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Abstract

We introduce Dynaboard, an evaluation-as-a-service framework for hosting bench-
marks and conducting holistic model comparison, integrated with the Dynabench
platform. Our platform evaluates NLP models directly instead of relying on self-
reported metrics or predictions on a single dataset. Under this paradigm, models
are submitted to be evaluated in the cloud, circumventing the issues of reproducibil-
ity, accessibility, and backwards compatibility that often hinder benchmarking in
NLP. This allows users to interact with uploaded models in real time to assess
their quality, and permits the collection of additional metrics such as memory use,
throughput, and robustness, which – despite their importance to practitioners –
have traditionally been absent from leaderboards. On each task, models are ranked
according to the Dynascore, a novel utility-based aggregation of these statistics,
which users can customize to better reflect their preferences, placing more/less
weight on a particular axis of evaluation or dataset. As state-of-the-art NLP models
push the limits of traditional benchmarks, Dynaboard offers a standardized solution
for a more diverse and comprehensive evaluation of model quality.

1 Introduction

Benchmarks have been critical to driving progress in AI: they provide a standard by which models
are measured, they support direct comparisons of different proposals, and they provide clear-cut goals
for the research community. This has led to an outpouring of new benchmarks designed not only to
evaluate models on new tasks, but also to address weaknesses in existing models [49, 55, 34], and
expose artifacts in existing benchmarks [42, 19, 25, 33, 22, 37]. These efforts are helping to provide
us with a more realistic picture of how much progress the field has made.

To date, the metrics by which we assess system performance have received much less systematic
attention. Even as the benchmarks have changed, the community has continued to rely heavily on
accuracy as the sole primary metric. This gives rise to a “leaderboard culture” in which accuracy is
the only thing that matters, even in contexts in which other pressures – e.g., compactness, fairness,
efficiency – are clearly important [60, 6, 16, 63, 68, 38, 2, 51, 17]. Recently, Ethayarajh and
Jurafsky [17] provided a microeconomic framing of the problem: leaderboard viewers are consumers
of models, and each viewer has their own set of preferences: some care only about accuracy, others
value compactness in addition to accuracy, and so on. Static leaderboards that only rank by model
performance thus have a scoring function that is misaligned with the preferences of most users.
Moreover, merely focusing on a single metric, such as accuracy, limits the scope of possible issues
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even to consider. In other words, focusing on one standard metric, like accuracy, lets researchers off
the hook too much on other pressing issues.

Reproducibility, accessibility, and backwards compatibility are important issues as well. There is a
reliance on self-reported results with no trust guarantees [75], and many state-of-the-art claims are
famously difficult to reproduce [52]. In some cases, the state-of-the-art model cannot be accessed
without sufficient computational resources and/or technical expertise, and older models are often
incomparable to newer ones because they have not been evaluated on the same data.

To begin to address these issues, we propose Dynaboard. Dynaboard’s evaluation-as-a-service
backend allows models to be submitted directly to be evaluated in the cloud, circumventing issues of
reproducibility, accessibility, and backwards compatibility. Older models can be compared to newer
ones because any model can be evaluated on demand. Dynaboard supports reasoning about many
different metrics – not just standard accuracy-style metrics, but also memory use and throughput
(i.e., inference speed) on identical hardware, robustness, fairness, and so forth. Building on [17], we
borrow from microeconomic theory to aggregate these metrics – along with performance – into a
Dynascore that is used to rank models. The frontend of Dynaboard is a dynamic leaderboard that
allows users to customize the Dynascore by placing more/less weight on a particular metric or dataset.
As the user modifies the weights that govern the Dynascore, models are re-ranked in real time. Users
can also directly interact with a model via the platform, receiving real-time model predictions that
help them understand a model’s capabilities and limitations, and allowing the community to find
challenging examples where the current state of the art still falls short. Together, this allows users to
develop and directly express the complex and interrelated values they have for their models.

Although other platforms – CodaLab, DAWNBench [10], and ExplainaBoard [39], to name a few
– address some subset of the problems we describe above, Dynaboard is the first to address all of
them in a single end-to-end system. It requires minimal overhead for model creators wishing to
submit their model for evaluation, but offers maximal flexibility for users wishing to make fine-
grained comparisons between models. As state-of-the-art NLP models push the limits of traditional
benchmarks, Dynaboard offers a standardized solution for creating the next generation of benchmarks
in a manner that allows for the diverse and comprehensive evaluation of model quality.

2 Objectives

Dynaboard aims to address the following issues in our current model evaluation paradigm:

Reproducibility The reliance on self-reported results with no trust guarantees [75] makes many
state-of-the-art claims difficult to reproduce [52]. Even the choice of random seed can lead to
substantially different results [15], and improvements on the state-of-the-art are often not statistically
significant [8]. Implementational differences in evaluation metrics can also lead to different scores
[54]. Given that the test data for static benchmarks is often publicly available, reported results may
also be the outcome of overfitting hyperparameters [4].

Accessibility Whichever model happens to hold the “state-of-the-art” title should be accessible by
as many researchers as possible. Democratizing model evaluation is essential to understanding our
current weaknesses, for making progress in the long tails of the data distribution, and for collecting
new adversarial datasets where the state-of-the-art fails. Just open sourcing the model weights is
insufficient, because even when given trained models, inference-time compute resources may not be
readily available in many parts of the world.

Backwards Compatibility Dynamic human-in-the-loop data collection is a great alternative to
static benchmarks, but as new evaluation sets are introduced in later rounds, old models become
incomparable to new ones, simply because they haven’t been evaluated on the same data. It should be
possible to evaluate a model on demand, rather than the model’s predictions at a single point in time.

Forwards Compatibility Automated metrics such as BLEU and ROUGE have many known flaws,
and creating better automated metrics (e.g., BLEURT [64], BERTScore [77]) is an active area of
research. However, the current paradigm does not allow for old models to be evaluated on new
automated metrics that come later, since it relies on reporting from the model creator. If our field
comes up with new and better metrics, we should be able to immediately gauge overall model quality.
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Prediction Costs Most leaderboards treat the cost of making predictions as zero, which does not
hold in practice; memory use, latency, throughput, and lack of robustness – among many other factors
– have real-world implications in deployment [60, 17]. A highly accurate model may be useless to
an embedded systems engineer if it is untenably large, for example. For users to be able to make
informed decisions about the risks and rewards of using a particular model, they need to be given as
much information as possible.

