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Abstract001

Large language models (LLMs) have demon-002
strated impressive performance on reasoning003
tasks, including mathematical reasoning. How-004
ever, the current evaluation mostly focuses on005
carefully constructed benchmarks and neglects006
the consideration of real-world reasoning prob-007
lems that present missing or contradictory con-008
ditions, known as ill-defined problems. To fur-009
ther study this problem, we develop a large-010
scale benchmark called Problems with Missing011
and Contradictory conditions (PMC) contain-012
ing over 5,000 validated ill-defined mathemat-013
ical problems. Our preliminary experiments014
through PMC reveal two challenges about ex-015
isting methods: (1) traditional methods exhibit016
a trade-off between solving accuracy and re-017
jection capabilities, and (2) formal methods018
struggle with modeling complex problems. To019
address these challenges, We develop Variable-020
Constraint Search (VCSEARCH), a training-021
free framework that leverages formal language022
to detect ill-defined problems, where a variable-023
constraint pair search strategy is incorporated to024
improve the modeling capability of formal lan-025
guage. Extensive experiments demonstrate that026
VCSEARCH improves the accuracy of identify-027
ing unsolvable problems by at least 12% across028
different LLMs, thus achieving stronger robust029
mathematical reasoning ability.030

1 Introduction031

Large language models (LLMs) have demonstrated032

strong performance on various reasoning tasks, in-033

cluding commonsense (Zhao et al., 2023), quanti-034

tative (Lewkowycz et al., 2022), and visual reason-035

ing (Gupta and Kembhavi, 2023). Mathematical036

problem solving (Cobbe et al., 2021) serves as a037

fundamental benchmark for evaluating LLMs’ rea-038

soning capabilities (Ahn et al., 2024). Recent ad-039

vances in prompt-based methods (Wei et al., 2022;040

Ye et al., 2024) and fine-tuning approaches (Yu041

et al., 2023; Li et al., 2024b) have significantly im-042

proved their mathematical reasoning capabilities.043

Although existing studies have improved the 044

performance of LLMs on well-defined mathemat- 045

ical benchmarks (Cobbe et al., 2021; Patel et al., 046

2021), they often overlook a critical challenge in 047

real-world applications: the ability to reject ill- 048

defined problems (Zhao et al., 2024). These prob- 049

lems, which contain missing or contradictory con- 050

ditions (Puchalska and Semadeni, 1987), are par- 051

ticularly common in educational scenarios. For in- 052

stance, as shown in Figure 1, when students express 053

mathematical problems unclearly, LLMs often gen- 054

erate plausible but incorrect solutions instead of 055

identifying the problem as unsolvable. Such re- 056

sponses can reinforce misconceptions and hinder 057

learning progress (Ma et al., 2024). 058

However, most existing benchmark about math 059

reasoning robustness (Shi et al., 2023; Zhou et al., 060

2024) focus on whether the model can still answer 061

the question in the presence of interference, lack- 062

ing a systematic evaluation of the model’s ability 063

to recognize and reject ill-defined problems. To 064

better understand the limitations of existing meth- 065

ods and the development of novel mathematical 066

reasoning methods, we build a large-scale evalu- 067

ation dataset called Problems with Missing and 068

Contradictory conditions (PMC). This dataset con- 069

tains over 5,000 validated ill-defined mathematical 070

problems for comprehensive evaluation. 071

Our preliminary experiments reveal two ma- 072

jor challenges when handling ill-defined prob- 073

lems. First, traditional methods, e.g., prompt-based 074

methods (Yang et al., 2023) and fine-tuning ap- 075

proaches (Zhao et al., 2024), demonstrate unsatis- 076

factory performance due to an inherent trade-off 077

between problem-solving accuracy and rejection 078

capabilities. Second, although formal methods (Ye 079

et al., 2024; Pan et al., 2023) offer unified problem- 080

solving and rejection capabilities, they struggle to 081

accurately model complex problems in formal lan- 082

guage. 083

To address these challenges, we propose VC- 084
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Figure 1: Well-defined problems and ill-defined problems and model’s response. (Red strike-through indicates
deleted sentences, blue indicates added sentences and green indicates explanation)

