediately
in front of the Main Building and facing it, is
a copper statue of Christ with arms upraised with the
legend "Venite Ad Me Omnes".

Next to the Main Building is the Basilica of the Sacred
Heart. Immediately behind the basilica is the Grotto , a
Marian place of prayer and reflection. . . . . . .
Q1 What type of statue is on the main building?
A1 golden statue of the Virgin Mary
Q2 What is the name of the copper statue on the main
building?

A2 a copper statue of Christ with arms upraised
with the legend "Venite Ad Me Omnes".

Q3 What is next to the main building?
A3 Grotto

Table 1: An example of diverse QAG by VOLTA.

provides a framework where, with the addition of 042

low-dimensional latent variables, the model can 043

encode input into an organized latent space, which 044

can then be used to dictate the decoding process. 045

By perturbing the latent variables, the generated 046

sentences can divert away from the few best sen- 047

tences, which corresponds to improved diversity. 048

The challenge of introducing Transformer mod- 049

els into the VAE framework lies in that they 050

are highly parallelized models where a sequence 051

of contextualized token embeddings are passed 052

through the model simultaneously. In this scenario, 053

it is difficult to add a bottleneck layer of latent vari- 054

ables to the Transformer model itself. Optimus (Li 055

et al., 2020) used BERT (Devlin et al., 2019) as 056

the encoder and GPT-2 (Radford et al., 2019) as 057

the decoder, and proposed two ways to connect 058

latent variables to the two Transformer models: 059

“embedding” and “memory”. It is the first large- 060

scale PLM built under the VAE framework and 061

achieved the state-of-the-art performance on sev- 062

eral NLG tasks, such as dialog response generation, 063

stylized response generation, label-conditional text 064

1



generation, etc. Our model differs from Optimus065

in that we do not use BERT as the VAE encoder.066

Instead, we share a GPT-2 backbone for both the067

encoder and the decoder. The reason why this is068

possible is that GPT-2 has proved to be effective069

in both natural language understanding and natural070

language generation (Radford et al., 2018, 2019;071

Brown et al., 2020). By doing this, we can vastly072

decrease the model size by half. In addition, it also073

simplifies the tokenization process.074

Besides text generation diversity, VAE also pro-075

vides a certain degree of controllability. For in-076

stance, one can interpolate between two latent vari-077

ables to generate a series of different text. How-078

ever, the latent variables are largely dependent079

on the input context. To introduce another input-080

independent method to control the generation pro-081

cess, we draw inspiration from InfoGAN (Chen082

et al., 2016). It proposed to add latent codes to the083

input noise when training a GAN model (Good-084

fellow et al., 2020). By optimizing a novel Varia-085

tional Mutual Information Maximization objective,086

the generator can automatically discover different087

types of semantic features via the latent codes, and088

the generated content can be controlled by the la-089

tent codes. For the MNIST dataset (LeCun et al.,090

1998), the discrete latent codes can vary the type of091

the generated digits and the continuous latent codes092

can adjust their rotation and width. Our model does093

not follow the GAN framework but leverages latent094

codes to inject controllability into the PLMs. To095

the best of our knowledge, our work is the first one096

to add latent codes to PLMs. Because our model097

follows the VAE framework and uses the Varia-098

tional Mutual Information Maximization objective099

from InfoGAN, we name it VOLTA (VariatiOnal-100

MutuaL-InformaTion-Maximizing VAE).101

Our model can be used for any typical NLG102

tasks, but we apply it to the question-answer pair103

generation task (QAG) because it has a variety of104

well-established metrics for evaluating the quality105

and diversity of the generated content. QAG aims106

to generate a pair of a question and an answer based107

on the a provided context. The answer is a text108

span in the context, while the question should be109

closely related to the answer. A QAG model can110

be used to augment a question-answering dataset111

by generating new question-answer pairs, enabling112

semi-supervised learning for downstream question-113

answering models.114

The main contributions of this paper are:115

• VOLTA is the first to introduce a large- 116

scale PLM under the VAE framework for the 117

question-answer pair generation task; in ad- 118

dition, it reduces the model size by half com- 119

pared to Optimus (Li et al., 2020) with the 120

shared GPT-2 backbone; 121

• We are the first to propose adding latent codes 122

to PLMs for input-independent controllability; 123

this is also the first work that combines latent 124

codes with VAE latent variables in the field of 125

NLP; 126

• Comprehensive experimental results on the 127

question-answer pair generation task show the 128

effectiveness of our model in improving diver- 129

sity and controllability. 130

2 Related Work 131

Many Transformer-based PLM models with a large 132

variety of configurations were introduced in recent 133

years, including BERT (Devlin et al., 2019), GPT-2 134