Utility Estimation There is no single correct way to rank models: every leaderboard viewer has a
different set of preferences, as manifested in their utility function [17]. Some users only care about
model performance, but others care about memory use, throughput, fairness, and more. A leaderboard
should not be overly prescriptive when ranking models – it should provide a default ranking, but
ultimately give users the freedom to customize the scoring/ranking function to better approximate
their utility function.

The evaluation-as-a-service backend of Dynaboard addresses the first four of these. By having models
submitted directly to the platform, they can be accessed and evaluated on demand on any dataset (see
Section 4). The frontend of Dynaboard is a dynamic leaderboard that addresses the last two issues:
prediction costs and utility estimation. Although the leaderboard has a default ranking, the scoring
function is constructed in a principled way, borrowing from economic theory to estimate the rates at
which users are willing to trade-off prediction costs for performance. More importantly, users are
given the freedom to manipulate the scoring function to better approximate their preferences.

3 Related Work

Evaluation platforms Although other platforms have addressed some subset of the issues in
Section 2, they have not addressed all of them in a single end-to-end solution. DAWNBench [10]
reports some prediction costs, such as the time needed to reach a particular accuracy. However, it still
relies on self-reported results, meaning that reproducibility, accessibility, and forwards/backwards
compatibility are still issues. CodaLab2 and EvalAI3 make it significantly easier to access models and
reproduce stated claims, but automatically evaluating any model on any new dataset or metric is not
straightforward, making backwards/forwards compatibility hard to scale. It would also be difficult to
collect prediction costs on standard hardware. Explainaboard [39] and Robustness Gym [23] allow
for a more nuanced comparison of models, but through the lens of which slices of data a model
performs well on and what types of errors it makes. Models are not directly uploaded, however, so
prediction costs are not collected and forwards compatibility cannot be automated. We see these
approaches as complementary to Dynaboard, helping provide a richer view of model performance.

Multi-metric evaluation There have been some attempts to rank models by metrics other than
accuracy. Although not explicitly framed in terms of utility, Mieno et al. studied the trade-off users
were willing to make between accuracy and latency in speech translation [44]. Some challenge
tasks in recent years have required the reporting of prediction costs or have instituted limits on
the maximum costs that can be incurred, as in the EfficientQA challenge [27, 45]. However, such
practices are still few and far between. Our hope is that over time Dynaboard can help lower the
overhead required to create multi-metric benchmarks and help them proliferate and diversify, such that
every sub-community can have its own canonical benchmarks, like GEM [21] for natural language
generation, BIG-Bench4 for language model probing, or GLUE [73] and SuperGLUE [72] for NLU.

4 Backend: Evaluation-as-a-Service

The evaluation-as-a-service pipeline uses a standardized application programming interface (API)
that is similar to other model evaluation platforms like EvalAI and Codalab that allow creators to
upload models. Researchers submit their models for evaluation in our model evaluation cloud, in
which all models are scored in exactly the same way, on the exact same data, within the same (virtual)
hardware constraints. Testing models on different datasets, from standard well-known test sets to

2https://codalab.org
3https://eval.ai
4https://github.com/google/BIG-bench
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stress tests [47, 11] and check lists [59] can be cumbersome – we offer evaluation-as-a-service (EaaS)
for NLP models. We ask model developers to specify model cards [46] to report on and properly
document their contributions. In this paradigm, it is no longer possible for people to cherrypick
results: the same model instance is evaluated on all evaluation sets.

We take a multi-metric approach, going beyond just accuracy, where models are evaluated on multiple
axes of evaluation. The top models can be employed in-the-loop for dynamic adversarial evaluation
[34], and all uploaded models can be made accessible online so that anyone can “talk to” these models
(in a corresponding frontend UI) to see how they perform. Models are evaluated on combinations of
adversarial and non-adversarial datasets. All statistics are made available to the user, who can rank
models by specifying which datasets and which metrics should factor into the ranking and in what
proportion (see Section 5 for details).

Importantly, we do not claim to have built or discovered the one right approach for model evaluation.
The goal of Dynaboard – and the Dynabench data collection platform it is built on – is making
dynamic as many of the components employed by the current status quo as possible: i) rather than
having a single metric, we can have many metrics, with the ability to add more as new automated
metrics are conceived; ii) rather than having a fixed set of evaluation datasets, we can have many
and add more over time; iii) rather than evaluating models only on static datasets, they can be
evaluated dynamically in the loop. For this approach to succeed, the ability to re-evaluate older
models is essential: when new datasets are introduced, new metrics come out, and as new community
preferences emerge, we need to be able to see where we stand with our current state-of-the-art.

4.1 Metrics

All models are evaluated along multiple axes using a variety of metrics. The ideal model is not only
accurate, but fast, memory-efficient, fair and robust. Many of these properties are associated with
trade-offs: a binary classifier that always outputs 1 is very fast and uses little memory, but is very
inaccurate. While we might incorporate additional metrics in the future – one of the advantages of
our platform is that we are able to do so – the currently reported set of metrics is as follows:

Performance The standard evaluation metric in machine learning is some form of performance,
whether it is accuracy, F1, AUROC, BLEU, or something else. The exact performance metric, in our
case, is task dependent. One task can have multiple performance metrics, but only one metric is used
as the canonical performance metric when ranking models. When metrics are aggregated to rank
models, our default weighting places half the weight on the canonical performance metric and splits
the remaining half among the others (see Section 5 for details).

Throughput The amount of inference-time compute required by a given model is defined as the
number of examples it can process per second on its instance in our evaluation cloud. For fair
comparison, models are deployed on the exact same architecture. Measuring the computational
efficiency of a model is important for two main reasons. First, a highly accurate model that takes
a very long time to label a single example has limited use in most real-world scenarios. Second,
as a field, we need to focus more on Green AI and explicitly account for a model’s energy/carbon
footprint in our model ranking [63, 68, 28].