SEARCH (Variable-Constraint Search), a training-085

free framework that systematically detects ill-086

defined problems through formal language to ad-087

dress the challenge of trade-offs. The key innova-088

tion of VCSEARCH lies in its variable-constraint089

dynamic search mechanism, which decomposes090

complex problems that are hard to model into dy-091

namically extensible variable-constraint pairs, im-092

plementing an iterative optimization strategy where093

discovered variables guide constraint generation094

and existing constraints inform variable identifica-095

tion. Experimental results demonstrate that VC-096

SEARCH achieves an at least 12% improvement in097

rejection accuracy for unsolvable problems com-098

pared to state-of-the-art methods, thus achieving099

stronger robust mathematical reasoning ability in100

realistic scenarios. Our main contributions can be101

summarized as follows:102

1) We introduce a practical problem of evaluating103

mathematical reasoning robustness and present104

PMC, a large-scale benchmark dataset contain-105

ing over 5,000 validated ill-posed mathematical106

problems.107

2) We develop VCSEARCH, a training-free frame-108

work that leverages formal language to detect ill-109

defined problems, where a variable-constraint110

pair search strategy is incorporated to improve111

the modeling capability of formal language.112

3) Extensive experiments demonstrate that VC-113

SEARCH improves the accuracy of identifying114

unsolvable problems by at least 12% across dif-115

ferent LLMs, thus achieving stronger robust116

mathematical reasoning ability in realistic sce- 117

narios. 118

2 PMC Benchmark and Analysis 119

In this section, we first introduce our PMC bench- 120

mark, which consists of two types, i.e., Contra-type 121

and Missing-type, by mutating problems from four 122

common math datasets. Then, our analysis presents 123

the challenges of rejecting ill-defined problems and 124

the limitations of existing methods. 125

2.1 Benchmark Construction 126

We choose four common mathematical reasoning 127

datasets, that is, GSM8k (Cobbe et al., 2021), 128

SVAMP (Patel et al., 2021), AddSub (Hosseini 129

et al., 2014), and MultiArith (Koncel-Kedziorski 130

et al., 2016), as seed datasets to construct PMC. 131

We define the problems in the seed dataset as well- 132

defined problems, meaning that the given condi- 133

tions in the problem statement are sufficient to de- 134

rive a unique solution. In contrast, the problems we 135

aim to construct are ill-defined problems, where 136

the given conditions are insufficient—either due to 137

missing necessary constraints or internal contradic- 138

tions—making the problem unsolvable. 139

Our construction methodology employs a 140

prompting-based strategy with Large Language 141

Models (LLMs). Initially, the LLM is prompted 142

to decompose a seed problem and ascertain all per- 143

tinent variables. Subsequently, the model is in- 144

structed to implement targeted modifications to the 145

original problem conditions. To generate "missing- 146

type" problems, a numerical value within a spe- 147

cific constraint is substituted with an indetermi- 148

nate term, thereby rendering the problem definition 149
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incomplete. For "contra-type" problems, contra-150

dictory constraints pertaining to the variables are151

introduced, yielding problems that are inherently152

self-contradictory and thus pathological. To ver-153

ify the unsolvable (ill-defined) nature of the con-154

structed problems, we utilize a panel of heteroge-155

neous LLMs (e.g., Deepseek-V3 (Liu et al., 2024),156

Doubao, and GLM (Zeng et al., 2024)) to assess157

whether the modified problem possesses a unique158

solution. A problem is classified as unsolvable159

if a consensus is reached among all participating160

LLMs that no solution exists. In instances where161

any model deems the problem solvable, human an-162

notators are engaged to meticulously review the163

problem and confirm its unsolvable status.164

Overall, PMC contains 8 different sub-datasets,165

including four Missing-type and four Contra-type166

datasets. An illustration of mutated problems of167

PMC is presented in Fig 1, and more detailed in-168

formation about PMC (construction prompt, exam-169

ples, etc.) can be found in the appendix.170

2.2 Evaluation Protocol171

To evaluate the robustness of methods in mathe-172

matical reasoning problems with missing and con-173

tradictory conditions, we introduce two evaluation174

metrics: the Rejection Rate (R-Rate) and the Reac-175

tion Score (R-Score). R-Rate quantifies a method’s176

ability to identify ill-defined problems. R-Score177

evaluates a method’s overall performance in both178

handling ill-defined problems and solving well-179

defined problems.180

For a well-defined dataset Dw, let Di be its ill-181

defined counterpart. For any problem p, let g(p)182

denote its ground truth solution, where g(p) =183

Reject for ill-defined problems. Let f(p) denote184

the solution generated by a method, where f(p) =185

Reject indicates the method rejects to solve p. We186

define the R-Rate and R-Score as follows:187

Rejection Rate. R-Rate is the percentage of ill-188

defined problems correctly rejected by method189

f(·):190 ∑
p∈Di

I [f(p) = Reject]

|Di|
(1)191

192

Reaction Score. R-Score measures a method’s193

overall performance by considering three scenar-194

ios: (a) correctly rejecting ill-defined problems,195

(b) correctly solving well-defined problems, and196

(c) rejecting well-defined problems. A method re-197

ceives one point for scenarios (a) and (b), and 0.5198

(a) ill-defined problems (b) well-defined problems

Figure 2: Trade-off of traditional methods

points for scenario (c), as recognizing the inability 199

to solve a problem is partially successful. 200

(
∑
p∈Di

I[f(p) = Reject] +
∑
p∈Dw

I[f(p) = g(p)]

+ 0.5
∑
p∈Dw

I[f(p) = Reject])/(|Di|+ |Dw|)

(2) 201

202

2.3 Problem Analysis 203

We conduct a series of preliminary experiments on 204

the PMC benchmark testing platform (with more 205

detailed experimental modules to be elaborated in 206

subsequent sections). The results are shown in 207

Figure 2. We use "pure prompt" to refer to di- 208

rectly prompting the model to solve well-defined 209

or ill-defined problems (focusing on one type), and 210

"mixed prompt" to denote prompting the model to 211

solve mathematical problems, where the model is 212

instructed to reject if it deems the problem unsolv- 213

able. We observe that the base model exhibited 214

certain problem-solving and rejection capabilities. 215

However, there is a significant conflict between 216

these two abilities: when the model is required 217

to solve a problem while simultaneously employ- 218

ing a rejection mechanism, both its rejection and 219

problem-solving capabilities are notably limited. 220

This suggests a trade-off between the two and this 221

trade-off becomes more pronounced as the model 222

size decreases. 223

3 Methodology 224

To address the trade-off between solving accuracy 225

and rejection capabilities, we propose a novel 226

framework called VCSEARCH. This training-free 227

framework leverages formal language modeling 228

capabilities to detect ill-defined problems and 229

enhances existing mathematical reasoning methods 230

with the ability to identify unsolvable problems. 231

However, modeling mathematical problems with 232
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Figure 3: An overview of VCSEARCH. The left panel illustrates the outcome of the successful initialization phase,
culminating in an initialized draft formal modeling state, denoted as S. Within this state representation, individual
dots correspond to variables v, while elongated rectangles signify constraints c. Conversely, the right panel depicts
the iterative process of \algo. Each iteration commences with the extraction of a head variable, followed by the
sequential execution of three distinct steps: (1) Preparation, (2) Exploration, and (3) Verification.

