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Abstract

Retinal microaneurysms (MAs) are the earliest signs of diabetic retinopathy (DR) which
is the leading cause of blindness among the working aged population in the western world.
Detection of MAs present a particular challenge as MA pixels account for less than 0.5% of
the retinal image. In deep neural networks the learning process can be adversely affected
by imbalance which introduces a bias towards the most well represented class. Recently, a
number of objective functions have been proposed as alternatives to the standard Crossen-
tropy (CE) loss in efforts to combat this problem. In this work we investigate the influence
of the network objective during optimization by comparing Residual U-nets trained for
segmentation of MAs in retinal images using six different objective functions; weighted and
unweighted CE, Dice loss, weighted and unweighted Focal loss and Focal Tversky loss. We
also perform test with the CE objective using a more complex model. Three networks with
different seeds are trained for each objective function using optimized hyper-parameter
settings on a dataset of 382 images with pixel level annotations for MAs. Instance level
MA detection performance is evaluated with the average free response receiver operator
characteristic (FROC) score calculated as the mean sensitivity at seven average false posi-
tives per image thresholds on 80 test images. The image level MA detection performance
and detection of low levels of DR is evaluated with bootstrapped AUC scores on the same
images and a separate test set of 1287 images. Significance test for image level detection
accuracy (α = 0.05) is performed using Cochran’s Q and McNemar’s test. Segmentation
performance is evaluated with the average pixel precision (AP) score. For instance level
detection and pixel segmentation we perform repeated measures ANOVA with Post-Hoc
tests. Results: Losses based on the CE index perform significantly better than the Dice
and Focal Tversky loss for instance level detection and pixel segmentation. The highest
FROC score of 0.5448 (±0.0096) and AP of 0.4888 (±0.0196) is achieved using weighted
CE. For all objectives excluding the Focal Tversky loss (AUC = 0.5) there is no significant
difference for image level detection accuracy on the 80 image test set. The highest AUC of
0.993 (95% CI: 0.980 - 1.0) is achieved using the Focal loss. For detection of mild DR on the
set of 1287 images there is a significant difference between model objectives (p = 2.87e−12).
An AUC of 0.730 (95% CI: 0.683 - 0.745 is achieved using the complex model with CE.
Using the Focal Tversky objective we fail to detect any MAs on both instance and im-
age level. Conclusion: Our results suggest that it is important to benchmark new losses
against the CE and Focal loss functions, as we achieve similar or better results in our test
using these objectives.

Keywords: Semantic Segmentation, Detection, Diabetic Retinopathy, Diabetes, Retinal
Imaging.
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1. Introduction

Segmentation of image features provides a good basis for disease detection in medical im-
ages. Doctors make diagnostic decisions based on the presence of diseased tissue or other
anatomical changes, so it makes sense that algorithms for automatic diagnosis should do
the same. Image classification with deep neural networks (DNN) suffer from a lack of in-
terpretability which can be problematic in the context of medical image analysis and com-
puter aided diagnosis. Hence, using semantic information for disease detection is a logical
approach. DNNs work well for biomedical image segmentation, with an example being the
U-net architecture (Ronneberger et al., 2015) and the several variations thereof which have
since been proposed. Diabetic retinopathy (DR) is the most common micro-vascular com-
plication of diabetes which is most common metabolic disease in world. Microaneurysms
(MAs) are small changes occurring in the retinal vascularity and are the earliest sign of
DR. MAs appear as small red dots in the retinal tissue and represent only a very small
proportion of the retina, making them very difficult to detect. As MAs independently pre-
dict the risk of sight threatening DR (Pappuru et al., 2019), early detection is important to
identify patients at risk. Presence of MAs is also used for planning screening intervals for
patients (Grauslund et al., 2018). Automated retinal image analysis have been an active
area of research for many years (Nrgaard and Grauslund, 2018) but has recently gained
increased interest due to the improved performance of DNNs. DNNs have mainly been
used to perform binary classification, e.g. non-referable versus referable DR as opposed to
more fine scaled classification with multiple levels of DR disease severity. In the binary
classification case, many DNNs have shown results comparable to human experts (Nielsen
et al., 2019), but results also demonstrate that these methods have yet to achieve the de-
sired diagnostic accuracy for full scale DR grading. This suggests that DNNs are able to
detect the macroscopic abnormalities indicative of more severe levels of DR, but fail to
recognise more subtle, microscopic lesions such as MAs which would enable them to better
distinguish between DR levels. MAs are present at the lowest level of DR (Wilkinson et al.,
2003) and MA detection can thus be used to predict this level of disease. The ability to
detect low levels of DR is important as it enables the DNN to recognize signs of the disease
before it has severe effects on patient health. MA detection can also be used to manage the
referral of patients in screening settings and decrease the workload on clinicians as patients
with low levels of DR might need to be screened more often compared to those showing
no signs. Semantic information and visual interpretability is important for the adoption
of computer assisted diagnostic methods. Intepretability is often a challenge due to the
black box which is said to encapsulate DNNs (Adadi and Berrada, 2018). A simple ap-
proach to solving this issue is to use semantic image information as part of the diagnostic
pipeline. In this work we demonstrate this approach by training DNNs for segmentation of
retinal MAs and subsequent detection of DR based on the presence or absence of MAs in
an image. This approach of using the output probability maps for classification resembles
classification by simple logistic regression. The advantages of this approach is the seman-
tic information yielded by the segmentation DNNs and the ability to adjust the model’s
sensitivity. Another appealing quality of this method is that it requires significantly fewer
images compared to classification DNNs which generally requires thousands of images in
order to converge(Nielsen et al., 2019).
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2. Methods