(Radford et al., 2019), BART (Lewis et al., 2020), 135

T5 (Raffel et al., 2020), etc. But most of them do 136

not focus on the diversity or the controllability of 137

the generative process. 138

Variational Autoencoders (VAE) (Kingma and 139

Welling, 2014) differ from Autoencoders (AEs) 140

(Hinton and Salakhutdinov, 2006) in the addition 141

of the low-dimensional latent variables. It was orig- 142

inally used in Computer Vision and then adapted to 143

NLP. Early attempts (Rezende et al., 2014; Kingma 144

et al., 2016; Bahuleyan et al., 2018) used LSTM 145

(Hochreiter and Schmidhuber, 1997) as the encoder 146

and the deocder, such as Info-HCVAE (Lee et al., 147

2020). They were mostly successful in achieving 148

guided sentence generation but also inherit the lim- 149

itations of LSTM. Recent works combined large 150

PLMs with VAE and generated better results. For 151

example, Optimus (Li et al., 2020) used BERT as 152

the encoder and GPT-2 as the decoder. Optimus 153

outperforms LSTM-based models in VAE language 154

modeling. 155

To achieve controllable language generation, 156

some methods add special prompt tokens or con- 157

trol phrases to control the generated sentences. For 158

example, SimpleTOD (Hosseini-Asl et al., 2020) 159

adds different prompt tokens to make GPT-2 gen- 160

erate different dialogue responses. Similar meth- 161

ods include CTRL (Keskar et al., 2019), Soloist 162

(Peng et al., 2021), CGRG (Wu et al., 2021), and 163

MEGATRON-CNTRL (Xu et al., 2020). Dathathri 164
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et al. (2020) proposed the Plug and Play Language165

Model (PPLM) to guide language generation by166

plugging simple attribute classifiers into existing167

language models and it does not need re-training168

the models. These methods require little to none169

modification to the Transformer models because170

they mainly rely on changing the input sequences171

and the output targets.172

InfoGAN (Chen et al., 2016) was first introduced173

to discover latent modalities in the MNIST dataset174

(LeCun et al., 1998) in an unsupervised manner.175

The generated images can be controlled by latent176

codes after training InfoGAN with the Variational177

Mutual Information Maximization objective. There178

are also attempts to combine InfoGAN with VAE179

to create diverse and controllable generative mod-180

els, such as VAE-Info-cGAN (Xiao et al., 2020b)181

and InfoVAEGAN (Ye and Bors, 2021). But nei-182

ther of then are for NLP. There are also works that183

apply mutual information to VAE, such as Info-184

VAE (Zhao et al., 2019) and InfoMax-VAE (Lotfi-185

Rezaabad and Vishwanath, 2020). However, they186

maximize mutual information to solve the latent187

variable collapse problem (Chen et al., 2017) and188

there is no addition of the desired latent codes. To189

the best of our knowledge, our model is the first to190

combine large PLMs with VAE and InfoGAN.191

3 Our Method192

We design our model to enable diverse and control-193

lable language generation using the Variational Au-194

toencoder framework (Kingma and Welling, 2014)195

and latent codes from InfoGAN (Chen et al., 2016).196

The VAE framework produces latent variables that197

encode the input information. By perturbing the la-198

tent variables, one can change the decoded content199

slightly and achieve more diversity. Unlike VAE200

latent variables, InfoGAN latent codes is input-201

independent. That is, their values are not deter-202

mined by the input but by human. This provides203

another way to control the generated sequence. The204

overview of our model is shown in Figure 2.205

3.1 Preliminaries206

The question-answer pair generation task aims to207

generate a pair of question xqtn and answer xans208

based on the given context xctx. The context209

xctx = (x1, . . . , xm) and the question xqtn =210

(x′1, . . . , x
′
n) are both sequences of tokens, while211

the answer xans = (start, end) ∈ Z2 is a pair of212

integer indices, specifying the start and the end of213

the answer span in the context. That is, the answer 214

sequence (xstart, . . . , xend) can be found by look- 215

ing into the context sequence xctx = (x1, . . . , xm) 216

based on the answer span xans. The goal is to 217

find a model f that can generate a pair of question 218

and answer using the known context: f(xctx) → 219

(xqtn,xans). We use x = [xctx,xqtn,xans] to 220

denote the input containing context, question and 221

answer. 222

3.2 Latent Variables 223

Similar to Optimus (Li et al., 2020), our model 224

follows the Variational Autoencoder (VAE) frame- 225

work (Rezende et al., 2014; Kingma et al., 2016; 226

Bahuleyan et al., 2018), where the encoder fθ and 227

the decoder fϕ are both Transformer models. Both 228

our model and Optimus use GPT-2 as the decoder 229

fϕ but the difference is that Optimus uses a separate 230

BERT (Devlin et al., 2019) model as the encoder 231

fθ while our model shares a GPT-2 (Radford et al., 232

2019) backbone network for both the encoder and 233

decoder. 234

The encoder encodes the question and the answer 235

into two different sets of latent variables. We use 236

a set of continuous latent variables to capture the 237

question information while we model answers with 238

a set of discrete latent variables: 239

µ,σ2 = MLP(fθ(xqtn))

