
The Impacts of Data, Ordering, and Intrinsic Dimensionality on
Recall in Hierarchical Navigable Small Worlds

Anonymous Author(s)

ABSTRACT
Vector search systems, pivotal in AI applications, often rely on the
Hierarchical Navigable Small Worlds (HNSW) algorithm. However,
the behaviour of HNSW under real-world scenarios using vectors
generated with deep learning models remains under-explored. Ex-
isting Approximate Nearest Neighbours (ANN) benchmarks and
research typically has an over-reliance on simplistic datasets like
MNIST or SIFT1M and fail to reflect the complexity of current use-
cases. Our investigation focuses on HNSW’s efficacy across a spec-
trum of datasets, including synthetic vectors tailored to mimic spe-
cific intrinsic dimensionalities, widely-used retrieval benchmarks
with popular embedding models, and proprietary e-commerce im-
age data with CLIP models. We survey the most popular HNSW
vector databases and collate their default parameters to provide a
realistic fixed parameterisation for the duration of the paper.

We discover that the recall of approximate HNSW search, in
comparison to exact K Nearest Neighbours (KNN) search, is linked
to the vector space’s intrinsic dimensionality and significantly influ-
enced by the data insertion sequence. Our methodology highlights
how insertion order, informed by measurable properties such as the
pointwise Local Intrinsic Dimensionality (LID) or known categories,
can shift recall by up to 12 percentage points. We also observe that
running popular benchmark datasets with HNSW instead of KNN
can shift rankings by up to three positions for some models. This
work underscores the need for more nuanced benchmarks and
design considerations in developing robust vector search systems
using approximate vector search algorithms. This study presents a
number of scenarios with varying real world applicability which
aim to better increase understanding and future development of
ANN algorithms and embedding models alike.
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1 INTRODUCTION
The efficient retrieval of nearest neighbours in high-dimensional
spaces is a requirement for many Artificial Intelligence (AI) ap-
plications. This need has driven the development and widespread
adoption of Approximate Nearest Neighbours (ANN) algorithms,
amongwhich the Hierarchical Navigable SmallWorlds (HNSW)[28]
algorithm has emerged as a preeminent choice for search and rec-
ommendation applications.

Despite its extensive utilization, the behaviour and performance
of the HNSW algorithm under real-world conditions remains in-
sufficiently explored. This gap in understanding is particularly
critical given the evolving nature of datasets in contemporary AI
applications. Existing benchmarks for evaluating ANN systems,
which often rely upon simplistic or lower-dimensional datasets
(MNIST[13], SIFT1M[21], etc.), do not adequately reflect many pop-
ular real-world use-cases. These datasets are highly curated and do
not contain vectors from machine learning embedding models. This
discrepancy raises questions about the applicability and reliability
of these benchmarks in guiding the design and implementation of
vector search systems in real-world scenarios.

To bridge the gap between benchmarks and contemporary appli-
cations, our research studies the behaviour of HNSW search across
vector spaces produced with various methods including synthetic
data, popular retrieval benchmarks with popular text embedding
models, and real-world e-commerce data with multimodal embed-
dings from CLIP[35] models.

We collate a survery of popular HNSW vector search systems
and their default parameters to provide a fixed parameterisation
of the algorithm, unlike prior research we study the behaviour of
HNSW as a function of data, models, and indexing conditions rather
than of parameterisation. This methodology allows us to identify
a relationship between both the intrinsic dimensionality of vector
spaces as a whole as well as the Local Intrinsic Dimensionality (LID)
of vectors within the dataset and the order in which they are added.
By controling insertion order of data with LID we observe recall
dropping by as much as 12.8 percentage points. We extend this
observation about ordering to real world applications and quantify
the difference in intrinsic dimensionality between a dataset and its
constituent categories. By indexing data with different orders of
categories we are able to vary recall by up to 8 percentage points.

Through this work, we aim not only to contribute valuable in-
sights into the HNSW algorithm’s behaviour, but also to challenge
the prevailing benchmarks for ANN search, encouraging the devel-
opment of more robust and reliable vector search systems.
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1.1 Contributions
In this work we provide a survey of existing vector search systems
that use HNSW and the parameters that they provide as default.
Many of these default parameterisations are not documented or
easily accessible and are only mentioned in code. We provide the
default parameters at time of writing in this work (Table 1).

In addition to the findings in this work we also release a large
500GB collection of all the vectors used in this research1. This
includes the complete embeddings from seventeen popular open-
source models on the 7 datasets used in this work as well as MS-
MARCO [5]. To compliment these embeddings we provide the
pointwise Local Intrinsic Dimensionality (LID) estimates for every
vector with its 100 nearest neighbours (which is a time consuming
𝑂 (𝑛2) task).