We compare DNNs trained for segmentation of retinal MAs. The resulting network segmen-
tation maps are used for detection of individual MAs as well as for image level detection.
In order to optimize segmentation performance, we train several DNNs using different ob-
jective functions to determine the best objective for segmentation of these small lesions. As
skip connections have been shown to improve performance of DNNs for biomedical image
segmentation (Drozdzal et al., 2016), we utilize a Residual U-net (Zhang et al., 2018) for
all our experiments. This is a U-net based architecture with addition of short residual
skip connections in the encoder and decoder. The model consist of three residual blocks in
the encoder, each with two convolution layers in the main path and a short residual skip
connection with one convolution layer. After each convolution layer there is a batch normal-
ization layer and in the first residual block a dropout layer is introduced after each of these.
The decoder consists of a single residual block followed by upsampling layers symmetric to
the encoder. We construct two models; a simple model where the upsampling consist of
upsampling with interpolation, and a complex model where upconvolution is performed.

2.1. Data:

Models were trained using publicly available retinal images from the E-ophtha database
with pixel level annotations for retinal MAs (Decencire et al., 2013). The dataset consists
of 382 images of which 149 contain one or more MAs. The remaining 233 images contain
no MAs. Images were randomly split into training, validation and test sets of 252, 50
and 80 images respectively with an equal proportion of MA to non-MA images in each
set. The validation set was used for tuning hyperparameters of the network and objective
functions. Individual MA detection as well as image level detection of MAs and pixel
segmentation performance was evaluated on the 80 images in the test set. The test set
consisted of 50 images without MAs and 30 images with MAs (average of seven MAs per
image). Additionally, image level MA detection was performed on another set of 1287 images
from the Messidor database (Decencire et al., 2014) using the adjucated ICDR grades by
(Krause et al., 2017). The Messidor images represent images of DR level 0 (no MAs, n =
1017) and level 1 (n = 270). Prior to training, all images were pre-processed using a common
pre-processing scheme consisting of extracting the green channel, contrast limited histogram
equalization and finally cropping the image borders around the retina. The training set size
was artificially increased through data augmentation by sampling 128 by 128 pixel crops
from the images using a sliding window approach and subsequent augmentations consisting
of gamma adjustment, flipping and flipping plus warping. This yielded a total of 83030
crops for training. At test time the same augmentations were performed on the test images
and the results averaged to give the final output segmentation map.

2.2. Evaluation:

Individual MA detection performance was evaluated using the free response receiver opera-
tor characteristic (FROC) score which is calculated as the mean sensitivity at seven average
false positive per image (FPAvg) thresholds of 1

8 , 1
4 , 1

2 , 1, 2, 4 and 8. MAs were counted as
true positives if a single pixel of predicted MAs overlapped with MAs in the ground truth
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segmentation map. Segmentation performance was evaluated as the average pixel precision
(AP). We trained three networks with three different seeds for parameter initialization per
objective function and treated each model as a subject to perform within-subject repeated
measures ANOVA with Post-hoc Tukey test for instance level detection and pixel segmen-
tation using the the nlme (Pinheiro et al., 2020) and emmeans (Lenth, 2020) packages in R.
Image level detection was defined as correctly detecting any MAs in the images of the test
sets at each threshold of the network’s output probability map. If MAs were detected in
an image and the ground truth image contained MAs the detection was counted as a true
positive and otherwise as a false positive. 1000 rounds of bootstrap sampling was performed
and predictions made with an ensemble of the three models trained per objective function
in order to calculate the mean AUC score and the 95% confidence interval. To test for
statistical significance of image level MA detection, images were then classified as either
MA or non-MA by choosing the optimal prediction threshold of the ensemble based on clas-
sification sensitivity and specificity. Finally, using the mlxtend Python library (Raschka,
2018), the Cochrans’s Q (Cochran, 1950) and Post-hoc McNemar test (McNemar, 1947)
was used for testing the null hypothesis of there being no difference between the choice of
objective function at a significance level of 0.05.

