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ABSTRACT

Pre-Trained Vision-Language Models (VL-PTMs) have shown promising capa-
bilities in grounding natural language in image data, facilitating a broad variety of
cross-modal tasks. However, we note that there exists a significant gap between
the objective forms of model pre-training and fine-tuning, resulting in a need for
large amounts of labeled data to stimulate the visual grounding capability of VL-
PTMs for downstream tasks. To address the challenge, we present Cross-modal
Prompt Tuning (CPT, alternatively, Colorful Prompt Tuning), a novel paradigm
for tuning VL-PTMs, which reformulates visual grounding into a fill-in-the-blank
problem with color-based co-referential markers in image and text, maximally
mitigating the gap. In this way, CPT enables strong few-shot and even zero-shot
visual grounding capabilities of VL-PTMs. Comprehensive experimental results
show that the prompt-tuned VL-PTMs outperform their fine-tuned counterparts by
a large margin (e.g., 17.3% absolute accuracy improvement, and 73.8% relative
standard deviation reduction on average with one shot in RefCOCO evaluation).
All the data and codes will be available to facilitate future research.

1 INTRODUCTION

Grounding natural language in fine-grained image regions is essential for a broad variety of vision-
language tasks, such as robotic navigation (Tellex et al., 2011; Anderson et al., 2018b), visual ques-
tion answering (Antol et al., 2015; Anderson et al., 2018a), visual dialogue (Das et al., 2017), and vi-
sual commonsense reasoning (Zellers et al., 2019). Recently Pre-Trained Vision-Language Models
(VL-PTMs) have shown promising capabilities in visual grounding. Typically, generic cross-modal
representations are first pre-trained on large-scale image-caption data in a self-supervised fashion,
and then fine-tuned to adapt to downstream tasks (Lu et al., 2019; Su et al., 2019; Li et al., 2020;
Radford et al., 2021). This pre-training-then-fine-tuning paradigm of VL-PTMs has greatly pushed
forward the state-of-the-art of many cross-modal tasks.

Despite the success, we note that there exists a significant gap between the objective forms of pre-
training and fine-tuning of VL-PTMs. As illustrated in Figure 1, during pre-training, most VL-PTMs
are optimized based on the masked language modeling objective, trying to recover the masked token
from the cross-modal context. However, during fine-tuning, downstream tasks are usually conducted
by classifying unmasked token representations into semantic labels, where task-specific parameters
are typically introduced. The gap hinders the effective adaptation of VL-PTMs to downstream tasks.
As a result, a large amount of labeled data is typically required to stimulate the visual grounding
capabilities of VL-PTMs for downstream tasks.

In this work, inspired by recent progress in pre-trained language models in natural language pro-
cessing (Brown et al., 2020; Schick & Schütze, 2021a; Liu et al., 2021), we present Cross-modal
Prompt Tuning (CPT, alternatively, Colorful Prompt Tuning), a novel paradigm for tuning VL-
PTMs. The key insight is that by adding color-based co-referential markers in both image and text,
visual grounding can be reformulated into a fill-in-the-blank problem, maximally mitigating the gap
between pre-training and fine-tuning. As shown in Figure 1, to ground natural language expres-
sions in image data, CPT consists of two components: (1) a visual sub-prompt that uniquely marks
image regions with colored blocks or segmentation masks, and (2) a textual sub-prompt that puts
the query text into a color-based query template. Explicit grounding to the target image region can
then be achieved by recovering the corresponding color text from the masked token in the query
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Figure 1: Illustration of (a) pre-training for VL-PTMs with masked language modeling (MLM)
head, (b) vanilla fine-tuning with new classification (CLS) head, and (c) our colorful cross-modal
prompt tuning (CPT) framework that reformulates visual grounding into a fill-in-the-blank problem
with reused MLM head. Only square parts of relevant image regions are shown for illustration.

template. In addition, we present a principled method to search for high-quality cross-modal prompt
configurations (i.e., visual appearances and texts of colors) for CPT.