2 RELATEDWORK
The impacts of intrinsic dimensionality, specifically LID, have been
studied by Aumüller et al[4]. In their work it was identified that
query sets of varying difficulty would be constructed by identifying
the LID of the queries, the impact of this being that averaging
results across all queries could mask behaviour of the algorithms
in benchmarking.

In the source code for the implementation of the original paper,
HNSWLib. The authors make reference to a relationship between
the𝑀 parameter and the intrinsic dimensionality of the data, stating
that a higher 𝑀 of 48-64 is required for good recall on data with
higher intrinsic dimensionality. However, this relationship is not
considered in detail in the original work and does not appear to be
quantified in research[28].

In other work, P. Lin et al analyse the search time behaviour of
HNSW on data with varying LIDs and identify that the hierarchical
component of HNSW offers less benefit over a flat search as the LID
of the data increases. If the graph contains close neighbourhoods
with minimal intersection between their nearest neighbour lists,
the search can find it difficult to jump from one local minima to
another. This results in worse recall for given parameters, or worse
latency for a given recall, as the LID of the data increases [27].

The “curse of dimensionality” is widely acknowledged as a fea-
ture which impacts the efficacy of retrieval systems and measures
of similarity in general. However, data with a large apparent di-
mensionality can often have a low intrinsic dimensionality. For
some KNN algorithms such as KD-Trees, a sufficiently small in-
trinsic dimensionality can reduce the likelihood of a low quality
solution. For other KNN algorithms a lower intrinsic dimensional-
ity can be indicative of potentially favourable performance with
dimensionality reduction techniques applied. [8].

3 THE HNSW ALGORITHM AND ITS
IMPLEMENTATIONS

For this research we focus on more pure implementations of the
HNSW algorithm to avoid introducing additional variables into
the experiments. The HNSW implementations from FAISS[14, 22]
and HNSWLib[28] are used in this paper as they create a single

1The data can be accessed via Hugging Face here: https://huggingface.co/datasets/
anonymous/benchmark-embeddings

HNSW graph for all data and do not have any complexities around
sharding and segmentation for horizontal scaling and mutability2.

3.1 HNSW Parameters
The HNSW algorithm has three primary parameters that impact
recall, memory, and latency:𝑀 , 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, and 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ.𝑀
is the number of bidirectional links to form between each node in
the graph, the final layer of the graph typically uses 2 ·𝑀 links; this
impacts the recall, memory usage, and latencywhere higher𝑀 gives
better quality retrieval but worse performance. 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 is
the number of candidates to hold in the heap when constructing
the graph, evaluating more candidates gives better graphs with
higher recall, however it does increase the time spent indexing;
𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 does not impact search latency. 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ is the
size of the candidate list to hold in the heap at search time, higher
𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ can increase recall at the cost of latency.

Methodology for Determining Parameters and Reasoning. We fix
the HNSW graph parameters for all experimentation. We acknowl-
edge that many challenges regarding recall for approximate nearest
neighbours with HNSW can be circumnavigated by increasing𝑀 ,
𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, and/or 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ. However, in reality it is not fea-
sible to extensively search the parameter space for optimal parame-
ters, and furthermore, it is not feasible to scale these parameters
beyond a point as latency degrades.

To determine appropriate fixed defaults for this experimentation,
we surveyed approximate nearest neighbours systems that use
HNSW to determine their defaults.

Table 1: Default Settings of Various Vector Databases (Ap-
proximate Nearest Neighbours Systems)

System 𝑀 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ

MarqoV1[32] 16 128 𝑘

HNSWLib[16] 16 200 10
FAISS[38] 32 40 16
Chroma[10] 16 100 10
Weaviate[49] 64 128 100
Qdrant[34] 16 100 128
Milvus[29] 18 240 No Default
Vespa[42] 16 200 𝑘

Opensearch (nmslib)[32] 16 512 512
Opensearch (Lucene)[32] 16 512 𝑘

Elasticsearch (Lucene)[15] 16 100 No Default
Redis[37] 16 200 10
PGVector[33] 16 64 40

Note: In this table, 𝑘 represents the number of results to return.
Systems with 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 𝑘 do not specify a default 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ and
set it to 𝑘 at seach time.