2.3. Model Objectives

Six different objective functions were used in our experiments; The Crossentropy loss (CE),
Focal loss (FL) (Lin et al., 2017), Dice loss (DL) (Sudre et al., 2017) and Focal Tversky
loss (FTL) (Abraham and Khan, 2018) as well as α weighted forms of CE (αCE) and FL
(αFL). The standard objective for training segmentation DNNs is the average pixel-wise
CE Equation (1), where pt is the probability assigned to each pixel belonging to the correct
class y.

CE(pt, y) = −αlog(pt) (1)

The FL Equation (2) extends on the standard CE by addition of a focusing parameter γ.
The idea is to differentiate between easy and hard examples and focus learning on examples
with low probabilities for y. A weighting parameter α can be added to both the CE and
FL formulations.

FL(pt, y) = −α(1− pt)γlog(pt) (2)

The DL can be formulated as in Equation (3) where pic is the ith pixel probability and gic is
the corresponding ground truth pixel for class c. The objective is to maximize the overlap
of the probability maps and ground truth segmentation maps. In practice, a small value
ε is added to the numerator and denominator in order to avoid division by zero in case of
empty segmentation maps.

DL(pic , gic) = 1− 2×
∑N

n=i picgic∑N
n=i pic +

∑N
n=i gic

(3)

The FTL Equation (4) is based on the Tversky index which is a generalization of the Dice
loss but with the addition of weighting parameters that allow for balancing false positive
and false negative examples. pic is the probability that pixel i is of the MA class c and pic̄
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is the probability that pixel i is of the non-MA class, c̄ and the same is true for the ground
truth g.

FTLc(pic , gic) =

(
1−

∑N
n=i picgic∑N

n=i picgic + α
∑N

n=i pic̄gic + β
∑N

n=i picgic̄

) 1
γ

(4)

In the FL objective, the focusing parameter γ does not directly account for class imbalance.
Rather its purpose it to focus the loss on examples with low probabilities for the correct
class and put less emphasis on examples with high probabilities. In theory this works on
imbalanced datasets, as the class with fewer examples is expected to be the harder examples
which will have lower probabilities. The same mechanism is applied in the FTL, where the
focus is based on the Tversky index of the misclassified examples.

2.4. Model Training

For each objective function and model configuration we performed hyper-parameter tuning
by random search using the keras-tuner Python library on a subset of 20.000 patches from
the full training set. For each set of hyperparameters we trained a maximum of 12 models,
running three trails per setting. Models trained for a maximum of 50 epochs with early
stopping if the validation loss did not improve for 10 epochs. For all models we searched
for initial learning rate ∈ [1e−2, 1e−3, 1e−4], dropout probability ∈ [0.0, 0.2, 0.5] as well as
L2 regularization strength ∈ [0.0, 1e−6, 1e−7]. For the CE loss as well as FL we performed
experiments both with and without the class balancing parameter α. For weighted loss
functions we searched for optimal settings of α and γ. Values of the hyperparameter search
space are summarized in Table 1. Afterwards, we trained three networks with optimal
hyperparameter settings for each objective function and model configuration using the full
training set. We trained using a batch size of 24 and three different seeds for parameter
initialization. The model parameters from the epoch with the lowest combined loss on the
training and validation set was used for evaluation on the test set. Models were trained
using the recently proposed rectified Adam (Liu et al., 2019) combined with Lookahead
(Zhang et al., 2019) optimization algorithms, as early experimentation indicated that it
helped with model convergence (although we did not perform rigorous experiments). Op-
timizer implementations were obtained from the Python packages keras-lookahead (Loo)
and keras-rectified-adam (RAd). Models were implemented and trained using the Keras
deep learning framework (Chollet et al., 2015) with Tensorflow backend on different Nvidia
GPUs (GeForce GTX 1080, GeForce RTX 2080, TITAN X Pascal), each training one model
at a time.

Table 1: Hyperparameter Search Space for Weighted Loss Functions

Loss Parameters
αCE α ∈ [0.6, 0.7, 0.8, 0.9]
FL γ ∈ [2, 3, 4, 5]
αFL α ∈ [0.25, 0.5, 0.75], γ ∈ [2, 3, 4, 5]
FTL α ∈ [0.5, 0.6, 0.7, 0.8, 0.9], γ ∈ [1, 1.33, 2, 4]
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3. Results

