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ABSTRACT

We propose Scalable Message Passing Neural Networks (SMPNNs) and demonstrate
that, by integrating standard convolutional message passing into a Pre-Layer Normal-
ization Transformer-style block instead of attention, we can produce high-performing
deep message-passing-based Graph Neural Networks (GNNs). This modification yields
state-of-the-art results in large graph transductive learning, outperforming the best
Graph Transformers in the literature without requiring the otherwise computationally
and memory-expensive attention. Our architecture not only scales to large graphs
but also makes it possible to construct deep message-passing networks, unlike simple
GNNs, which have traditionally been constrained to shallow architectures due to over-
smoothing. Moreover, we provide a new theoretical analysis of oversmoothing based
on universal approximation which we use to motivate SMPNNs.

1 INTRODUCTION

Traditionally, Graph Neural Networks (GNNs) (Scarselli et al., 2009) have primarily been applied to
model functions over graphs with a relatively modest number of nodes. However, recently there has
been a growing interest in exploring the application of GNNs to large-scale graph benchmarks, including
datasets with up to a hundred million nodes (Hu et al., 2020). This exploration could potentially lead to
better models for industrial applications such as large-scale network analysis in social media, where there
are typically millions of users, or in biology, where proteins and other macromolecules are composed of a
large number of atoms. This presents a significant challenge in designing GNNs that are scalable while
retaining their effectiveness.

To this end, we take inspiration from the literature on Large Language Models (LLMs) and propose a
simple modification to how GNN architectures are typically designed. Our framework, Scalable Message
Passing Neural Networks (SMPNNs), enables the construction of deep and scalable architectures that out-
perform the current state-of-the-art models for large graph benchmarks in transductive node classification.
More specifically, we find that following the typical construction of the Pre-Layer Normalization (Pre-LN)
Transformer formulation (Xiong et al., 2020) and replacing attention with standard message-passing
convolution are enough to outperform the best Graph Transformers in the literature. Moreover, since our
formulation does not necessarily require attention, our architecture scales better than Graph Transformers.
Attention can also be easily incorporated into our framework if needed; however, in general, we find that
adding attention, at least for large-scale graph transductive learning, only leads to marginal improvements
in performance at the cost of being more computationally demanding.

Our empirical observations, which demonstrate that SMPNNs can use many layers unlike traditional
GNNs, are supported by recent theoretical studies on oversmoothing and oversharpening in graph
convolutions (Giovanni et al., 2023) and Transformers (Dovonon et al., 2024). These studies suggest
the crucial role of residual connections in mitigating oversmoothing and low-frequency dominance in
representations. It is worth noting, however, that the aforementioned works primarily approached this
issue from a theoretical standpoint and did not scale to large graph datasets. Expanding upon previous
theoretical studies on oversmoothing, we provide a universal approximation perspective. Specifically, we
demonstrate that residual connections, such as those found in the Transformer block architecture and
other newer blocks utilized in the LLM literature, like the Mamba block (Gu & Dao, 2023), are essential
for preserving the universal approximation properties of downstream classifiers.
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Contributions. We propose Scalable Message Passing Neural Networks (SMPNNs), a framework
designed to scale traditional message-passing GNNs. Our main contributions are the following:

(i) The SMPNN architecture can scale to large graphs thanks to its O(E) graph convolution
computational complexity, outperforming state-of-the-art Graph Transformers for transductive
learning without using global attention mechanisms. It also enables deep message-passing GNNs
without suffering from oversmoothing, a problem that has traditionally limited these networks to
shallow configurations.

(ii) We theoretically analyze the advantages of our architecture compared to traditional convolutions
over graphs from a universal approximation perspective. Importantly, unlike previous works, we
do not rely on the asymptotic convergence of the system to explain its behaviour.

(iii) We perform extensive experiments in large-graph transductive learning as well as on smaller
datasets and demonstrate that our model consistently outperforms recently proposed Graph
Transformers and other traditional scalable architectures. We also conduct ablations and addi-
tional experiments to test the importance of the different components of our architecture and
support our theoretical claims.

2 BACKGROUND

Graph Representation Learning and Notation. We denote a graph with G = (V, E), where V represents
a set of nodes (or vertices), and E ⊆ (V×V) is a set of 2-tuples signifying edges (or links) within the graph.
For any pair of nodes vi and vj within G, their connection is encoded as (vi, vj) ∈ E if the edge originates
from vi and terminates at vj . The (one-hop) neighborhood of node vi, constitutes the set of nodes sharing
an edge with vi, denoted by N (vi) = {vj |(vi, vj) ∈ E}. To encode the structural connectivity amongst
nodes in a graph of N = |V| nodes and E = |E| edges, an adjacency matrix A ∈ RN×N is employed.
This adjacency matrix may adopt a weighted or unweighted representation. In the case of a weighted
adjacency matrix, the entries Aij ∈ R symbolize the strength of the connection, with Aij = 0 denoting
absence of a connection if (vi, vj) /∈ E . Conversely, in an unweighted adjacency matrix, Aij = 1 signifies
the presence of an edge, and Aij = 0 otherwise. The degree matrix D ∈ RN×N is defined as the matrix
where each entry on the diagonal is the row-sum of the adjacency matrix: Dii =

∑
j Aij . Based on

this, we can define the graph Laplacian as L = D −A. The normalized graph Laplacian, denoted as
Lnorm = I−D− 1

2AD− 1
2 , is a variation of the graph Laplacian that takes into account the degrees of the

nodes. Additionally, within our context, we are interested in graphs with node features. Each node vi ∈ V
is accompanied by a D-dimensional feature vector xi ∈ R1×D. The feature vectors for all nodes within
the graph can be aggregated into a single matrix X ∈ RN×D by stacking them along the row dimension.

Message Passing Neural Networks (MPNNs) are a class of Graph Neural Networks (GNNs). MPNNs
operate by means of message passing, wherein nodes exchange vector-based messages to refine their
representations, leveraging the graph connectivity structure as a geometric prior. Following Bronstein
et al. (2021), a message passing GNN layer l (excluding edge and graph-level features for simplicity) over
a graph G is defined as:

x
(l+1)
i = ϕ

(
x
(l)
i ,

⊕
j∈N (vi)

ψ(x
(l)
i ,x

(l)
j )

)
, (1)

where ψ denotes a message passing function,
⊕

is some permutation-invariant aggregation operator, and
ϕ is a readout or update function. Both ψ and ϕ are learnable and typically implemented as MLPs. It is
important to note that the update equation is local, and that at each layer each node only communicates
with its one-hop neighborhood given by the adjacency matrix of the graph. More distant nodes are
accessed by stacking multiple message-passing layers.

Graph Convolutional Networks (GCNs) implement a special type of message passing of the following
form: X(l+1) = ζ

(
ÃX(l)W(l)

)
, (2)

where ζ is a non-linear activation function, W(l) is a learnable weight matrix, and Ã is computed as a
function of the degree matrix and the adjacency matrix. The features are aggregated row-wise:(

ÃX(l)
)
i
= ciix

(l)
i +

∑
j∈N (vi)

cijx
(l)
j ; cij =

1√
deg(vi)deg(vj)

. (3)
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Transformers. The Transformer architecture (Vaswani et al., 2017b) is characterized by its all-to-all
pairwise communication between nodes via the scaled dot-product attention mechanism. Transformers
can be seen as an MPNN on a fully-connected graph (Sáez de Ocáriz Borde, 2024; Bronstein et al.,
2021), where all nodes are within the one-hop neighborhood of each other in every layer. This avoids
issues in capturing long-range dependencies inherent to message passing, since they are all connected.
However, Transformers discard the locality inductive bias of the input graph. Given input query, key, and
value matrices, Q = XWQ, K = XWK , V = XWV ∈ RN×D (where for simplicity we assume the
feature dimensionality of these matrices is kept the same as the original node features, X ∈ RN×D), the
self-attention operation in the encoder blocks computes:

X′ = softmax(QKT /
√
D)V. (4)

Attention is challenging to scale to large graphs due to its computational complexity of O(N2) in the
number of nodes. Large-scale Graph Transformers typically replace this operation with linear attention to
avoid GPU memory overflow.