Memory The amount of memory that a model requires is given in gigabytes of memory usage,
averaged over the duration that the model is running, with measurements taken over a fixed interval.
Note that unlike with the other metrics, the goal is to minimize memory use rather than maximizing it.
For this reason, before aggregating all the metrics into a single score for ranking models, we transform
“memory used” into “memory saved” by subtracting it from the maximum possible (virtual) memory
that can be used (see Section 5 for details).

Fairness. There is no single, best way to measure model fairness [35, 50, 3]. Whether to include
any explicit fairness metric was a difficult choice – we acknowledge that we might inadvertently
facilitate false or spurious fairness claims, fairness-value hacking, or give people a false sense of
fairness. The research community has a long way to go in terms of developing well-defined concrete
fairness measurements. Ultimately, however, we came to the conclusion that fairness is such an
important axis of evaluation that we would rather have an imperfect metric than no metric at all: in
our view, a multi-metric evaluation framework simply must include fairness as a primary axis.
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Table 1: Scoring and evaluation-as-a-service datasets used for each of the four Dynabench tasks.
Unless otherwise indicated, scoring sets are the respective test sets.

Task Scoring Evaluation-as-a-Service
NLI SNLI [5], MNLI [74] matched and mis-

matched, ANLI rounds 1-3 [49]
Respective dev sets; HANS [43], NLI stress
tests [47], Winogender [62] recast as NLI
[53]

QA SQuAD dev [57], AdversarialQA [1] (Dyn-
abench QA round 1)

AdversarialQA dev, the 12 dev sets from
MRQA shared tasks [18]

Sentiment SST3 [66], DynaSent [55] Respective dev sets; Amazon Reviews [78]
test and dev (10k subsample), Yelp Reviews
[78] test and dev (10k subsample)

Hate speech Learning From The Worst [71] Respective dev sets; HateCheck [61]

We compute the fairness metric based on demographic parity using a black box evaluation protocol,
without assuming any access to the model itself beyond getting its predictions. Thus the question
becomes: how do we construct or manipulate input data such that we can assess some aspects
of a model’s fairness by inspecting its outputs? Following the precedent set by datasets such as
Winogender [62] and WinoBias [79], we perform perturbations of original datasets in two ways: (i)
by substituting noun phrases that unambiguously encode a gender identity with those that have the
same part-of-speech but refer to another identity (e.g., replacing “he” with “they” following [14, 13])
and (ii) by substituting names with others that are statistically predictive [70] of another race or
ethnicity (e.g., replacing “James” with “Jamal”). This way, a model is considered more ‘fair’ if its
predictions do not change after perturbation, and considered less fair if they do. More details are
in Appendix A. As the community invents better and better black box fairness evaluation metrics,
which we hope they will, we can re-evaluate older models on new datasets and new metrics, due to
our backwards-compatible evaluation paradigm. Note that while we use fairness as a metric, we can
and do also report results on fairness datasets [62] as part of our evaluation-as-a-service platform.

Robustness. This is a question of how robust a model is to a particular set of (mostly demographic)
axes, and there are many other factors that can be involved in a model’s robustness. In order to capture
this aspect of model quality, we also conduct black box robustness evaluation in a similar manner to
fairness. That is, following past work on NLP robustness [30, 31], we perturb examples and measure
whether a model’s prediction changes. Specifically, we use the recently released TextFlint5 evaluation
toolkit [24] to do so (details are provided in Appendix B). Initially, we focus mostly on typographical
errors and local paraphrases – e.g., a “baaaad restuarant” is not a good restaurant – but just like for
fairness, we fully expect this metric to evolve and improve over time.

4.2 Tasks

Currently, there are leaderboards for four tasks: Natural Language Inference (NLI), Question An-
swering (QA), Sentiment Analysis and Hate Speech. We evaluate on a combination of adversarially
collected datasets for these four tasks, as well as datasets from other sources. Each task has its
own set of task owners who control the default setting, i.e., which datasets are included in the
corresponding benchmark and in the evaluation suite, how the datasets are weighted, and how the
metrics are weighted relative to each other for that particular task. Note that the leaderboard rank is
only determined based on a subset of the full set of evaluation-as-a-service datasets (see Table 1).

5 Frontend: Dynamic Leaderboard

The frontend of Dynaboard aggregates the various metrics into a single score for ranking models.
Users can manipulate the parameters of this scoring function to better reflect their preferences.

A static leaderboard’s ranking cannot approximate the preferences of the leaderboard viewer, because
it cannot consider (e.g. computational) costs. Ethayarajh and Jurafsky [17] frame this shortcoming in
economic terms: a leaderboard viewer is a consumer of models and the benefit they get from a model

5https://www.textflint.com
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is its utility to them – each individual has their own utility function. The scoring function implicit in
ranking by accuracy or F1 is misaligned with the utility function of most users; for example, an IoT
engineer looking to find the fastest and smallest model getting 80% accuracy would be poorly served
by a static leaderboard.

In reporting many prediction costs, Dynaboard addresses the first of these problems. But how do we
combine these disparate metrics into a single score that can be used to rank models? Additionally,
how can we allow Dynaboard users to align the scoring function with their own utility function? We
propose a method for calculating “exchange rates” between metrics that can be used to standardize
units across metrics, after which a weighted average is taken to get the Dynascore. The user can adjust
the default weights – e.g., our IoT engineer can place more emphasis on memory and throughput – to
approximate their utility function; as they do so, the models will be dynamically re-ranked.

5.1 Background

Each model has k properties that informs its utility – throughput, memory, accuracy, etc. – which
can be thought of as a separate good. By definition, a good is something one always wants more of,
meaning that “memory saved” is a good but “memory used” is not, for example. When a metric is
not naturally a good, we transform it into a good by subtracting it from a budget cap or the maximum
of that metric across all models. For example, subtracting memory used from a maximum available
memory of 16 GB gives us “memory saved”, which we want to maximize. This standardization
allows us to use the same method when calculating the trade-off between any two metrics.