Table 2 shows the sensitivities at the seven FPAvg values for instance level MA detection
using each objective function, as well as the more complex model. Up until an FPAvg
of 1 MA the CE and FL based losses as well as CE with upconvolution perform about
the same. At FPAvg values of 2 and above the αCE, FL and CE with upconvolution
begin to separate from the CE and αFL objectives. This is also illustrated in Figure 1(a).
The DL performs significantly worse than all the CE based objectives while the model
completely fails to detect any MAs when trained to optimize the FTL objective. In Table 3
the average FROC scores calculated as the mean sensitivity at the seven FPAvg threshold
is presented along with a clinically relevant sensitivity value at a threshold of 1.08 FPAvg
(Niemeijer et al., 2010). The highest average FROC score of 0.5448 (±0.0096) and clinically
relevant sensitivity value of 0.5743 (±0.0054) is achieved using the αCE objective function in
training. The FL and CE with upconvolution achieve comparable results with FROC scores
of 0.5383(±0.0073), 0.5375 (±0.0356) and 1.08 FPAvg sensitivity values of 0.5606 (±0.0274)
and 0.5689 (±0.0178). According to the Post-Hoc tukey test there is no statistical significant
difference between using any of the CE based objectives with regards to the FROC score
and 1.08 FPAvg value on the E-ophtha images whereas all of them outperform the DL
(p<0.001). Pixel level segmentation performance evaluated using the average precision AP

(a) (b)

Figure 1: (a) Mean FROC curves at low FPAvg and FROC scores (±sd) and (b) precision-
recall curves and average precision scores for each objective function on E-ophtha
dataset.

score is presented in Figure 1(b) and Table 3. The highest AP of 0.4888 (±0.0196) is
achieved using the FL objective for training but there is no significant difference between
any of the CE based losses. The αCE, CE with upconvolution, αFL and CE achieve scores of
0.4377 (±0.0258), 0.4366 (±0.0312), 0.4164 (±0.0704) and 0.3767 (±0.01096) respectively.
Using the DL the model achieves a AP of 0.1647 (±0.0396) which is significantly lower than
all other objectives (p < 0.001) except for the FTL where we fail to successfully segment
any MA pixels. Image level detection results on the E-ophtha and Messidor images
are summarized in Table 4 using bootstrapped AUC scores with 95% confidence intervals
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Table 2: Average Sensitivity Scores at Low FPAvg Thresholds on E-ophtha MA test set.

Loss function (parameters) 1
8

1
4

1
2 1 2 4 8

CE 0.2279(±0.0358) 0.3587(±0.0458) 0.4912(±0.0076) 0.5266(±0.0116) 0.5793(±0.0235) 0.6610(±0.0456) 0.6943(±0.0325)
αCE (α=0.9) 0.2432(±0.0460) 0.3490(±0.0202) 0.4584(±0.0159) 0.5556(±0.0124) 0.6623(±0.0261) 0.7458(±0.0350) 0.7995(±0.0149)
FL (γ=5) 0.2485(±0.0825) 0.3377(±0.0366) 0.4294(±0.0196) 0.5355(±0.0232) 0.6497(±0.0278) 0.7489(±0.0366) 0.8187(±0.0168)
αFL (γ=5, α=0.25) 0.2296(±0.0602) 0.3589(±0.0994) 0.4540(±0.0482) 0.5162(±0.0398) 0.5762(±0.0513) 0.6810(±0.0708) 0.7325(±0.0513)
DL 0.2162(±0.0362) 0.2629(±0.0396) 0.3110(±0.0784) 0.3219(±0.0782) 0.3308(±0.0864) 0.3308(±0.0864) 0.3308(±0.0864)
FTL (γ=1, α=0.7, β=0.3) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000)
CE + Upconvolution 0.2999(±0.0547) 0.3813(±0.0677) 0.4696(±0.0276) 0.5523(±0.0298) 0.6251(±0.0329) 0.6725(±0.0220) 0.7620(±0.0238)

Table 3: Average FROC, clinically relevant sensitivity scores and average pixel precision on
E-ophtha MA test set.

Loss function (parameters) FROC Score 1.08 FPavg Score AP score
CE 0.5067(±0.0115) 0.5333(±0.0173) 0.3767(±0.0013)
αCE (α=0.9) 0.5448(±0.0096) 0.5743(±0.0045) 0.4377(±0.0258)
FL (γ=5) 0.5383(±0.0073) 0.5606(±0.0274) 0.4888(±0.0196)
αFL (γ=5, α=0.25) 0.5069(±0.0569) 0.5246(±0.0441) 0.4164(±0.0704)
DL 0.3006(±0.0668) 0.3219(±0.0782) 0.1647(±0.0396)
FTL (γ=1, α=0.7, β=0.3) 0.0000(±0.0000) 0.0000(±0.0000) 0.000(±0.0000)
CE + Upconvolution 0.5375(±0.0356) 0.5689(±0.0178) 0.4366(±0.0312)

(CI) and prediction accuracy from ensemble predictions based on an optimal sensitivity
and specificity prediction threshold. Models trained with either of the objective functions
(excluding the FTL) are able to detect MA images with high accuracy (> 0.87) on the
E-ophtha images. The Cochran’s Q test indicate a statistical significant difference between
the objective functions or model configuration (also when excluding the FTL objective) for
image level detection (p = 2.07e−02) but the McNemar test with Holm-Bonferroni correction
for pairwise comparison indicate no significant difference between the objective with the
highest accuracy (αFL) and the other objectives. For detection of mild DR in the Messidor
images all models achieve significantly lower AUC and accuracy scores compared to the
E-ophtha values. A statistical significant difference in predictive performance between the
choice of objective function or model configuration is assumed on this dataset as well (p =
2.90e−12). On the Messidor images, the aCE objective has the highest accuracy and the
predictive performance for detection of mild DR is significantly different from all objectives
except the FL. On the Messidor dataset the standard CE loss performs significantly worse
than the other objectives apart from the aFL (not including the FTL).

