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ABSTRACT

Flare removal methods remove the streak, shimmer, and reflective flare in flare-
corrupted images while preserving the light source. Recent deep learning meth-
ods focus on flare extraction and achieve promising results. They accomplish the
task by either viewing the flare equals to the residual information between the
flare-corrupted image and the flare-free image and generating the flare-free image
through subtracting the extracted flare image or generating the flare-free image
and the flare image simultaneously. However, due to the gap between the flare
image and the residual information and handling flare extraction and clear image
generation process simultaneously will give the network too much pressure and
cannot fully utilize the extracted flare, these methods tend to generate images with
severe artifacts. To alleviate such a phenomenon, we propose a model-agnostic
pipeline named Prompt Inpainting Pipeline (PIP). Specifically, instead of viewing
the gap between the flare-free and flare corrupted image as the flare or generat-
ing the flare-free image and flare image simultaneously, our prompt inpainting
pipeline provides a novel perspective. We borrow the idea from inpainting meth-
ods and remove the flare by masking the polluted area and rewriting image details
within. Unlike inpainting methods, we first extract multi-scale features of flare-
corrupted images as a visual prompt and rewrite missing textures with the visual
prompt since we find out that directly writing the missing details based on the
remaining area hardly generates promising image details with sufficient seman-
tic and high-frequency information. To verify the function of our pipeline, we
conduct comprehensive experiments and demonstrate its superiority.

1 INTRODUCTION

Flare removal methods aim to remove the unwanted lens flare in input images while preserving the
light source. In theory, an ideal camera should be able to converge all rays from a single point source
to a single focal point. However, in reality, due to the sophisticated imaging system and dirt on the
lens, lenses reflect and scatter light along unintended paths, leading to the appearance of flare that
produces brightness in radial areas of images. The flare severely degrades the qualities of images
and hinders downstream visual tasks (e.g., semantic segmentation, depth estimation). The industry
commonly adopts Anti-Reflection (AR) coatings to suppress the reflective flare phenomenon, which
is costly and only optimized for specific wavelengths and angles of light and hardly handles the
scattering flare that frequently happens on smartphone cameras. Therefore, how to remove flare in
images has attracted plenty of attention from industry and academiaAsha et al. (2019); Vitoria &
Ballester (2019); Feng et al. (2023); Sun et al. (2020); Wu et al. (2021); Dai et al. (2022).

Researchers have made great efforts in this field. By viewing the residual information between the
flare-corrupted image and the flare-free image equals to the flare image, Wu et al. Wu et al. (2021),
Dai et al. Dai et al. (2022), and Dai et al. Dai et al. (2023b) employ a pipeline which adopt existing
image restoration methods Zamir et al. (2021); Chen et al. (2021); Wang et al. (2022); Zamir et al.
(2022) to extract the flare image and generate flare-free image by subtracting the estimated flare
image with flare-corrupted image. However, there exists an obvious gap between the residual image
and the flare image, and artifacts often happen. Moreover, Dai et al. Dai et al. (2023a) propose
another pipeline named Flare7k++ and generate the flare image and flare-free image simultaneously.
Such a method avoids the loss caused by the gap between the residual information and the flare
image, whereas gives the network too much pressure and cannot fully utilize the extracted flare
which leads to annoying artifacts on generated images. Thus, how to efficiently remove flare from
images without introducing artifacts becomes challenging.
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In this paper, we propose a model-agnostic pipeline named Prompt Inpainting Pipeline (PIP) which
can be equipped with any image restoration methods. To eliminate generated artifacts, especially
when handling images with strong streaks, we provide a novel perspective and separate the flare
removal process into a coarse flare removal stage and an image refinement stage. The coarse flare
removal stage adopts a U-shape network to coarsely generate the flare-removed image and the flare.
As for the image refinement stage, we borrow the idea of inpainting methods, which mask the area
polluted by flare and rewrite the missing details within. Nevertheless, instead of compelling the
network to infer the missing pixels based on the remaining area, we propose prompt calibration
block which adopts features extracted during the coarse flare removal stage as a visual prompt to
guide the rewriting process and generate promising flare-free images. In this way, our PIP pipeline
manages to erase the flare and decrease artifacts.