A model is a point in this space of goods, and a user’s utility function maps each point to an amount
of utils. An indifference curve is a set of points that provide the same utility and can be thought of as
a level curve of the utility function [41]. Indifference curves are monotonically negatively-sloped:
if one model is strictly better on all dimensions than another, then the two cannot lie on the same
negatively sloped line, because the former will have strictly greater utility. For example, for a more
accurate model to be on the same curve as a less accurate one, the former may have to use up more
memory. For a given indifference curve, the rate at which this trade-off is made – i.e., the negative of
its slope at a point – is called the marginal rate of substitution (MRS) [41].

5.2 Converting between Metrics

To calculate the default Dynascore, we first estimate the rate at which users are willing to trade-off
each metric for a one-point gain in performance (i.e., MRS with respect to performance) and use that
to convert all metrics into units of performance. Once converted, a weighted average is taken to get
the final score. We choose this approach for two reasons. First, by drawing from the microeconomics
literature, it is a principled approach to user personalization that builds on the utility-based critique of
static leaderboards [17]. Second, typical normalization methods (e.g., z-scores) do not work well
when a metric’s values are highly skewed, as they often are in practice. For example, as seen in Table
2, taking a weighted average of z-scores would lead to T5 ranking worse than the majority baseline
on many tasks; this happens because T5’s high memory use is as much an outlier as the baseline’s
poor accuracy. Even BERT, a more lightweight model, ranks worse than the majority baseline on
NLI and QA when ranking by the average z-score, which is highly unintuitive.

Given that each user has their own unique utility function – and thus unique indifference curves –
each has a different rate at which they are willing to make a trade-off between a metric M and the
performance metric perf. This is fine; the default “exchange rates” between the metrics should
merely be a starting point that can be adjusted by the user as they see fit (see Section 5.3). To calculate
the default exchange rates between some metric M and perf, we consider the simplest possible case,
where each indifference curve only lies in two dimensions – i.e., the utility changes only with respect
to M and perf – and all models lie on the same indifference curve. This assumption is needed because
we do not have direct access to any k-dimensional utility function; our data is sparse.

We then calculate the average marginal rate of substitution (AMRS) of this indifference curve, which
tells us the rate at which model creators, as a group, are trading off M for a one-point increase in perf

while keeping utility constant. For example, if AMRS of “memory saved” with respect to accuracy
were 0.5 GiB, then each GiB of memory saved would on average be worth 2 points of accuracy. By
dividing M by AMRS(M, perf), we can convert it to units of performance.
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Figure 1: Left: The marginal rate of substitution (MRS) is the negative of the slope of an indifference
curve (shown in red) with fixed utility U , each of which shows the trade-off being made between
metric M and performance perf. Since model (a) and (b) cannot possibly lie on the same curve –
because the former is better in both respects – we assume that when all else (including utility) is held
constant, the increase in performance from (b) to (a) should come at the expense of the increase in M,
giving us an estimate of where the higher indifference curve lies. Right: Taking the line-of-best-fit to
estimate this trade-off would not work when some models are strictly better than others.

Note that this means that the Dynascore is inherently dynamic and incorporates the AMRS at a given
point in time, and so is subject to change as more models are added.

Assumptions What if there were no trade-off between a metric and performance? For example,
performance might rise with robustness up to a point and come at the cost of robustness past that. If
the ith most accurate model xi had both better performance and were more robust than the next most
accurate model xi+1, then they could not possibly lie on the same indifference curve, since having
more of both goods is axiomatically preferable to having less of each. To tackle this problem, we
make two assumptions: (i) if M(xi) > M(xi+1) and perf(xi) > perf(xi+1), then models {xj |j > i}
lie on a lower indifference curve than xi, though not all necessarily lie on the same one; (ii) there
exists a model hperf(xi+1), M(xi) + (M(xi)� M(xi+1))i on the same indifference curve as xi (i.e.,
xi and xi+1 would be on the same curve if the latter obtained M(xi)� M(xi+1) more on metric M). In
other words, all else (including utility) held constant, we assume that the increase in performance
from xi+1 to xi should come at the expense of the change in M. This is just an estimate, but it provides
a good starting point from which users can choose their own AMRS (Section 5.3).

These assumptions, visualized in Figure 1, allow every model to be represented in the AMRS
calculation. Under these assumptions about where the higher indifference curve lies, calculating the
MRS is equivalent to taking the absolute value of the slope between points (rather than just taking the
negative of the slope)6:

MRS(M, perf) =
⇢����

M(xi)� M(xi+1)

perf(xi)� perf(xi+1)

���� | 1  i < n

�

AMRS(M, perf) = MRS
(1)

5.3 Weights and Customization

After converting all the metrics into units of performance, we take a weighted average of the converted
values to get the Dynascore for a model. For a model xi with normalized weights wM 2 Z:

Dynascore(xi) ,
X

M

wM ·
M(xi)

AMRS(M, perf) (2)

The default normalized weights are wperf = 0.5 and wM 6=perf = 0.5/(m � 1). In other words,
performance makes up half the Dynascore while the remaining half is split equally among the
other metrics. This is because, in theory, gains in all the other metrics may come at the expense

6Since the MRS is undefined when perf(xi)� perf(xi+1) is zero, we ignore increases in performance that
fall below a predetermined threshold epsilon, or are ✏-small. We currently set ✏ to 1⇥ 10�4 for all tasks.
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Table 2: Non-dynamic leaderboards for the Dynabench tasks, sorted by the Dynascore. Performance
(Perf.) is measured by F1. Note that ranking by the average z-score (with the same metric and dataset
weighting as the Dynascore) leads to a far more unintuitive ranking than with Dynascore – e.g., T5
often ranks worse than the majority baseline because its memory use is such an outlier. Also note
that although “memory used” is reported, before incorporating it into the Dynascore and z-score, we
subtract it from the maximum possible 16GB to get “memory saved” to be consistent and express it
as a utility (i.e., having something we want to maximize).