Table 4: Bootstrapped AUC and ensemble prediction accuracy on E-ophtha and Messidor
test sets.

Loss function E-ophtha AUC (95% CI) E-ophtha Accuracy Messidor AUC (95% CI) Messidor Accuracy
CE 0.978 (0.947 - 1.0) 0.8987 0.671 (0.670 - 0.731) 0.5501
αCE(α=0.9) 0.978 (0.948 - 0.997) 0.8734 0.715 (0.683 - 0.745) 0.6161
FL(γ=5) 0.993 (0.980 - 1.0) 0.8987 0.701 (0.675 - 0.731) 0.5990
αFL(γ=5, α=0.25) 0.984 (0.954 - 1.0) 0.9493 0.720 (0.691 - 0.753) 0.5648
DL 0.993(0.979 - 1.0) 0.9240 0.706(0.675 - 0.742) 0.5897
FTL(γ=1, α=0.7, β=0.3) 0.500 (0.500 - 0.500) 0.6329 0.500 (0.500 - 0.500) 0.7902
CE + Upconvolution 0.977(0.940 - 1.0) 0.9113 0.730 (0.683 - 0.745) 0.5951
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4. Discussion

In this work we have demonstrated the use of DNNs for segmentation and detection of MAs
in retinal images. Residual U-nets were trained to optimize six different loss functions in
order to determine which objective was best suited to deal with the large class imbalance
between MA and background pixels. The losses based on the CE index perform better than
the Dice and Focal Tversky objectives for instance level detection of MAs. While the DL
and FTL functions both have been proposed as means to deal with large class imbalance in
segmentation datasets, neither of them are able to improve the performance of our networks.
Even though the DL and FTL are based on overlap measures they do not lead to improved
pixel level segmentation performance either, they do in-fact perform significantly worse.
The weighted CE loss performs best for instance level detection with a FROC score of
0.5448 (±0.0096) although it is only the DL that performs significantly worse with a score
of 0.3006 (±0.0668). While the FROC score is a good indicator of detection performance,
it is potentially problematic as it can be disproportionately affected by sensitivity values at
either end of the scale. E.g. their is marginal improvements in the DL sensitivities beyond 1

2
FPAvg. The Reason is that the model trained using the DL produces output segmentation
maps with a higher degree of confidence compared to the objectives based on the CE index
Figure 2(a) and Figure 2(b). As such, the sensitivity of the model can only be adjusted in
a narrow range. Of course, sensitivities above the 1.08 FPAvg threshold has little clinical
relevance hence the sensitivity at this threshold is a better indicator of the true performance
of a model. But as the DL also achieves lower scores here it makes no difference for the
sake of comparison. Figure 3 shows an example test image with indication of correctly

(a) (b)

Figure 2: Example crops of output probability maps from the same image: (a) Dice loss
and (b) weighted Crossentropy.