We conduct comprehensive experiments on the PIP pipeline and experimental results on real-world
benchmarks prove the effectiveness of our method. Our contributions can be summarized as follows:

• We propose a model-agnostic pipeline named PIP which suppresses artifacts by rewriting
details corrupted by flare.

• The proposed prompt calibration block adopts features extracted during the coarse flare
removal stage as a visual prompt to guide the rewriting process.

• Extensive experiments demonstrate the superiority of our method.

2 RELATED WORK

Flare is an optical phenomenon, in which light is scattered and/or reflected in a sophisticated optical
system. The flare may seriously degrade the image’s quality and hinder downstream visual tasks.
Thus, numerous efforts have been made to mitigate this issue.

2.1 HARDWARE SOLUTIONS

To capture high-quality images, modern digital optical systems tend to employ multiple glass ele-
ments. The increase of the glass elements raises the probability that light reflects from its surface
and generates flare. To eliminate the reflective flare, most hardware solutions focus on improving
the optical system (e.g., sophisticated lens barrel design, lens hoods, reflective coating). Applying
AR coating Nussberger et al. (2016); Raskar et al. (2008) to lens elements reduces internal reflection
by destroying interference, which is widely adopted in practice. However, AR coatings are costly to
add to all optical surfaces and the thickness of the coating is designed for specific wavelength and
angle of incidence. Moreover, scattering flare always occurs when dust and fingerprints appear in
front of the lens. Therefore, these efforts hardly eliminate the flare generated in the pre-process and
cannot handle images with flare during the post-process.

2.2 SOFTWARE SOLUTIONS

Traditional flare removal methods Faulkner et al. (1989); Reinhard et al. (2010) have achieved good
performance based on statistics prior. Since the development of deep learning, numerous methods
have been proposed.

2.2.1 DATASETS

Aiming for a low-level task, the performance of flare removal methods depends on the qualities of
the datasets. A dataset that contains a large amount of data pairs can greatly improve the performance
of neural networks when handling real-world scenarios.

To this end, Wu et al. Wu et al. (2021) propose a semi-synthetic dataset that contains 2001 captured
flare images and 3000 simulated flare images. However, they focus on daylight flare and the pro-
posed dataset tends to be less generalization to real-world flare which can be captured by diverse
lenses and light sources, especially at nighttime. Therefore, Dai et al. Dai et al. (2022) propose a
nighttime flare removal dataset Flare7K, which contains 5000 scattering and 2000 reflective flare
images. Furthermore, Dai et al. [Dai et al. (2023a)] propose Flare7K++, which is an extended ver-
sion of Flare7K. On the basis of Flare7K, Flare7K++ gives each image an additional light source
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annotation and proposes a new real-captured subset Flare-R which contains 962 flare images. These
datasets exhibit high sensitivity to scattering flares while giving insufficient attention to reflective
flares. Hence, Dai et al. Dai et al. (2023b) propose the first reflective flare removal dataset named
BracketFlare dataset based on the prior that the reflective flare and light source are always symmet-
rical around the lens’s optical center. They employ continuous bracketing to capture the reflective
flare pattern in unexposed images and aggregate with exposed images to synthesize paired data.
They conduct experiments and prove that neural networks trained on this dataset gain the capability
of removing the ghosting effect in images.

2.2.2 NETWORK STRUCTURE

As capturing large amounts of data pairs for flare removal is challenging and tedious, earlier deep
learning methods He et al. He et al. (2010) tend to utilize unsupervised methods. Qiao et al. Qiao
et al. (2021) propose a generative adversarial network-based learning framework to learn from un-
paired data. They adopt the idea of cyclegan Zhu et al. (2017) and separately detect the light source
region and the flare region. The output is generated by blending the flare-removed image and the de-
tected light source mask. Their method achieves promising results when handling tiny light sources
and flares, whereas fail on images with strong light sources and large flares.