Task Model Perf. Throughput Memory Fairness Robustness Dynascore Avg z-score

NLI

DeBERTa 69.54 7.41 5.71 91.97 75.70 38.83 0.24
RoBERTa 69.07 9.23 4.82 90.94 74.82 38.61 0.24
ALBERT 67.29 9.60 2.18 89.94 74.12 37.72 0.26
T5 67.16 7.10 10.62 91.89 73.47 37.53 -0.07
BERT 64.82 9.39 4.13 92.11 66.38 36.36 0.06
Majority Baseline 32.41 77.33 1.15 100.00 100.00 22.78 0.10
FastText 31.29 73.94 2.20 83.23 69.14 21.13 -0.83

QA

DeBERTa 76.25 4.47 6.97 88.33 90.06 45.92 0.48
ELECTRA-large 76.07 2.37 25.30 93.13 91.64 45.79 0.33
RoBERTa 69.67 6.88 6.17 88.32 86.10 42.54 0.27
ALBERT 68.63 6.85 2.54 87.44 80.90 41.74 0.16
BERT 57.14 6.70 5.55 91.45 80.81 36.07 -0.02
BiDAF 53.48 10.71 3.60 80.79 77.03 33.96 -0.44
Unrestricted T5 28.80 4.51 10.69 92.32 88.41 22.18 -0.52
Return Context 5.99 89.80 1.10 95.97 91.61 15.47 -0.27

Sentiment

DeBERTa 76.07 7.50 4.80 94.08 79.21 71.31 0.34
RoBERTa 73.74 8.95 4.14 93.87 77.81 70.11 0.28
T5 73.20 7.12 9.06 93.44 77.99 69.32 0.00
ALBERT 70.61 10.24 2.04 93.34 78.44 68.73 0.28
BERT 68.71 8.83 6.04 93.49 72.75 66.81 -0.07
Majority Baseline 35.93 35.14 1.07 100.00 100.00 57.94 -0.27
FastText 53.32 32.54 1.69 78.52 65.82 57.39 -0.57

Hate Speech

DeBERTa 81.34 6.20 5.40 83.58 81.94 48.31 0.23
RoBERTa 80.26 6.61 3.67 85.02 79.09 47.77 0.26
ALBERT 76.84 8.01 2.25 84.50 79.98 46.18 0.23
BERT 76.58 7.26 3.22 86.45 77.35 45.97 0.15
T5 76.59 5.48 10.47 86.71 78.52 45.80 -0.19
Majority Baseline 54.69 16.48 1.09 100.00 100.00 37.05 0.24
FastText 49.70 15.34 2.61 80.09 71.12 32.46 -0.93

of performance, so giving each metric a weight of 1/m would favor degenerate models due to
their efficiency and close-to-zero memory. To avoid this, the weighting was split evenly between
performance and the (hypothetical) costs of performance.

A Dynaboard user can customize the Dynascore to better approximate their own utility function
by adjusting the un-normalized weights. In doing so, they are effectively expressing the average
rate at which they would be willing to trade off metric M against performance. That is, using the
user-specified normalized weights zM is equivalent to using the default normalized weights with an
effective exchange rate of (wM/zM)AMRS(M, perf). If a Dynaboard user cares more about a metric M
than in our default setting (i.e., wM < zM), then the adjusted AMRS will decline to reflect the fact that
they are less willing to sacrifice M for a marginal increase in performance. A possible line of future
work is studying NLP practitioners’ preferences over time and across different niches (e.g., industry
vs. academia). Asking such questions has only been made possible by adopting this utility-based
framework for Dynascore.

5.4 Limitations & Future Work

In general, the AMRS estimates are better when our assumptions in 5.2 need not apply – i.e., when
the models can all lie on the same convex indifference curve. However, we stress that the estimates
are only a starting point and are meant to be manipulated by the user by adjusting the weights.

Identical Models Since every metric is converted into units of performance, if all models perform
exactly the same, the AMRS cannot be calculated. The reason we use performance as the base metric
is because every task is guaranteed to have some performance metric, while the other metrics may
differ substantially across tasks. However, it is possible to pick a different base metric in principle:
we could calculate the AMRS of M w.r.t. memory saved, for example, and convert everything into
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GiB. Similarly, the converted value for M will be undefined if all models obtain exactly the same
value for M – this implies that model creators are not willing to sacrifice M at all for an improvement
in performance and therefore that the metric is infinitely more valuable relative to others. Both these
issues are unlikely to occur in practice, however.

Threshold Sensitivity We choose to ignore increases in performance less than ✏ = 1⇥ 10�4 so
that the MRS is never undefined, which we consider reasonable since almost all existing leaderboards
only report to 1 or 2 decimal points, so an improvement of 1⇥ 10�4 would be indistinguishable to
the user. One could reasonably argue that this threshold needs to be higher however, since many NLP
datasets are too small for a 0.01 or even 0.1 increase to be statistically significant [8]. Changing ✏ can
change the Dynascore and the model rankings. However, to avoid potentially confusing the user with
adaptive thresholds based on statistical power tests, we chose to fix ✏ at a conservative value.

Human Validation Not all models and tasks lend themselves to be evaluated automatically; some
need humans in-the-loop, either by definition or over time as our models improve. In the future, we
hope to incorporate the validated model error rate (vMER) [34] – the number of human-validated
model errors divided by the total number of examples – as a metric on the leaderboard, such that any
benchmark can use vMER as a base performance metric.

5.5 Results

We take models that currently represent the state-of-the-art on our tasks and put them through our
evaluation pipeline. Specifically, we finetune and evaluate BERT [12], RoBERTa [40], ALBERT
[36], T5 [56] and DeBERTa [26] on all tasks, with the addition of ELECTRA [9] for QA. This set of
models roughly encompasses the top 5 models on GLUE [73] and SuperGLUE [72]. As baselines,
we add FastText [32] for sentiment and hate speech and BiDAF [65] for QA. We also compare
to the majority baseline for the classification tasks (using the training set majority) and for QA a
baseline that simply returns the entire context. These baselines are obviously efficient and robust
to perturbations, but have low performance. See Appendix C for further details. We compute the
Dynascore for each model using the default weights for the metrics and giving equal weight to all
datasets. Recall that the Dynascore is dynamic and incorporates the AMRS at a given point in time,
and so is subject to change as more models are added.