π1, . . . ,πp = MLP(fθ(xctx,xqtn,xans))

zq ∼ N (µ,σ2)

za ∼ [Cat(π1), . . . ,Cat(πp)] ,

(1) 240

where MLP(·) is a fully-connected layer and each 241

instance is distinct and has a different set of learn- 242

able parameters; N (·) is the multivariate Gaussian 243

distribution and its parameters are µ and σ2; Cat(·) 244

is the categorical distribution whose parameters 245

π represent the event probabilities of k categories, 246

and the encoder produces p independent such latent 247

variables. To allow gradient to be back-propagated 248

through the latent variables, the Gaussian distribu- 249

tion reparametrization trick (Wolpe and de Waal, 250

2019) is used for zq; for za, we use Gumbel- 251

Softmax (Maddison et al., 2017; Jang et al., 2017) 252

to reparameterize the categorical distribution. 253

Since the Kullback–Leibler divergence between 254

the learned distribution and the prior distribution 255

cannot be optimized directly, we use the Evidence 256
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Figure 1: The overview of VOLTA.
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Figure 2: The graphical model for VOLTA.

Lower Bound (ELBO) objective:257

ELBO(x) = Eqθ(z|x)[log pϕ(x|z)]
−DKL(qθ(z|x) ∥ p(z))

=: − LAE(x)− LREG(x)

(2)258

where we define the likelihood as the Autoencdoer259

(AE) reconstruction loss and the KL divergence as260

the regularization loss; the minus signs in front of261

the losses are because of the fact that we maximize262

the ELBO but minimize the losses.263

The AE reconstruction loss will be introduced264

later in Section 3.4 because it involves the decoding265

step. The KL divergence can be used to regularize266

the posterior distributions qθ(z|x) with the prior267

distribution p(z). The KL divergence of a continu-268

ous latent variable is:269

DKL(qθ(z|x) ∥ p(z))

= log
σp
σq

+
σ2
q + (µq − µp)

2

2σ2
p

− 1

2
,

(3)270

where we assume that p(z) is N (µp, σ
2
p) and 271

qθ(z|x) is N (µq, σ
2
q ). The KL divergence of a 272

discrete latent variable is: 273

DKL(qθ(z|x) ∥ p(z)) =

k∑
i=1

qi log
qi
pi
, (4) 274

where the event probabilities of the prior p(z) are 275

(p1, . . . , pk) and those of the posterior qθ(z|x) are 276

(q1, . . . , qk). The derivation of those results can be 277

found in Appendix A.2, A.3 278

3.3 Latent Codes 279

In addition to latent variables, we add latent codes 280

to inject controllability into the model, which was 281

originally proposed in InfoGAN (Chen et al., 2016) 282

from the field of Computer Vision. There are also 283

two types of latent codes: continuous and dis- 284

crete. Continuous latent codes can follow either 285

the uniform distribution or the Gaussian distribu- 286

tion, while discrete latent codes can still use the 287

categorical distribution. In our model, we draw 288

cq ∼ Uni(−1, 1) and ca ∼ Cat(ρ), where Uni(·) 289

is the uniform distribution; Cat(·) is the categori- 290

cal distribution with parameters ρ = 1
k1 that uses 291

the same number of categories k as the discrete 292

latent variables, because they will be concatenated 293

together. 294

To prevent the model from ignoring the latent 295

codes, we encourage the model to recover the input 296

latent code at the generation step. To achieve that, 297

we add the Variational Mutual Information Maxi- 298

4



mization (VMIM) objective (Chen et al., 2016):299

I(c; fϕ(z, c))300

= H(c) + Ex∼fϕ(z,c)

[
DKL

(
P (·|x) ∥ Pϕ(·|x)

)
301

+ Ec′∼P (c|x)
[
logPϕ(c

′|x)
]]

(5)302

≥H(c) + Ex∼fϕ(z,c)

[
Ec′∼P (c|x)

[
logPϕ(c

′|x)
]]

303

=:H(c) + LVMIM(c)304

Because the posterior P (c|x) is difficult to obtain,305

an auxiliary distribution Pϕ(c|x) based on fϕ is306

added to approximate P (c|x). The entropy of la-307

tent codes H(c) is a constant and thus it is excluded308

from the VMIM objective. The derivation of this309

objective is included in Appendix A.4.310

In practice, a fully-connected layer is added to311

the decoder for each latent code whose objective is312

to recover the original latent code:313

µc, σ
2
c = MLP(fϕ(zq ⊕ cq,xctx))

ρc = MLP(fϕ(za ⊕ ca,xctx))

LVMIM(cq) = logP (cq;µc, σ
2
c )

LVMIM(ca) = logP (ca;ρc).