It is clear that many HNSW implementations rely upon relatively
low defaults for the algorithm parameters3. It is clear that𝑀 = 16 is
2Modern example include Lucene and Vespa which include production features like
sharding and replicas.
3Parameters displayed here are current at time of writing, the parameters displayed at
some cited URLs are subject to change with time.

https://huggingface.co/datasets/anonymous/benchmark-embeddings
https://huggingface.co/datasets/anonymous/benchmark-embeddings
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widely accepted as a sensible default parameter for the number of
bidirectional links to form in the graph, 16 is the median. Values for
𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 vary more widely ranging from 40 to 512, for the
work we opt to fix it at 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 128 as this is the median.
𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ is more complicated as a number of the implementations
either do not provide a default or use the number of results to
return (𝑘) as the value for 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ, thus it is use case dependant.
As such, we set 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ as the median of the parameters observed
in industry when 𝑘 for the given task is substituted into Table 1.

4 DATASETS
In this section we describe the three main groups of datasets used
in this study.

4.1 Synthetic Data
In the synthetic case, we consider artificially generated vectors to
control their properties, particularly their intrinsic dimensionality.
To generate vectors of varying intrinsic dimensionality, we increase
their complexity by varying the number of orthonormal basis vec-
tors used in their construction. The Gram-Schmidt algorithm is
used to create an orthonormal basis, and varying numbers of these
orthonormal basis vectors are then combined to form datasets of
vectors with varying intrinsic dimensionalities.

Gram-Schmidt Orthonormalization. Let V = {v1, v2, . . . , v𝑘 } be a
set of 𝑘 randomly generated vectors in R𝑑 , where 𝑑 represents the
dimensionality of the space. The Gram-Schmidt process is applied
to these vectors to obtain an orthonormal basisU = {u1, u2, . . . , u𝑘 },
where each u𝑖 is defined recursively by:

u𝑖 =
w𝑖

∥w𝑖 ∥
with w𝑖 = v𝑖 −

𝑖−1∑︁
𝑗=1

proju𝑗
(v𝑖 )

and the projection of v𝑖 onto u𝑗 is given by:

proju𝑗
(v𝑖 ) =

⟨v𝑖 , u𝑗 ⟩
⟨u𝑗 , u𝑗 ⟩

u𝑗

Generating Data with Intrinsic Dimensionality of 𝑘 . Once the or-
thonormal basis U is established, synthetic data X can be generated.
This involves creating 𝑛 linear combinations of the basis vectors,
where 𝑛 is the number of desired data vectors. We first define C, an
𝑛×𝑘 matrix whose entries 𝑐𝑖 𝑗 are coefficients drawn from a normal
distribution. Each data vector x𝑖 is constructed as x𝑖 =

∑𝑘
𝑗=1 𝑐𝑖 𝑗u𝑗 .

Thus, the data matrix X in R𝑛×𝑑 is represented by X = CUwhere U
is a 𝑘×𝑑 matrix containing the orthonormal basis vectors. Each row
of X represents a data vector in the space spanned by the basis U. In
practice this creates a dataset of 𝑛 unique random vectors with di-
mension 𝑑 which exist in a vector space of intrinsic dimensionality
𝑘 .

4.2 Retrieval Datasets
Text embeddingmodels have beenwidely benchmarked for retrieval
on a number of popular standard benchmark datasets. One popular
aggregation of retrieval evaluations for text embedding models is
the Massive Text Embedding Benchmark (MTEB)[30]. For this work
we select a subset (see Table 2) of the datasets used for evaluation in

MTEB as well as a selection of themost popular and best performing
models at the time of this research.

The datasets in Table 2 are used in this work.

Table 2: Standard retrieval benchmark datasets used.

Dataset No. Queries Corpus Size Task Type

NFCorpus[7] 323 3.6K Asymmetric
Quora 10k 523k Symmetric
SCIDOCS[11] 1k 25k Asymmetric
SciFact[45] 300 25k Asymmetric
CQADupstack[17] 13.1k 547k Asymmetric
TRECCOVID[43] 50 171k Asymmetric
ArguAna[44] 1.4k 8.7k Symmetric

The datasets fall into one of two task types:
• Asymmetric: The queries and corpus documents are asym-
metric. Queries are questions or shorter statements used for
retrieving related documents and answers from the corpus;

• Symmetric: The queries and corpus documents are the same
type of text. The goal is to find text in the corpus which is
similar (for example, in the Quora dataset, the task is to find
titles that are similar to the query title)

For each of the datasets, embeddings are created with the models
in Table 3.

Table 3: Models used to embed the standard
retrieval benchmark datasets.