formal language accurately is not trivial, directly233

using formalized examples as context prompts did234

not yield optimal results(in Table 1), raising the235

following challenge: LLMs fail to model problems236

with formal language accurately in one pass. How237

can we improve the problem modeling ability?238

239

To tackle this challenge, we first propose a240

Variable-Constraint Dynamic Search that system-241

atically discovers new variables and constraints242

through an iterative searching process consisting of243

three steps: Preparation, Exploration, and Verifica-244

tion. Then, to solve the cold start problem of search,245

we propose a Anchored Initialization that leverages246

the reasoning capabilities of large models to reduce247

the initial search space. We use SMT-Lib (Barrett248

et al., 2010) as the formal modeling language and249

Z3 (de Moura and Bjørner, 2008) as the formal250

solver in our approach and the overall framework251

is shown in Figure 3.252

3.1 Variable-Constraint Dynamic Search 253

LLMs have limitations in precisely modeling com- 254

plex problems with formal language in a single 255

pass due to the multiple variables and constraints 256

involved which increase the modeling difficulty. 257

We design a Variable-Constraint Dynamic Search 258

that decomposes complex problem modeling into a 259

sequence of variable-constraint pair identification 260

steps. This approach enables an iterative search 261

that progressively improves the formal modeling. 262

To achieve this, we implement the Variable- 263

Constraint Dynamic Search containing three sys- 264

tematic steps, i.e., Preparation, Exploration, and 265

Verification. In each iteration, we perform the 266

above four processes on the extracted variable. 267

For problem p, we denote the modeling state as 268

S = (V, C) where V is the set of variables and C is 269

the set of constraints corresponding to V . 270

Preparation Step. This step selects a single vari- 271

able and its associated constraints from S to reduce 272
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the complexity of the constraint analysis process,273

rather than considering all variables and constraints274

at once. Given the variable set V and constraint275

set C, we select one unexplored variable from the276

set V as the head variable vh and extract its related277

constraints Ch from C:278

Ch = {c | vh ∈ vars(c) and c ∈ C} (3)279

where vars(·) returns the set of variables in a given280

constraint, and c represents a constraint from C.281

Exploration Step. This step explores new con-282

straints and variables with the help of implicit283

knowledge from the LLM to improve the prob-284

lem modeling. Specifically, we prompt the LLM285

to generate the polished constraints C̃h, relating to286

variable vh for current problem p:287

C̃h = LLME(p, vh, Ch) (4)288

where LLME is denoted as the LLM prompted for289

exploration. The newly identified variables Ṽh are290

Ṽh = {v | v ∈ vars(C̃h) and v /∈ V}. (5)291

Verification Step. After exploring new con-292

straints and variables, we can build a new problem293

modeling S̃ as follows.294

S̃ =
(
V ∪ Ṽh, (C \ Ch) ∪ C̃h

)
(6)295

where the new variables are added at the tail of296

original variable set V and the polished constraints297

replaced the original related constraints in the con-298

straint set C. Then, a SMT solver Φ is adopted299

to solve the problem modeling state S̃ and yield300

a solution R̃ = Φ(S̃). Inspired by LLMs as a301

judge (Zheng et al., 2023; Huang et al., 2024), we302

compare the original problem modeling S with its303

solution R = Φ(S) and the new problem modeling304

state S̃ with the solution R̃ as follows:305

S̃∗ = LLMJ

(
p, (S,R), (S̃, R̃)

)
(7)306

where LLMJ is denoted as the LLM prompted for307

verification and S̃∗ is the selected state from new308

state S̃ and original state S. Finally, we replace309

current state S with selected state S̃∗ for the sub-310

sequent process and add newly detected variable311

to the variable queue V . This repeated searching312

process is terminated until all variables in V are313

explored.314

This step not only ensures the adaptive nature315

of the search process but also effectively leverages316

the reasoning capabilities of LLMs to gradually317

improve problem modeling S.318

3.2 Anchored Initialization 319

However, the search process is particularly chal- 320

lenging at the outset due to the difficulty in initial- 321

izing the search state, as the initial state contains 322

limited information. The search space is vast, and 323

without a reliable initialization, it is challenging 324

to converge to a valid state. This can result in the 325

model being overly conservative, leading to the 326

rejection of many well-defined problems(Table 4). 327

To address this challenge, we propose a An- 328

chored Initialization that leverages the reasoning 329

capabilities of the LLM to generate a preliminary 330

anchor state Ŝ as an anchored initialization state 331

for Variable-Constraint Dynamic Search. 332

Specifically, we first prompt the LLM to generate 333

a draft modeling state Ŝ = (V̂, Ĉ) for problem p: 334

(V̂, Ĉ) = LLMI(p) (8) 335

where LLMI is denoted as the LLM prompted for 336

initialization with four examples in the context. 337

Then, we adopt a SMT solver Φ compute the so- 338

lution R̂ = Φ(Ŝ) of the draft modeling state Ŝ 339

for validation. If the solution R̂ is valid, we re- 340

gard the draft modeling state Ŝ as the initialization 341

state S for Variable-Constraint Dynamic Search. 342

Otherwise, we only adopt the variable set V̂ and 343

empty constraint set as the initialization state S for 344

subsequent searching. 345

S =

{
(V̂, Ĉ) if Φ(Ŝ) ̸= ∅,

(V̂,∅) if Φ(Ŝ) = ∅.
(9) 346

This module effectively incorporates the reasoning 347

capabilities of the LLM to reduce the complexity of 348

the search space at the beginning of the searching 349

by providing a reliable initial anchor. 350

3.3 Integration with Existing Methods 351

The VCSEARCH framework finally returns a prob- 352

lem modeling state S∗ = (V∗, C∗), and its solu- 353

tion can be computed by a SMT solver Φ, i.e, 354

R∗ = Φ(S∗). Therefore, we can integrate the 355

VCSEARCH with any existing methods to enhance 356

their ability to reject ill-defined problems. Specif- 357

ically, we first verify the R∗ set is valid by the 358

VCSEARCH and the SMT solver. If R∗ is valid, 359

we regard the problem is well-defined and call ex- 360

isting methods to solve it. Otherwise, we regard 361

the problem is ill-defined and reject it. 362

In subsequent experiments, we report the perfor- 363

mance of combining VCSEARCH with CoT (Wei 364

et al., 2022) and PAL (Gao et al., 2023) to validate 365

its effectiveness in practical applications. 366
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Table 1: The rejection rates of various comparative methods on PMC
Deepseek 6.7B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Basic 9.83 11.97 12.48 7.97 10.56 0.54 5.75 6.06 2.92 3.82
CoT 30.73 22.28 27.24 15.68 23.98 28.99 53.97 52.06 28.34 40.84
PAL 2.86 1.94 3.62 1.96 2.59 0.27 0.00 0.84 0.79 0.48

