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Abstract

Large language models (LLMs) have demon-
strated impressive performance on reasoning
tasks, including mathematical reasoning. How-
ever, the current evaluation mostly focuses on
carefully constructed benchmarks and neglects
the consideration of real-world reasoning prob-
lems that present missing or contradictory con-
ditions, known as ill-defined problems. To fur-
ther study this problem, we develop a large-
scale benchmark called Problems with Missing
and Contradictory conditions (PMC) contain-
ing over 5,000 validated ill-defined mathemat-
ical problems. Our preliminary experiments
through PMC reveal two challenges about ex-
isting methods: (1) traditional methods exhibit
a trade-off between solving accuracy and re-
jection capabilities, and (2) formal methods
struggle with modeling complex problems. To
address these challenges, We develop Variable-
Constraint Search (VCSEARCH), a training-
free framework that leverages formal language
to detect ill-defined problems, where a variable-
constraint pair search strategy is incorporated to
improve the modeling capability of formal lan-
guage. Extensive experiments demonstrate that
VCSEARCH improves the accuracy of identify-
ing unsolvable problems by at least 12% across
different LLMs, thus achieving stronger robust
mathematical reasoning ability.

1 Introduction

Large language models (LLMs) have demonstrated
strong performance on various reasoning tasks, in-
cluding commonsense (Zhao et al., 2023), quanti-
tative (Lewkowycz et al., 2022), and visual reason-
ing (Gupta and Kembhavi, 2023). Mathematical
problem solving (Cobbe et al., 2021) serves as a
fundamental benchmark for evaluating LLMs’ rea-
soning capabilities (Ahn et al., 2024). Recent ad-
vances in prompt-based methods (Wei et al., 2022;
Ye et al., 2024) and fine-tuning approaches (Yu
et al., 2023; Li et al., 2024b) have significantly im-
proved their mathematical reasoning capabilities.

Although existing studies have improved the
performance of LLMs on well-defined mathemat-
ical benchmarks (Cobbe et al., 2021; Patel et al.,
2021), they often overlook a critical challenge in
real-world applications: the ability to reject ill-
defined problems (Zhao et al., 2024). These prob-
lems, which contain missing or contradictory con-
ditions (Puchalska and Semadeni, 1987), are par-
ticularly common in educational scenarios. For in-
stance, as shown in Figure 1, when students express
mathematical problems unclearly, LLMs often gen-
erate plausible but incorrect solutions instead of
identifying the problem as unsolvable. Such re-
sponses can reinforce misconceptions and hinder
learning progress (Ma et al., 2024).

However, most existing benchmark about math
reasoning robustness (Shi et al., 2023; Zhou et al.,
2024) focus on whether the model can still answer
the question in the presence of interference, lack-
ing a systematic evaluation of the model’s ability
to recognize and reject ill-defined problems. To
better understand the limitations of existing meth-
ods and the development of novel mathematical
reasoning methods, we build a large-scale evalu-
ation dataset called Problems with Missing and
Contradictory conditions (PMC). This dataset con-
tains over 5,000 validated ill-defined mathematical
problems for comprehensive evaluation.

Our preliminary experiments reveal two ma-
jor challenges when handling ill-defined prob-
lems. First, traditional methods, e.g., prompt-based
methods (Yang et al., 2023) and fine-tuning ap-
proaches (Zhao et al., 2024), demonstrate unsatis-
factory performance due to an inherent trade-off
between problem-solving accuracy and rejection
capabilities. Second, although formal methods (Ye
et al., 2024; Pan et al., 2023) offer unified problem-
solving and rejection capabilities, they struggle to
accurately model complex problems in formal lan-
guage.

To address these challenges, we propose VC-



Gunter is trying to count
the jelly beans in a jar.

He asks his friends how
many they think are in the
jar. One says 80. Another
says 20 more than half the
first one. A third says 25%
more than the first one.
What is their average guess?

Well-defined

Original
Problem

e

/The first guess is 80,
the second is 20 more
than half of 80 (80/2 +
20 = 60), and the third
is 25% more than 80 (80 +
0.25 * 80 = 100). Their
average guess is (80 + 60
+100) / 3 = 80. So the
\average guess is 80.

Correct

4

(... One guess a certain
number, we don’t know
the extract number just

: i Incorrect

define it as 0 ... @

Ill-defined ‘ ...... One says —80- a certain\
. 5 number. Another says 20
Missing @ more than half the first
type - one. ...
N/
J
Ill-defined ~
~ ...... What is their average
Contra guess if the second friend's
type - guess is 50 ? #Contradicts
| S - the information given above

_J

Incorrect

X

# Ignore the blue color
information

# hallucination
N O
...... the second is 20
more than half of 80
(80/2 + 20 = 60) ...... @

Figure 1: Well-defined problems and ill-defined problems and model’s response. (Red strike-through indicates
deleted sentences, blue indicates added sentences and green indicates explanation)

SEARCH (Variable-Constraint Search), a training-
free framework that systematically detects ill-
defined problems through formal language to ad-
dress the challenge of trade-offs. The key innova-
tion of VCSEARCH lies in its variable-constraint
dynamic search mechanism, which decomposes
complex problems that are hard to model into dy-
namically extensible variable-constraint pairs, im-
plementing an iterative optimization strategy where
discovered variables guide constraint generation
and existing constraints inform variable identifica-
tion. Experimental results demonstrate that VC-
SEARCH achieves an at least 12% improvement in
rejection accuracy for unsolvable problems com-
pared to state-of-the-art methods, thus achieving
stronger robust mathematical reasoning ability in
realistic scenarios. Our main contributions can be
summarized as follows:

1) We introduce a practical problem of evaluating
mathematical reasoning robustness and present
PMC, a large-scale benchmark dataset contain-
ing over 5,000 validated ill-posed mathematical
problems.