and incorrectly predicted MAs from a network trained using weighted CE at a 1.08 FPAvg
threshold. It is clear that some of the wrongly predicted lesions look very similar to MAs
and they could in fact have been missed by the human annotator. This is a known issue
when performing supervised learning and without a human comparison we cannot know the
limits for how good it is possible for a model to be. For image level detection on the E-ophtha
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data there is no significant difference between the choice of objective other than the FTL,
which when used for training fails to detect any MA images. On the Messidor images the
performance drops significantly for all the trained models. Even though the DL performs
worse than the other objectives for instance level detection, the same is not true for image
level detection. Adding a weighting as well as focusing parameter to the standard CE can
lead to better performance for instance and image level detection of MAs as well as for pixel
segmentation. Niether the DL og FTL lead to better, or in some cases even comparable
results in any of our tests which is somewhat surprising as we expected improvements when
using these objectives specifically developed to deal with highly imbalanced datasets. In
(Sudre et al., 2017), they introduce the generalized Dice loss and compare the performance of
this objective to a sensitivity and specificity loss and the weighted CE loss on a dataset with
similar imbalance to ours. They conclude that the difference between using the different
losses is minimal on datasets with moderate imbalance, but that the generalized Dice loss
is more stable when the imbalance increases and they argue that the choice of loss function
is crucial when training DNNs. Generally, our results indicate that the choice of objective
function is important, but contrary to their results, the CE based losses proved better suited
for our task. In (Abraham and Khan, 2018) they compare their Focal Tversky Loss to the
DL and Tversky loss using different network architectures on two datasets. On average,
they improve results by 0.062 points for Dice coefficient and 0.0255 and 0.0625 for pixel level
precision and recall respectively by using the Focal Tversky objective, although in one case
precision is better when using the Dice loss. The Dice coefficient is an overlap measure and
they show that the FTL can improve results for this particular metric. We did not observe
similar improvements for either metric used in our experiments and in fact failed to produce
any form of MA detection with this objective. As they do not compare their method to
the CE or FL it is unclear how using these objectives would affect their results. In the two
datasets used in their experiments the lesions on average make up 4.84% and 21.4% of the
pixels, which is a lot more than the 0.02% that MA pixels account for in the training set of
our experiments. Recently (Kervadec et al., 2018) proposed the boundary loss and showed
that it could be combined with the DL and improve performance compared to using the
DL alone. As they do not make comparisons it is not known whether the boundary loss
improves upon CE based losses as well and we would need to perform further experiments
to test this. DNNs can struggle with generalization, meaning that performance is better on
data from the same distribution compared to data from a different distribution, i.e. different
population demographics, equipment setups, operators etc. in the case of medical imaging.
This is also clear from the results of Table 3 comparing the mean AUC on the E-ophtha
and Messidor datasets. Similar to our work, (Orlando et al., 2018) experimented with an
ensemble based approach for red lesion detection in retinal fundus images by combining
DNNs with hand engineered features and Random forrest. For lesion level detection on the
E-ophtha dataset this method achieved a FROC score of 0.3683 when combining all three.
Their DNN alone achieved a FROC score of 0.3057 which is lower than our best performing
network with a score of 0.5448 (±0.0096). They also report the sensitivity at a FPAvg
value of 1 which they describe as being clinically relevant. Here, their method achieves
a sensitivity of 0.3680 using the combined features and the DNN alone has a sensitivity
of 0.2894. In comparison, our model using the weighted CE has a sensitivity of 0.5556
(±0.0124) at this threshold. Their algorithm is evaluated on the full E-ophtha dataset and
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Figure 3: Preproccesed test image with indication of true positive (green), false positive
(red) and false negative (yellow) predicted MAs at a clinical relevant 1.08 FPAvg
threshold by network trained using weighted Crossentropy objective.

trained on images from two other databases. As in our work, they apply the algorithm
to image-level detection of MAs and DR. They perform two separate tests for detection of
DR in images from the Messidor database (n=1200) using the original Messidor DR grades
(R0 - R3) where; R0 are images with no MAs, R1 images with between 1 and 5 MAs, R2
are images with between 5 and 15 MAs or up to 5 haemorrhages and R3 is images with
15 or more MAs or 5 or more haemorrhages or any neo-vascularization. They report an
AUC of 0.8932 using the combined approach for detecting any level of DR (R0 vs R1-R3)
while the DNN alone achieves AUC of 0.7912. For detection of referable DR (R0 and R1 vs
R2 and R3) they report an AUC of 0.9374 using their combined approach and 0.8377 for
the DNN alone. If we apply the model ensemble (CE + upconvolution) which performed
best for detection of mild DR (adjucated ICDR grade 1) in the Messidor images to the
same two problems using the original grades (R0-R3) our approach yields similar results
with bootstrapped AUC score of 0.9005 (0.882 - 0.918) and an accuracy of 0.8185 for R0
vs. R1-R3. For R0 and R1 vs R2 and R3 our approach achieves and AUC 0.8932 (0.874 -
0.912) with an accuracy of 0.8081. On the E-ophtha dataset (Orlando et al., 2018) report an
AUC of 0.9031 for their combined approach and AUC of 0.8374 for the DNN alone. Seeing
as there is a difference in data used for training, comparing our method to the ensemble
by Orlando et al. can be problematic. They do not train on E-ophtha data and achieve
lower scores in all tests on this dataset compared to our approach, while results on the
Messidor data are similar. This underlines the problem of generalization when using DNNs
for medical image analysis and it is likely that the data used for training in their work is
more similar to the Messidor data than to the E-ophtha data used in our experiments. A
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more recent work by Chudzik et al. (Chudzik et al., 2018) train a DNN for detection of MAs
using an iterative freezing approach to fine-tune a DNN using the DL objective function.
They report a FROC score of 0.5620 (±0.2330) on 27 images from E-ophtha dataset but the
variance of the results and the number of images used for testing renders the results unfit for
comparison. (Savelli et al., 2020) perform small lesion detection using a multicontext CNN
approach and report a FROC score of 0.4795 using cross validation on the E-ophtha dataset.
In (Orlando et al., 2018) significant improvements are achieved by combining hand crafted
features with DNN features. They employ a simple DNN architecture, and in comparison
to our DNN it achieves significantly lower scores on the E-ophtha data. These results along
with those by (Abraham and Khan, 2018) where deeper architectures lead to an increase in
both precision and Dice coefficient indicate that more complex architectures (as our results
also suggests) along with feature engineering can lead to improved results.