Satlm 5.73 2.78 4.83 6.79 5.03 68.83 63.28 64.36 46.04 60.63
Ours 54.09 52.64 54.89 52.67 53.58 89.70 88.49 83.51 63.68 81.35

Qwen2.5 7B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Basic 27.86 22.00 25.23 28.36 25.86 79.94 75.97 80.24 64.57 75.18
CoT 36.88 31.75 44.69 38.16 37.87 71.27 80.54 82.18 55.09 72.27
PAL 47.54 42.06 46.57 41.96 44.53 82.11 89.34 91.51 82.22 79,97

Satlm 12.29 9.47 16.24 23.79 15.45 74.79 62.60 66.06 44.10 61.89
Ours 48.36 59.88 56.44 62.87 56.89 97.01 95.93 93.93 83.52 92.60

Qwen2.5 3B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Zero 29.08 23.39 34.22 28.75 28.86 47.42 54.99 71.87 54.20 57.12
CoT 34.42 36.21 42.01 30.06 35.67 63.41 73.09 80.72 51.37 67.14
PAL 3.28 7.64 5.90 11.37 7.05 17.07 10.49 26.67 17.18 17.85

Satlm 15.57 5.57 16.24 12.78 13.44 54.74 41.11 43.39 26.73 41.49
ours 59.83 58.49 60.00 71.89 62.53 93.49 87.81 88.84 78.03 87.04

Qwen2.5 1.5B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Basic 23.36 36.49 33.15 26.92 29.98 13.00 22.50 36.72 20.72 23.23
CoT 21.72 32.59 26.30 25.35 26.49 42.27 51.60 59.63 45.17 49.67
PAL 4.91 7.52 6.04 9.80 7.06 4.06 4.74 8.48 6.83 6.03

Satlm 6.55 3.06 7.91 6.27 5.94 27.91 19.12 23.15 14.43 21.15
Ours 38.93 32.59 43.08 40.91 38.87 73.44 63.41 64.48 47.86 62.29

4 Experiments367

In this section, we conduct experiments to answer368

the following three research questions.369

RQ1. Can VCSEARCH effectively identify and370

reject ill-defined problems?371

RQ2. Can VCSEARCH outperform formalized372

prompting method in modeling capabilities?373

RQ3. Can VCSEARCH help existing methods374

achieve robust mathematical reasoning in realis-375

tic scenarios?376

4.1 Experimental Setup377

Datasets. We conduct experiments on two types378

of datasets to validate our approach and address379

the three research questions: ill-defined prob-380

lems and well-defined problems. For ill-defined381

problems, we primarily use our proposed PMC382

benchmark and Mathtrap (Zhao et al., 2024)383

dataset, which includes mathematical trap prob-384

lems (Mathtrap results in Appendix). For well-385

defined problems, we utilize the original four sub-386

sets of PMC, which is AddSub (Hosseini et al., 387

2014), MultiArith (Koncel-Kedziorski et al., 2016), 388

SVAMP (Patel et al., 2021), GSM8k (Cobbe et al., 389

2021), as well as Robustmath (Zhou et al., 2024), 390

where symbols serve as interference signals, and 391

GSM-IC (Shi et al., 2023), where irrelevant infor- 392

mation serves as interference signals. 393

Compared methods. We selected 4 well- 394

behaved methods and compared them with our pro- 395

posed VCSEARCH method. The methods are intro- 396

duced as follows: (1)Basic, which is the zero-shot 397

baseline method. (2)CoT, (Wei et al., 2022), let 398

model step-by-step reasoning before providing the 399

final answer. (3)PAL (Gao et al., 2023), modeling 400

problem with python language. (4)Satlm (Ye et al., 401

2024), utilizes declarative prompting to model 402

problems with satisfiability-aided language 403

Implementation Details. Our main exper- 404

iments are conducted on the Qwen2.5-Coder 405

7B/3B/1.5B (Hui et al., 2024) and Deepseek-coder- 406

6.7B (Guo et al., 2024). For all compared methods, 407

we explicitly informed the model about the po- 408
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Table 2: Comparison of the performance of Satlm and VCSEARCH on well-defined problems

Dataset
Deepseek 6.7B Qwen 7B Qwen 3B Qwen 1.5B
Satlm Ours Satlm Ours Satlm Ours Satlm Ours

Addsub 42.89 59.24 72.15 85.31 53.41 75.94 28.86 61.26
MultiArith 73.50 72.50 71.50 81.34 39.50 59.67 20.00 45.67
SVAMP 50.21 54.41 70.80 82.10 42.60 60.70 18.70 40.80
GSM8k 34.10 41.31 50.11 67.62 29.34 41.31 10.32 21.37
Robustmath 44.33 53.67 55.33 75.67 38.05 51.00 7.40 30.67
GSM-IC 18.80 24.20 49.20 74.52 22.60 39.24 5.32 12.00
Avg 43.97 50.87 61.51 77.76 37.58 54.64 15.10 35.30