Model Embedding Dimension

bge-base-en[50] 768
bge-small-en[50] 384
bge-base-en-v1.5[50] 768
bge-small-en-v1.5[50] 384
stella-base-en-v2[2] 768
e5-base[46] 768
e5-small[46] 384
e5-base-v2[46] 768
e5-small-v2[46] 384
multilingual-e5-large[47] 1024
multilingual-e5-base[47] 768
multilingual-e5-small[47] 384
ember-v1[36] 1024
all-MiniLM-L6-v2[48] 384
bge-micro[3] 384
gte-base[26] 768

The vector spaces produced for each model and dataset combina-
tion have their own properties regarding intrinsic dimensionality
and local intrinsic dimensionality which are studied in this work.

4.3 Real World Datasets
In addition to the synthetic data and standard benchmark retrieval
datasets we also verify our findings under real-world conditions.
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Our real-world datasets are a proprietary collection of product
images. We present two datasets:

• An e-commerce catalogue of collectibles, handbags, streetwear,
sneakers, and watches; and

• A homewares catalogue of home, furniture, kitchenware,
wall, renovation, bed, rugs, lighting, baby, lifestyle, pet, and
office.

To assess the applicability of our findings in a real-world setting
we leverage the relationship between intrinsic dimensionality and
categories in online retail catalogues. Items belonging to one cate-
gory have their own intrinsic dimensionality which is lower than
that of the entire dataset. To evaluate HNSW on this data, we use
permutations of the categories to form insertion orders for data
into the HNSW indexes; recall is computed for each order.

5 EVALUATION METHODOLOGY AND
RESULTS

For the purposes of this work we define recall as the number of
documents returned by an exact retriever which are also retrieved
by an approximate one, in this case, KNN as the exact retriever and
HNSW as the approximate retriever. Formally, for an approximate
retriever (A) and an exact retriever (E) within a dataset 𝑋 using a
set of queries 𝑄 where 𝑘 results are retrieved for each query, the
recall at 𝑘 is defined as follows:

Let 𝑅𝐴 (𝑞, 𝑘) denote the set of 𝑘 results retrieved by the approx-
imate retriever 𝐴 from 𝑋 for a query 𝑞 ∈ 𝑄 , and 𝑅𝐸 (𝑞, 𝑘) denote
the set of 𝑘 results retrieved by the exact retriever 𝐸 from 𝑋 for
the same query 𝑞. The recall for a single query 𝑞, is defined as
the fraction of relevant documents retrieved by the approximate
retriever 𝐴 out of the relevant documents retrieved by the exact
retriever 𝐸.

¯𝑟𝑒𝑐𝑎𝑙𝑙 (𝑄,𝑘) = 1
|𝑄 |

∑︁
𝑞∈𝑄

|𝑅𝐴 (𝑞, 𝑘) ∩ 𝑅𝐸 (𝑞, 𝑘) |
|𝑅𝐸 (𝑞, 𝑘) |

where |𝑄 | is the number of queries in the set𝑄 . Unless otherwise
stated, recall is calculated at 𝑘 = 10.

5.1 Evaluating Recall on Synthetic Vectors
As described in section 4.1, the synthetic data consists of vectors of
arbitrary intrinsic dimensionality which are created by combining
varying numbers of orthonormal basis vectors. To assess the quali-
ties of these vectors the intrinsic dimensionality is quantified with
a Principal Component Analysis (PCA) based approach.

Estimation of Intrinsic Dimensionality Using PCA. The intrinsic di-
mensionality of a dataset can be estimated using PCA by identifying
the number of principal components that capture a significant pro-
portion of the total variance in the dataset. Let 𝑋 be a dataset and
𝜆𝑖 represent the explained variance ratio of the 𝑖-th principal com-
ponent in the PCA. We compute a PCA on the dataset 𝑋 to obtain
the explained variance ratios 𝜆1, 𝜆2, . . . , 𝜆𝑛 , where 𝑛 is the total
number of features in 𝑋 . The sum of the explained variance ratios
for 𝑘 components is defined as 𝐶 (𝑘) = ∑𝑘

𝑖=1 𝜆𝑖 . To determine the
intrinsic dimensionality we find the smallest number 𝑘 such that
the cumulative sum 𝐶 (𝑘) is greater than or equal to a pre-defined
threshold 𝜃 (e.g., 𝜃 = 0.99 for 99% variance). The value of 𝑘intrinsic

represents the estimated intrinsic dimensionality of the dataset 𝑋
and describes the minimum dimensionality within the data which
captures the specified proportion of variance 𝜃 in the data. For our
work, 𝜃 = 0.99.