2) We develop VCSEARCH, a training-free frame-
work that leverages formal language to detect ill-
defined problems, where a variable-constraint
pair search strategy is incorporated to improve
the modeling capability of formal language.

3) Extensive experiments demonstrate that VC-
SEARCH improves the accuracy of identifying
unsolvable problems by at least 12% across dif-
ferent LLMs, thus achieving stronger robust

mathematical reasoning ability in realistic sce-
narios.

2 PMC Benchmark and Analysis

In this section, we first introduce our PMC bench-
mark, which consists of two types, i.e., Contra-type
and Missing-type, by mutating problems from four
common math datasets. Then, our analysis presents
the challenges of rejecting ill-defined problems and
the limitations of existing methods.

2.1 Benchmark Construction

We choose four common mathematical reasoning
datasets, that is, GSM8k (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), AddSub (Hosseini
et al., 2014), and MultiArith (Koncel-Kedziorski
et al., 2016), as seed datasets to construct PMC.
We define the problems in the seed dataset as well-
defined problems, meaning that the given condi-
tions in the problem statement are sufficient to de-
rive a unique solution. In contrast, the problems we
aim to construct are ill-defined problems, where
the given conditions are insufficient—either due to
missing necessary constraints or internal contradic-
tions—making the problem unsolvable.

Our construction methodology employs a
prompting-based strategy with Large Language
Models (LLMs). Initially, the LLM is prompted
to decompose a seed problem and ascertain all per-
tinent variables. Subsequently, the model is in-
structed to implement targeted modifications to the
original problem conditions. To generate "missing-
type" problems, a numerical value within a spe-
cific constraint is substituted with an indetermi-
nate term, thereby rendering the problem definition



incomplete. For "contra-type" problems, contra-
dictory constraints pertaining to the variables are
introduced, yielding problems that are inherently
self-contradictory and thus pathological. To ver-
ify the unsolvable (ill-defined) nature of the con-
structed problems, we utilize a panel of heteroge-
neous LLMs (e.g., Deepseek-V3 (Liu et al., 2024),
Doubao, and GLM (Zeng et al., 2024)) to assess
whether the modified problem possesses a unique
solution. A problem is classified as unsolvable
if a consensus is reached among all participating
LLMs that no solution exists. In instances where
any model deems the problem solvable, human an-
notators are engaged to meticulously review the
problem and confirm its unsolvable status.

Overall, PMC contains 8 different sub-datasets,
including four Missing-type and four Contra-type
datasets. An illustration of mutated problems of
PMC is presented in Fig 1, and more detailed in-
formation about PMC (construction prompt, exam-
ples, etc.) can be found in the appendix.

2.2 Evaluation Protocol

To evaluate the robustness of methods in mathe-
matical reasoning problems with missing and con-
tradictory conditions, we introduce two evaluation
metrics: the Rejection Rate (R-Rate) and the Reac-
tion Score (R-Score). R-Rate quantifies a method’s
ability to identify ill-defined problems. R-Score
evaluates a method’s overall performance in both
handling ill-defined problems and solving well-
defined problems.

For a well-defined dataset D,,, let D; be its ill-
defined counterpart. For any problem p, let g(p)
denote its ground truth solution, where g(p) =
Reject for ill-defined problems. Let f(p) denote
the solution generated by a method, where f(p) =
Reject indicates the method rejects to solve p. We
define the R-Rate and R-Score as follows:

Rejection Rate. R-Rate is the percentage of ill-
defined problems correctly rejected by method
Ok
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Reaction Score. R-Score measures a method’s
overall performance by considering three scenar-
ios: (a) correctly rejecting ill-defined problems,
(b) correctly solving well-defined problems, and
(c) rejecting well-defined problems. A method re-
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Figure 2: Trade-off of traditional methods

points for scenario (c), as recognizing the inability
to solve a problem is partially successful.
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2.3 Problem Analysis

We conduct a series of preliminary experiments on
the PMC benchmark testing platform (with more
detailed experimental modules to be elaborated in
subsequent sections). The results are shown in
Figure 2. We use "pure prompt" to refer to di-
rectly prompting the model to solve well-defined
or ill-defined problems (focusing on one type), and
"mixed prompt" to denote prompting the model to
solve mathematical problems, where the model is
instructed to reject if it deems the problem unsolv-
able. We observe that the base model exhibited
certain problem-solving and rejection capabilities.
However, there is a significant conflict between
these two abilities: when the model is required
to solve a problem while simultaneously employ-
ing a rejection mechanism, both its rejection and
problem-solving capabilities are notably limited.
This suggests a trade-off between the two and this
trade-off becomes more pronounced as the model
size decreases.

3 Methodology

To address the trade-off between solving accuracy
and rejection capabilities, we propose a novel
framework called VCSEARCH. This training-free
framework leverages formal language modeling
capabilities to detect ill-defined problems and
enhances existing mathematical reasoning methods
with the ability to identify unsolvable problems.
However, modeling mathematical problems with
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Figure 3: An overview of VCSEARCH. The left panel illustrates the outcome of the successful initialization phase,
culminating in an initialized draft formal modeling state, denoted as S. Within this state representation, individual
dots correspond to variables v, while elongated rectangles signify constraints c. Conversely, the right panel depicts
the iterative process of \algo. Each iteration commences with the extraction of a head variable, followed by the
sequential execution of three distinct steps: (1) Preparation, (2) Exploration, and (3) Verification.

formal language accurately is not trivial, directly
using formalized examples as context prompts did
not yield optimal results(in Table 1), raising the
following challenge: LLMs fail to model problems
with formal language accurately in one pass. How
can we improve the problem modeling ability?