Large Graph Transformers. The emergence of large-scale graph-structured datasets such as social
networks has led to increased recent interest in scaling GNNs to very large graphs with up to hundreds of
millions of nodes. Large-scale graph learning settings are often transductive learning, where one is given
a fixed graph with partially labeled nodes and attempts to infer the properties of the missing nodes. While
Graph Transformers currently produce state-of-the-art results, their main challenge is the computational
complexity of attention for a large number of nodes, which is equivalent to very long context windows in
LLMs. Techniques aiming at solving this problem include architectures such as Nodeformer (Wu et al.,
2022), which utilizes a kernelized Gumbel-Softmax operator, Difformer (Wu et al., 2023a), which builds
on recent advances in graph diffusion, and SGFormer (Wu et al., 2023b), which utilizes a single linear
“attention” operation without the softmax activation to avoid computational overhead when scaling to
graphs with up to a hundred million nodes. Other architectures such as Exphormer (Shirzad et al., 2023)
use sparse attention mechanisms based on expander graphs to aid scaling. Additionally, Exphormer also
uses linear global attention with respect to a virtual node in parallel to the expander graph. Some of the
aforementioned architectures rely on the GPS Graph Transformer framework (Rampášek et al., 2022),
which combines attention with standard message-passing GNN layers and computes both in parallel in
the form of a hybrid architecture. Other scalable architectures that are not based on Transformers, such as
SGC (Wu et al., 2019) and SIGN (Frasca et al., 2020), have been developed for large-scale graphs, but
their performance is generally worse than that of Graph Transformers, as shown in Section 5.

3 SCALABLE MESSAGE PASSING NEURAL NETWORKS

3.1 MOTIVATION

In the GNN literature, it has been shown that graph convolutions can exhibit asymptotic behaviors other
than over-smoothing in the limit of many layers when equipped with residual connections (Giovanni et al.,
2023). This theoretical observation aligns with well-known best practices in the LLM community (Vaswani
et al., 2017b; Touvron et al., 2023; Brown et al., 2020), which is highly experienced with both large-scale
datasets and models. In this work, we aim to bridge the gap between the GNN and LLM literature and
benefit from the cross-pollination of ideas.

Packaging Attention and Message-Passing. Attention has been much emphasized in the literature
and, although it is certainly paramount, the importance of the other components around it should not
be underestimated. Interestingly, in retrospect, the ubiquitous attention mechanism used in LLMs had
already been proposed (Bahdanau et al., 2016) before the Transformer architecture (Vaswani et al., 2017a);
however, it was not until it was “packaged” into the Transformer block that we know today, that it really
led to the recent breakthroughs in language modeling. The scaled-dot-product attention mechanism
(and its variants) in Transformers can be seen as message-passing attentional GNNs over a complete
graph (Sáez de Ocáriz Borde, 2024; Bronstein et al., 2021). It is well-known among practitioners in
the LLM community that this operation struggles to learn effectively without residual connections. Yet,
traditional GNN architectures simply stack message-passing layers one after the other (Kipf & Welling,
2017a; Schlichtkrull et al., 2017; Veličković et al., 2018a), which seems to contradict the modus operandi
of large-scale model engineering.
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The main motivation of our paper is to demonstrate that the standard architectural packaging approaches
used in NLP and LLMs are also applicable to GNNs, and that the standard attention mechanism used in
Transformers can be substituted with message-passing layers.

3.2 ARCHITECTURE DESIGN AND THE SCALABLE MESSAGE PASSING BLOCK

Drawing from theoretical observations in the GNN literature and best practices in language modeling, we
propose the following architecture, which is similar to the Transformer and comprises two parts: initial
nodewise message-passing, analogous to tokenwise communication, and a pointwise feedforward layer to
transform the feature vector of each node in isolation. Unlike the Transformer, however, our architecture
has linear rather than quadratic scaling.

SMPNN SMPNN Block

Pointwise FF

GCN

Input 

Projection

Output 

Projection

SMPNN

Block

Scale

Pointwise 
Feedforward

Layer Norm

Scale

GCN

Layer Norm

Graph Conv.

SiLU

SiLU

Linear Proj.

Linear Proj.

Figure 1: The Scalable Message Passing Neural
Network (SMPNN) architecture. Left: The full
model is comprised of N transformer-style blocks
stacked one after the other. The model also uses
input and output feedforward layers to project node
features to the hidden and output dimensions. Middle:
Architecture of a single SMPNN block as described
in Section 3.2. Right: Zoom into the GCN block
and the Pointwise FeedForward network with SiLU
activation functions.

The Transformer Block. The original Trans-
former architecture has proven surprisingly robust,
and the only main modification it has undergone
since its inception is the change in the location of
the normalization, which is now applied before
attention. Indeed, the advantages of applying layer
normalization (Ba et al., 2016) before, as in the
Pre-LN Transformer, have already been studied
both theoretically (Xiong et al., 2020) and em-
pirically in the literature (Baevski & Auli, 2019;
Child et al., 2019; Wang et al., 2019), and we will
also follow this in our implementation. Before the
Transformer, residual connections were already a
common component in most deep architectures
for vision and language tasks since being popu-
larized by the ResNet model (He et al., 2015). In
the LLM literature, even when alternatives to at-
tention have been proposed, such as Mamba (Gu
& Dao, 2023), operations that perform token-wise
communication (equivalent to message-passing be-
tween nodes) are always accompanied by residual
connections, as well as linear projections, normal-
ization, and sometimes gatings.

Message-Passing. We integrate a standard GCN layer into the Pre-LN Transformer style block. In
particular, a single block applies the following sequence of transformations to the input matrix of node
features X(l) ∈ RN×D, where N is the number of nodes and D is the dimensionality of the feature
vectors:

H
(l)
1 = LayerNorm(X(l)). (5)

Next a GCN layer (plus additional components) is used for nodewise local communication instead of the
standard global self-attention:

H
(l)
2 = α

(l)
1 SiLU

(
ÃH

(l)
1 W

(l)
1

)
+X(l), (6)

where Ã, the degree-normalized adjacency matrix is Ãi,j = 1/
√
deg(vi) deg(vj) if vi and vj are

neighbours and 0 otherwise. SiLU(x) = x
1+e−x and it is applied elementwise. We also introduce a

scaling factor α(l)
1 which is initialized at 10−6 for applying identity-style block initialization (Peebles &

Xie, 2023). Importantly, the layer defined in equation 6 contains a residual connection, the importance of
which will be theoretically justified in Section 4.

Pointwise-feedforward. The second part of the block is a pointwise transformation of the feature vectors
preceded by another learnable normalization:

H
(l)
3 = LayerNorm(H

(l)
2 ), (7)

X(l+1) = H
(l)
4 = α

(l)
2 SiLU(H

(l)
3 W

(l)
2 ) +H

(l)
2 , (8)
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where similar to before, we introduce the learnable scaling α(l)
2 , also initialized at 10−6.