tential presence of ill-defined problems. Detailed409

settings and prompts can be found in the Appendix.410

4.2 Empirical Results411

RQ1. Can VCSEARCH effectively identify and412

reject ill-defined problems?413

Our systematic evaluation on PMC (Table 1) re-414

vealed that Contra-type tasks are more challeng-415

ing than Missing-type, with all methods perform-416

ing worse. VCSEARCH excelled in all-ill defined417

tasks, enabling all comparison models to achieve418

SOTA, improving the Rejection rate of identifying419

ill-defined problems by at least 12% across differ-420

ent LLMs. Further analysis showed the DeepSeek421

model struggled due to its tendency to preset initial422

values (e.g., 0) for missing data, reducing recogniz-423

ability. The Qwen series performed better on ill-424

defined problems, but long-context prompting was425

highly scale-dependent. In contrast, VCSEARCH426

demonstrated exceptional robustness, performing427

consistently across models of varying sizes.428

RQ2. Can VCSEARCH outperform formalized429

prompting method in modeling capabilities?430

In this section, we systematically compare VC-431

SEARCH with traditional few-shot prompt meth-432

ods that directly utilize the SMT-Lib language as433

in-context (Satlm). Since the ability to solve well-434

defined problems is a critical criterion for evaluat-435

ing the modeling capabilities of algorithms, we fo-436

cus on their performance in such tasks. The experi-437

mental results, presented in Table 2, demonstrate438

that VCSEARCH significantly outperforms con-439

ventional few-shot approaches. This underscores440

the effectiveness of the decomposition and search441

strategies introduced in our work, particularly for442

smaller base models, where these strategies lead443

to a substantial improvement in modeling capabil-444

ities. On average, accuracy improves by 14.95%,445

with the most notable improvement observed in446

the Qwen 1.5B model, where accuracy increases447

from 15.10% to 35.30%. These findings show that 448

VCSEARCH has effectively enhanced the model’s 449

ability to model problems. 450

RQ3. Can VCSEARCH help existing methods 451

achieve robust mathematical reasoning in realis- 452

tic scenarios? 453

In real-world scenarios, mathematical problems 454

rarely fall into strictly well-defined or ill-defined 455

categories. Instead, there is often a need to 456

both solve well-defined problems and identify ill- 457

defined ones. To the best of our knowledge, we are 458

the first to explore this hybrid setting in the context 459

of math word problems (MWP). For our experi- 460

ments, we employed a balanced sampling strategy 461

(e.g. Dw : Di = 1 : 1) to fairly assess the ability to 462

identify ill-posed problems and solve well-defined 463

problems simultaneously. This evaluation strat- 464

egy is analogous to how imbalanced classification 465

studies often report balanced metrics to properly 466

assess model performance across all classes (Thab- 467

tah et al., 2020). After three repeated experiments, 468

we report the mean ± standard deviation in Table 3. 469

The results show that VCSEARCH + CoT and 470

VCSEARCH + PAL significantly outperform tra- 471

ditional CoT and PAL methods in rejecting unrea- 472

sonable problems. The rejection rate of ill-defined 473

problems improved by 42.96% and 42.03% respec- 474

tively, while the real-world evaluation metrics R- 475

score gained 16.78 and 19.39 points, confirming 476

the application value of the hybrid architecture in 477

complex real-world scenarios. We also provide ad- 478

ditional discussions in the appendix, including a 479

variation of the R-score metric and experimental 480

results under different dataset proportions. 481

4.3 More discussion. 482

Ablations. In this part, we evaluate the impact 483

of two core components of VCSEARCH on over- 484

all performance in Table 4. Removing the iter- 485

ative search framework(just use one-time refine) 486

results in limited improvement over the baseline 487
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Table 3: Reaction scores of VCSEARCH + and com-
parison methods in a realistic environment with both
ill-defined and well-defined problems

Model Methods Reject-Rate R-score
CoT 51.33±2.29 65.93±0.73
+Ours 76.13±1.56 73.98±0.28
PAL 14.46±0.41 48.56±0.22

Qwen2.5 3B

+Ours 75.59±1.39 74.08±1.17
CoT 39.93±1.96 53.91±1.16
+Ours 65.06±1.48 63.26±0.84
PAL 7.73±2.04 32.85±1.00

Qwen2.5 1.5B

+Ours 66.66±0.24 62.28±0.65

Table 4: Ablation study on Qwen 7B model.