To tackle this challenge, we first propose a
Variable-Constraint Dynamic Search that system-
atically discovers new variables and constraints
through an iterative searching process consisting of
three steps: Preparation, Exploration, and Verifica-
tion. Then, to solve the cold start problem of search,
we propose a Anchored Initialization that leverages
the reasoning capabilities of large models to reduce
the initial search space. We use SMT-Lib (Barrett
et al., 2010) as the formal modeling language and
73 (de Moura and Bjgrner, 2008) as the formal
solver in our approach and the overall framework
is shown in Figure 3.

3.1 Variable-Constraint Dynamic Search

LLMs have limitations in precisely modeling com-
plex problems with formal language in a single
pass due to the multiple variables and constraints
involved which increase the modeling difficulty.
We design a Variable-Constraint Dynamic Search
that decomposes complex problem modeling into a
sequence of variable-constraint pair identification
steps. This approach enables an iterative search
that progressively improves the formal modeling.

To achieve this, we implement the Variable-
Constraint Dynamic Search containing three sys-
tematic steps, i.e., Preparation, Exploration, and
Verification. In each iteration, we perform the
above four processes on the extracted variable.
For problem p, we denote the modeling state as
S = (V,C) where V is the set of variables and C is
the set of constraints corresponding to V.

Preparation Step. This step selects a single vari-
able and its associated constraints from S to reduce



the complexity of the constraint analysis process,
rather than considering all variables and constraints
at once. Given the variable set }V and constraint
set C, we select one unexplored variable from the
set V as the head variable v}, and extract its related
constraints C, from C:

Cn = {c| vy € vars(c) and c € C} 3)

where vars(-) returns the set of variables in a given
constraint, and ¢ represents a constraint from C.

Exploration Step. This step explores new con-
straints and variables with the help of implicit
knowledge from the LLM to improve the prob-
lem modeling. Specifically, we prompt the LLM
to generate the polished constraints 5h, relating to
variable vy, for current problem p:

Ch = LLMg(p, vp, Ch) 4)

where LLMg; is denoted as the LLM prompted for
exploration. The newly identified variables V), are

Vi ={v|vevars(Cy)andv ¢ V}.  (5)

Verification Step. After exploring new con-
straints and variables, we can build a new problem
modeling S as follows.

§: (V U ]7}17 (C \ Ch) U C~h> (6)

where the new variables are added at the tail of
original variable set )V and the polished constraints
replaced the original related constraints in the con-
straint set C. Then, a SMT solver ® is adopted
to solve the problem modeling state S and yield
a solution R = ®(S). Inspired by LLMs as a
judge (Zheng et al., 2023; Huang et al., 2024), we
compare the original problem modeling S with its
solution R = ®(S) and the new problem modeling
state S with the solution R as follows:

S* = LLM;, (p, (S, R), (S, ﬁ)) 7

where LLM; is denoted as the LLM prompted for
verification and S* is the selected state from new
state S and original state S. Finally, we replace
current state S with selected state S* for the sub-
sequent process and add newly detected variable
to the variable queue V. This repeated searching
process is terminated until all variables in ) are
explored.

This step not only ensures the adaptive nature
of the search process but also effectively leverages
the reasoning capabilities of LLMs to gradually
improve problem modeling S.

3.2 Anchored Initialization

However, the search process is particularly chal-
lenging at the outset due to the difficulty in initial-
izing the search state, as the initial state contains
limited information. The search space is vast, and
without a reliable initialization, it is challenging
to converge to a valid state. This can result in the
model being overly conservative, leading to the
rejection of many well-defined problems(Table 4).

To address this challenge, we propose a An-
chored Initialization that leverages the reasoning
capabilities of the LLM to generate a preliminary
anchor state S as an anchored initialization state
for Variable-Constraint Dynamic Search.

Specifically, we first prompt the LLM to generate
a draft modeling state S = (V, C) for problem p:

(V,C) = LLM;(p) ®)

where LLM; is denoted as the LLM prompted for
initialization with four examples in the context.
Then, we adopt a SMT solver ® compute the so-
lution R = ®(S) of the draft modeling state S
for validation. If the solution R is valid, we re-
gard the draft modeling state S as the initialization
state S for Variable-Constraint Dynamic Search.
Otherwise, we only adopt the variable set V and
empty constraint set as the initialization state S for
subsequent searching.

w0 ife(S) £ e,

WV, 2) if®(S) = 2.
This module effectively incorporates the reasoning
capabilities of the LLM to reduce the complexity of

the search space at the beginning of the searching
by providing a reliable initial anchor.

©)

3.3 Integration with Existing Methods

The VCSEARCH framework finally returns a prob-
lem modeling state S* = (V*,C*), and its solu-
tion can be computed by a SMT solver P, i.e,
R* = ®(S*). Therefore, we can integrate the
VCSEARCH with any existing methods to enhance
their ability to reject ill-defined problems. Specif-
ically, we first verify the R* set is valid by the
VCSEARCH and the SMT solver. If R* is valid,
we regard the problem is well-defined and call ex-
isting methods to solve it. Otherwise, we regard
the problem is ill-defined and reject it.

In subsequent experiments, we report the perfor-
mance of combining VCSEARCH with CoT (Wei
et al., 2022) and PAL (Gao et al., 2023) to validate
its effectiveness in practical applications.