Evaluation of Recall on Synthetic Data. We can verify the process
used to generate this data by visualising the cumulative sum of
explained variance ratio from the PCA for datasets constructed
with varying numbers of orthonormal basis vectors as shown in
Figure 1.

Figure 1: Cumulative sum of explained variance ratio from a
PCA on datasets with 1024 dimensional vectors constructed
from varying numbers of orthonormal basis vectors.

What we observe is that as the number of orthonormal basis
vectors used to generate the synthetic data increases, the recall
achieved with both HNSWLib and FAISS decreases. Figure 2 depicts
the recall for HNSWLib and FAISS as the number of orthonormal
basis vectors used to construct the data increases. The number of
orthonormal basis vectors used to construct the data is the same
for the indexed vectors and the query vectors.

Figure 2: Recall for HNSWLib and FAISS at 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =

128,𝑀 = 16, and 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 40 on a dataset of 10,000 vectors
with 1,000 queries.
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5.2 Popular Models on Benchmark Datasets
The synthetic data evaluation from section 5.1 shows that there
exist properties of the vector space which can directly influence
recall of HNSW for a given parameterisation. It follows that mod-
els whose vector spaces exhibit different properties for a given
dataset can also impact recall. Many popular retrieval models are
trained with some form of contrastive loss which provides no ex-
plicit control for properties such as the intrinsic dimensionality or
local intrinsic dimensionality. Furthermore, training and evaluation
of these models is typically only done in the context of exact KNN.

Evaluation on benchmark datasets outlined in Table 2 for all
models identified in Table 3 shows that rankings of models change
when evaluated with various retrieval systems. This is to say that a
retrieval leaderboard established with exact KNN is not perfectly
representative of one produced using approximate nearest neigh-
bours retrieval. Models are ranked using Normalised Discounted
Cumulative Gain (NDCG)[23].

Table 4: Average NDCG@10 with 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10 comparing
change in performance for different retrievers. Sorted by
descending exact NDCG@10.

NDCG@10NDCG@10NDCG@10 Rank Change
Model Exact HNSWLib FAISS (HNSWLib/FAISS)

ember-v1 0.4318 0.4171 0.4043 0 / 0
bge-base-en-v1.5 0.4275 0.4073 0.3922 -1 / -1
gte-base 0.4244 0.4093 0.3991 1 / 1
bge-base-en 0.4180 0.3920 0.3748 -2 / -2
stella-base-en-v2 0.4155 0.3974 0.3862 1 / 1
bge-small-en-v1.5 0.4120 0.3925 0.3791 1 / 1
bge-small-en 0.4011 0.3758 0.3600 0 / -1
e5-base-v2 0.3965 0.3707 0.3495 -1 / -1
e5-base 0.3964 0.3592 0.3479 -1 / -1
all-MiniLM-L6-v2 0.3886 0.3712 0.3634 2 / 3
multilingual-e5-large 0.3868 0.3555 0.3405 0 / 0
e5-small-v2 0.3819 0.3404 0.3122 -1 / -3
e5-small 0.3771 0.3403 0.3233 -1 / 0
multilingual-e5-base 0.3738 0.3372 0.3182 -1 / 0
bge-micro 0.3667 0.3411 0.3278 3 / 3
multilingual-e5-small 0.3638 0.3308 0.3122 0 / 0

In Table 4 we observe that ranks shift up and down by up to
three places when evaluated with different retrieval systems, these
experiments use 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10 at 𝑘 = 10. Smaller models like
all-MiniLM-L6-V2 and bge-micro see improvements in relative per-
formance when used in approximate retrieval systems, moving up
the leader board by 2-3 places at 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10.

5.2.1 Local Intrinsic Dimensionality and Popular BenchmarkDatasets.
The analysis presented in section 5.1 reveals a significant relation-
ship between the intrinsic dimensionality of the dataset and the re-
call performance of the system, with recall falling by approximately
50% as synthetic data approaches full rank. This observation leads
us to hypothesise that HNSW graphs exhibit enhanced performance
when they are structured in a manner that increases the probability
of selecting entry points at each layer that are proximally located to
any region within the graph. By proactively assessing the pointwise

LID of data vectors, we can strategically influence the construction
of the graph to optimise (or impair) its recall.