Our Scalable Message Passing Neural Network block is thus of the form X 7→ H4. In Figure 1, we
display the complete SMPNN architecture at different levels of granularity, which consists of stacking
multiple instances of the aforementioned block. In Appendix A, we discuss how to augment SMPNNs
with attention, although we find that this only leads to minor performance improvements, see Table 2 in
Section 5.
3.3 COMPUTATIONAL COMPLEXITY AND COMPARISON WITH GRAPH TRANSFORMERS

In Table 1, we compare the computational complexity of SMPNNs to that of various Graph Transformers
in the literature. Our model’s graph convolution layer inherits the computational cost of GCNs, O(E),
assuming a sparse representation of the adjacency matrix (Kipf & Welling, 2017b). Graph Transformers
such as SGFormer use both graph convolutions and linear attention, resulting in a total cost of O(N +E)
in terms of nodewise communication operations. Note that although we are highlighting the complexity
of graph convolution compared to that of linear attention, O(N), given our architecture also has other
components that act pointwise such as linear layers (like all architectures in general) it is more accurate to
think of the overall complexity of SMPNNs as being O(N + E). Unlike other models, we do not apply
O(N3) pre-processing steps (Dwivedi & Bresson, 2021; Ying et al., 2021; Chen et al., 2022; Hussain et al.,
2022; Rampášek et al., 2022), which would be prohibitively expensive for the large graph datasets we are
targeting. Additionally, our model does not require positional encodings, attention, augmented training
loss, or edge embeddings to achieve competitive performance. We would like to highlight that the majority
of Graph Transformers in Table 1 have been designed for smaller graphs and have only been demonstrated
on datasets with thousands of nodes or fewer due to their quadratic complexity. Our main competitors
are therefore NodeFormer (Wu et al., 2022), DIFFormer (Wu et al., 2023a), and SGFormer (Wu et al.,
2023b), which have managed to scale to millions of nodes using less expressive or simplified versions of
attention without quadratic complexity.

Table 1: Comparison of model components used by different Graph Transformers: Positional Encod-
ings (PE), Multihead Attention (MA), Augmented Training Loss (ATL), and Edge Embeddings (EE). We
also report whether the model uses All-Pair communication (typically implemented as some variant of
attention), the Pre-processing and Training computational complexity, and the largest graph for which the
method’s performance has been reported. *Random regular expander graph generation is needed, and
graphs that fail to be near-Ramanujan are discarded and regenerated.

Model Model Components All-Pair Pre-processing Training Largest Demo

PE MA AL EE

GraphTransformer (Dwivedi & Bresson, 2021) ✓ ✓ ✗ ✓ ✓ O(N3) O(N2) 0.2K
Graphormer (Ying et al., 2021) ✓ ✓ ✗ ✓ ✓ O(N3) O(N2) 0.3K
GraphTrans (Jain et al., 2021) ✗ ✓ ✗ ✗ ✓ - O(N2) 0.3K
SAT (Chen et al., 2022) ✓ ✓ ✗ ✗ ✓ O(N3) O(N2) 0.2K
EGT (Hussain et al., 2022) ✓ ✓ ✓ ✓ ✓ O(N3) O(N2) 0.5K
GraphGPS (Rampášek et al., 2022) ✓ ✓ ✗ ✓ ✓ O(N3) O(N + E) 1.0K
Gophormer (Zhao et al., 2021) ✓ ✓ ✓ ✗ ✗ - O(Nsm2) 20K
Exphormer (Shirzad et al., 2023) ✓ ✓ ✗ ✓ ✓ * O(N + E) 132K

NodeFormer (Wu et al., 2022) ✓ ✓ ✓ ✗ ✓ - O(N + E) 2.0M
DIFFormer (Wu et al., 2023a) ✗ ✓ ✗ ✗ ✓ - O(N + E) 1.6M
SGFormer (Wu et al., 2023b) ✗ ✗ ✗ ✗ ✓ - O(N + E) 100M

SMPNN ✗ ✗ ✗ ✗ ✗ - O(N + E) 100M

4 THEORETICAL JUSTIFICATION

In this section, we theoretically justify our architectural design. First, we review some theoretical findings
from the literature that hint at the importance of residual connections to avoid oversmoothing in message-
passing convolutions over graphs; moreover, by the results of Riedi et al. (2023) they make the loss
landscape of the deep learning model much less jagged. Inspired by these results, we further extend the
analysis through the lenses of universal approximation.

4.1 OVERSMOOTHING

Oversmoothing is regarded as the tendency of node features to approach the same value after several
message-passing transformations. This phenomenon has prompted the adoption of relatively shallow

5
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GNNs, as adding many layers has traditionally resulted in node-level features that are too similar to each
other and, hence, indistinguishable for downstream learners. This has hindered scalability and led to
models with orders of magnitude fewer parameters than, for instance, counterparts in the literature on 2D
generative modelling (Esser et al., 2024) and LLMs (Touvron et al., 2023), which have already adopted
architectures with billions of parameters.

In general, standalone message-passing GNNs tend to behave as low-pass filters and may consequently
lead to oversmoothing. However, this does not always need to be the case: graph convolution can
also magnify high frequencies if it is augmented with residual connections. Following (Giovanni et al.,
2023), message-passing is characterized as being low- frequency dominant (LFD) or high-frequency
dominant (HFD) depending on the asymptotic behavior of the normalized Dirichlet energy of the system
as the number of diffusion layers l → ∞. These lead to oversmoothing and oversharpening, respectively.
Definition 4.1 (Graph Dirichlet Energy of a Message Passing System (Zhou & Scholkopf, 2005)). We
define the Dirichlet Energy as a map EDir : RN×D → R

EDir(X)
def.
=

1

2

∑
i,j∈E

||(∇X)ij ||2 ; (∇X)ij
def.
=

xj√
deg(vj)

− xi√
deg(vi)

, (9)

where (∇X)ij is the edge-wise gradient of the graph node features X ∈ RN×D.

Definition 4.2 (Graph Frequency Dominance (Giovanni et al., 2023)). We say a message passing GNN
is LFD if its normalized Dirichlet energy EDir(X(l))/||X(l)||2 → λ1 = 0 for l → ∞ and HFD if
EDir(X(l))/||X(l)||2 → λn for l → ∞, where X(l) encapsulates the node level features at a given
layer l and 1 ⩽ λn < 2 (Chung, 1996) is the largest eigenvalue whose corresponding eigenvector of the
normalized graph Laplacian captures fine-grained microscopic behavior of the signal on the graph.

In particular, the above characterization relies on analyzing message-passing from the perspective of
gradient flows in the limit of infinitely many layers. Although analyzing the asymptotic behavior of
GNNs is interesting from a theoretical perspective, the normalized Dirichlet energy is not directly
predictive of model success, since both over-smoothing and over-sharpening will lead to degradation in
performance (Giovanni et al., 2023). We provide an alternative perspective through the lens of universal
approximation, which does not rely on asymptotic behavior. Specifically, we demonstrate that the universal
approximation property of downstream classifiers is compromised when passing input features through
graph convolution layers, but it can be restored with a residual connection.

4.2 UNIVERSALITY AND RESIDUAL CONNECTIONS

We will use C(RN×D) to denote the set of continuous functions from RN×D to R, when both are equipped
with the (only) norm topologies thereon. We use MLPN×D to denote the set of MLPs from RN×D to
R with a SiLU activation function. We consider a class of models to be expressive if it is a universal
approximator, in the local uniform sense of Hornik et al. (1989); Kidger & Lyons (2020); Duan et al.
(2023); Yarotsky (2024), meaning that it can approximately implement any continuous function uniformly
on compact sets.
Definition 4.3 (Universal Approximator). A subset of models F ⊆ C(RN×D) is said to be a universal
approximator in C(RN×D) if: for each continuous target function f : RN×D → R, each uniform
approximation error ε > 0 and every non-empty compact set of inputs K ⊂ RN×D, there exists some
model f̂ ∈ F such that

max
X∈K

|f(X)− f̂(X)| < ε. (10)

We will consider two classes of models, highlighting the key benefits and drawbacks of adding versus
omitting residual connections in graph convolution layers (Equation 2). Fix a matrix W ∈ RD×D and a
connected graph G on N nodes.