Table 1: The rejection rates of various comparative methods on PMC

Deepseek 6.7B
Method Contra-type Missing-type
Addsub MultiArith  SVAMP GSMS8k  Avg | Addsub MultiArithh SVAMP GSMS8k  Avg
Basic 9.83 11.97 12.48 797  10.56 0.54 5.75 6.06 292 3.82
CoT 30.73 22.28 27.24 15.68  23.98 | 28.99 53.97 52.06 28.34  40.84
PAL 2.86 1.94 3.62 1.96 2.59 0.27 0.00 0.84 0.79 0.48
Satlm 573 2.78 4.83 6.79 5.03 | 68.83 63.28 64.36 46.04  60.63
Ours 54.09 52.64 54.89 52.67 53.58 | 89.70 88.49 83.51 63.68  81.35
Qwen2.5 7B
Method Contra-type Missing-type
Addsub MultiArith  SVAMP GSMS8k  Avg | Addsub MultiArith SVAMP GSM8k Avg
Basic 27.86 22.00 25.23 28.36  25.86 | 79.94 75.97 80.24 64.57 75.18
CoT 36.88 31.75 44.69 38.16  37.87 | 71.27 80.54 82.18 55.09 7227
PAL 47.54 42.06 46.57 4196 4453 | 82.11 89.34 91.51 82.22 79,97
Satlm 12.29 9.47 16.24 2379 1545 | 74.79 62.60 66.06 44.10 61.89
Ours 48.36 59.88 56.44 62.87 56.89 | 97.01 95.93 93.93 83.52  92.60
Qwen2.5 3B
Method Contra-type Missing-type
Addsub MultiArith  SVAMP GSMS8k Avg | Addsub MultiArith SVAMP GSM8k  Avg
Zero 29.08 23.39 34.22 28.75  28.86 | 47.42 54.99 71.87 5420 57.12
CoT 34.42 36.21 42.01 30.06  35.67 | 6341 73.09 80.72 51.37  67.14
PAL 3.28 7.64 5.90 11.37 7.05 17.07 10.49 26.67 17.18  17.85
Satlm 15.57 5.57 16.24 1278  13.44 | 54.74 41.11 43.39 26.73  41.49
ours 59.83 58.49 60.00 71.89  62.53 | 93.49 87.81 88.84 78.03  87.04
Qwen2.5 1.5B
Method Contra-type Missing-type
Addsub MultiArith  SVAMP GSMS8k  Avg | Addsub MultiArith SVAMP GSMS8k  Avg
Basic 23.36 36.49 33.15 2692 2998 | 13.00 22.50 36.72 20.72  23.23
CoT 21.72 32.59 26.30 2535 2649 | 4227 51.60 59.63 45.17  49.67
PAL 491 7.52 6.04 9.80 7.06 4.06 4.74 8.48 6.83 6.03
Satlm 6.55 3.06 791 6.27 594 | 27091 19.12 23.15 1443  21.15
Ours 38.93 32.59 43.08 4091 38.87 | 73.44 63.41 64.48 47.86  62.29

4 Experiments

In this section, we conduct experiments to answer
the following three research questions.

RQ1. Can VCSEARCH effectively identify and
reject ill-defined problems?

RQ2. Can VCSEARCH outperform formalized
prompting method in modeling capabilities?
RQ3. Can VCSEARCH help existing methods
achieve robust mathematical reasoning in realis-
tic scenarios?

4.1 Experimental Setup

Datasets. We conduct experiments on two types
of datasets to validate our approach and address
the three research questions: ill-defined prob-
lems and well-defined problems. For ill-defined
problems, we primarily use our proposed PMC
benchmark and Mathtrap (Zhao et al., 2024)
dataset, which includes mathematical trap prob-
lems (Mathtrap results in Appendix). For well-
defined problems, we utilize the original four sub-

sets of PMC, which is AddSub (Hosseini et al.,
2014), MultiArith (Koncel-Kedziorski et al., 2016),
SVAMP (Patel et al., 2021), GSM8k (Cobbe et al.,
2021), as well as Robustmath (Zhou et al., 2024),
where symbols serve as interference signals, and
GSM-IC (Shi et al., 2023), where irrelevant infor-
mation serves as interference signals.

Compared methods. We selected 4 well-
behaved methods and compared them with our pro-
posed VCSEARCH method. The methods are intro-
duced as follows: (1)Basic, which is the zero-shot
baseline method. (2)CoT, (Wei et al., 2022), let
model step-by-step reasoning before providing the
final answer. (3)PAL (Gao et al., 2023), modeling
problem with python language. (4)Satlm (Ye et al.,
2024), utilizes declarative prompting to model
problems with satisfiability-aided language

Implementation Details. Our main exper-
iments are conducted on the Qwen2.5-Coder
7B/3B/1.5B (Hui et al., 2024) and Deepseek-coder-
6.7B (Guo et al., 2024). For all compared methods,
we explicitly informed the model about the po-



Table 2: Comparison of the performance of Satlm and VCSEARCH on well-defined problems

Dataset Deepseek 6.7B Qwen 7B Qwen 3B Qwen 1.5B
Satlm  Ours | Satlm Ours | Satlm Ours | Satlm  Ours
Addsub 42.89 5924 | 72.15 8531 | 53.41 7594 | 28.86 61.26
MultiArith | 73.50 72.50 | 71.50 81.34 | 39.50 59.67 | 20.00 45.67
SVAMP 50.21 5441 | 70.80 82.10 | 42.60 60.70 | 18.70 40.80
GSM8k 3410 4131 | 50.11 67.62 | 29.34 41.31 | 10.32 21.37
Robustmath | 44.33 53.67 | 55.33 75.67 | 38.05 51.00 | 7.40 30.67
GSM-IC 18.80 2420 | 49.20 74.52 | 22.60 39.24 | 532 12.00
Avg 4397 50.87 | 61.51 77.76 | 37.58 54.64 | 15.10 35.30

tential presence of ill-defined problems. Detailed
settings and prompts can be found in the Appendix.

4.2 Empirical Results

RQ1. Can VCSEARCH effectively identify and
reject ill-defined problems?