In particular, constructing a graph with data sorted in descend-
ing order of LID appears to mimic a process similar to simulated
annealing. This approach facilitates the late integration of clusters
characterized by low LID values. Conversely, graphs initialized
with data in ascending order of LID suffer from early establishment
of tight localities in the graph comprised of low LID vectors. This
setup deteriorates the initial conditions for graph optimization,
leaving the integration of high LID vectors until the end stages. For
the smaller datasets (arguana, nfcorpus, scifact, and scidocs) we are
able to calculate the average path length of the final layer of the
graphs constructed with HNSWLib. A Pearson correlation coeffi-
cient of 0.61 is observed between recall and average path length for
these datasets across all models, this positive relationship indicates
that longer path lengths yield better recall, this also aligns with
the hypothesis that inserting high LID data first delays integration
of tight clusters within the graph. The computation of pointwise
LIDs was conducted using aMaximum Likelihood Estimation (MLE)
method considering the 100 exact nearest neighbours[25].

5.2.2 LID Ordered Insertion and Recall. The recall@10 was calcu-
lated for every model on the test sets of the 7 standard benchmark
datasets identified in Table 2, the recall for each of the models was
then averaged across all datasets. Results are presented in Table 5,
bold values indicate the highest recall that was achieved for HN-
SWLib or FAISS. When ordered by LID the recall is affected with
consistent patterns, on average HNSWLib and FAISS implementa-
tions achieve 2.6 and 6.2 percentage points better recall respectively
when data is inserted in descending LID order at 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10.

Table 5 shows that for all but one model (gte-base with FAISS)
the recall was higher when inserting data in order of descending
local intrinsic dimensionality. A random insertion order is con-
sistently in between the ascending and descending LID insertion
orders, reinforcing the hypothesis that the LID can be used to strate-
gically influence the recall of the system, potentially towards an
upper and lower extreme. The change in recall for each order varies
significantly from the HNSWLib implementation to the FAISS im-
plementation with a maximum difference between the two orders
of 5.6 percentage points for HNSWLib (e5-small-v2) and 12.8 per-
centage points on FAISS (all-MiniLM-L6-v2). The same patterns are
also observed at a higher 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ of 40 (Table 6).

Table 6 shows that despite the overall higher recall, the differ-
ences between recall for each insertion order remain comparable.
HNSWLib gives a maximum difference of 7.1 percentage points (e5-
small-v2) and FAISS gives a maximum difference of 11.5 percentage
points (all-MiniLM-L6-v2)

5.2.3 LID Ordered Insertion and Relevance. Recall can be associated
with other metrics which influence the efficacy of models on tasks
such as information retrieval. Retrieval evaluation for all datasets
using PyTREC Eval[41] shows a Pearson correlation coefficient of
0.71 is observed between recall@10 and NDCG@10. Table 7 shows
implications in leaderboard ranking of different insertion orders
for the HNSWLib implementation.
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Table 5: Average recall@10 with 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10 across benchmark datasets for
each model with data inserted in various orders.

Desc. Asc. Random Desc. Asc. Random
LID LID Order LID LID Order

HNSWLib HNSWLib HNSWLib FAISS FAISS FAISS
Model Recall Recall Recall Recall Recall Recall
bge-base-en 0.8498 0.8298 0.8255 0.7760 0.6982 0.7450
bge-base-en-v1.5 0.8664 0.8399 0.8467 0.8046 0.7324 0.7783
bge-small-en 0.8461 0.8279 0.8201 0.7819 0.7696 0.7467
bge-small-en-v1.5 0.8771 0.8565 0.8476 0.8007 0.7383 0.7883
bge-micro 0.8478 0.8199 0.8230 0.7933 0.6991 0.7618
stella-base-en-v2 0.8801 0.8590 0.8448 0.8288 0.7915 0.7775
e5-base 0.8224 0.8066 0.7603 0.7514 0.6801 0.6854
e5-base-v2 0.8171 0.7838 0.7416 0.7461 0.6565 0.6587
e5-small 0.8031 0.7910 0.7611 0.7432 0.6459 0.6819
e5-small-v2 0.7943 0.7385 0.6902 0.6963 0.6531 0.6136
multilingual-e5-base 0.7720 0.7305 0.7177 0.7000 0.6711 0.6266
multilingual-e5-large 0.7982 0.7728 0.7396 0.7165 0.6501 0.6622
multilingual-e5-small 0.7762 0.7236 0.7258 0.7033 0.6140 0.6112
ember-v1 0.8754 0.8580 0.8503 0.8325 0.7429 0.7921
all-MiniLM-L6-v2 0.8923 0.8650 0.8797 0.8532 0.7250 0.8309
gte-base 0.8884 0.8839 0.8819 0.7747 0.8318 0.8385

Table 6: Average recall@10 with 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 40 across benchmark datasets for
each model with data inserted in various orders.