As multiple synthetic and real flare removal datasets have been proposed, Wu et al. Wu et al. (2021)
and Dai et al. Dai et al. (2022) adopt many end-to-end image restoration methods Ronneberger et al.
(2015); Chen et al. (2021); Zamir et al. (2022); Wang et al. (2022) to extract the flare image from
the input flare-corrupted image. They surpass the unsupervised methods, whereas still generate
artifacts during the flare removal process as they view the gap between the flare-corrupted image
and the flare-free image equal to the flare image. Meanwhile, Dai et al. Dai et al. (2023a) propose
a different pipeline named flare7k++, which separately extracts the flare and restores the image in
a simultaneous manner and adopts image restoration networks to do both jobs instead of simply
generating the flare-free image. However, such a method compels the network to analyze the flare
pattern and generate flare-free images simultaneously, which some artifacts still happen, especially
when a strong streak appears. To this end, we propose a model-agnostic PIP pipeline to reduce the
flare and generate images with fewer artifacts. By borrowing the idea of inpainting methods and
separating the flare removal process into a coarse flare removal stage and an image refinement stage,
our pipeline surpasses state-of-the-art methods.

3 METHODOLOGY

To better illustrate our PIP pipeline and distinguish it from the previous pipeline, we introduce the
Flare7k++ pipeline first. Sequentially, we illustrate the details of our PIP pipeline and demonstrate
its superiority.

3.1 FLARE7K++ PIPELINE

As shown in Figure 1 (a), the Flare7k++ pipeline adopts a network with a U-net backbone to predict
the flare-free image and the flare image which excludes the light source information. In this way,
the network can preserve the light source image and better locate the flare image by individually
estimating the flare image. However, due to the pixel limit of digital systems, some information is
blocked by overexposed streaks. Such degradation is hard to compensate for as the blocked area
contains little useful information and the Flare7k++ pipeline requires the network to extract the
flare and generate flare-free images simultaneously, thereby giving too much burden for the neural
network and leading to severe artifacts. To this end, we propose our two-stage pipeline named PIP
to reduce the artifacts.

3.2 PROMPT INPAINTING PIPELINE (OURS)

Our PIP pipeline provides a novel perspective for the flare removal task. Existing flare removal
pipelines accomplish this task under the idea of image-to-image translation. However, such a design
may be suboptimal for the flare removal task as the streak and shimmer in the flare-corrupted image
occasionally appear to be strong and fully block the content embedded and these methods may
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Network

Estimated Flare image 

(Exclude Light Source)

Estimated Flare-free image

Flare-corrupted image

Network
Estimated Flare image

Flare-corrupted image

PIN

Fine Flare-free image

Coarse Flare-free image

(a) Flare7k++ Pipeline

(b) Prompt Inpainting Pipeline (Ours)
Coarse Flare Removal Stage Image Refinement Stage

Figure 1: Comparison between Flare7k++ pipeline Dai et al. (2023a) and our PIP pipeline.

generate severe artifacts when handling such flare. Therefore, we propose the PIP pipeline, which
accomplishes this mission by rewriting the image details occupied by the flare.

Figure 2 shows the details of the PIP pipeline. As a coarse-to-fine two-stage pipeline, the PIP
pipeline consists of a coarse flare removal stage and an image refinement stage. Concretely, our PIP
pipeline is a model-agnostic pipeline. During the coarse flare removal stage, any U-net flare removal
method can be employed as multi-scale features are useful in such image translation tasks, and most
methods in this task adopt one U-net structure as the backbone to extract multi-scale features. As for
the image refinement stage, we propose the Prompt Inpainting Network (PIN) and employ a U-net
backbone under the guidance of the multi-scale features extracted during the first stage.