By mitigating the gap from pre-training, CPT enables strong few-shot and even zero-shot visual
grounding capabilities of VL-PTMs. Experimental results show that the prompt-tuned VL-PTMs
outperform their fine-tuned counterparts by a large margin. For example, using colored blocks
as visual sub-prompts, CPT achieves 17.3% absolute accuracy improvement, and 73.8% relative
standard deviation reduction on average with one shot in RefCOCO evaluation. In the same setting,
when equipped with colored segmentation masks as visual sub-prompts, CPT can further achieve
20.0% absolute accuracy improvement, and 76.2% relative standard deviation reduction than the
vanilla fine-tuning approach.

Our contributions are summarized as threefold: (1) We present a novel cross-modal prompt tuning
paradigm for VL-PTMs. To the best of our knowledge, this is the first attempt in both cross-modal
prompt tuning for VL-PTMs, and zero- and few-shot visual grounding independent of object types.
(2) We present a principled approach to search for high-quality cross-modal prompt configurations
for CPT. (3) We conduct comprehensive experiments which demonstrate the effectiveness of CPT.

2 PRELIMINARY

In the literature, visual grounding is typically formulated as a referring expression comprehension
(REC) problem (Plummer et al., 2015; Mao et al., 2016). Given an image I and a query text of
referring expression q, REC aims to locate the target region in I that corresponds to q. In this
section, we introduce the vanilla fine-tuning approach for VL-PTMs.

A common practice for REC is to first detect a set of region proposals {v1, v2, . . . , vn} via object de-
tectors, and then classify or rank the proposals to select the target region (Lu et al., 2019; Chen et al.,
2020). Specifically, visual and textual inputs are first transformed into a sequence of input tokens
{[IMG], v1, v2, . . . , vn, [CLS], w1, w2, . . . , wm, [SEP]}, where {w1, w2, . . . , wm} are textual tokens
of q, and [IMG], [CLS] and [SEP] are special tokens. To obtain input representations, the feature
of image regions is extracted by visual encoders, and the embeddings of textual and special tokens
are obtained by a lookup table. Then input representations are fed into the pre-trained transformers
to produce the hidden representations {h[IMG],h1

v,h
2
v, . . . ,h

n
v ,h[CLS],h

1
w,h

2
w, . . . ,h

m
w ,h[SEP]}.

Finally the hidden representation of the target region is optimized against negative ones via classi-
fication or ranking loss, where new task-specific parameters are introduced. As a result, fine-tuned
VL-PTMs need a large mount of labeled instances to stimulate the visual grounding capability.
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3 CROSS-MODAL PROMPT TUNING (CPT)

In this section, we introduce the framework of CPT, and how to apply CPT to zero-shot, few-shot
and fully supervised visual grounding.

3.1 OVERVIEW

The key to visual grounding is to establish fine-grained connections between image regions and
textual expressions. Therefore, a good cross-modal prompt tuning framework should take full ad-
vantage of co-referential signals from both image and text, and maximally mitigate the gap between
pre-training and tuning. To this end, CPT reformulates visual grounding into a fill-in-the-blank prob-
lem, as shown in Figure 1. Specifically, the CPT framework consists of two components: (1) a visual
sub-prompt that uniquely marks the image regions with colored blocks or segmentation masks, and
(2) a textual sub-prompt that puts the query text into a color-based query template. Equipped with
CPT, it is then straightforward for VL-PTMs to ground the query text by filling the masked token
with the color text of the target image region, where the objective form is identical to pre-training.