Search Initialization R-Rate Accuracy

✓ 43.59 61.28
✓ 89.97 22.81
✓ ✓ 74.75 77.76

SMT solver for few-shot learning. Excluding an-488

chored initialization causes significant search space489

divergence, with the model becoming overly con-490

servative and rejecting most solutions, severely im-491

pairing its ability to solve well-defined data. These492

findings underscore the necessity of both compo-493

nents.494

Performance of VCSEARCH on Models of Dif-495

ferent Sizes. Visual analysis of Qwen model re-496

sults (Figure 4) reveals a strong correlation between497

model scale and performance: both ill-defined prob-498

lem identification ability and well-defined problem499

solving ability decline with smaller models. How-500

ever, our method mitigates this degradation and501

even shows advantages across scales. Specifically,502

VCSEARCH on Qwen-3B surpasses other methods503

on Qwen-7B in problem rejection and rivals SMT504

prompting on models an order of magnitude larger505

in solving well-defined problems, demonstrating506

its effectiveness and practical value in resource-507

limited scenarios.508

5 Related work509

Enhancing Mathematical Reasoning in LLMs510

Mathematical reasoning is a crucial aspect in eval-511

uating model reasoning skills, and there are cur-512

rently two predominant lines for enhancing these513

skills. One line involves leveraging the existing514

few-shot prompt tool, such as CoT (Wei et al.,515

2022), PAL (Gao et al., 2023). The other is516

centered around fine-tuning strategy, like Meta-517

math (Yu et al., 2023), WizardMath (Luo et al.,518

2023) and Mugglemath (Li et al., 2023). Recent519

work has focused on how to achieve results that520

(a) ill-defined problems (b) well-defined problems

Figure 4: Performance of VCSEARCH varying from
different model size

match or even exceed those of large models on 521

smaller models (Guan et al., 2025) and smaller 522

training datasets (Li et al., 2024a) by introduc- 523

ing techniques such as reinforcement learning and 524

MCTS (Tolpin and Shimony, 2012). 525

Robust Mathematical Reasoning In recent 526

years, there has been a significant surge in atten- 527

tion to the robustness of LLMs (Morris et al., 2020; 528

Wang et al., 2021). In the context of robust math- 529

ematical reasoning, most existing work focuses 530

on defining and constructing challenging "trap" 531

datasets. For instance, Wang et.al (Wang et al., 532

2024) treats mathematical problems from different 533

datasets as an out-of-distribution (OOD) general- 534

ization problem. Robustmath (Zhou et al., 2024) 535

introduces irrelevant punctuation marks as distrac- 536

tors, while GSMIC (Shi et al., 2023) employs a 537

sentence of unrelated contextual text to serve as a 538

distractor, both aiming to investigate model perfor- 539

mance variations. The work most similar to ours 540

is MathTrap (Zhao et al., 2024), which focuses on 541

a relatively small set of fewer than 300 ill-defined 542

problems. In contrast, our PMC dataset is far more 543

comprehensive, containing over 5,000 ill-defined 544

problems. 545

6 Conclusion 546

This paper addresses mathematical reasoning with 547

missing and contradictory conditions by introduc- 548

ing PMC, a large-scale benchmark for evaluating 549

LLM robustness. Our observations reveal a trade- 550

off dilemma between reasoning for well-defined 551

problems and recognizing ill-defined problems. 552

To solve this trade-off, we propose VCSEARCH, 553

a training-free framework that uses formal lan- 554

guage to detect ill-defined problems, enhanced by a 555

variable-constraint pair search strategy to improve 556

formal modeling. Extensive experiments show VC- 557

SEARCH achieves superior robust reasoning across 558

diverse model architectures and sizes. 559
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Limitations560

Our work has two main limitations:561

Time Consumption. Due to the use of variable-562

wise refinement and search architecture during the563

reasoning process, our method incurs higher time564

overhead compared to the baseline methods.565

Limitations of Formal Tools. Our ability to iden-566

tify ill-defined problems relies on formal tools,567

such as SMT solver. According to the algorithm568

design, the system will directly reject tasks that are569

unsuitable for modeling with logical tools, which570

may lead to the incorrect rejection of some well-571

defined problems.572
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A Appendix 763

A.1 Details of PMC 764

We give more details of our PMC here. 765

A.1.1 Composition and examples of PMC 766

We show the number of specific subsets of PMC in Table 5, and show more representative problems to 767

help understand our dataset.

Table 5: The specific number of rewritten datasets

Type AddSub MultiArith SVAMP GSM8k Sum
M-type 369 591 825 1129 2914
C-type 244 359 745 765 2113

768

Example 1: Example 1 of PMC

Statement: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in
$50,000 in repairs. This increased the value of the house by 150%. How much profit did he make?
# Excepted Answer: 70,000

M Version: Josh decides to try flipping a house. He buys a house for $80,000 and then puts
$50,000 some cost in repairs. This increased the value of the house by 150%. How much profit
did he make?

C Version: Josh decides to try flipping a house. He buys a house for $80,000 and then puts
in$50,000 in repairs. This increased the value of the house by 150%, but the market value of the
house after repairs is only $100,000. How much profit did he make? (# market value Contrary to
the expected )

Example 2: Example 2 of PMC

Statement: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market? # Excepted Answer: 14

M Version: Janet’s ducks lay 16 eggs per day. She eats three some for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?

C Version: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
marketif she give 10 eggs away to her neighbor? (# She only left 9 eggs, can not give away 10
eggs)

A.1.2 Constrction prompt 769

The construction prompt we used is shown in the example 3,4,5. 770
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Example 3: Constrction prompt for missing type

Given the following math problem, identify all the variables and constraints involved. Then,
modify the problem by replacing a key numerical value in one of the constraints with an indefinite
placeholder (e.g., “some number”, “a certain value”, etc.), such that the resulting problem lacks
sufficient information to determine a unique solution.
You can answer with following step:
Step 1: Variable and Constraint Identification.
Step 2: Decide the mutated Variable or constraint and explain the reason.
Step 3: Answer with final mutated problem.
Original Problem: {Problem}
Modified Problem: [Your answer]

Example 4: Constrction prompt for contra type

Given the following math problem, identify all the variables and constraints involved. Then, modify
the problem by introducing an additional constraint that directly conflicts with an existing one.
The resulting problem should contain contradictory information that makes it logically unsolvable.
You can answer with following step:
Step 1: Variable and Constraint Identification.
Step 2: Decide the mutated Variable or constraint and explain the reason.
Step 3: Answer with final mutated problem.
Original Problem: {Problem}
Modified Problem: [Your answer]

Example 5: Validation prompt

Given the following math problem, determine whether it is solvable. If not, identify why the
problem is ill-defined. Specifically, analyze whether the conditions provided are insufficient or
self-contradictory, making it impossible to derive a unique solution.
You can answer with the following steps:
Step 1: Variable and Constraint Identification.
Step 2: Analyze whether the problem is solvable under the given constraints. If it is unsolvable,
explain whether it is due to missing information or contradictory conditions, and identify the
responsible part(s).
Step 3: Give the final feedback if the question is unsolvable
Problem: {Problem}
Answer: [Your answer]

A.1.3 Human annotators771

When the LLM used for verification outputs inconsistent responses, we will enable human annotators to772

verify. Our annotators come from within the lab, no more than 5 master’s and doctoral students.773
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A.2 Details of VCSEARCH 774

In this part we will introduce the details in our algorithm. 775

A.2.1 Prompts in VCSEARCH 776

We show the prompts we use in VCSEARCH with examples 6 and 7. 777

A.2.2 Formal tools 778

The SMT-LIB(Satisfiability Modulo Theories Library) (Barrett et al., 2010) is a tool for working with 779

satisfiability problems. It provides a standard notation compatible input language for representing logical 780

formulas. And powful SMT solvers, such as Z3 (de Moura and Bjørner, 2008), extend the classical 781

boolean satisfiability problem (SAT problem) to enable verification of numerical arithmetic problems, 782

among others. The SMT solver will initially determine whether the modeled problem is satisfiable 783

(SAT/UNSAT). If it is satisfiable, the solver will then provide a feasible solution within the feasible 784

domain of the problem. Specifically, we use z3 as a formal tool in the paper. 785