The results are reported in Table 2. We find that the SuperGLUE ranking is roughly preserved,
with Transformer models clearly outperform their predecessors and the baselines. Even when we
factor in the additional axes of evaluation, DeBERTa still performs best. In some cases, the gap is
actually larger: in terms of accuracy on SuperGLUE, DeBERTa outperforms T5 by 1.1% , but on the
sentiment task it’s 3.1%, while being more efficient, as reflected in the Dynascore. However, there are
some differences with the SuperGLUE rankings, most notably with T5, which ranks much lower here
because of its relatively low throughput and high memory use. It is also worth noting that FastText
does consistently worse than the majority baseline, even when it is more accurate, since the gain in
accuracy is not enough to offset its sensitivity to fairness and robustness perturbations.

The somewhat old-fashioned medium of a paper does not do justice to a dynamic concept like a
leaderboard with specifiable utility function, and linking to the actual implementation would break
anonymity. We refer the reviewer to the supplementary material for examples.

6 Conclusion

We introduced an end-to-end solution for hosting next-generation benchmarks enabling a more holistic
and comprehensive evaluation of model quality. Our evaluation-as-a-service platform addresses
several important shortcomings in the current status quo, from reproducibility to accessibility to
backwards/forwards compatibility. Dynaboard also enables the collection of prediction costs and
factors these costs into the overall ranking of models, which users can customize to better align with
their own preferences. With NLP models playing an increasingly important role in our daily lives,
deciding which model is better than another one is becoming a crucial problem, both for driving
further progress and ensuring that we deploy our systems responsibly. We hope that Dynaboard can
allow benchmarks to proliferate and diversify, paving the way for the next wave of advances in NLP.

9



Acknowledgments and Disclosure of Funding

We thank our collaborators in the Dynabench team, especially Max Bartolo, Yixin Nie and Bertie
Vidgen, for helpful comments and suggestions. We’re grateful to Amanpreet Singh and Sujit Verma
for useful feedback and engineering suggestions. We thank Eric Smith and April Bailey for helping
with name lists for the fairness perturbation. We also thank Devi Parikh, Alicia Parrish, Pedro
Rodriguez, Dan Jurafsky, Ethan Perez, Kyunghyun Cho and Alex Wang for comments on an earlier
draft, and Gargi Ghosh for her support throughout. We thank the TextFlint team for their help on the
toolkit. Kawin Ethayarajh was supported by an NSERC PGS-D.

Broader Impact

Green AI & Ethical AI A key barrier to the adoption of Green AI [63] has been the incentive
structure in NLP leaderboard culture, which places emphasis on higher performing (i.e., more
accurate) models to the detriment of models that are more lightweight and efficient [17]. Although
there are exceptions to this – such as the EfficientQA challenge task [45] – the dominant paradigm
still largely ignores these factors. Changing incentive structures is important because they ultimately
shape what kind of problems the NLP community works on and what kind of models they build. By
drastically lowering the overhead needed to host multi-metric benchmarks, Dynaboard will hopefully
allow benchmarks to keep fulfilling their crucial role in driving research progress, while incentivizing
the creation of models that are “greener” and more fair, among other qualities.

Fairness Our perturbation-based black box fairness evaluation method is an initial attempt at
measuring fairness for NLP tasks/models, and we fully expect this to evolve over time as advances
are made in the field. Firstly, our method assumes that a fair system will be one that treats all genders
and races/ethnicities equally. We take equal treatment (treating all groups equally) to be a first step
towards a longer term goal of equitable treatment (treating all groups fairly in accordance with their
needs or circumstances). The equal treatment perspective implies that fairness perturbations of the
input should not affect the classification label. In most cases, this assumption is valid; however,
this is not always true, and even when it is, does not necessarily apply equally to all members of
the group referenced in the example (e.g., not everyone who identifies as a woman can or chooses
to give birth). This makes our measurements noisier. We do not currently use our perturbation
method to filter out any examples from our data, because this may unintentionally lead to the over- or
under-representation of certain topics and voices.

Secondly, whenever one chooses a set of demographics, they are immediately codifying particular
categories and deciding which groups to include or leave out. We have chosen for now only a set of
size two—gender identity and race/ethnicity. We chose these largely because they have clear and
measurable effects in language (i.e., with respect to pronoun morphology, noun phrases, and names).
Within these two broad groups, we have chosen to include only a subset of the possible perturbations:
man-woman for gender, and Asian-Pacific Islander-Black-Hispanic-white for race/ethnicity). For the
latter, this decision was driven by data availability and could reflect a US-centric bias present in the
existing datasets. For the former, we intended to additionally include a gender-neutral perturbation,
which could swap names that were statistically more likely to refer to men or women to those that
were gender-balanced, and similarly to perturb “sister” and “brother” to “sibling”, “her” and “him” to
“them”, and “female” and “male” to the empty string. We feel this direction is of clear importance,
since it can make it possible to uncover examples that are unfair to nonbinary people. Unfortunately,
there were various idiosyncrasies both in our language (“standard” American English), and in the
existing datasets that made the quality of the examples decrease too drastically for us to conclude that
a gender-neutral perturbation would yield useful signal. For example, for the “(fe)male” swap with
the empty string, we observed that 50% of the uses of these terms in MNLI were nouns; permuting
them to the empty string would result in ungrammatical examples. Furthermore, in addition to case
collapses between possessive forms of the pronouns (i.e., “their(s)”, singular-they has an additional
complication in that it controls plural verbal agreement, meaning that heuristic perturbations often
introduce additional ungrammatical noise above and beyond the case collapses in morphological
form). Due to these and other complications, we reluctantly set aside gender-neutral perturbations
for future work. All this being said, there is ample room to improve upon our current fairness
perturbations, not only by extending the scope of included groups, but also by exploring options for
perturbation that are more flexible.
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Thirdly, our fairness perturbation method might have different consequences for different tasks. For
Sentiment Analysis, QA, and NLI, our spot checks suggest that data crucial for the classification is
affected only rarely (see Appendix A for more discussion). However, for hate speech, the situation is
a more nuanced. In data collection [71], abuse against men, straight people, white people, etc. was
not considered (either as hateful or non-hateful). By performing heuristic perturbations of gender
identity and race/ethnicity words, we post hoc include these sorts of examples. Since they have never
seen such examples at training, this may overestimate model sensitivity to perturbation.