3.2.1 COARSE FLARE REMOVAL STAGE

In this stage, we coarsely remove the flare from the flare-corrupted image by estimating the coarse
flare-corrupted image and the entire flare image. The loss function is formulated as:

L =


1

N

N∑
i=1

|Ii,Coarse
FF − Iigt|

α
1

N

N∑
i=1

|F i
DF − F i

gt|

(1)

where Ii,Coarse
FF , F i

DF , and F i
gt represent the ith pixel in the output coarse flare-free image, the

output flare image, and the ground truth image.

3.2.2 IMAGE REFINEMENT STAGE

After obtaining the flare image which is added on top of the flare-free image and the coarse flare-free
image, we introduce the image refinement stage to further remove the flare and artifacts from the
coarse flare-free image. We do not adopt an image-to-image translation network as we argue that
such a design hardly handles severe degradation. In the image restoration task, simply adopting such
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(a) Prompt Inpainting Pipeline

(Prompt Inpainting Network)

Figure 2: The overview of our PIP pipeline. Our PIP pipeline consists of a coarse flare removal stage
and an image refinement stage. The coarse flare removal coarsely estimates the flare and removes
the flare from the flare-corrupted image. The image refinement stage further removes the artifacts
introduced during the coarse flare removal stage. We rewrite the missing details polluted by the flare
image and employ a U-net structure as our backbone to eliminate the flare under the guidance of the
multi-scale feature extracted from the last stage.

a network on image restoration suffers from unpromising results when handling severe degradation
(e.g., complicated motion blur, high-level noise). To this end, we accomplish this task from a novel
view by extracting the semantic information from the unpolluted area, rewriting the details in the
polluted area based on the extracted semantic information, and using multi-scale features extracted
from the last stage as the visual prompt. Specifically, we propose the PIN network in this stage
which adopts the mask block to generate the input and a U-net neural network to rewrite the missing
details.

The mask block: The procedure of mask block is depicted in Figure 2 (b). Given the estimated flare
image, we first binarize it to obtain the mask with a predefined threshold and multiply it with the
coarse flare-free image ICoarse

FF to obtain the masked image Imask
FF . We select the coarse-generated

flare-free images instead of the flare-corrupted image as the estimated mask omits the flare with
slight luminance and using the flare-corrupted image may leave these flare on the final output. Sec-
ondly, we subtract Imask

FF with ICoarse
FF . Finally, we generate the input IInputFF by concatenating the

image obtained in the last phase with the estimated flare image FDF . The process is formulated as:

Mask = Binarize(Mask > threshold), Imask
FF = ICoarse

FF ×Mask,

Imask
FF = ICoarse

FF − Imask
FF , IInputFF = Concat(Imask

FF , FDF )
(2)

U-shape Structure: Given IInputFF and features obtained from the last stage Xcoarse
FF , we adopt a

U-net structure for the inpainting task. Firstly, the encoder in the backbone employs 4 SFB blocks
Zhang et al. (2023) at each level and extracts the multi-scale semantic feature of IInputFF . Thereafter,
the decoder rewrites the missing details by using Xcoarse

FF as the visual prompt. Concretely, we
adopt one prompt calibration block and 4 SFB blocks at each level in the decoder and the prompt
calibration block is sequentially employed to utilize Xcoarse

FF .

The prompt calibration block: The prompt calibration block refines the image features by employ-
ing the Xcoarse

FF as the visual prompt and the structure is depicted in Figure 2 (c). The formulation
of the prompt calibration block is presented as follows:

Xi = Conv(Xi,Coarse
FF )× Conv(Xi) + Conv(Xi,Coarse

FF ) (3)

where i represents the ith level in decoder.
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The loss function of this stage is the L1 distance and perceptual loss between the output and the
ground truth flare-free image. The formulation is shown as follows:

L =


1

N

N∑
i=1

|Ii,fineFF − Iigt|

Lper(I
i,fine
FF , Iigt)

(4)

where Ii,fineFF represents the output in refinement stage and Lper means the perceptual loss.

4 EXPERIMENTS

In this section, we conduct ablation experiments on modules proposed within the PIP pipeline on
real-world data. Moreover, we conduct comparison experiments on the Flare7K++ real dataset Dai
et al. (2023a) and BracetFlare dataset Dai et al. (2023b).