(6)314

We have two channels to pass the latent vari-315

able information to the decoder. One channel is to316

use a linear layer to obtain a latent embedding that317

is added to the word embedding, along with posi-318

tional encoding; the other channel is to generate319

a latent embedding for each Transformer decoder320

block of the decoder, and those latent embeddings321

are treated as the past information for the decoder322

blocks. These two channels are termed “embed-323

ding” and “memory” in Optimus.324

3.4 Question & Answer Generation325

To reconstruct the original questions, the Autoen-326

coder is trained as a language model in an auto-327

regressive manner, which predicts the next token328

given all previous tokens.329

pϕ(xt) = MLP(fϕ(za ⊕ ca, zq ⊕ cq,x<t))330

pϕ(xqtn) =
n∏

t=1

p(xt|x<t) (7)331

where ca is a vector that contains multiple inde-332

pendent categorical latent codes, and cq is a vector333

that contains multiple independent uniform latent334

codes; pϕ is conditioned on xctx, which is omitted335

for brevity.336

Therefore, the question reconstruction loss is a 337

cross-entropy loss over the vocabulary with respect 338

to all question tokens: 339

LQtn-AE(x) =

n∑
t=1

CE(pϕ(xt|x<t), yt). (8) 340

Because SQuAD answers are annotated by two 341

indices, one for the start word and the other for the 342

end word. When the model tries to reconstruct the 343

answer, it also predicts those two indices. Hence, 344

the answer reconstruction loss is: 345

pstart(xctx) = MLP(fϕ(za ⊕ ca,xctx))

pend(xctx) = MLP(fϕ(za ⊕ ca,xctx)).

LAns-AE(x) = CE(pstart(xctx), ystart)

+ CE(pend(xctx), yend),

(9) 346

where ca is a vector that contains multiple indepen- 347

dent categorical latent codes; ⊕ is the concatena- 348

tion operation; ystart and yend are the true answer 349

span; CE(·) is the cross-entropy loss. 350

Therefore, the overall Autoencdoer reconstruc- 351

tion loss is the sum of both AE losses: 352

LAE(x) = LQtn-AE(x) + LAns-AE(x) (10) 353

3.5 QA Mutual Information 354

In addition, we also want to enforce the mutual 355

information between the generated question and 356

answer (QAMI). As in Info-HCVAE (Lee et al., 357

2020), we base this QAMI objective on Jensen- 358

Shannon Divergence: 359

g(q, a) = σ(fϕ(q)
TW fϕ(a))

LQAMI(x) = E[log g(q, a)]

+
1

2
E[log(1− g(q̃, a))]

+
1

2
E[log(1− g(q, ã))]

≤ I(q, a),

(11) 360

where q is the embedding of the question by fϕ and 361

a is the embedding of the answer; q̃ is a negative 362

question sample and ã is a negative answer sample. 363

g(·) adds a bilinear layer on top of fϕ and classifies 364

whether the input question and answer is a true pair 365

of QA. 366

Therefore, by Eq. (2)(6)(10)(11), we have the 367

overall loss being: 368

LELBO(x) = LAE(x) + βLREG(x)

+ LVMIM(c) + LQAMI(x)
(12) 369
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Similarity to Reference Diversity
BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ MTR ↑ RG-L ↑ Dist-1↑ Dist-2↑ Dist-3↑ Dist-4↑ S-BLEU ↓

GPT-2 (Radford et al., 2019) 51.456 35.610 26.608 20.461 23.109 48.983 8.408 38.472 61.608 73.627 33.042
Info-HCVAE (Lee et al., 2020) 48.167 30.200 20.522 14.321 19.865 43.918 6.997 33.473 57.242 71.681 32.658
VOLTA (ours) 33.243 16.025 9.346 5.814 11.944 31.257 7.894 38.697 65.488 80.793 29.579

Small zq 32.740 16.064 9.543 5.974 11.621 31.798 7.420 34.191 58.127 73.210 33.435
Small za 33.339 16.056 9.405 5.889 21.620 46.272 7.601 38.168 65.065 80.480 29.849
Large zq 33.055 16.364 9.896 6.408 11.928 31.755 7.245 33.081 55.647 69.922 37.539
Large za 35.006 17.817 10.899 7.123 12.465 33.198 7.004 31.237 51.695 64.220 43.233
W/o cq & ca 33.677 17.048 10.426 6.806 12.366 31.790 7.870 37.073 61.864 76.316 33.094
QG only 50.159 32.853 23.424 17.244 21.620 46.272 7.983 39.248 65.080 78.438 29.591

Table 2: Performance comparison and ablation study. “MTR” means METEOR, “RG-L” means ROUGE-L, “Dist-k”
means Distinct-k, and “S-BLEU” means Self-BLEU.