A.2.3 Double-check solving strategy with SMT solver 786

We use a double-check strategy when checking with the SMT solver. Specifically, we verify both the 787

satisfiability of the formal expression and the uniqueness of the solution. To be specific, to check the 788

satisfiability of the formal expression, we utilize the Z3 solver. This strategy regards the problem as ill- 789

defined and rejects the answer if the formal expression is unsatisfiable(UNSAT). To assess the uniqueness 790

of the solution, We develop this check through a two-stage process. First, we utilize the Z3 solver to 791

determine one solution and subsequently incorporate this candidate solution as a constraint into the 792

formal expression. If the formal expression remains satisfiable, then it implies that the formal expression 793

encompasses multiple solutions, leading the strategy to reject the answer as it violates the uniqueness of 794

the answer. 795

To be precise, in the solution phase, our strategy let the SMT solver return four possible different values: 796

• Error: Indicates that the modeling cannot be successfully completed. Similar to a compilation error, 797

we do not consider it as a valid state. 798

• UNSAT: Indicates that the modeling state cannot be satisfied, there are contradictory conditions, and 799

the answer is rejected. 800

• Multi: We believe that the question is ambiguous, resulting in multiple solutions, and the answer is 801

rejected. 802

• Ans: Returns a normal real number, representing the answer to the question. 803

A.2.4 A example for VCSEARCH 804

Our approach to determining variable-constraint relationships is as follows: 805

• Preparation Phase (Variables → Constraints): For a given variable, directly retrieve all constraints 806

containing that variable from the constraint pool. 807

• Update Phase (Constraints → Variables): For a given constraint, we identify all new associated 808

variables in it. 809

To further illustrate this method, we present a concrete example using a contra-type problem in PMC 810

(example 8) to demonstrate the search process: 811
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Example 6: prompts used in VCSEARCH-1

Refine module prompt
I have previously asked you to write Z3 constraints for a problem. However, the current set of constraints for the variable
may have omissions or errors. I would like you to review it from the following two aspects and make appropriate
modifications if necessary:
1. Based on the problem description, consider whether the current constraints accurately capture the problem.
2. Add constraints based on real-world knowledge, considering whether there are any missing modeling statements,
such as the quantity of items should be >= 0, or the relationships between the sides of a triangle.
Please note that you only need to add constraints to the CURRENT HEAD VARIABLE; in other words, the new
constraints MUST include the head variable!
You can first provide your thought process, and then write the new constraints that include the head variable after the
identifier <SOS>

You can follow the example:

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This

increased the value of the house by 150%, but the market value of the house after repairs is only $100,000. How much

profit did he make?

Existing Constraints:

solver.add(initial-cost == 80000)

solver.add(total-investment == initial-cost + repair-cost)

solver.add(repair-cost == 50000)

solver.add(increased-value-percentage == 0.5) # 150% increase

solver.add(expected-value == initial-cost * (100 + increased-value-percentage))

solver.add(market-value-after-repairs == 100000)

solver.add(total-investment >= 0)

solver.add(profit == market-value-after-repairs - total-investment)

solver.add(profit >= 0)

solver.add(expected-value >= 0)

Now head variable: expected-value

Now existing constraints with head variable:

solver.add(expected-value == initial-cost * (100 + increased-value-percentage))

solver.add(expected-value >= 0)

Answer:

1. For the constraint expected-value == initial-cost * (100 + increased-value-percentage), the equation for expected-value

in the problem should be initial-cost * (1 + increased-value-percentage). Therefore, this constraint should be modified

to solver.add(expected-value == initial-cost * (1 + increased-value-percentage)).

2. For the constraint solver.add(expected-value >= 0) aligns with real-world requirements. Additionally, since expected-

value is an unknown variable, it is appropriate to add real-world constraints, so this should be retained.

3. Furthermore, expected-value and market-value-after-repairs refer to the same entity in the problem, so a constraint

should be added: market-value-after-repairs == expected-value.

<SOS>

So, new Constraints with head variable is

solver.add(expected-value == initial-cost * (1 + increased-value-percentage))

solver.add(expected-value >= 0)

solver.add(expected-value == market-value-after-repairs)

Question:{question}

Existing Constraints:{constraint}

Now head variable:{head}

Now existing constraints with head variable:{constrain-head}

Answer:
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Example 7: prompts used in VCSEARCH-2

Verification module prompt
Please judge which set of constraints is better for the given problem, including all constraints of
variable "X".
Problem: {question}
variable:{head}
Constrains set1:{cons1}
Constrains set1 ans:{cans1}
Constrains set2:{cons2}
Constrains set2 ans:{cans1}
Please write down your thinking process first, and finally output, "I think Constrains set1 is better",
or "I think Constrains set2 is better".

A.3 Details of Experiment 812

A.3.1 Setup 813

Compared methods. We selected three representative few-shot prompting methods, along with the zero- 814

shot method that utilizes the intrinsic capabilities of the model, and compared them with our proposed 815

VCSEARCH method. The methods are introduced as follows: (1)Basic, which is the zero-shot baseline 816

method, directly feeds the problem and instructions to the LLMs without any example problem in the 817

context. (2)CoT, (Wei et al., 2022), requires the model to explicitly output intermediate step-by-step 818

reasoning through natural language before providing the final answer. (3)PAL (Gao et al., 2023), converts 819

each step of problem-solving into a programming language format and subsequently utilizes an external 820

programming language interpreter for execution, thereby obtaining the results. (4)Satlm (Ye et al., 2024), 821

utilizes SMT-LIB to model the problems, then uses an external SMT solver to check for a feasible solution 822

to the problem as well as obtain the ground-truth answer. 823

Prompts. For the few-shot prompting methods, we prepared four contextual examples (4-shot) for each 824

method, consisting of two well-defined problems and two ill-defined problems. In the system prompt, we 825

explicitly informed the model about the potential presence of ill-defined problems. If the model determines 826

that a problem is unsolvable, it is instructed to output a statement containing the term "unsolvable." This 827

allows us to evaluate whether the model successfully identifies ill-defined problems. 828