Desc. Asc. Random Desc. Asc. Random
LID LID Order LID LID Order

HNSWLib HNSWLib HNSWLib FAISS FAISS FAISS
Model Recall Recall Recall Recall Recall Recall
bge-base-en 0.9664 0.9479 0.9585 0.9660 0.8835 0.9529
bge-base-en-v1.5 0.9745 0.9548 0.9662 0.9749 0.8930 0.9630
bge-small-en 0.9645 0.9608 0.9588 0.9638 0.9569 0.9546
bge-small-en-v1.5 0.9776 0.9693 0.9688 0.9730 0.8902 0.9678
bge-micro 0.9653 0.9372 0.9579 0.9659 0.8706 0.9534
stella-base-en-v2 0.9776 0.9610 0.9683 0.9789 0.9707 0.9654
e5-base 0.9534 0.9442 0.9283 0.9502 0.9140 0.9285
e5-base-v2 0.9522 0.9401 0.9197 0.9501 0.9403 0.9140
e5-small 0.9489 0.9293 0.9237 0.9471 0.8330 0.9224
e5-small-v2 0.9307 0.8598 0.8535 0.9111 0.8015 0.8664
multilingual-e5-base 0.9136 0.8903 0.8945 0.9100 0.9055 0.8906
multilingual-e5-large 0.9306 0.9213 0.9149 0.9317 0.8542 0.9137
multilingual-e5-small 0.9072 0.8786 0.9038 0.9131 0.8168 0.8533
ember-v1 0.9784 0.9558 0.9626 0.9769 0.8770 0.9692
all-MiniLM-L6-v2 0.9829 0.9566 0.9638 0.9790 0.8642 0.9792
gte-base 0.9775 0.9616 0.9140 0.9805 0.9689 0.9718

Table 7: Rank by NDCG at 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10 using HN-
SWLib with different insertion orders.

Model Random Asc. LID Desc. LID

ember-v1 1 1 1
gte-base 2 2 3
bge-base-en-v1.5 3 3 2
stella-base-en-v2 4 4 4
bge-small-en-v1.5 5 6 6
bge-base-en 6 5 5
bge-small-en 7 7 7
all-MiniLM-L6-v2 8 8 9
e5-base-v2 9 9 8
e5-base 10 10 10
multilingual-e5-large 11 11 11
bge-micro 12 15 14
e5-small-v2 13 13 15
e5-small 14 12 12
multilingual-e5-base 15 14 13
multilingual-e5-small 16 16 16

The observations from Table 7 translate into impacts on down-
stream retrieval tasks. Given that model rankings shift under differ-
ent insertion orders we can ascertain that each models vector space
is not impacted equally; certain models exhibit more robustness to
changes in insertion order.

5.3 Category Based Insertion Orders and Recall
The insertion sequence of data, influenced by LID, represents a
constructed scenario unlikely to mirror the more stochastic nature
of real-world data indexing. Nonetheless, practical applications
frequently encounter non-random data insertion phenomena. To
elucidate the real-world relevance of insertion sequence and its
correlation with LID, we examine data from two distinct online
retail platforms - one focusing on fashion, the other on homewares.

Contrastive Language-Image Pre-training (CLIP)[9, 19, 35, 39]
models are used to generate embeddings from product images,
with a series of GPT4[31] generated e-commerce search terms
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serving as queries. Specifically the ViT-B-32 architecture with the
laion2b_s34b_b79k checkpoint and the ViT-L-14 architecture with
the laion2b_s32b_b82k checkpoint were used.

Data was indexed sequentially organized by product categories
as listed on the retailers’ websites; data within each category is
randomly ordered. This approach has similarities with LID-ordered
insertion, presupposing that items within the same category ex-
hibit closer proximity to one another than to items from disparate
categories. We show that the category ordered insertions studied
here have parallels to the LID ordered insertions in section 5.2.2.
Analysis of the intrinsic dimensionality, as determined by the PCA
method, shows that categories within the data have differing values
to each other. Categories exhibit lower intrinsic dimensionalities
than the dataset as a whole (Table 8 and Table 9).

Table 8: Intrinsic Dimensionality in the Fashion Dataset

Category Intrinsic Dim. ViT-B-32 Intrinsic Dim. ViT-L-14

Watches 312 336
Streetwear 434 463
Collectibles 440 463
Sneakers 389 427
Handbags 418 450

All Data 442 469

Table 9: Intrinsic Dimensionality in the Homewares Dataset

Category Intrinsic Dim. ViT-B-32 Intrinsic Dim. ViT-L-14

Kitchenware (1) 394 448
Bed (2) 400 453
Pet (3) 374 405
Lighting (4) 371 447
Rugs (5) 338 415
Office (6) 313 369
Lifestyle (7) 366 383
Wall (8) 421 455
Furniture (9) 383 448
Renovation (10) 396 448
Baby (11) 411 442
Home (12) 426 456

All Data 439 475

In the analysis of the fashion dataset with the search parameter
𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10, we observed significant variations in recall based on
the order of insertion and the choice of model. Specifically, for ViT-
B-32, the recall difference attributable to varied insertion sequences
reached up to 7.7 percentage points (Table 8).