where c represents all the independent continuous370

and discrete latent codes; β is the coefficient for the371

KL divergence losses. Because of the KL vanishing372

issue (Bowman et al., 2016) where the decoder373

ignores the latent variables, we also use a linear374

annealing schedule for β (Li et al., 2020) and limit375

its maximal value to 0.1 (Lee et al., 2020).376

4 Experiments377

4.1 Implementation Details378

We use the “GPT2-base” model as the backbone379

network. Our model uses the following configu-380

ration if not otherwise specified: the number of381

Gaussian latent variables is 32; the number of cat-382

egorical latent variables is 20 and each of them383

has 10 categories; 4 uniform latent codes are added384

alongside with the Gaussian latent variables and to-385

gether they are used to handle the information from386

questions; 5 categorical latent codes are concate-387

nated to the categorical latent variables and they388

are dedicated to process answer embeddings. The389

model is trained with a learning rate of 5 × 10−5390

for 20 epochs. The annealing schedule for β in-391

cludes an increasing phase that spans 25% of the392

total training time, from 0 up to the maximal value393

of 0.1, which is maintained for the rest of the train-394

ing duration. The experiments are conducted using395

4 TITAN V GPUs.396

4.2 Question Generation Diversity397

We first test the question generation quality with398

BLEU (Papineni et al., 2002), METEOR (Banerjee399

and Lavie, 2005) and ROUGE-L (Lin, 2004) on400

the SQuAD dataset (Rajpurkar et al., 2016, 2018).401

The BLEU score measures the similarity between402

generated sentences and the reference sentences403

based on n-grams. METEOR (Banerjee and Lavie,404

2005) uses the harmonic mean of the precision and405

recall of unigrams instead, and it takes more fac-406

tors into consideration, such as stemming and syn-407

onymy. ROUGE-L (Lin, 2004) primarily considers 408

the longest common subsequences. 409

As we can see in Table 2, because the VAE 410

framework perturbs the latent variables, the gener- 411

ated questions divert from the reference questions. 412

This indicates that our model generation is less an- 413

chored at the ground truth questions and thus more 414

diverse. GPT-2 is not designed to generated answer 415

spans and thus it generates questions with ground 416

truth answers. 417

To quantify the diversity of the generated ques- 418

tions, we use two diversity measures: Distinct-k 419

(Li et al., 2016) and Self-BLEU (Zhu et al., 2018). 420

Distinct-k is the number of distinct k-grams di- 421

vided by the total number of generated words. Self- 422

BLEU regards every generated sentence as hypoth- 423

esis and the other sentences as reference to calcu- 424

late the BLEU score with respect to the hypothesis 425

sentence; then the average BLEU score over all 426

generated sentences is the Self-BLEU of the docu- 427

ment. If the generated sentences in the document 428

are diverse, the Self-BLEU score will be low. As 429

shown in Table 2, our model has higher overall 430

diversity. 431

4.3 Ablation Study 432

We experiment with different configurations of our 433

model, as shown in Table 2. “small zq”: the num- 434

ber of Gaussian latent variables is reduced from the 435

default 32 to 8 while all other components are un- 436

changed; “small za”: 5 categorical latent variables 437

are used instead of 20; “large zq”: the model uses 438

64 Gaussian latent variables; “large za”: there are 439

40 categorical latent variables in the model; “w/o 440

cq & ca”: no latent codes are added; “QG only”: 441

the model does not generate answers and the ques- 442

tions are generated based on ground truth answer 443

spans. 444

The experimental results show that when the 445

latent variables are too small, the encoded latent 446

6



information in them might be insufficient for the447

decoder; but when the latent variables are too large,448

the perturbation of the Gaussian distribution or the449

categorical distribution may compound and distort450

the latent information too much. By removing the451

latent codes, we can see the diversity metrics drop.452

This indicates that the latent codes also improve453

the model diversity. When the model does not gen-454

erate answers, the similarity-to-reference metrics455

are much better. Because the generated answers456

are very different from the original ones and the457

questions are generated with respect to the gener-458

ated answers, adding answer generation can pull459

the generated questions away from the reference460

questions, which improves the diversity while sac-461

rificing the similarity to the reference questions.462

4.4 Downstream Task Analysis463

Although with the two diversity metrics, Distinct-k464

(Li et al., 2016) and Self-BLEU (Zhu et al., 2018),465

we were able to show that our model generates466

more diverse questions. But a model can achieve467

good results for those two metrics if it merely gener-468

ates completely random tokens. Therefore, we use469

two additional metrics, QAE and R-QAE, based on470

an auxiliary downstream task of question answer-471

ing (QA) to show that the generated questions are472

diverse and non-arbitrary sequences.473

QAE↑ R-QAE↓
EM F1 EM F1

GPT-2 (Radford et al., 2019) 56.6382 68.6164 67.3124 79.4297
Optimus (Li et al., 2020) 58.2745 70.5103 67.0479 78.8968
Info-HCVAE (Lee et al., 2020) 56.9543 68.5626 40.2104 58.7262
VOLTA (ours) 56.9357 68.6692 19.8872 31.0355

Table 3: Quality-diversity trade-off of QA pair genera-
tion.