4.1 DATASETS

For the training set, we adopt Flare7K++ Dai et al. (2023a) and BracketFlare Dai et al. (2023b)
datasets. Notably, Flare7K and Flare7K++ provide a quantity of flare images, while giving no flare-
free images in the training set. We follow the experimental setting in Flare7K which adopts the
Flickr24k dataset Zhang et al. (2018) as flare-free images. To form the data pair for supervised
training, we add compound flare images on top of flare-free images to generate nighttime flare-
corrupted images. As for flare-free images, we add light source annotations on flare-free images.
The same operation is implemented on the BracketFlare dataset.

To improve the robustness of trained networks, we further introduce a data augmentation strategy.
Specifically, to allow the network to perform better in nighttime images, we alter the gamma of
flare-corrupted images by recovering the linear luminance of flare images and flare-free images with
an inverse gamma correction strategy (γ ∼ U(1.8, 2.2)). We also randomly multiply the RGB
values with U(0.5, 1.2) and add a Gaussian noise with variance sampled from a scaled chi-square
distribution σ2 ∼ 0.01χ2. Furthermore, we use horizontal and vertical flips to enlarge the training
set. Nevertheless, to enhance the network’s abilities to deal with diverse flare, we carry out a series
of affine transformations on flare images. The random blur on flare images with the kernel size in
U(0.1, 3) and offsets in U(−0.02, 0.02) are also performed to control the brightness of flare images.

For the testing set, we adopt the real testing set provided by Flare7K++ and BracketFlare as the
Flare7K++ real set mainly contains scattering flare and BracketFlare focuses on reflective flare. We
conduct PIP pipeline on them for ablation experiments and comparison experiments.

4.2 IMPLEMENTATION DETAILS

Following Dai et al. Dai et al. (2022), we adopt PSNR, SSIM, and LPIPS as our metrics. Specif-
ically, PSNR and SSIM evaluate the average pixel distance and the structure similarity between
flare-corrupted images and flare-free images. Furthermore, LPIPS evaluates the feature-level dis-
tance between them. We set 4 levels in the PIN network. The channel of the immediate layer is 16.
The optimizer for the PIP pipeline adopts the same setting as the FF-Former Zhang et al. (2023).

4.3 ABLATION RESULTS

In this section, we explore the function of the prompt calibration block and whether our pipeline is
model-agnostic. Particularly, we do not conduct ablation experiments on our mask block. Without
the mask block, our PIP pipeline will become a stacked U-net network. The pipeline will achieve
better results by a deeper network with no doubt, whereas fails to suppress artifacts.

Table 1: Comparison of methods with or
without prompt calibration block (PCB)

Method PSNR ↑ SSIM ↑ LPIPS ↓
w/o PCB 28.14 0.902 0.041
w PCB 28.44 0.906 0.039

Table 2: The number of parameters and Flops (512×512)
with or without Prompt Inpainting Pipeline (PIP)
Param(M)/Flops(G) Unet Uformer FF-Former

w/o PIP 9.0/62.36 20.4/162.1 46.5/407.8
w PIP 11.8/84.9 23.6/194.3 49.6/440.0
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Input FF-Former + ZITS FF-Former + PIP (Ours) Ground Truth
Figure 3: Visual comparison results on PIP pipeline VS inpainting network ZITS Dong et al. (2022).
Severe artifacts happen in the image generated by FF-Former + ZITS.

Figure 4: Visual comparison results of ablation experiments on PIP pipeline. We choose different
images to better illustrate the function of our PIP as different network has weaknesses in different
scenarios. Our PIP manages to further suppress artifacts, especially with a weaker network (Unet).

4.3.1 PROMPT CALIBRATION BLOCK

To verify the function of the proposed prompt calibration block and whether the visual prompt is
necessary, we test how the pipeline will perform when no prompt calibration block are attended or
other inpainting methods participate. To be fair, we adopt FF-Former as the base network in the
coarse flare removal stage and test on the flare7k++ real set.