Our systematic evaluation on PMC (Table 1) re-
vealed that Contra-type tasks are more challeng-
ing than Missing-type, with all methods perform-
ing worse. VCSEARCH excelled in all-ill defined
tasks, enabling all comparison models to achieve
SOTA, improving the Rejection rate of identifying
ill-defined problems by at least 12% across differ-
ent LLMs. Further analysis showed the DeepSeek
model struggled due to its tendency to preset initial
values (e.g., 0) for missing data, reducing recogniz-
ability. The Qwen series performed better on ill-
defined problems, but long-context prompting was
highly scale-dependent. In contrast, VCSEARCH
demonstrated exceptional robustness, performing
consistently across models of varying sizes.

RQ2. Can VCSEARCH outperform formalized
prompting method in modeling capabilities?

In this section, we systematically compare VC-
SEARCH with traditional few-shot prompt meth-
ods that directly utilize the SMT-Lib language as
in-context (Satlm). Since the ability to solve well-
defined problems is a critical criterion for evaluat-
ing the modeling capabilities of algorithms, we fo-
cus on their performance in such tasks. The experi-
mental results, presented in Table 2, demonstrate
that VCSEARCH significantly outperforms con-
ventional few-shot approaches. This underscores
the effectiveness of the decomposition and search
strategies introduced in our work, particularly for
smaller base models, where these strategies lead
to a substantial improvement in modeling capabil-
ities. On average, accuracy improves by 14.95%,
with the most notable improvement observed in
the Qwen 1.5B model, where accuracy increases

from 15.10% to 35.30%. These findings show that
VCSEARCH has effectively enhanced the model’s
ability to model problems.

RQ3. Can VCSEARCH help existing methods
achieve robust mathematical reasoning in realis-
tic scenarios?

In real-world scenarios, mathematical problems
rarely fall into strictly well-defined or ill-defined
categories. Instead, there is often a need to
both solve well-defined problems and identify ill-
defined ones. To the best of our knowledge, we are
the first to explore this hybrid setting in the context
of math word problems (MWP). For our experi-
ments, we employed a balanced sampling strategy
(e.g. Dy : D; = 1:1) to fairly assess the ability to
identify ill-posed problems and solve well-defined
problems simultaneously. This evaluation strat-
egy is analogous to how imbalanced classification
studies often report balanced metrics to properly
assess model performance across all classes (Thab-
tah et al., 2020). After three repeated experiments,
we report the mean + standard deviation in Table 3.

The results show that VCSEARCH + CoT and
VCSEARCH + PAL significantly outperform tra-
ditional CoT and PAL methods in rejecting unrea-
sonable problems. The rejection rate of ill-defined
problems improved by 42.96% and 42.03% respec-
tively, while the real-world evaluation metrics R-
score gained 16.78 and 19.39 points, confirming
the application value of the hybrid architecture in
complex real-world scenarios. We also provide ad-
ditional discussions in the appendix, including a
variation of the R-score metric and experimental
results under different dataset proportions.

4.3 More discussion.

Ablations. In this part, we evaluate the impact
of two core components of VCSEARCH on over-
all performance in Table 4. Removing the iter-
ative search framework(just use one-time refine)
results in limited improvement over the baseline



Table 3: Reaction scores of VCSEARCH + and com-
parison methods in a realistic environment with both
ill-defined and well-defined problems

Model Methods | Reject-Rate R-score
CoT 51334229  65.9340.73
+Ours | 76.1341.56  73.984+0.28

Qwen2.53B | by 14.464+0.41  48.5640.22
+Ours | 75.59+139  74.0841.17
CoT 39.93£1.96 53.91+1.16
+Ours | 65.06+1.48  63.26+0.84

Qwen2.5 158 [ b\ 77342.04  32.85+1.00
+Ours | 66.664024 62.2840.65

Table 4: Ablation study on Qwen 7B model.

Search  Initialization \ R-Rate  Accuracy
v 43.59 61.28
v 89.97 22.81
v v 74.75 77.76

SMT solver for few-shot learning. Excluding an-
chored initialization causes significant search space
divergence, with the model becoming overly con-
servative and rejecting most solutions, severely im-
pairing its ability to solve well-defined data. These
findings underscore the necessity of both compo-
nents.

Performance of VCSEARCH on Models of Dif-
ferent Sizes. Visual analysis of Qwen model re-
sults (Figure 4) reveals a strong correlation between
model scale and performance: both ill-defined prob-
lem identification ability and well-defined problem
solving ability decline with smaller models. How-
ever, our method mitigates this degradation and
even shows advantages across scales. Specifically,
VCSEARCH on Qwen-3B surpasses other methods
on Qwen-7B in problem rejection and rivals SMT
prompting on models an order of magnitude larger
in solving well-defined problems, demonstrating
its effectiveness and practical value in resource-
limited scenarios.

5 Related work

Enhancing Mathematical Reasoning in LLMs
Mathematical reasoning is a crucial aspect in eval-
uating model reasoning skills, and there are cur-
rently two predominant lines for enhancing these
skills. One line involves leveraging the existing
few-shot prompt tool, such as CoT (Wei et al.,
2022), PAL (Gao et al., 2023). The other is
centered around fine-tuning strategy, like Meta-
math (Yu et al., 2023), WizardMath (Luo et al.,
2023) and Mugglemath (Li et al., 2023). Recent
work has focused on how to achieve results that

Rerate on ll-defned problems Accuracy on welldefined problems
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Figure 4: Performance of VCSEARCH varying from
different model size

match or even exceed those of large models on
smaller models (Guan et al., 2025) and smaller
training datasets (Li et al., 2024a) by introduc-
ing techniques such as reinforcement learning and
MCTS (Tolpin and Shimony, 2012).