Set up details for Sec4.3. At this part, we employed a balanced sampling strategy to fairly assess 829

the ability to identify ill-posed problems and solve well-defined problems simultaneously. (with a 830

solvable/unsolvable problem ratio of α = 1 : 1), selecting 500 samples from the ill-defined problem 831

set (Table 1) and the well-defined problem set (Table 2) to construct a 1000-sample test set. After three 832

repeated experiments, we report the mean ± standard deviation in Table 3. 833

A.3.2 Prompts used in Preliminary experiments 834

We show the prompts we use in preliminary experiments to reflect the trade-off dilemma with examples 9. 835

836

A.3.3 More experiment results 837

Table 6: R-Rate on MathTrap

Model Deepcoder Qwen7b Qwen3b Qwen1.5b
Zero 22.95 15.57 15.57 13.72
Ours 65.57 86.06 88.89 74.59

Here, we also tested our method on several other benchmarks that involve refusal to answer. Our method 838

also demonstrated superior performance on MathTrap. However, MathTrap’s mathematical problems 839
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Example 8: Example in VCSEARCH

"Josh decides to try flipping a house. He buys a house for 80,000 and then puts in 50,000 in
repairs. This increased the value of the house by 150%, but the market value of the house is only
$100,000. How much profit did he make?"
After the initialization step, we obtain an initial constraint system, represented in Python Z3 code.
This system consists of a variable queue and a constraint pool.
Variables:

"initial-cost", "repair-cost", "increased-value-percentage",
"expected-value", "market-value-after-repairs", "profit",
"total-investment"

Constraints:

initial-cost == 80000
repair-cost == 50000
market-value-after-repairs == 100000
increased-value-percentage == 0.5
total-investment == initial-cost + repair-cost
expected-value == initial-cost * (100 + increased-value-percentage)
profit == market-value-after-repairs - total-investment

After the Initialization, assume that the first element in the variable queue is "expected-value",
we will demonstrate a single iteration of the search process.

Preparation
Identify constraints involving this variable "expected-value":

expected-value == initial-cost * (100 + increased-value-percentage)

Exploration
Utilize LLM knowledge to refine the constraints by generating a constraints set with the head
variable "expected-value":

expected-value == initial-cost * (basic_multiplier + increased-value-percentage)
basic_multiplier == 1

Verification
Compare the original constraint system with the refined one and select the better version.
(In this case, the newly generated constraint set is selected).

Update
Replace the outdated constraint with the refined one.
Identify any newly introduced variables (e.g., "basic_multiplier") and append them to the tail
of the variable queue for subsequent iterations.
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Example 9: prompts used in Preliminary experiments

Pure prompt for ill-defined problem
Now we have some math problems that may be ill-defined. Please judge whether they are indeed
ill-defined (no unique real number solution can be determined). If there is indeed no solution,
answer true, otherwise answer false. Explain the reason first and then answer.

Pure prompt for well-behaved problem
You’re an experienced elementary school teacher, and I’m now expecting you to solve some math
problems.

Mixed prompts
You’re an experienced elementary school teacher, and I’m now expecting you to solve some math
problems. If you find these problems unsolvable, please output “this is unsolvable”. Or please
solve this answer, and give the final answer with format "The answer is X"

involve a significant amount of geometry and algebra, which are not well-suited for formal tool modeling. 840

This is also not suitable for methods such as PAL. So we only compare ours with zero-shot method. In 841

such scenarios, our method adopts a relatively conservative approach, rejecting any problem it cannot 842

confidently solve in order to maintain the safety of the reasoning system. 843

A.3.4 Discussion about reasoning in realistic scenarios 844

Discussion of dataset ratios 845

In our paper, we adopted a balanced setting(i.e.,Dw : Di = 1 : 1) to measure the reaction score. This 846

balanced approach allows us to evaluate the capability of methods to both answer well-defined problems 847

and reject ill-defined problems with equal importance. This evaluation strategy is analogous to how 848

imbalanced classification studies often report balanced metrics to properly assess model performance 849

across all classes (Thabtah et al., 2020). By maintaining this balanced setting, we provide a more 850

comprehensive and fair assessment of each method’s capabilities of answering and rejecting. Additionally, 851

we compared the R-score performance across different dataset ratios (defined as α = Dw : Di) on the 852

Qwen1.5B model, and our method consistently demonstrated superior results. 853

Table 7: Performance among different data ratios

α 0.2 0.5 1 2 5

CoT 44.61± 1.02 49.58± 2.00 53.91± 1.16 58.96± 0.78 62.83± 1.55
CoT + Ours 64.40± 0.43 64.05± 0.60 63.26± 0.84 64.33± 0.89 62.91± 0.79
PAL 16.01± 0.66 24.03± 1.12 32.85± 1.00 41.15± 0.49 49.53± 2.89
PAL + Ours 65.26± 1.54 62.46± 0.22 62.28± 0.65 58.55± 1.13 58.84± 0.56

More convincing metrics 854

To prevent excessive score inflation through question rejection (where rejecting all questions would 855

yield only 50% of the total score), we introduce the R*-score metric as below 856∑
p∈Di

I[f(p) = Reject] +
∑

p∈Dw
I[f(p) = g(p)]

|Di|+ |Dw|
857

◁ ▷ 858

We evaluate our method under balanced settings and present the results in the following table. Our 859

approach maintains superior performance in most scenarios(R*-score), demonstrating that our performance 860

gains do not stem from simply rejecting most questions. 861
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Table 8: Perfomance among R-score and R*-score

Qwen 1.5B Qwen 3B

Method R-score R*-score R-score R*-score

CoT 53.91± 1.16 51.10± 2.08 65.93± 0.73 65.10± 1.04
CoT + Ours 63.26± 0.84 53.10± 0.06 73.98± 0.28 66.93± 0.28
PAL 32.85± 1.00 30.63± 0.18 48.56± 0.22 47.66± 0.49
PAL + Ours 62.28± 0.65 51.90± 1.15 74.08± 1.17 65.73± 1.30
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