5. Conclusion

Despite the promise of using training objectives designed to deal with unbalanced data such
as the DL and FTL, losses based on the Crossentropy index like weighted Crossentropy and
Focal loss perform at least as well or better than these in all our experiments for lesion
and image level detection as well as pixel level segmentation of small retinal MAs. While
a number of new objective functions have recently been proposed and shown to improve
performance for unbalanced datasets compared to the Dice loss, our results suggest that
it is important to also benchmark new objectives against losses based on the Crossentropy
index as we achieve the best performance in all our test using these objectives.

References

keras-lookahead. https://pypi.org/project/keras-lookahead/. Accessed: 2020-01-09.

keras-rectified-adam. https://pypi.org/project/keras-rectified-adam/. Accessed:
2020-01-09.

Nabila Abraham and Naimul Mefraz Khan. A novel focal tversky loss function with im-
proved attention u-net for lesion segmentation. 2019 IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019), pages 683–687, 2018.

A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable artificial
intelligence (xai). IEEE Access, 6:52138–52160, 2018. ISSN 2169-3536. doi: 10.1109/
ACCESS.2018.2870052.

François Chollet et al. Keras. https://keras.io, 2015.

Piotr Chudzik, Somshubra Majumdar, Francesco Caliv, Bashir Al-Diri, and Andrew Hunter.
Microaneurysm detection using fully convolutional neural networks. Computer Methods
and Programs in Biomedicine, 158:185 – 192, 2018. ISSN 0169-2607. doi: https://
doi.org/10.1016/j.cmpb.2018.02.016. URL http://www.sciencedirect.com/science/

article/pii/S0169260717308544.

11

https://pypi.org/project/keras-lookahead/
https://pypi.org/project/keras-rectified-adam/
https://keras.io
http://www.sciencedirect.com/science/article/pii/S0169260717308544
http://www.sciencedirect.com/science/article/pii/S0169260717308544


Retinal Microaneurysm Segmentation and Detection

W. G. Cochran. THE COMPARISON OF PERCENTAGES IN MATCHED SAMPLES.
Biometrika, 37(3-4):256–266, 12 1950. ISSN 0006-3444. doi: 10.1093/biomet/37.3-4.256.
URL https://doi.org/10.1093/biomet/37.3-4.256.

Etienne Decencire, Guy Cazuguel, and Xiwei et al. Zhang. Teleophta: Machine learning
and image processing methods for teleophthalmology. IRBM, 34:196–203, 04 2013. doi:
10.1016/j.irbm.2013.01.010.

Etienne Decencire, Xiwei Zhang, and Guy Cazuguel et al. Feedback on a publicly distributed
image database: The messidor database. Image Analysis and Stereology, 33(3):231–234,
2014. ISSN 1854-5165. doi: 10.5566/ias.1155. URL https://www.ias-iss.org/ojs/

IAS/article/view/1155.

Michal Drozdzal, Eugene Vorontsov, and Gabriel et al. Chartrand. The importance of
skip connections in biomedical image segmentation. In Deep Learning and Data Labeling
for Medical Applications, pages 179–187, Cham, 2016. Springer International Publishing.
ISBN 978-3-319-46976-8. doi: 10.1007/978-3-319-46976-8 19.

Jakob Grauslund, Nis Andersen, and Jens Andresen et al. Evidence-based danish guidelines
for screening of diabetic retinopathy. Acta Ophthalmology, 96(8):763–769, 2018. doi:
10.1111/aos.13936.

Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, ric Granger, Jose Dolz, and Is-
mail Ben Ayed. Boundary loss for highly unbalanced segmentation, 2018.

Jonathan Krause, Varun Gulshan, Ehsan Rahimy, Peter Karth, Kasumi Widner, Greg Cor-
rado, Lily Peng, and Dale Webster. Grader variability and the importance of reference
standards for evaluating machine learning models for diabetic retinopathy. Ophthalmol-
ogy, 125, 10 2017. doi: 10.1016/j.ophtha.2018.01.034.

Russell Lenth. emmeans: Estimated Marginal Means, aka Least-Squares Means, 2020. URL
https://CRAN.R-project.org/package=emmeans. R package version 1.4.7.

T. Lin, P. Goyal, and R. Girshick et al. Focal loss for dense object detection. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2999–3007, Oct 2017. doi:
10.1109/ICCV.2017.324.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the variance of the adaptive learning rate and beyond, 2019.

Quinn McNemar. Note on the sampling error of the difference between correlated propor-
tions or percentages. Psychometrika, 12(2):153–157, 1947.

Katrine B Nielsen, Mie L Lautrup, and Jakob K H Andersen et al. Deep learningbased
algorithms in screening of diabetic retinopathy: A systematic review of diagnostic perfor-
mance. Ophthalmology Retina, 3(4):294–304, 2019. doi: https://doi.org/10.1016/j.oret.
2018.10.014.