Robust Mathematical Reasoning In recent
years, there has been a significant surge in atten-
tion to the robustness of LLMs (Morris et al., 2020;
Wang et al., 2021). In the context of robust math-
ematical reasoning, most existing work focuses
on defining and constructing challenging "trap"
datasets. For instance, Wang et.al (Wang et al.,
2024) treats mathematical problems from different
datasets as an out-of-distribution (OOD) general-
ization problem. Robustmath (Zhou et al., 2024)
introduces irrelevant punctuation marks as distrac-
tors, while GSMIC (Shi et al., 2023) employs a
sentence of unrelated contextual text to serve as a
distractor, both aiming to investigate model perfor-
mance variations. The work most similar to ours
is MathTrap (Zhao et al., 2024), which focuses on
a relatively small set of fewer than 300 ill-defined
problems. In contrast, our PMC dataset is far more
comprehensive, containing over 5,000 ill-defined
problems.

6 Conclusion

This paper addresses mathematical reasoning with
missing and contradictory conditions by introduc-
ing PMC, a large-scale benchmark for evaluating
LLM robustness. Our observations reveal a trade-
off dilemma between reasoning for well-defined
problems and recognizing ill-defined problems.
To solve this trade-off, we propose VCSEARCH,
a training-free framework that uses formal lan-
guage to detect ill-defined problems, enhanced by a
variable-constraint pair search strategy to improve
formal modeling. Extensive experiments show VC-
SEARCH achieves superior robust reasoning across
diverse model architectures and sizes.



Limitations

Our work has two main limitations:

Time Consumption. Due to the use of variable-
wise refinement and search architecture during the
reasoning process, our method incurs higher time
overhead compared to the baseline methods.
Limitations of Formal Tools. Our ability to iden-
tify ill-defined problems relies on formal tools,
such as SMT solver. According to the algorithm
design, the system will directly reject tasks that are
unsuitable for modeling with logical tools, which
may lead to the incorrect rejection of some well-
defined problems.
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A Appendix
A.1 Details of PMC

We give more details of our PMC here.

A.1.1 Composition and examples of PMC

We show the number of specific subsets of PMC in Table 5, and show more representative problems to
help understand our dataset.

Table 5: The specific number of rewritten datasets

Type | AddSub | MultiArith | SVAMP | GSM8k | Sum
M-type | 369 591 825 1129 | 2914
C-type | 244 359 745 765 | 2113

Example 1: Example 1 of PMC

Statement: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in
$50,000 in repairs. This increased the value of the house by 150%. How much profit did he make?
# Excepted Answer: 70,000

M Version: Josh decides to try flipping a house. He buys a house for $80,000 and then puts
$50,000 some cost in repairs. This increased the value of the house by 150%. How much profit
did he make?

C Version: Josh decides to try flipping a house. He buys a house for $80,000 and then puts
in$50,000 in repairs. This increased the value of the house by 150%, but the market value of the
house after repairs is only $100,000. How much profit did he make? (# market value Contrary to
the expected )

Example 2: Example 2 of PMC

Statement: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market? # Excepted Answer: 14

M Version: Janet’s ducks lay 16 eggs per day. She eats three some for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?

C Version: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
marketif she give 10 eggs away to her neighbor? (# She only left 9 eggs, can not give away 10

eggs)

A.1.2 Constrction prompt
The construction prompt we used is shown in the example 3.4,5.
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Example 3: Constrction prompt for missing type

Given the following math problem, identify all the variables and constraints involved. Then,
modify the problem by replacing a key numerical value in one of the constraints with an indefinite
placeholder (e.g., “some number”, “a certain value”, etc.), such that the resulting problem lacks
sufficient information to determine a unique solution.

You can answer with following step:

Step 1: Variable and Constraint Identification.

Step 2: Decide the mutated Variable or constraint and explain the reason.

Step 3: Answer with final mutated problem.

Original Problem: {Problem}

Modified Problem: [Your answer]

r
\

Example 4: Constrction prompt for contra type

Given the following math problem, identify all the variables and constraints involved. Then, modify
the problem by introducing an additional constraint that directly conflicts with an existing one.
The resulting problem should contain contradictory information that makes it logically unsolvable.
You can answer with following step:

Step 1: Variable and Constraint Identification.

Step 2: Decide the mutated Variable or constraint and explain the reason.

Step 3: Answer with final mutated problem.

Original Problem: {Problem}

Modified Problem: [Your answer]

Example 5: Validation prompt

Given the following math problem, determine whether it is solvable. If not, identify why the
problem is ill-defined. Specifically, analyze whether the conditions provided are insufficient or
self-contradictory, making it impossible to derive a unique solution.

You can answer with the following steps:

Step 1: Variable and Constraint Identification.

Step 2: Analyze whether the problem is solvable under the given constraints. If it is unsolvable,
explain whether it is due to missing information or contradictory conditions, and identify the
responsible part(s).

Step 3: Give the final feedback if the question is unsolvable

Problem: {Problem}

Answer: [ Your answer]

A.1.3 Human annotators

When the LLLM used for verification outputs inconsistent responses, we will enable human annotators to
verify. Our annotators come from within the lab, no more than 5 master’s and doctoral students.
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A.2 Details of VCSEARCH

In this part we will introduce the details in our algorithm.

A.2.1 Promptsin VCSEARCH
We show the prompts we use in VCSEARCH with examples 6 and 7.

A.2.2 Formal tools

The SMT-LIB(Satisfiability Modulo Theories Library) (Barrett et al., 2010) is a tool for working with
satisfiability problems. It provides a standard notation compatible input language for representing logical
formulas. And powful SMT solvers, such as Z3 (de Moura and Bjgrner, 2008), extend the classical
boolean satisfiability problem (SAT problem) to enable verification of numerical arithmetic problems,
among others. The SMT solver will initially determine whether the modeled problem is satisfiable
(SAT/UNSAT). If it is satisfiable, the solver will then provide a feasible solution within the feasible
domain of the problem. Specifically, we use z3 as a formal tool in the paper.