QAE Zhang and Bansal (2019) proposed474

Question-Answering-based Evaluation (QAE) to475

measure the quality of the generated question-476

answer pairs. To measure the QAE of a model, one477

need to follow four main steps: (a) sample some478

unlabeled Wikipedia paragraphs with pre-extracted479

answer spans from HarvestingQA dataset; (b) make480

the QG model that we want to measure act as an481

“annotator” to generate a question for each answer482

span, which results in a synthetic QA dataset; (c)483

train a separate QA model using this synthetic QA484

dataset; (d) use the performance of the trained QA485

model on the original SQuAD development set486

(Rajpurkar et al., 2016, 2018) as the evaluation for487

this QG model, which includes two measurements,488

exact match (EM) and F1 (Rajpurkar et al., 2016, 489

2018). QAE primarily measures the quality of the 490

generated questions. If the generated questions 491

are composed of random tokens, the trained QA 492

model will perform badly on the development set 493

of SQuAD. The BERT model (Devlin et al., 2019) 494

is used as the QA model. 495

R-QAE If we train a QA model using the original 496

SQuAD training set but we test the trained QA 497

model on a synthetic QA test set, the performance 498

is expected to be low when the synthetic dataset is 499

diverse. The reason is that when the generated test 500

dataset has more diversity and out-of-distribution 501

QA pairs, the QA model is expected to perform 502

badly. Because the evaluated QG model is used 503

to annotate the test set in R-QAE rather than the 504

training set in QAE, it is named Reverse-QAE, or 505

R-QAE for short (Lee et al., 2020). 506

As we can observe in Table 3, our model does 507

not sacrifice the question generation quality while 508

achieving better diversity than the baselines. 509

4.5 Diverse & Controllable Generation 510

Our model architecture enables two main ways 511

to control the generation process. One is from 512

the VAE framework (Kingma and Welling, 2014), 513

which provides the latent variables that can be used 514

to interpolate between source and target examples. 515

The other one is based on adjusting the latent codes 516

from InfoGAN (Chen et al., 2016). Unlike the 517

latent variables, latent codes are independent of the 518

input context. 519

Latent Variable Diversity Given a context, we 520

can generate different zq and za because of the na- 521

ture of VAE. Therefore, we can generate different 522

QA pairs from the same context. The shortcoming 523

of this approach is that the user has no control over 524

the latent variables. The latent variables are com- 525

pletely dictated by the encoder and the randomness 526

of the learned latent distributions. An example 527

of the QA pairs generated for a given context is 528

illustrated in Table 1. 529

Latent Variable Interpolation By encoding two 530

contexts (can be the same context) into two sets 531

of latent variables, we can obtain new latent vari- 532

ables by linearly interpolating between them. How- 533

ever, this method suffers from two drawbacks: first, 534

when we get two sets of latent variables from two 535

different contexts, they might be very dissimilar 536

to each other and the semantics of the interpolated 537
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points is not clear; second, it is also not reasonable538

to interpolate between the two categorical latent539

variables. An example of interpolated results can540

be found in Table 4.541

Context The university is the major seat of the Congre-
gation of Holy Cross (albeit not its official headquarters,
which are in Rome). Its main seminary, Moreau Seminary,
is located on the campus across St. Joseph lake from the
Main Building. . . . . . .
Q1 What catholic denomination is the university of new
haven located in?
Q2 What is the main campus of moreau seminary?
Q3 What religious institution is located on the campus of
moreau seminary?
Q4 What former retreat center is located near the grotto?
Q5 What religious denomination does the moreau seminary
belong to?
Q6 What is the oldest building on campus?
Q7 What is the main seminary in the university of kansas?
Q8 What is the main seminary of the college?
Q9 What retreat center is located near the grotto?

Table 4: An example of interpolating between latent
variables for question generation.

Latent Code Controllability Unlike latent vari-542

ables that are highly dependent on the inputs, latent543

codes can be set freely regardless of what the con-544

text is. Because they are passed to the decoder545

alongside with the latent variables, they do not de-546

grade the information contained in the latent vari-547

ables. They add more dimensions for controlling548

the output, besides the controllability from the la-549

tent variables. As we can see in Table 5 and Table 6,550

the continuous latent codes can adjust question gen-551

eration while the discrete latent codes can be used552

to change the generated answers.553

Context Holy Cross Father John Francis O’Hara was
elected vice-president in 1933 and president of Notre Dame
in 1934. During his tenure at Notre Dame, he brought nu-
merous refugee intellectuals to campus; . . . . . .
Q1 (cq = −0.8)
What was O’Hara’s first name?
Q2 (cq = −0.6)
Who was elected vice president in 1933?
Q3 (cq = −0.0)
What was O’Hara’s title prior to becoming vice president?
Q4 (cq = +0.4)
What was O’Hara’s first title?
Answer John Francis O’Hara

Table 5: Continuous latent code for controlling question
generation.