Finally, we would like to re-emphasize that there are many ways to measure and conceive of fairness
of NLP models. We have chosen to adopt a perspective where the gender and race/ethnicity of entities
in examples should not affect classification decisions. We think this is valid for the tasks hosted on
Dynabench so far. This being said, models that perform well on our fairness perturbations should not
be taken to necessarily be “fair” models, although we do feel it is safe to conclude that any models
that perform poorly on these perturbations have room for improvement.

Dynascore As discussed in Section 5, the Dynascore of a model is not fixed. Rather, it is dynamic
on many levels: (i) as new models are added, the rates at which metrics are converted to units of
performance may change; (ii) as the weights change, the model rankings will change. Therefore
the default score is not a fixed and canonical measure of a model, and model creators should avoid
reporting the Dynascore of their model out-of-context: a Dynascore only has meaning in the context
of all the other models on the same leaderboard. However, users may not appreciate these caveats,
and they may report the default Dynascore of their model in a research paper, much in the way they
would report accuracy or F1. To discourage such behavior, the Dynaboard UI will provide clear
warnings to the user, informing them of the limitations of Dynascore and the fairness and robustness
metrics. If any Dynascore is reported, we recommend that users explicitly report minimally the
dataset, the metric weights, and the timestamps.

References
[1] Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pontus Stenetorp. Beat

the AI: Investigating adversarial human annotation for reading comprehension. Transactions of
the Association for Computational Linguistics, 8:662–678, 2020.

[2] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021.

[3] Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology) is
power: A critical survey of “bias” in NLP. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 5454–5476, 2020.

[4] Avrim Blum and Moritz Hardt. The ladder: A reliable leaderboard for machine learning
competitions. In International Conference on Machine Learning, pages 1006–1014. PMLR,
2015.

[5] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2015.

[6] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Conference on fairness, accountability and transparency,
pages 77–91. PMLR, 2018.

[7] Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. Semantics derived automatically from
language corpora contain human-like biases. Science, 356(6334):183–186, 2017.

[8] Dallas Card, Peter Henderson, Urvashi Khandelwal, Robin Jia, Kyle Mahowald, and Dan
Jurafsky. With little power comes great responsibility. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 9263–9274, 2020.

[9] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:
Pre-training text encoders as discriminators rather than generators. In ICLR, 2020.

11



[10] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter
Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An end-to-end deep learning
benchmark and competition. In NIPS ML Systems Workshop, 2017.

[11] Ishita Dasgupta, Demi Guo, Andreas Stuhlmüller, Samuel J. Gershman, and Noah D. Goodman.
Evaluating compositionality in sentence embeddings. In Proceedings of the 40th Annual
Conference of the Cognitive Science Society, 2018.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[13] Emily Dinan, Angela Fan, Adina Williams, Jack Urbanek, Douwe Kiela, and Jason Weston.
Queens are powerful too: Mitigating gender bias in dialogue generation. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
8173–8188, 2020.

[14] Emily Dinan, Angela Fan, Ledell Wu, Jason Weston, Douwe Kiela, and Adina Williams. Multi-
dimensional gender bias classification. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 314–331, 2020.

[15] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

[16] Ravit Dotan and Smitha Milli. Value-laden disciplinary shifts in machine learning. arXiv
preprint arXiv:1912.01172, 2019.

[17] Kawin Ethayarajh and Dan Jurafsky. Utility is in the eye of the user: A critique of NLP leader-
boards. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4846–4853, 2020.

[18] Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen. MRQA
2019 shared task: Evaluating generalization in reading comprehension. In Proceedings of 2nd
Machine Reading for Reading Comprehension (MRQA) Workshop at EMNLP, 2019.

[19] Markus Freitag, David Grangier, and Isaac Caswell. BLEU might be guilty but references
are not innocent. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 61–71, 2020.

[20] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu,
Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. AllenNLP: A deep semantic natural
language processing platform. In Proceedings of Workshop for NLP Open Source Software (NLP-
OSS), pages 1–6, Melbourne, Australia, July 2018. Association for Computational Linguistics.

[21] Sebastian Gehrmann, Tosin P. Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi,
Aremu Anuoluwapo, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna-Adriana Clinciu, Di-
panjan Das, Kaustubh D. Dhole, Wanyu Du, Esin Durmus, Ondrej Dusek, Chris Emezue, Varun
Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani,
Yangfeng Ji, Shailza Jolly, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica Maddela,
Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique Martins,
Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi Narayan,
Vitaly Nikolaev, Rubungo Andre Niyongabo, Salomey Osei, Ankur P. Parikh, Laura Perez-
Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank Santhanam,
João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio Sobrevilla
Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola, and
Jiawei Zhou. The GEM benchmark: Natural language generation, its evaluation and metrics.
arXiv preprint arXiv:1609.05807, 2021.

[22] Mor Geva, Yoav Goldberg, and Jonathan Berant. Are we modeling the task or the annotator?
an investigation of annotator bias in natural language understanding datasets. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

12



International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
1161–1166, 2019.

[23] Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan Zheng, Caiming
Xiong, Mohit Bansal, and Christopher Ré. Robustness Gym: Unifying the NLP evaluation
landscape. arXiv preprint arXiv:2101.04840, 2021.

[24] Tao Gui, Xiao Wang, Qi Zhang, Qin Liu, Yicheng Zou, Xin Zhou, Rui Zheng, Chong Zhang,
Qinzhuo Wu, Jiacheng Ye, et al. Textflint: Unified multilingual robustness evaluation toolkit for
natural language processing. arXiv preprint arXiv:2103.11441, 2021.

[25] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107–112, 2018.

[26] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

[27] Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioannis Konstas, Andrew Finch, Graham
Neubig, Xian Li, and Alexandra Birch. Findings of the fourth workshop on neural generation
and translation. In Proceedings of the Fourth Workshop on Neural Generation and Translation,
pages 1–9, 2020.

[28] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau.
Towards the systematic reporting of the energy and carbon footprints of machine learning.
Journal of Machine Learning Research, 21(248):1–43, 2020.

[29] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy: Industrial-
strength Natural Language Processing in Python, 2020.

[30] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 2021–2031, 2017.

[31] Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. Certified robustness to adver-
sarial word substitutions. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4120–4133, 2019.