No Residual Connection. Consider the class FG,W which consists of all maps f̂ : RN×D → R

f̂ = MLP ◦Lconv
G,W ; Lconv

G,W(X)
def.
= ÃXW, (11)
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where MLP ∈ MLPN×D and Ã is the degree-normalized adjacency matrix. The class FG,W is the
stylized representation of GCN models without a residual connection.

Residual Connection. We benchmark this class against a simplified version of our SMPNN block. Again,
fixing W and a connected graph G on N nodes. This class, denoted by F residual

G,W , consists of maps
f̂ : RN×D → R with representation

f̂ = MLP ◦Lconv+r
G,W ; Lconv+r

G,W (X)
def.
= ÃXW +X, (12)

We emphasize that the MLPs within both sets, FG,W and F residual
G,W , are identical. Hence, there are no

inherent advantages or disadvantages between them; the sole discrepancy lies in the presence or absence
of a residual connection. The following set of results provides a counter-example to the universality
of FG,W when G is a complete graph. We shows that this deficit it not an issue when incorporating a
residual connection as F residual

G,W is universal.

In general, analyzing the expressive power of GNNs from the perspective of universal approximation
can be cumbersome due to the variety of vastly different graphs encountered in practice. However, the
importance of accompanying graph convolution with a residual connection can already be observed in
the case of a complete graph. Our first main finding is a negative result, showing that the universal
approximation property of MLPs is lost when passing input features through a graph convolution layer
with no residual connection for any learnable weight matrix W used in equation 11.
Theorem 4.4 (No Universal Approximation via Graph Convolution Alone). Let N,D be positive integers
with N ⩾ 2. Let G be a complete graph on N nodes. For any weight matrix W ∈ RD×D, the class
FG,W defined in equation 11 is not a universal approximator in C(RN×D).

This is contrasted against our positive result, which shows that the universal approximation property of
MLPs is preserved when passing input features through graph convolution with a residual connection.
Theorem 4.5 (Universal Approximation via Graph Convolution is Possible with Residual Connections).
Let N,D be positive integers. There exists a weight matrix W ∈ RD×D such that the class “with skip
connection” F residual

G,W is a universal approximator in C(RN×D).

Interestingly, a more technical version of Theorem 4.5 in the appendix of the paper (Theorem B.6), which
shows that the matrix W allows for universality to be regained through the skip connection is not obscure;
rather it can be explicitly constructed by sampling from a random Gaussian matrix. Furthermore such a
matrix is nearly always obtained in this manner with probability approaching 1 in high dimensions. All
proofs and derivations are provided in Appendix B.

This analysis supports our architectural choices in Section 3.2, which represent an amalgamation of best
practices in the LLM literature with the theoretical insights here presented concerning oversmoothing and
universality.

5 EXPERIMENTAL VALIDATION

We experimentally validate our architecture and compare it to recent state-of-the-art baselines. We
follow the evaluation protocol used in NodeFormer (Wu et al., 2022), DIFFormer (Wu et al., 2023a), and
SGFormer (Wu et al., 2023b). Additionally, we perform ablations and further experiments to verify the
theoretical analysis presented in Section 4. For details, refer to Appendix C.

Large Scale Graph Datasets (Table 2). We compare the performance of SMPNNs to that of Graph
Transformers tailored for large graph transductive learning, as well as other GNN baselines. Note that
most Graph Transformer architectures (Table 1) are difficult to scale to these datasets. We observe
that SMPNNs consistently outperform SOTA architectures without the need for attention. Augmenting
the base SMPNN model with linear attention (Appendix A) leads to improvements in performance of
under 1% only, while substantially increasing computational overhead. For instance, in the case of the
ogbn-products dataset, using the same hyperparameters, adding linear global attention with a single head
increases the total number of model parameters from 834K to 2.4M. The resulting performance gain of
only 0.18% requires thus more than twice as many parameters.
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Table 2: Test results (mean ± standard deviation over 5 runs) on large graph datasets. We report ROC-AUC
for ogbn-proteins and accuracy for all others, higher is better.

Dataset ogbn-proteins pokec ogbn-arxiv ogbn-products
Nodes 132,534 1,632,803 169,343 2,449,029
Edges 39,561,252 30,622,564 1,166,243 61,859,140
MLP 72.04 ± 0.48 60.15 ± 0.03 55.50 ± 0.23 63.46 ± 0.10
GCN (Kipf & Welling, 2017b) 72.51 ± 0.35 62.31 ± 1.13 71.74 ± 0.29 83.90 ± 0.10
SGC (Wu et al., 2019) 70.31 ± 0.23 52.03 ± 0.84 67.79 ± 0.27 81.21 ± 0.12
GCN-NSampler Kipf & Welling (2017b); Zeng et al. (2020) 73.51 ± 1.31 63.75 ± 0.77 68.50 ± 0.23 83.84 ± 0.42
GAT-NSampler Veličković et al. (2018b); Zeng et al. (2020) 74.63 ± 1.24 62.32 ± 0.65 67.63 ± 0.23 85.17 ± 0.32
SIGN (Frasca et al., 2020) 71.24 ± 0.46 68.01 ± 0.25 70.28 ± 0.25 80.98 ± 0.31

NodeFormer (Wu et al., 2022) 77.45 ± 1.15 68.32 ± 0.45 59.90 ± 0.42 87.85 ± 0.24
Difformer (Wu et al., 2023a) 79.49 ± 0.44 69.24 ± 0.76 64.94 ± 0.25 84.00 ± 0.07
SGFormer (Wu et al., 2023b) 79.53 ± 0.38 73.76 ± 0.24 72.63 ± 0.13 89.09 ± 0.10
SMPNN 83.15 ± 0.24 79.76 ± 0.19 73.75 ± 0.24 90.61 ± 0.05
SMPNN + Attention 83.65 ± 0.35 80.09 ± 0.12 74.38 ± 0.16 90.79 ± 0.04
Linear Transformer 60.87 ± 7.23 62.72 ± 0.09 58.02 ± 0.21 79.85 ± 0.08

Table 3: Test results (mean accuracy
± standard deviation) on
ogbn-papers-100M dataset.

Dataset ogbn-papers-100M
Nodes 111,059,956
Edges 1,615,685,872
MLP 47.24 ± 0.31
GCN 63.29 ± 0.19
SGC 63.29 ± 0.19
GCN-NSampler 62.04 ± 0.27
GAT-NSampler 63.47 ± 0.39
SIGN 65.11 ± 0.14
SGFormer 66.01 ± 0.37
SMPNN 66.21± 0.10

Most Graph Transformers in the literature use multiple attention
heads (Table 1); we experimented with up to 4 attention heads but
found differences in terms of performance not to be statistically
significant, which seems to align with the conclusions of (Wu et al.,
2023b). Furthermore, note that as reported in the OGB benchmark
paper (Hu et al., 2020), the Max Strongly Connected Component
Ratio (MaxSCC Ratio) for the node-level datasets used in these
experiments is 1.00 for all datasets (except for ogbn-products,
which is 0.97). This indicates that the entire graph is a single
strongly connected component, meaning every node is reachable
from every other node. Although this does not guarantee that
information bottlenecks will not be present, a high MaxSCC Ratio
denotes high inter-connectivity, where information or influence
can rapidly spread among a large proportion of the network, which
may explain why attention is not that important in such settings. Apart from SMPNN and SMPNN
augmented with attention, we also include a Linear Transformer baseline, which corresponds to removing
the GCN layer from our architecture and substituting local convolution with global linear attention. This
is also clearly worse than SMPNNs, which again verifies that in these datasets, the locality inductive bias
is important.