Table 10: Recall at 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10 for Fashion Dataset

HNSW & FAISS
Order Model Avg. Recall

Hbgs.-Snkrs.-Wtchs.-Coll.-Stwr. ViT-B-32 0.435639
Snkrs.-Hbgs.-Coll.-Stwr.-Wtchs. ViT-B-32 0.512328
Coll.-Stwr.-Hbgs.-Wtchs.-Snkrs. ViT-L-14 0.405639
Hbgs.-Coll.-Snkrs.-Stwr.-Wtchs. ViT-L-14 0.466295

This variance in recall metrics shows that the impact of data
insertion sequences on the effectiveness of HNSW-based retrieval
systems can be observed in real-world applicable scenarios. More-
over, this disparity persists at a higher setting of 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 40
(Table 11).

Table 11: Recall at 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 40 for Fashion Dataset

HNSW & FAISS
Order Model Avg. Recall

Coll.-Hbgs.-Stwr.-Wtchs.-Snkrs. ViT-B-32 0.744918
Snkrs.-Hbgs.-Coll.-Stwr.-Wtchs. ViT-B-32 0.799016
Coll.-Hbgs.-Wtchs.-Stwr.-Snkrs. ViT-L-14 0.712656
Coll.-Snkrs.-Hbgs.-Stwr.-Wtchs. ViT-L-14 0.77741

The differences in recall are less significant for the orders at-
tempted with the homewares data, though exhaustively trying
every combination of categories was not feasible due to the num-
ber of categories. Results for the homewares dataset are shown
in Table 12 and Table 13 for 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10 and 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 40
respectively - category names are mapped to numbers in Table 9
for brevity.

Table 12: Recall at 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 10 for Homewares Dataset

HNSW & FAISS
Order Model Avg. Recall

12-9-1-8-10-2-5-4-11-7-3-6 ViT-B-32 0.668467
1-2-3-4-5-6-7-8-9-10-11-12 ViT-B-32 0.69007
12-9-1-8-10-2-5-4-11-7-3-6 ViT-L-14 0.672265
1-2-3-4-5-6-7-8-9-10-11-12 ViT-L-14 0.69547

Table 13: Recall at 𝑒 𝑓 𝑆𝑒𝑎𝑟𝑐ℎ = 40 for Homewares Dataset

HNSW & FAISS
Order Model Avg. Recall

3-11-5-4-1-2-6-7-8-9-10-12 ViT-B-32 0.91251
1-2-3-4-5-6-7-8-9-10-11-12 ViT-B-32 0.91979
12-9-1-8-10-2-5-4-11-7-3-6 ViT-L-14 0.91857
3-11-5-4-1-2-6-7-8-9-10-12 ViT-L-14 0.92533
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6 CONCLUSION
In this work we have shown that the construction of HNSW graphs
can be sensitive to properties of the datasets and models utilised.
The effect of insertion order for data into the graphs has real world
impacts, especially in applications where the temporal component
of incoming data is correlated with properties of the vector space
that the data occupies; such as new product categories being added
or domain shifts more generally.

The relationship between intrinsic dimensionality and recall,
paired with the relationship between recall and downstream re-
trieval tasks, indicates that optimal model selection for HNSW
based retrieval systems is not as simple as following the results of
a benchmark done with exact KNN.

We hope that this work encourages further research into the
HNSW algorithm to improve robustness against the insertion order
of the data. Other advances may exist in model development as
well, allowing for better understanding and control of properties of
the vector space which can have impacts on recall in approximate
retriever systems.

7 FUTUREWORK
It is clear that there exists a relationship between intrinstic dimen-
sionality of vectors, particularly within local neighbourhoods, that
has direct impacts on the construction of HNSW graphs. Future
work should aim to explore the relationship between intrinsic di-
mensionality and recall with other approximate retrieval algorithms
such as DiskANN[20], FreshDiskANN[40], IVFPQ[24], Random
Projection Trees[12] (ANNOY[1]), MRPT[18], and KD-Trees[6] to
assess if similar properties are present in these algorithms.
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