A.2.3 Double-check solving strategy with SMT solver

We use a double-check strategy when checking with the SMT solver. Specifically, we verify both the
satisfiability of the formal expression and the uniqueness of the solution. To be specific, to check the
satisfiability of the formal expression, we utilize the Z3 solver. This strategy regards the problem as ill-
defined and rejects the answer if the formal expression is unsatisfiable(UNSAT). To assess the uniqueness
of the solution, We develop this check through a two-stage process. First, we utilize the Z3 solver to
determine one solution and subsequently incorporate this candidate solution as a constraint into the
formal expression. If the formal expression remains satisfiable, then it implies that the formal expression
encompasses multiple solutions, leading the strategy to reject the answer as it violates the uniqueness of
the answer.

To be precise, in the solution phase, our strategy let the SMT solver return four possible different values:

* Error: Indicates that the modeling cannot be successfully completed. Similar to a compilation error,
we do not consider it as a valid state.

* UNSAT: Indicates that the modeling state cannot be satisfied, there are contradictory conditions, and
the answer is rejected.

* Multi: We believe that the question is ambiguous, resulting in multiple solutions, and the answer is
rejected.

* Ans: Returns a normal real number, representing the answer to the question.

A.2.4 A example for VCSEARCH
Our approach to determining variable-constraint relationships is as follows:

* Preparation Phase (Variables — Constraints): For a given variable, directly retrieve all constraints
containing that variable from the constraint pool.

» Update Phase (Constraints — Variables): For a given constraint, we identify all new associated
variables in it.

To further illustrate this method, we present a concrete example using a contra-type problem in PMC
(example 8) to demonstrate the search process:
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Example 6: prompts used in VCSEARCH-1

Refine module prompt

I have previously asked you to write Z3 constraints for a problem. However, the current set of constraints for the variable
may have omissions or errors. I would like you to review it from the following two aspects and make appropriate
modifications if necessary:

1. Based on the problem description, consider whether the current constraints accurately capture the problem.

2. Add constraints based on real-world knowledge, considering whether there are any missing modeling statements,
such as the quantity of items should be >= 0, or the relationships between the sides of a triangle.

Please note that you only need to add constraints to the CURRENT HEAD VARIABLE,; in other words, the new
constraints MUST include the head variable!

You can first provide your thought process, and then write the new constraints that include the head variable after the
identifier <SOS>

You can follow the example:

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%, but the market value of the house after repairs is only $100,000. How much
profit did he make?

Existing Constraints:

solver.add(initial-cost == 80000)

solver.add(total-investment == initial-cost + repair-cost)

solver.add(repair-cost == 50000)

solver.add(increased-value-percentage == 0.5) # 150% increase

solver.add(expected-value == initial-cost * (100 + increased-value-percentage))

solver.add(market-value-after-repairs == 100000)

solver.add(total-investment >= ()

solver.add(profit == market-value-after-repairs - total-investment)

solver.add(profit >= 0)

solver.add(expected-value >= 0)

Now head variable: expected-value

Now existing constraints with head variable:

solver.add(expected-value == initial-cost * (100 + increased-value-percentage))

solver.add(expected-value >= 0)

Answer:

1. For the constraint expected-value == initial-cost * (100 + increased-value-percentage), the equation for expected-value
in the problem should be initial-cost * (1 + increased-value-percentage). Therefore, this constraint should be modified
to solver.add(expected-value == initial-cost * (1 + increased-value-percentage)).

2. For the constraint solver.add(expected-value >= 0) aligns with real-world requirements. Additionally, since expected-
value is an unknown variable, it is appropriate to add real-world constraints, so this should be retained.

3. Furthermore, expected-value and market-value-after-repairs refer to the same entity in the problem, so a constraint
should be added: market-value-after-repairs == expected-value.

<SOS>

So, new Constraints with head variable is

solver.add(expected-value == initial-cost * (1 + increased-value-percentage))

solver.add(expected-value >= 0)

solver.add(expected-value == market-value-after-repairs)

Question:{question }

Existing Constraints: { constraint }

Now head variable: { head }

Now existing constraints with head variable: { constrain-head }

Answer:
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Example 7: prompts used in VCSEARCH-2

Verification module prompt

Please judge which set of constraints is better for the given problem, including all constraints of
variable "X".

Problem: {question}

variable: {head }

Constrains setl:{cons1}

Constrains setl ans:{cansl }

Constrains set2:{cons2}

Constrains set2 ans:{cans] }

Please write down your thinking process first, and finally output, "I think Constrains set1 is better",
or "I think Constrains set?2 is better".

A.3 Details of Experiment

A3.1 Setup

Compared methods. We selected three representative few-shot prompting methods, along with the zero-
shot method that utilizes the intrinsic capabilities of the model, and compared them with our proposed
VCSEARCH method. The methods are introduced as follows: (1)Basic, which is the zero-shot baseline
method, directly feeds the problem and instructions to the LLMs without any example problem in the
context. (2)CoT, (Wei et al., 2022), requires the model to explicitly output intermediate step-by-step
reasoning through natural language before providing the final answer. (3)PAL (Gao et al., 2023), converts
each step of problem-solving into a programming language format and subsequently utilizes an external
programming language interpreter for execution, thereby obtaining the results. (4)Satlm (Ye et al., 2024),
utilizes SMT-LIB to model the problems, then uses an external SMT solver to check for a feasible solution
to the problem as well as obtain the ground-truth answer.

Prompts. For the few-shot prompting methods, we prepared four contextual examples (4-shot) for each
method, consisting of two well-defined problems and two ill-defined problems. In the system prompt, we
explicitly informed the model about the potential presence of ill-defined problems. If the model determines
that a problem is unsolvable, it is instructed to output a statement containing the term "unsolvable." This
allows us to evaluate whether the model successfully identifies ill-defined problems.