Table 4: Test results (mean MSE ± standard deviation over 5
runs) for spatio-temporal dynamics prediction datasets. Lower
is better. w/o g stands for without graph.

Dataset Chickenpox Covid WikiMath
MLP 0.924 ± 0.001 0.956 ± 0.198 1.073 ± 0.042
GCN 0.923 ± 0.001 1.080 ± 0.162 1.292 ± 0.125
GAT 0.924 ± 0.002 1.052 ± 0.336 1.339 ± 0.073
GCN-kNN 0.936 ± 0.004 1.475 ± 0.560 1.023 ± 0.058
GAT-kNN 0.926 ± 0.004 0.861 ± 0.123 0.882 ± 0.015
DenseGAT 0.935 ± 0.005 1.524 ± 0.319 0.826 ± 0.070

DIFFormer-s 0.914 ± 0.006 0.779 ± 0.037 0.731 ± 0.007
DIFFormer-a 0.915 ± 0.008 0.757 ± 0.048 0.763 ± 0.020
DIFFormer-s w/o g 0.916 ± 0.006 0.779 ± 0.028 0.727 ± 0.025
DIFFormer-a w/o g 0.916 ± 0.006 0.741 ± 0.052 0.716 ± 0.030
SMPNN 0.916 ± 0.006 0.756 ± 0.048 0.713 ± 0.032

100M Node Graph Dataset and Scal-
ability Experiments (Table 3). We
test the scalability of our pipeline on
the ogbn-papers-100M dataset. Our
main competitors are SIGN (Frasca
et al., 2020) and SGFormer (Wu et al.,
2023b), as other Graph Transformers
have not been able to scale to this
dataset. We outperform SGFormer with-
out requiring attention, again demon-
strating the scalability and effectiveness
of SMPNNs.

Additional Image, Text, and Spatio-
Temporal Benchmarks (Tables 5 and
4). For completeness, we also test our
architecture on image and text classification with low label rates, as well as on spatio-temporal dynamics
prediction, following (Wu et al., 2023a). Our model achieves the best performance in most configurations
for the CIFAR, STL, and 20News datasets. Likewise, in Table 4, SMPNNs are also competitive in
spatio-temporal prediction. These results demonstrate that our architecture is applicable to a variety of
tasks.
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Table 5: Test results (mean accuracy ± standard deviation over 5 runs) on Image and Text datasets.

Dataset CIFAR STL 20News
Labels 100 500 1000 100 500 1000 1000 2000 4000
MLP 65.9 ± 1.3 73.2 ± 0.4 75.4 ± 0.6 66.2 ± 1.4 73.0 ± 0.8 75.0 ± 0.8 54.1 ± 0.9 57.8 ± 0.9 62.4 ± 0.6
ManiReg 67.0 ± 1.9 72.6 ± 1.2 74.3 ± 0.4 66.5 ± 1.9 72.5 ± 0.5 74.2 ± 0.5 56.3 ± 1.2 60.0 ± 0.8 63.6 ± 0.7
GCN-kNN 66.7 ± 1.5 72.9 ± 0.4 74.7 ± 0.5 66.9 ± 0.5 72.1 ± 0.8 73.7 ± 0.4 56.1 ± 0.6 60.6 ± 1.3 64.3 ± 1.0
GAT-kNN 66.0 ± 2.1 72.4 ± 0.5 74.1 ± 0.5 66.5 ± 0.8 72.0 ± 0.8 73.9 ± 0.6 55.2 ± 0.8 59.1 ± 2.2 62.9 ± 0.7
Dense-GAT OOM OOM OOM OOM OOM OOM 54.6 ± 0.2 59.3 ± 1.4 62.4 ± 1.0
GLCN 66.6 ± 1.4 72.8 ± 0.5 74.7 ± 0.3 66.4 ± 0.8 72.4 ± 1.3 74.3 ± 0.7 56.2 ± 0.8 60.2 ± 0.7 64.1 ± 0.8

Difformer-a 69.3 ± 1.4 74.0 ± 0.6 75.9 ± 0.3 66.8 ± 1.1 72.9 ± 0.7 75.3 ± 0.6 57.9 ± 0.7 61.3 ± 1.0 64.8 ± 1.0
Difformer-s 69.1 ± 1.1 74.8 ± 0.5 76.6 ± 0.3 67.8 ± 1.1 73.7 ± 0.6 76.4 ± 0.5 57.7 ± 0.3 61.2 ± 0.6 65.9 ± 0.8
SMPNN 68.6 ± 1.8 76.2 ± 0.5 78.0 ± 0.3 67.9 ± 0.9 73.9 ± 0.7 76.7 ± 0.5 58.9 ± 0.8 62.7 ± 0.6 65.6 ± 0.6

Ablation on SMPNN Architecture Components. In Table 6, we conduct an ablation study. First,
we ablate the standard SMPNN architecture by removing residual connections after graph convolution
layers. In line with the theory presented in Section 4, we observe that this indeed has a significant
impact on model performance. Next, we test the effect of fixing the learnable scaling connections
(α(l)

1 = α
(l)
2 = 1,∀l) while retaining the residuals. This decreases performance for ogbn-proteins and

ogbn-arxiv, whereas it slightly increases performance for pokec and ogbn-products. We decide to keep
the scalings since they make the model more expressive in general. Additionally, we test removing the
pointwise feedforward transformation, which leads to a slight drop in performance for all datasets and
seems particularly relevant for ogbn-proteins. This experiment suggests that the most critical part of
the architecture is the message-passing component, as expected. Lastly, for completeness, we also test
removing the LayerNorm before the GCN, which generally leads to a drop in performance. However, in
the case of ogbn-arxiv, this configuration obtains a test accuracy of 74.46%, which outperforms all other
models and baselines. In conclusion, there is no free lunch; depending on the dataset, slight modifications
may lead to improved performance and, interestingly, have even more of an effect than augmenting
SMPNNs with linear attention. Nevertheless, we find that, in general, the standard SMPNN block is
robust and leads to SOTA results across several datasets.

Table 6: Results (mean test set accuracy ± standard deviation over 5
runs) for ablation studies on OGBN large graph datasets.

Model Removed ogbn-proteins pokec ogbn-arxiv ogbn-products
SGFormer N/A 79.53 ± 0.38 73.76 ± 0.24 72.63 ± 0.13 89.09 ± 0.10
SMPNN N/A 83.15 ± 0.24 79.76 ± 0.19 73.75 ± 0.24 90.61 ± 0.05
SMPNN Residual 68.49 ± 2.59 68.17 ± 8.22 39.67 ± 14.60 89.69 ± 0.05
SMPNN α 82.90 ± 0.34 80.10 ± 0.12 73.00 ± 0.59 90.77 ± 0.04
SMPNN FF 80.51 ± 0.61 78.40 ± 0.20 73.25 ± 0.58 90.01 ± 0.10
SMPNN GCN LNorm 80.74 ± 0.91 79.42 ± 0.15 74.46 ± 0.22 90.54 ± 0.08

Deep Models are Possible with
SMPNNs. It is well known
that conventional message-passing
GNNs (Kipf & Welling, 2017b;
Veličković et al., 2018a; Brody
et al., 2021) are restricted to shal-
low architectures, since their per-
formance degrades when stacking
many layers. Next, we demon-
strate that deep models are possi-
ble with SMPNNs. In particular, we perform an experiment in which we progressively increase the
number of SMPNN layers while keeping all other hyperparameters constant for the ogbn-arxiv and
ogbn-proteins datasets, from 2 to 12 layers. Adding up to 6 layers seems to improve performance, and it
plateaus thereafter. Additionally, we perform another experiment in which we follow the same procedure
but for an SMPNN without residual connections after convolutions. In this case, we observe a clear drop
in performance after 4 layers, which aligns with our theoretical understanding from Section 4. In the case
of classical GCNs we achieve best performance at 4 layers with a test set accuracy of 72± 1.20 and at 8
layers the performance already drops to 42.86± 28.03.