Context . . . . . . During his 13 years the Irish won three
national championships, had five undefeated seasons, won
the Rose Bowl in 1925 , and produced players such as
George Gipp and the "Four Horsemen". . . . . . .
A1 (ca = 0) five
A2 (ca = 3) 1925
A3 (ca = 7) three

Table 6: Discrete latent code for controlling answer
generation.

4.6 Latent Variable Visualization 554

To visualize how latent variables are distributed in 555

the latent space, we use t-SNE to plot latent vari- 556

ables of questions in a 2D space. It is compared 557

with the GPT-2 embeddings for the same set of 558

questions. As we can observe in Figure 3, GPT-2 559

returns the same embeddings for a given question 560

while our model is able to encode a question into 561

multiple different latent variables that follows the 562

Gaussian distribution. Those distinct latent vari- 563

ables for a question then can be used to generated 564

various questions after being handed to the decoder, 565

which increases the diversity of our model. 566

GPT-2

Continuous Latent Variable

Figure 3: T-SNE visualization of question embeddings
by GPT-2 and the latent variables by our model.

5 Conclusion 567

We developed a model named VOLTA that merges 568

the power of Transformer models with the diversity 569

from the VAE framework. The latent variables di- 570

versify the generated questions and answers. In ad- 571

dition, we all latent codes from InfoGAN to inject 572

more dimensions of controllability. Both quantita- 573

tive and qualitative experiments were carried out to 574

show that our model indeed improves in diversity 575

and controllability. 576
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A Appendix772

A.1 Basic Definitions773

Information is defined as:774

I(X) = − logP (X) = log
1

P (X)
.775

Entropy is defined as:776

H(X) =E[I(X)]777

=E[− log(P (X))]778

=−
∫

p(x) log p(x)dx779

H(X|Y ) =EX,Y [− log P(X|Y )]780

=−
∫

f(x, y) log f(x|y)dxdy,781

where p(x, y) is the probability mass function782

of a discrete distribution, whereas f(x, y) is783

the probability density function of a continuous784

distribution.785

786

Then mutual information is:787

I(X;Y )788

=DKL(P (X,Y ) ∥ P (X)P (Y ))789

=

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy790

=−
∫

p(x, y) log p(y)dxdy791

+

∫
p(x, y) log

p(x, y)

p(x)
dxdy792

=−
∫

p(y) log p(y)dy793

+

∫
p(x, y) log p(y|x)dxdy794

=H(Y )−H(Y |X)795

=H(X)−H(X|Y ),796

because Kullback–Leibler divergence is defined to797

be:798

DKL(Q ∥ P ) =H(Q,P )−H(Q)799

=EQ[− log P(X)]− EQ[− logQ(X)]800

=

∫
q(x) log

q(x)

p(x)
dx801

≥0,802

where H(Q,P ) is the cross entropy of Q and P .803

A.2 Optimus (β-VAE) 804

In Optimus (Li et al., 2020; Kingma and Welling, 805

2014), we assume a normal distribution for a con- 806

tinuous latent variable: 807

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

808

log f(x) =− log σ
√
2π − 1

2

(
x− µ

σ

)2

809

=− log σ − 1

2
log 2π − 1

2

(
x− µ

σ

)2

810

=− 1

2
log σ2 − 1

2
log 2π − 1

2

(
x− µ

σ

)2

. 811

We want q(z|x) = N(µq, σ
2
q ) and the prior, p(z) = 812

N(µp, σ
2
p) = N(0, 1), to be close 813

DKL(Q ∥ P ) 814

=−
∫

q(z) log p(z)dz +

∫
q(z) log q(z)dz 815

=

(
1

2
(log 2πσ2

p) +
σ2
q + (µq − µp)

2

2σ2
p

)
816

− 1

2
(1 + log 2πσ2

q ) 817

=
1

2
(log

σ2
p

σ2
q

) +
σ2
q + (µq − µp)

2

2σ2
p

− 1

2
818

=
1

2
log

(
σp
σq

)2

+
σ2
q + (µq − µp)

2

2σ2
p

− 1

2
819

The mutual information between z and z|x is 820

I(z, x) =H(z)−H(z|x), 821

where the negative entropy for normal distribu- 822

tion is (nz is the dimension of latent variable z): 823

−H(z|x) =EQ(z|x)[log(Q(z|x))] 824

=−
∫

q(z) log q(z)dz 825

=− 1

2
(1 + log 2πσ2

q ) 826

=− 1

2
(1 + log 2π + log σ2

q ) 827

=− 1

2
log 2π − 1

2
(1 + log σ2

q ) 828
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H(z) = Eq(z)[− log q(z)]829

=−
∫

q(z)