[32] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomáš Mikolov. Bag of tricks for
efficient text classification. In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431, 2017.

[33] Divyansh Kaushik and Zachary C Lipton. How much reading does reading comprehension
require? A critical investigation of popular benchmarks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 5010–5015, 2018.

[34] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu,
Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush,
Sebastian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher
Potts, and Adina Williams. Dynabench: Rethinking Benchmarking in NLP. In Proceedings of
NAACL, 2021.

[35] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

[36] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representations. In
International Conference on Learning Representations, 2019.

[37] Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. Question and answer test-train overlap
in open-domain question answering datasets. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pages
1000–1008, 2021.

13



[38] Tal Linzen. How can we accelerate progress towards human-like linguistic generalization?
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 5210–5217, Online, July 2020. Association for Computational Linguistics.

[39] Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan, Shuaicheng Chang, Junqi Dai, Yixin Liu,
Zihuiwen Ye, and Graham Neubig. EXPLAINABOARD: An Explainable Leaderboard for NLP.
arXiv preprint arXiv:2104.06387, 2021.

[40] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT
pretraining approach. arxiv, abs/1907.11692, 2019.

[41] N Gregory Mankiw. Principles of economics. Cengage Learning, 2020.

[42] Nitika Mathur, Timothy Baldwin, and Trevor Cohn. Tangled up in BLEU: Reevaluating the
evaluation of automatic machine translation evaluation metrics. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 4984–4997, 2020.

[43] Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3428–3448, 2019.

[44] Takashi Mieno, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. Speed
or accuracy? a study in evaluation of simultaneous speech translation. In Sixteenth Annual
Conference of the International Speech Communication Association, 2015.

[45] Sewon Min, Jordan Boyd-Graber, Chris Alberti, Danqi Chen, Eunsol Choi, Michael Collins,
Kelvin Guu, Hannaneh Hajishirzi, Kenton Lee, Jennimaria Palomaki, et al. NeurIPS
2020 EfficientQA Competition: Systems, Analyses and Lessons Learned. arXiv preprint
arXiv:2101.00133, 2021.

[46] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchin-
son, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting.
In Proceedings of the conference on fairness, accountability, and transparency, pages 220–229,
2019.

[47] Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig.
Stress test evaluation for natural language inference. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2340–2353, 2018.

[48] Leonard S. Newman, Mingxuan Tan, Tracy L. Caldwell, Kimberley J. Duff, and E. Samuel
Winer. Name norms: A guide to casting your next experiment. Personality and Social
Psychology Bulletin, 44(10):1435–1448, 2018.

[49] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela.
Adversarial NLI: A new benchmark for natural language understanding. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, 2020.

[50] Alexandra Olteanu, Kartik Talamadupula, and Kush R. Varshney. The limits of abstract
evaluation metrics: The case of hate speech detection. In Proceedings of the 2017 ACM on Web
Science Conference, page 405–406, 2017.

[51] Amandalynne Paullada, Inioluwa Deborah Raji, Emily M Bender, Emily Denton, and Alex
Hanna. Data and its (dis) contents: A survey of dataset development and use in machine learning
research. arXiv preprint arXiv:2012.05345, 2020.

[52] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer,
Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine
learning research (a report from the neurips 2019 reproducibility program). arXiv preprint
arXiv:2003.12206, 2020.

[53] Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Edward Hu, Ellie Pavlick, Aaron Steven
White, and Benjamin Van Durme. Collecting diverse natural language inference problems
for sentence representation evaluation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 67–81, 2018.

14



[54] Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pages 186–191, 2018.

[55] Christopher Potts, Zhengxuan Wu, Atticus Geiger, and Douwe Kiela. DynaSent: A dynamic
benchmark for sentiment analysis. arXiv preprint arXiv:2012.15349, 2020.

[56] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21:1–67, 2020.

[57] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392, 2016.

[58] Adithya Renduchintala and Adina Williams. Investigating failures of automatic translation in
the case of unambiguous gender. arXiv preprint arXiv:2104.07838, 2021.

[59] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
Behavioral testing of nlp models with checklist. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 4902–4912, 2020.

[60] Anna Rogers. How the transformers broke NLP leaderboards. https://hackingsemantics.
xyz/2019/leaderboards/, 2019. Accessed: 2020-05-20.

[61] P. Röttger, B. Vidgen, Dong Nguyen, Z. Waseem, H. Margetts, and J. Pierrehumbert. Hatecheck:
Functional tests for hate speech detection models. ArXiv, abs/2012.15606, 2020.

[62] Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme. Gender bias in
coreference resolution. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), pages 8–14, 2018.

[63] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green AI. arXiv preprint
arXiv:1907.10597, 2019.

[64] Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 7881–7892, 2020.

[65] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional atten-
tion flow for machine comprehension. In International Conference on Learning Representations,
2017.

[66] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1631–1642, 2013.

[67] Ezekiel Soremekun, Sakshi Udeshi, and Sudipta Chattopadhyay. Astraea: Grammar-based
fairness testing. arXiv preprint arXiv:2010.02542, 2020.

[68] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3645–3650, 2019.

[69] Konstantinos Tzioumis. Data for: Demographic aspects of first names, 2018.

[70] Konstantinos Tzioumis. Demographic aspects of first names. Scientific data, 5(1):1–9, 2018.

[71] Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and Douwe Kiela. Learning from the worst:
Dynamically generated datasets to improve online hate detection. ArXiv, abs/2012.15761, 2020.

[72] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. In Advances in Neural Information Processing Systems, 2019.

15



[73] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353–355, 2018.

[74] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112–1122, 2018.

[75] Craig Willis and Victoria Stodden. Trust but verify: How to leverage policies, workflows, and
infrastructure to ensure computational reproducibility in publication. Harvard Data Science
Review, 2(4), 12 2020.

[76] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. HuggingFace’s Trans-
formers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[77] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2019.

[78] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in Neural Information Processing Systems, 2015.

[79] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias
in coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pages 15–20, 2018.

[80] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias
in coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pages 15–20, 2018.

[81] Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-Wei Chang. Learning gender-neutral
word embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 4847–4853, 2018.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No] (Users upload only a single model instance)
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]

16



4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

17