Table 7: Results (mean accuracy ± standard deviation over 5 runs) on deep SMPNN architectures.

ogbn-arxiv, No. layers
Model Removed 2 3 4 6 8 10 12

SMPNN N/A 73.18 ± 0.30 73.33 ± 0.38 73.65± 0.49 73.75 ± 0.24 73.71 ± 0.54 73.68 ± 0.51 73.73 ± 0.50
SMPNN Residual 72.56 ± 0.91 72.61 ± 0.83 71.38 ± 1.48 39.67 ± 14.60 25.87 ± 1.43 26.10 ± 1.68 26.59 ± 2.25

ogbn-proteins, No. layers
Model Removed 2 3 4 6 8 10 12

SMPNN N/A 81.44 ± 0.36 82.57 ± 0.45 82.64 ± 0.73 83.15 ± 0.24 83.36 ± 0.34 83.28 ± 0.36 83.45 ± 0.41
SMPNN Residual 76.83 ± 1.56 68.93 ± 2.41 69.98 ± 3.08 68.49 ± 2.59 64.22 ± 1.22 65.54 ± 0.99 65.90 ± 1.35
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Figure 2: Max GPU consumption versus number of
edges in the subgraph for SMPNN with 6 layers.

GPU Memory Scaling. We proceed to examine
the model’s scalability utilizing the ogbn-products
dataset and randomly sampling a subset of nodes
for graph mini-batching (from 10K to 100K), fol-
lowing the analysis in (Wu et al., 2023b). In Fig-
ure 2, we report the maximum GPU memory usage
in GB against the number of edges in the subgraph
induced by the sampled nodes. We can see that
it asymptotes towards linearity in the number of
edges as discussed in Section 3.3. For small sub-
graphs N dominates the complexity term and re-
sults in a steeper slope. Additionally, we compare
the computational overhead of different SMPNN
configurations to that of SGFormer on a Tesla
V100 GPU, see Figure 3. Interestingly, the scaling
factors α seem to have a substantial computational

impact as the number of nodes increases, which, combined with the ablations in Table 6, suggests it may
be better to remove it for very large graphs. Moreover, we find that the GPU consumption of SMPNNs
can be substantially reduced when omitting the pointwise feedforward part of the block. This reduces
computation cost substantially below that of SGFormer. Hence, one can trade GPU usage for performance:
note that as shown in Table 6, SMPNNs without feedforwards still outperform the SGFormer baseline.
SGFormer does not use feedforward networks or traditional attention mechanisms. Instead, it employs a
simplified linear version of attention and even omits the softmax activation function.

6 CONCLUSION
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Figure 3: Max GPU consumption versus the number
of nodes in the batch subgraph for different models
with 6 layers.

Our framework, Scalable Message Passing Neu-
ral Networks (SMPNNs), overcomes scalability
issues in traditional GNNs. SMPNNs scale ef-
ficiently to large graphs, outperforming Graph
Transformers without using global attention. They
also allow for deep architectures without degra-
dation in performance, a common limitation
of GNNs. Empirical validation across diverse
datasets confirms SMPNNs’ competitive perfor-
mance and validates the theoretical justification of
residual connections. The present work opens new
possibilities for leveraging deep architectures in
large-scale graph learning.

Ethical Statement Our model enhances deep
learning for large graphs and networks, which
could help social media companies track user be-
haviour. Since methods for large-scale machine
learning on graphs already exist, our improve-
ments would only slightly increase existing risks.
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A AUGMENTING SMPNNS WITH ATTENTION

SMPNNs, in principle, perform local convolution but can also be enhanced with attention. Here, we
discuss the specific attention mechanism implemented in our experiments.

Linear Global Attention. Global attention can be seen as computing message passing over a fully-
connected dense graph. In our block, attention is computed with respect to a virtual node, instead of the
full O(N2) attention. Linear attention is more suitable for scaling to large graphs. Given the input query,
key, and value matrices, Q = X(l)WQ ∈ RN×D, K = X(l)WK ∈ RN×D, V = X(l)WV ∈ RN×D

we apply the following operations. First, we compute a summed query value considering the contribution
from all nodes, and normalize both the query and key matrices:

Qsn =

∑N
i=1 Qi

||
∑N

i=1 Qi||2
∈ RD, Kn =

K

∥K∥2
∈ RN×D. (13)

Based on these we can compute attention

Aattention = softmax(QsnK
T
n ) ∈ R1×N , (14)

and use it to aggregate the values

X(l+1) = (Aattention ⊗ 1N )V ∈ RN×D, (15)

where 1N is a row vector of ones with dimension 1×N and ⊗ is the Kronecker product. The operation
Aattention ⊗ 1N results in and N × N matrix, with all rows sharing the same attention coefficients,
which is later multiplied by the value matrix V to obtain the final updated node features X(l+1). The
operations above can be extended to encompass multi-head attention. In such case we would have a total
of H attention heads and to compute the final global feature matrix we aggregate the contribution from all
heads:

X(l+1) =

H∑
h=1

(
A

(h)
attention ⊗ 1N

)
V(h) ∈ RN×D. (16)

Message-Passing with Parallel Attention. To augment SMPNN we use the following procedure:

H
(l)
1,local = LayerNorm(X(l)). (17)

H
(l)
2,local = SiLU

(
ÃH

(l)
1,localW

(l)
1

)
, (18)

H
(l)
1,global = LayerNorm(X(l)), (19)

H
(l)
2,global = LinearGlobalAttention

(
H

(l)
1,global

)
, (20)

H
(l)
2 = α

(l)
1

(
H

(l)
2,local +H

(l)
2,global

)
+X(l), (21)

where Layer Norms have different parameters for local and global features. Pointwise-feedforward
operations are kept as in the original SMPNN formulation.

The update equations above are reminiscent of hybrid Graph Transformers (Rampášek et al., 2022; Wu
et al., 2022; 2023a;b), and we find that they do not provide tangible improvements over standard SMPNNs.
Note that we also experimented with other attention mechanisms, which did not help.
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B PROOFS

This appendix contains all the proofs for our theoretical guarantees discussed in Section 4.2.

B.1 PROOFS FOR UNIVERSALITY

The proofs of both Theorems 4.4 and 4.5 revolve around verifying the conditions (or their failure) stated
in (Kratsios & Bilokopytov, 2020, Theorem 3.4). This result characterizes situations where a continuous
transformation of the inputs to a universal approximator preserves its universal approximation property.
Importantly, when the output space is Euclidean (e.g., R in our case), it is both necessary and sufficient
for the transformation applied to the input of the model class to be injective. Consequently, our proofs for
both results primarily focus on the injectivity (or lack thereof) of the feature transformations in equation 11
and equation 12, respectively

In what follows, for any activation function ζ : R → R we use MLPζ
N×D to denote the class of MLPs

with activation function ζ, mapping RN×D to R. Note that this is mildly more general than the class
MLPN×D considered in our main text, which used the specification ζ = SiLU. We consider the
following regularity condition on ζ.
Assumption B.1 (Regular Activation). The activation function ζ : R → R is continuous and either:

(i) Pinkus (1999): ζ is non-polynomial,

(ii) Kidger & Lyons (2020): ζ is non-affine and there exists some t ∈ R at which ζ is continuously
differentiable and ζ ′(t) ̸= 0.