We show the comparison results on networks with or without prompt calibration block on Table
1. From the observation of Table 1, the network with the prompt calibration block surpasses the
network without the prompt calibration block 0.3dB on PSNR, which proves that the visual prompt
is non-substitutable and the prompt calibration block can provide significant PSNR score gains.

To further test whether other inpainting method can be useful for the flare removal task, we also
compare it with ZITS Dong et al. (2022) method and adopt the official code for inference. The visual
performance of the comparison is shown in Figure 3. Severe artifacts happen in the image generated
by ZITS as the mask area is too complicated and uncertain to recover when much information has
been discarded by the simple mask operation and no visual prompt can be used.

4.3.2 MODEL AGNOSTIC

To demonstrate that our PIP is model-agnostic and can be applied with any other flare removal
network, we conduct quantitative and qualitative ablation experiments on Unet Ronneberger et al.
(2015), Uformer Wang et al. (2022), and FF-Former Zhang et al. (2023). The network in the coarse
flare removal stage is pretrained for predicting the coarse flare-free image and the flare image on
Flare7K++ Dai et al. (2023a) dataset.

For quantitative comparison, based on Table 3, we can observe that with PIP pipeline, Unet Ron-
neberger et al. (2015) gains 0.92dB, 0.007, 0.004 on PSNR, SSIM, and LPIPS scores which surpass
the state-of-the-art method FF-Former with 0.21dB, 0.001 on PSNR and SSIM score and achieve the
same LPIPS score with it. Moreover, our PIP pipeline helps Uformer with 0.61dB, 0.006, and 0.003
gains on PSNR, SSIM, and LPIPS scores. As for the state-of-the-art method FF-Former Zhang et al.
(2023), eqipped with our pipeline, it manages to obtain new state-of-the-art results, which achieve
28.44, 0.906, and 0.039 on PSNR, SSIM, and LPIPS scores and our pipeline provides 0.54, 0.006,
and 0.002 promotions with a very small increase in the number of parameters, as shown in Table 2.

As for qualitative comparison, we show the visual comparisons on Figure 4. Compared with the
original Unet, Unet + PIP pipeline removes more shimmer within the flare-coorupted images. As
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Table 3: Comparison of flare removal methods on Flare7k++ real set and BracKetFlare dataset.

Method Flare7K BracKetflare
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Wu et al. Wu et al. (2021) 24.61 0.871 0.060 26.13 0.895 0.055
Unet Ronneberger et al. (2015) 27.19 0.894 0.045 47.00 0.897 0.006
HINet Chen et al. (2021) 27.55 0.892 0.046 48.03 0.994 0.003
MPRNet* Zamir et al. (2021) 27.04 0.893 0.048 48.41 0.994 0.004
Restormer* Zamir et al. (2022) 27.60 0.897 0.045 48.11 0.994 0.004
Uformer Wang et al. (2022) 27.63 0.894 0.043 47.47 0.991 0.003
FF-Former Zhang et al. (2023) 27.90 0.900 0.041 49.03 0.992 0.003
Unet + PIP (Ours) 28.11 0.901 0.041 48.50 0.992 0.004
Uformer + PIP (Ours) 28.24 0.903 0.040 48.69 0.994 0.002
FF-former + PIP (Ours) 28.44 0.906 0.039 49.18 0.994 0.002

Images

Patches

Patches

Images

Input Unet Uformer FF-Former Ground Truth

Images

Patches

Figure 5: Visual comparison of the scattering flare and the reflective flare. Images in the first four
rows are from the flare7k++ real set and mainly contain scattering flare. Images in the last two rows
are from the BraceketFlare dataset and mainly contain reflective flare. Our method eliminates the
most flare and generates images with the fewest artifacts.

for FF-Former, more streaks have been eliminated. Previous pipelines hardly identify and eliminate
all the flares added to the image and tend to generate severe artifacts when handling strong flares with
large overexposed streaks and shimmers. Our PIP pipeline suppresses this phenomenon by rewriting
the image details polluted by flare with the extracted semantic information within the unpolluted area
and the multi-scale features obtained in the coarse flare removal stage. The experiments demonstrate
that our pipeline is model-agnostic.
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4.4 COMPARISON RESULTS