Set up details for Sec4.3. At this part, we employed a balanced sampling strategy to fairly assess
the ability to identify ill-posed problems and solve well-defined problems simultaneously. (with a
solvable/unsolvable problem ratio of a = 1 : 1), selecting 500 samples from the ill-defined problem
set (Table 1) and the well-defined problem set (Table 2) to construct a 1000-sample test set. After three
repeated experiments, we report the mean + standard deviation in Table 3.

A.3.2 Prompts used in Preliminary experiments

We show the prompts we use in preliminary experiments to reflect the trade-off dilemma with examples 9.

A.3.3 More experiment results

Table 6: R-Rate on MathTrap

Model | Deepcoder | Qwen7b | Qwen3b | Qwenl.5b
Zero 22.95 15.57 15.57 13.72
Ours 65.57 86.06 88.89 74.59

Here, we also tested our method on several other benchmarks that involve refusal to answer. Our method
also demonstrated superior performance on MathTrap. However, MathTrap’s mathematical problems
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Example 8: Example in VCSEARCH

"Josh decides to try flipping a house. He buys a house for 80,000 and then puts in 50,000 in
repairs. This increased the value of the house by 150%, but the market value of the house is only
$100,000. How much profit did he make?"

After the initialization step, we obtain an initial constraint system, represented in Python Z3 code.
This system consists of a variable queue and a constraint pool.

Variables:
"initial-cost”, "repair-cost”, "increased-value-percentage”,
"expected-value”, "market-value-after-repairs”, "profit”,

"total-investment”

Constraints:

initial-cost == 80000

repair-cost == 50000

market-value-after-repairs == 100000

increased-value-percentage == 0.5

total-investment == initial-cost + repair-cost

expected-value == initial-cost * (10@ + increased-value-percentage)
profit == market-value-after-repairs - total-investment

After the Initialization, assume that the first element in the variable queue is "expected-value”,
we will demonstrate a single iteration of the search process.

Preparation

Identify constraints involving this variable "expected-value":

expected-value == initial-cost * (100 + increased-value-percentage)

Exploration

Utilize LLM knowledge to refine the constraints by generating a constraints set with the head
variable "expected-value":

expected-value == initial-cost * (basic_multiplier + increased-value-percentage)
basic_multiplier ==

Verification

Compare the original constraint system with the refined one and select the better version.

(In this case, the newly generated constraint set is selected).

Update

Replace the outdated constraint with the refined one.
Identify any newly introduced variables (e.g., "basic_multiplier”) and append them to the tail
of the variable queue for subsequent iterations.
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Example 9: prompts used in Preliminary experiments

Pure prompt for ill-defined problem

Now we have some math problems that may be ill-defined. Please judge whether they are indeed
ill-defined (no unique real number solution can be determined). If there is indeed no solution,
answer true, otherwise answer false. Explain the reason first and then answer.

Pure prompt for well-behaved problem

You’re an experienced elementary school teacher, and I'm now expecting you to solve some math
problems.

Mixed prompts

You’re an experienced elementary school teacher, and I'm now expecting you to solve some math
problems. If you find these problems unsolvable, please output “this is unsolvable”. Or please
solve this answer, and give the final answer with format "The answer is X"

involve a significant amount of geometry and algebra, which are not well-suited for formal tool modeling.
This is also not suitable for methods such as PAL. So we only compare ours with zero-shot method. In
such scenarios, our method adopts a relatively conservative approach, rejecting any problem it cannot
confidently solve in order to maintain the safety of the reasoning system.

A.3.4 Discussion about reasoning in realistic scenarios

Discussion of dataset ratios

In our paper, we adopted a balanced setting(i.e., D,, : D; = 1 : 1) to measure the reaction score. This
balanced approach allows us to evaluate the capability of methods to both answer well-defined problems
and reject ill-defined problems with equal importance. This evaluation strategy is analogous to how
imbalanced classification studies often report balanced metrics to properly assess model performance
across all classes (Thabtah et al., 2020). By maintaining this balanced setting, we provide a more
comprehensive and fair assessment of each method’s capabilities of answering and rejecting. Additionally,
we compared the R-score performance across different dataset ratios (defined as a = D,, : D;) on the
Qwenl.5B model, and our method consistently demonstrated superior results.

Table 7: Performance among different data ratios

o 0.2 0.5 1 2 5

CoT 44.61 +£1.02 4958 £2.00 53.91+1.16 58.96+0.78 62.83 +1.55
CoT + Ours  64.40 £0.43 64.056£0.60 63.26+0.84 64.33+£0.89 62.91+0.79
PAL 16.01 £0.66 24.03+1.12 32.85+1.00 41.15+£0.49 49.534+2.89
PAL + Ours 65.26 £1.54 62.46£0.22 62.28+0.65 58.55£1.13 58.84+0.56

More convincing metrics
To prevent excessive score inflation through question rejection (where rejecting all questions would
yield only 50% of the total score), we introduce the R*-score metric as below

> _pe, Ilf(p) = Reject] + 3, p, I[F(p) = 9(p)]
’Dz’ + ‘Dw’

< >

We evaluate our method under balanced settings and present the results in the following table. Our
approach maintains superior performance in most scenarios(R*-score), demonstrating that our performance
gains do not stem from simply rejecting most questions.
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Table 8: Perfomance among R-score and R*-score

Qwen 1.5B Qwen 3B
Method R-score R*-score R-score R*-score
CoT 53.91+1.16 51.10+2.08 65.93+0.73 65.10+1.04
CoT +Ours 63.26 +20.84 53.104+0.06 73.984+0.28 66.93 +0.28
PAL 32.85+1.00 30.63+0.18 48.56=+0.22 47.66 +0.49
PAL + Ours 62.28+0.65 51.904+1.15 74.084+1.17 65.73+1.30
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