B.1.1 NO UNIVERSALITY WITHOUT THE RESIDUAL CONNECTION

We first show that adding a single normalized graph convolution layer preceding an MLP is enough to
negate the universal approximation property of the composite model in equation 11.
Lemma B.2 (Loss of Injectivity). Let N,D be positive integers with N ⩾ 2. Let G be a complete graph
on N nodes, let Ã def.

= (Ii∼j∨i=j/
√
deg(vi) deg(vj))

N
i,j=1, and let W ∈ RD×D. Then, the map

Lconv
G,W : RN×D → RN×D

X 7→ ÃXW

is not injective.

Proof of Lemma B.2. Since G is complete and N ⩾ 1, then Ãi,j = 1/N <∞ for each i, j = 1, . . . , N .
In particular, all its rows are identical. Therefore, for each X ∈ RN×D all the rows of the product matrix
Ã(XW) = (ÃXW) are identical too. Hence, Lconv

G,W is not injective.

The following is a more technical version of Theorem 4.4.
Lemma B.3 (No Universality without Residual Connection). Let ζ satisfy Assumption B.1. Let N,D be
positive integers with N ⩾ 2. Let G be a complete graph on N nodes, W ∈ RD×D, and let Lconv

G,W be as
in Lemma B.2. The class of maps f : RN×D → R with representation

f = MLP ◦Lconv
G,W

where MLP : RN×D → R is an MLP with activation function ζ , is not dense for the topology of uniform
convergence on compacts sets in C(RN×D,R).

Proof. By (Pinkus, 1999, Theorem 3.1) and (Kidger & Lyons, 2020, Theorem 3.2) the class MLPζ
N×D

is dense in C(RN×D,R) for the topology of uniform convergence on compacts sets since ζ was assumed
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to be nonpolynomial1. Since Lconv
G,W is continuous then (Kratsios & Bilokopytov, 2020, Proposition 3.7)

implies that the class

MLPζ
N×D ◦ Lconv

G,W
def.
=

{
MLP ◦Lconv

G,W : MLP ∈ MLPζ
N×D

}
,

is dense in C(RN×D,R) for the topology of uniform convergence on compacts sets if and only if
Lconv
G,W is injective. By Lemma equation B.2, this map is never injective whenever N > 1. Thus,

MLPζ
N×D ◦ Lconv

G,W is not dense in C(RN×D,R) for the topology of uniform convergence on compacts
sets; i.e. MLPζ

N×D ◦ Lconv
G,W is not a universal approximator in the sense of Definition 4.3.

Next, we show that adding the residual connection recovers the universal approximation property.

B.1.2 UNIVERSALITY WITH THE RESIDUAL CONNECTION

We will consider the case reflective of the networks at initialization, where the graph convolution layer
with residual connection is initialized randomly. We consider weights with i.i.d. random Gaussian
initializations with appropriately scaled variance.
Lemma B.4 (Injectivity Regained). Let N,D be positive integers. Fix a hyperparameter ς > 0. Let G
be a complete graph on N nodes, let Ã def.

= (Ii∼j∨i=j/
√

deg(vi) deg(vj))
N
i,j=1, and let W be a D ×D

random matrix with i.i.d. entries Wi,j ∼ N(0, ς2). If ς < 1/(9D3/2) then

Lconv+r
G,W : RN×D → RN×D

X 7→ ÃXW +X

is injective with probability at-least 1− e−D/2.

Our proof of the positive counterpart to Lemma B.3, namely Lemma B.4, will rely on the following result
from random matrix theory.
Lemma B.5 (Concentration Version of Gordon’s Theorem: Corollary 5.35 in Vershynin (2012)). Let A
be an N × n matrix whose entries are independent standard normal random variables. For every t ⩾ 0,
the following holds

√
N −

√
n− t ⩽ smin(A) ⩽ smax(A) ⩽

√
N +

√
n+ t (22)

with probability at least 1 − e−t2/2; where smin(A) and smax(A) are respectively the smallest and
largest singular values of the matrix A.

Proof. Step 1 - Reduction of injectivity problem to eigenvalue computation
Since Lconv+r

G,W is a linear map then the dimension theorem/rank-nullity theorem/splitting lemma implies
that is injective if and only if its kernel only contains the zero vector; i.e.

Lconv+r
G,W (X) = 0 ⇔ X = 0. (23)

Using the Kronecker product ⊗, see (Horn & Johnson, 2013, Section 4.2), and the “flattenning” vectoriza-
tion map vec : RN×D 7→ RND which sends any N ×D matrix to the vector obtained from ordering its
entries in lexicographic order (according to their indices), see (Horn & Johnson, 2013, Definition 4.2.9),
we may rewrite

(IND + Ã⊗W) vec(X) = Lconv+r
G,W (X) = 0 ⇔ X = 0, (24)

where IND is the ND ×ND-dimensional identity matrix. A necessary condition in equation 24 is that
IND + Ã ⊗ W has to be invertible. Let T def.

= −Ã ⊗ W; then, IND + Ã ⊗ W = IND − T . The
1Note that this can be relaxed further since we are using deep, and not shallow, MLPs by (Kidger & Lyons, 2020,

Theorem 3.2). However, this is not the main point of our analysis.
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linear operator IND − T is invertible 2 if ∥T∥2 < 1. Since T = −Ã ⊗ W, ∥ − T∥2 = ∥T∥2 then
(IND + Ã⊗W) is injective if

∥Ã⊗W∥2 < 1. (25)

Recall that, ∥ · ∥2 is the square-root of the sum of the squared eigenvalues of the matrix Ã⊗W. By (Horn
& Johnson, 2013, Theorem 4.2.12), the eigenvalues of Ã ⊗ W are {λi(Ã)λj(W)}i=1,...,N, j=1,...,D

where λi(Ã) (resp. λj(W)) is the ith (resp. jth) eigenvalue of Ã (resp. W). As usual, we order its
eigenvalues order in a non-increasing manner3. The Cauchy-Schwarz inequality and the definition of the
norm ∥ · ∥2 imply that

∥Ã⊗W∥2 ⩽ ∥Ã∥2∥W∥2 =
( N∑

i=1

λi(Ã)2
)1/2 ( D∑

j=1

λj(W)2
)1/2

. (26)

Together, equation 25 and equation 26 provide the following sufficient condition for invertibility of the
IND + Ã⊗W; and thus for the injectivity of Lconv+r

G,W( N∑
i=1

λi(Ã)2
)1/2 ( D∑

j=1

λj(W)2
)1/2

< 1. (27)

Step 2 - Computing the eigenvalues of Ã
Since we have assumed that G is a complete graph on N nodes then Ãi,j = 1/N for each i, j = 1, . . . , N .
In particular, G has N identical rows. Thus, 0 is an eigenvalue of G with multiplicity at-least N − 1.
Additionally, one easily verifies that 1N

def.
= (1, . . . , 1) ∈ RN (the vector with all components equal to 1)

is an eigenvector of Ã. It corresponds to the eigenvalue λ1(Ã) = 1 since

Ã 1N = λ1(Ã)1N = N λ1(Ã) = N
1

N
= 1.