In this section, we conduct comparison results on the real testing set of the Flare7K++ dataset and
BracketFlare dataset to demonstrate the functions of our PIP pipeline. We employ flare removal
methods Wu et al. Wu et al. (2021) and FF-Former Zhang et al. (2023) and image restoration
methods Unet Ronneberger et al. (2015), HINet Chen et al. (2021), MPRNet Zamir et al. (2021),
Restormer Zamir et al. (2022), and Uformer Wang et al. (2022) for baselines.

4.4.1 RESULTS ON FLARE7K++ DATASETS

To validate the performance of our method on complex scenarios which include both the scattering
flare and reflective flare, we show the quantitative results (e.g., PSNR, SSIM, LPIPS) on Table 3
for experiments on Flare7k++ real testing set, correspondingly. Furthermore, we also represent the
visual comparison results on Figure 5 for experiments on the Flare7k++ real testing set (we employ
FF-Former Zhang et al. (2023) in coarse flare removal network).

From the observation of Table 3, our PIP pipeline equipped with FF-Former Zhang et al. (2023)
has achieved state-of-the-art PSNR and SSIM. Concretely, from the perspective of pixel level, we
significantly outperform the state-of-the-art method FF-Former with 0.54dB on PSNR score, 0.006
on SSIM, and 0.002 on LPIPS. As for visual performance comparison, based on the first four rows
in Figure 5, we figure that methods trained in a supervised manner achieve better results and our
PIP pipeline equipped with FF-Former has essentially eliminated the flare and introduced the least
artifacts in most situation. Despite the shape of the flare, round flare with a large radius, flare with a
long streak, or the type of the flare, reflective flare, or scattering flare, our method can achieve more
realistic and natural results than other baselines in most scenarios.

4.4.2 RESULTS ON BRACKETFLARE DATASETS

To further estimate our method on reflective flare, we test our method on the BracKetFlare dataset
Dai et al. (2023b). From the observation of Table 3, our PIP pipeline equipped with FF-Former
surpasses MPRNet with 0.77dB on PSNR and 0.002 on LPIPS and obtains the same SSIM. Further-
more, based on the last two rows in Figure 5, we significantly outperform MPRNet by thoroughly
eliminating the reflective flare with the fewest artifacts, which proves that some artifacts may occur
during the reflective flare removal process and our PIP manages to depress such phenomenon.

5 DISCUSSION

To suppress the artifacts created during the flare removal process, we propose the two-stage pipeline
named PIP. The PIP pipeline borrows the idea from the inpainting task and adopts a mask block to
construct the input of the inpainting neural network. However, as shown in Figure 3, simply adopting
the inpainting method will lead to essential content loss as plenty of the image content is hidden by
the flare, which leads the current inpainting method hardly recovers them and the extracted flare
mask is error-prone, which makes the inpainting method mistakenly rewrites the flare instead of
image content. Therefore, we adjust the inpainting method for the flare removal task. By adopting
the features extracted from the coarse flare removal stage as inference, the prompt calibration block
in the image refinement stage manages to rewrite the blocked image content.

6 CONCLUSION

In this paper, we propose a model-agnostic two-stage pipeline named PIP pipeline. By giving the
flare removal task a second thought, the PIP pipeline provides a novel view for the flare removal task
by rewriting the pixels corrupted by the flare. The PIP pipeline consists of a coarse flare removal
stage and an image refinement stage. The coarse flare removal stage generates coarse flare-free
images and the estimated flare image and the image refinement stage alleviates the artifacts by
adopting the idea of inpainting methods. However, instead of compelling the network to infer the
masked image, we accomplish the mission by extracting the semantic information of the unmasked
area and employing multi-scale features as visual prompts. Extensive results on real-world and
synthetic benchmarks demonstrate the superiority of the PIP pipeline.
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