(
log σq

√
2π +

1

2

(
z − µq

σq

)2
)
dx830

=−
∫

q(z) log σq
√
2πdx831

−
∫

q(z)
1

2

(
z − µq

σq

)2

dx832

=− Eq(z)[log σq
√
2π]− Eq(z)

[
1

2

(
z − µq

σq

)2
]

833

=− log σq
√
2π − Eq(z)

[
1

2

(
z − µq

σq

)2
]

834

=− log σq
√
2π − 1

2

(
Eq(z)

[
(z − µq)

2
]

σ2
q

)
835

=− 1

2
log σ2

q −
1

2
log 2π − 1

2

(z − µq)
2

σ2
q

,836

where Eq(z)

[
(z − µq)

2
]

is simply the deviation of837

a single sample z from the mean µq.838

A.3 Info-HCVAE839

According to Info-HCVAE (Lee et al., 2020), some840

inputs are better suited to be encoded into discrete841

latent variables. In this case, we can make use of842

the categorical distribution:843

f(x = i | p) = pi,844

where the event probabilities p = (p1, . . . , pk) and845 ∑k
i=1 pi = 1; k > 0 is the number of categories.846

The Gumbel-Softmax distribution enables back-847

propagation through discrete distributions. The848

Gumbel distribution is:849

Gumbel(µ, β) = f(x;µ, β) =
1

β
e−(z+e−z),850

where z = x−µ
β .851

To sample a category from the categorical distri-852

bution using the Gumbel-Max re-parametrization853

trick, one can follow:854

argmax
i

(Gi + log pi),855

where Gi ∼ Gumbel(0, 1). argmax can be made856

differentiable by approximating it with the softmax857

function:858

yi =
exp((Gi + log pi)/τ)∑
j exp((Gj + log pj)/τ)

,859

Given two categorical distributions P and Q, 860

parameterized by p and q, respectively, the KL 861

divergence between them is: 862

DKL(Q ∥ P ) =
k∑

i=1

qi log
qi
pi
. 863

A.4 InfoGAN 864

The input noise z is passed into the generator along 865

with the latent code c: G(z, c), where z is concate- 866

nated with c. Because the generator can simply ig- 867

nore the latent code c, InfoGAN (Chen et al., 2016) 868

adds Variational Mutual Information Maximization 869

(VMIM) to maintain the mutual information be- 870

tween generated sample x ∼ G(z, c) and latent 871

code c: 872

I(c;G(z, c)) 873

=H(c)−H(c|G(z, c)) 874

=H(c) + Ex∼G(z,c)[Ec′∼P (c|x)[logP (c′|x)]] 875

=H(c) + Ex∼G(z,c)

[∑
c′

p(c′|x) log p(c′|x)
]

876

=H(c) + Ex∼G(z,c)

[∑
c′

p(c′|x)(log p(c′|x)
q(c′|x)

877

+ log q(c′|x))
]

878

=H(c) + Ex∼G(z,c)

[∑
c′

p(c′|x) log p(c′|x)
q(c′|x)

879

+
∑
c′

p(c′|x) log q(c′|x)
]

880

=H(c) + Ex∼G(z,c)

[
DKL(P (·|x) ∥ Q(·|x)) 881

+ Ec′∼P (c|x)[logQ(c′|x)]
]

882

≥H(c) + Ex∼G(z,c)

[
Ec′∼P (c|x)[logQ(c′|x)]

]
, 883

Because the posterior P (c|x) is hard to obtain, an 884

auxiliary distribution Q(c|x) is added to approx- 885

imate P (c|x), where Q is a neural network. In 886

practice, the entropy of latent codes H(c) is treated 887

as a constant and omitted in the InfoGAN objective. 888

A.5 InfoVAE and InfoMax-VAE 889

The evidence lower bound (ELBO) of regular VAE 890

is 891

LELBO(x) 892

=LAE(x) + LREG(x) 893

=Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x) ∥ p(z)) 894

≤ log pθ(x). 895
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InfoVAE (Zhao et al., 2019) and InfoMax-VAE896

(Lotfi-Rezaabad and Vishwanath, 2020) add mutual897

information to the loss:898

LELBO(x) =LAE(x) + βLREG(x) + αIq(x; z)899

=EpD(x)[Eqϕ(z|x)[log pθ(x|z)]]900

− βEpD(x)DKL(qϕ(z|x) ∥ p(z))901

− αD(qϕ(x; z) ∥ q(x)qϕ(z)),902

Because D(qϕ(x; z) ∥ q(x)qϕ(z)) is usually903

intractable; thus, it can be approximated with any904

one of the following:905

906

• KL divergence907

• f -divergence (InfoMax)908

• Donsker-Varadhan dual representation (Info-909

Max)910

• Jensen Shannon divergence (AAE)911

• Stein Variational Gradient912

• Maximum-Mean Discrepancy913
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