12

https://doi.org/10.1093/biomet/37.3-4.256
https://www.ias-iss.org/ojs/IAS/article/view/1155
https://www.ias-iss.org/ojs/IAS/article/view/1155
https://CRAN.R-project.org/package=emmeans


Retinal Microaneurysm Segmentation and Detection

M. Niemeijer, B. van Ginneken, M. J. Cree, A. Mizutani, G. Quellec, C. I. Sanchez,
B. Zhang, R. Hornero, M. Lamard, C. Muramatsu, X. Wu, G. Cazuguel, J. You, A. Mayo,
Q. Li, Y. Hatanaka, B. Cochener, C. Roux, F. Karray, M. Garcia, H. Fujita, and M. D.
Abramoff. Retinopathy online challenge: Automatic detection of microaneurysms in dig-
ital color fundus photographs. IEEE Transactions on Medical Imaging, 29(1):185–195,
2010.

MF Nrgaard and Jakob Grauslund. Automated screening for diabetic retinopathy - a
systematic review. Ophthalmic Research, 60(1):9–17, 2018. doi: https://doi.org/10.1159/
000486284.

Jos Ignacio Orlando, Elena Prokofyeva, Mariana del Fresno, and Matthew B. Blaschko. An
ensemble deep learning based approach for red lesion detection in fundus images. Com-
puter Methods and Programs in Biomedicine, 153:115 – 127, 2018. ISSN 0169-2607.
doi: https://doi.org/10.1016/j.cmpb.2017.10.017. URL http://www.sciencedirect.

com/science/article/pii/S0169260717307897.

Rajeev K R Pappuru, Lusa Ribeiro, and Conceio Lobo et al. Microaneurysm turnover is
a predictor of diabetic retinopathy progression. British Journal of Ophthalmology, 103:
222–226, 2019.

Jose Pinheiro, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. nlme:
Linear and Nonlinear Mixed Effects Models, 2020. URL https://CRAN.R-project.org/

package=nlme. R package version 3.1-148.

Sebastian Raschka. Mlxtend: Providing machine learning and data science utilities and
extensions to pythons scientific computing stack. The Journal of Open Source Software,
3(24), April 2018. doi: 10.21105/joss.00638. URL http://joss.theoj.org/papers/10.

21105/joss.00638.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International Pub-
lishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4 28.

B. Savelli, A. Bria, M. Molinara, C. Marrocco, and F. Tortorella. A multi-context cnn
ensemble for small lesion detection. Artificial Intelligence in Medicine, 103:101749, 2020.
ISSN 0933-3657. doi: https://doi.org/10.1016/j.artmed.2019.101749. URL http://www.

sciencedirect.com/science/article/pii/S0933365719303082.

Carole H. Sudre, Wenqi Li, Tom Vercauteren, and et al. Generalised dice overlap as a deep
learning loss function for highly unbalanced segmentations. Lecture Notes in Computer
Science, page 240248, 2017. ISSN 1611-3349. doi: 10.1007/978-3-319-67558-9 28. URL
http://dx.doi.org/10.1007/978-3-319-67558-9_28.

C.P Wilkinson, Frederick L Ferris, and Ronald E Klein et al. Proposed inter-
national clinical diabetic retinopathy and diabetic macular edema disease severity
scales. Ophthalmology, 110(9):1677 – 1682, 2003. ISSN 0161-6420. doi: https://doi.

13

http://www.sciencedirect.com/science/article/pii/S0169260717307897
http://www.sciencedirect.com/science/article/pii/S0169260717307897
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
http://joss.theoj.org/papers/10.21105/joss.00638
http://joss.theoj.org/papers/10.21105/joss.00638
http://www.sciencedirect.com/science/article/pii/S0933365719303082
http://www.sciencedirect.com/science/article/pii/S0933365719303082
http://dx.doi.org/10.1007/978-3-319-67558-9_28


Retinal Microaneurysm Segmentation and Detection

org/10.1016/S0161-6420(03)00475-5. URL http://www.sciencedirect.com/science/

article/pii/S0161642003004755.

Michael R. Zhang, James Lucas, Geoffrey E. Hinton, and et al. Lookahead optimizer: k
steps forward, 1 step back. CoRR, abs/1907.08610, 2019. URL http://arxiv.org/abs/

1907.08610.

Z Zhang, Q Liu, and Y Wang. Road extraction by deep residual u-net. IEEE Geoscience
and Remote Sensing Letters, 15(5):749 – 753, 2018. doi: 10.1109/LGRS.2018.2802944.

14

http://www.sciencedirect.com/science/article/pii/S0161642003004755
http://www.sciencedirect.com/science/article/pii/S0161642003004755
http://arxiv.org/abs/1907.08610
http://arxiv.org/abs/1907.08610

	Introduction
	Methods
	Data:
	Evaluation:
	Model Objectives
	Model Training

	Results
	Discussion
	Conclusion