Therefore,

∥Ã∥2 =
(
λi(Ã)2

)1/2

=
(
12 + (N − 1) 02

)1/2
= 1. (28)

Thus, the condition in equation 27 reduces further to( D∑
j=1

λj(W)2
)1/2

< 1. (29)

It only remains to understand the “typical” eigenvalues of W (i.e. for most realization of the random
matrix W).

Step 3 - Computing the eigenvalues of W
First, observe that ( D∑

j=1

λj(W)2
)1/2

⩽
( D∑

j=1

λ1(W)2
)1/2

(30)

=
√
D|λ1(W)| (31)

=
√
Dsmax(W)2. (32)

Note that Wi,j = ςW̃i,j where {W̃i,j}Di,j=1 are i.i.d. standard normal random variables; meaning that the
eigenvalues of W are exactly equal to ς times those of W̃. By Gordon’s Theorem, with N = n = D and
t =

√
D, the following holds with at-least 1− e−D/2 probability:

smax(W̃) ⩽ 2
√
D +

√
D = 3

√
D. (33)

2See (Suzuki, 1976, Theorem 1) for a complete characterization of the convergence of Neumann series, even in
the infinite dimensional setting.

3Note that the order is not necessarily strictly increasing as eigenvalues may have non-trivial multiplicities.
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Upon combining the inequalities in equation 32 and in equation 33 we deduce that: with at-least 1−e−D/2

probability the following holds( D∑
j=1

λj(W)2
)1/2

=
( D∑

j=1

ς2λj(W̃)2
)1/2

(34)

⩽ ς
√
D 9D = ς 9D3/2.

Note that equation 34 holds since the eigenvalues of W are equal to ς times the eigenvalues of W̃ given
that W = ςW̃.

In particular, if 0 < ς < 1/(9D3/2) then, with probability at-least 1− e−D/2 we have that( D∑
j=1

λj(W)2
)1/2

⩽ ς 9D3/2 < 1. (35)

Step 4 - Conclusion
Consequentially, equation 35 implies that equation 29 is satisfied with probability at-least 1 − e−D/2;
meaning that, the map Lconv+r

G,W (X) is injective with probability at-least 1− e−D/2 too.

The following is a more technical version of Theorem 4.5; which shows that the result can be made to
hold explicitly with high probability when appropriately sampling a weight matrix.
Theorem B.6 (Universality Regained). Suppose that ζ satisfies Assumption B.1. Let N,D be positive
integers and fix a hyperparameter 0 < ς < 1/(9D3/2). Let G be a complete graph on N nodes,
let Ã def.

= (Ii∼j∨i=j/
√
deg(vi) deg(vj))

N
i,j=1, let W be a D × D random matrix with i.i.d. entries

Wi,j ∼ N(0, ς2), and define Lconv+r
G,W as in Lemma B.4.

Then, with probability at-least 1− e−D/2, the class of maps f̂ : RN×D → R with representation

f̂ = MLP ◦Lconv+r
G,W

is dense in C(RN×D,R) for the topology of uniform convergence on compacts sets, where MLP :
RN×D → R is an MLP with activation function ζ.

Proof of Theorem B.6 (and thus of Theorem 4.5). By (Pinkus, 1999, Theorem 3.1) and (Kidger & Lyons,
2020, Theorem 3.2) the class MLPζ

N×D is dense in C(RN×D,R) for the topology of uniform con-
vergence on compacts sets since ζ satisfies Assumption B.1. By construction, the map Lconv+r

G,W is
continuous. By Lemma B.4 the map is injective with probability at-least 1− e−D/2. Therefore, (Kratsios
& Bilokopytov, 2020, Theorem 3.4) implies that the class

MLPζ
N×D ◦ Lconv+r

G,W
def.
=

{
MLP ◦Lconv+r

G,W : MLP ∈ MLPζ
N×D

}
is dense in C(RN×D,R) for the topology of uniform convergence on compact sets.

The probability appearing in Theorem 4.5 implies that, at initialization, there is a high probability
(1− e−D/2) that the class F residual

G,W is expressive enough to learn any continuous function on C(RN×D)
within large domains. Note that D is the hidden dimension, which tends to be high; thus, Theorem 4.5
holds with probability ≈ 1.

C TRAINING DETAILS

Dataset information. All datasets used in this work are publicly available. For OGB datasets, see (Hu
et al., 2020); for Pokec, see (Leskovec & Krevl, 2014); and for the spatio-temporal datasets, see PyTorch
Geometric Temporal (Rozemberczki et al., 2021). Following DIFFormer (Wu et al., 2023a), we perform
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experiments on both image and text datasets to test the applicability of SMPNNs to a variety of tasks. The
procedure described next is exactly the same as in (Wu et al., 2023a). We use STL(-10) and CIFAR(-10)
as our image datasets. For the first, we use all 13,000 images, each classified into one of 10 categories.
In the case of the latter, CIFAR, the dataset was originally pre-processed in previous work using 1,500
images from each of the 10 categories, resulting in a total of 15,000 images. For both datasets, 10, 50, or
100 instances per class were randomly selected for the training set (we use the same random splits as in
the baselines for reproducibility and to obtain a fair comparison), 1,000 instances for validation, and the
remaining instances for testing.

Train, validation, and test splits. We use all public data splits when available, such as in the case of the
OGB benchmarks (Hu et al., 2020). Otherwise we follow the data split in the literature (Wu et al., 2022;
2023a;b) for a consistent comparison. Note that the code for these baselines is available online, including
torch seeds for datasets with random splits. We use the exact same seeds (123 in most cases).

Graph Sampling and Batching for Training and Inference. For ogbn-arxiv, CIFAR, STL, 20News,
Chickenpox, Covid, and Wikipath, we employ full-graph training. Specifically, we input the entire graph
into the model and simultaneously predict all node labels for the loss computation using a single GPU.
During inference, we also use the entire graph as input and calculate the evaluation metric based on the
predictions for the validation and test set nodes. For the rest of the datasets (except ogbn-papers-100M
discussed later), due to their large sizes, we adopt the mini-batch training approach of (Wu et al., 2022;
2023a;b). More concretely, the subsampling procedure of the Graph Transformer baselines uses the
following approach for training: a batch of nodes from the large graph dataset is selected at random,
and based on this, the induced subgraph is sampled by extracting the edges connecting the selected
nodes from the full graph adjacency matrix (the induced subgraph is obtained using subgraph from
torch geometric utils). For inference, the entire graph is fed into the model on CPU. For the
exceptionally large ogbn-papers100M graph, which cannot fit into CPU memory, we apply the same
mini-batch partition strategy used during training for inference using a neighbor sampler with 3-hops and
15, 10, and 5 neighbors per hop using the standard NeighborLoader from torch geometric, in
line with (Wu et al., 2023b).

GPU Memory Scaling Experiments. In these experiments, we use a single Tesla V100 GPU. We use the
same training configuration for all networks: node batch sizes of 10K, 20K, 40K, 60K, 80K, and 100K
(using subgraph), no weight decay, Adam optimizer with a learning rate of 10−3, and dropout of 0.1.
We set all model configurations to have 256 hidden channels and 6 layers, modifying only the parts of the
configuration discussed in the main text. For SGFormer, we increase the number of GNN layers to 6 and
fix the linear attention layer to 1, as in the original paper (Wu et al., 2023b).

Model Configurations. For most of the large-scale graph experiments (unless otherwise stated), we use
SMPNNs with 6 layers. Note that we test other configurations; for instance, in Table 7. For the image,
text, and spatio-temporal datasets, we use 2 layers to avoid overfitting. The exact command configurations
can be found in the supplementary material.
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