3.2 VISUAL SUB-PROMPT

Given an image I and its region proposalsR = {v1, v2, . . . , vn}, visual sub-prompt aims to uniquely
mark the image regions with natural visual makers. Interestingly, we note that colored bounding
boxes are widely used to uniquely mark objects in images for visualization in the literature. Inspired
by this, we bridge the image regions and query text through a set of colors C, where each color
ci = (civ, c

i
w) ∈ C is defined by its visual appearance civ (e.g., RGB (255, 0, 0)) and color text ciw

(e.g., red). Then we mark each region proposal vi in the image with a unique color civ for grounding,
resulting in a set of colored image proposals Ψ(R; C), where Ψ(·) denotes visual sub-prompt.

As for the shape of the visual sub-prompt, in principle, there are multiple plausible choices to mark
the regions with colors, including colored bounding boxes, solid blocks, or solid object segmentation
masks. In our experiments, we find that coloring the object with solid blocks and segmentation
masks yields better results than bounding boxes, since solid colors that fit the outlines of objects are
more common in real-world images (e.g., red shirt and blue car). Note that the addition of visual
sub-prompt to the raw image does not change the architecture or parameters of VL-PTMs.

3.3 TEXTUAL SUB-PROMPT

Textual sub-prompt aims to prompt VL-PTMs to establish the connections between the query text
and image regions marked by visual sub-prompt. Specifically, the query text q (e.g., “the horse
watched by the woman”) is transformed into a fill-in-the-blank query using a template Tg(·) as:

Tg(q) = [CLS] q is in [MASK] color [SEP]

In this way, VL-PTMs are prompted to decide the color of which region is more appropriate to fill
in the mask (e.g., red or blue) as follows:

P (v = vi|R, q) = P ([MASK] = ciw|Ψ(R; C), Tg(q)) =
exp(h>

[MASK]c
i
w)∑

cj∈C exp(h>
[MASK]c

j
w)

, (1)

where v is the target region, ciw is the embedding of ciw in the pre-trained MLM head. Note that the
procedure does not introduce any new parameters, and also mitigates the gap between pre-training
and tuning, and therefore improves the data efficiency for tuning VL-PTMs.

3.4 TRAINING AND INFERENCE

Equipped with CPT, VL-PTMs can readily perform zero-shot visual grounding without any labeled
data, since the cross-modal representations of colors and their composition with other concepts (e.g.,
objects, attributes and relations) have been well learned by VL-PTMs during pre-training. When a
few or full labeled instances are available, VL-PTMs can be further tuned by CPT using the entropy-
based objective: L = −

∑
(R,q,v?)∈Dtrain

logP (v?|R, q), where Dtrain is the training set.
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Figure 2: CPT framework for predicate classification by filling-in-the-blank with reused MLM head.

Although it is appealing to bridge the image and text through a color-based prompt, we identify two
key challenges in its design: (1) how to determine the configurations of the color set C, and (2) how
to deal with the large number of image regions with limited pre-trained colors.

Cross-Modal Prompt Search. Previous works in textual prompt tuning show that prompt configu-
rations (e.g., textual templates) have a significant influence on the performance (Jiang et al., 2020).
In this work, we make the first investigation in searching the cross-modal prompt configuration (i.e.,
the color set C). Intuitively, C should consist of colors to which VL-PTMs are the most sensitive.
To obtain a color ci = (civ, c

i
w), a naive approach is to adopt the most frequent color text in the

pre-training text as ciw, and its standard RGB as civ (e.g., ci = ((255, 0, 0), red)). However, this
solution is sub-optimal, since it determines the color text without considering its visual appearance,
and the visual appearance of a color in real-world images often differs from its standard RGB.

To address the challenge, we present a principled cross-modal prompt search (CPS) algorithm for
CPT, which jointly considers visual and textual semantics in real-world cross-modal data. Specifi-
cally, we first identify a candidate set of color texts Ĉw and visual appearances Ĉv . For each visual
appearance candidate ĉv ∈ Ĉv , we feed into VL-PTMs a pseudo-data instance consisting of a pure
colored block of ĉv and a text: “[CLS] a photo in [MASK] color [SEP]”. Then we compute the
decoding score s(ĉv, ĉw) for each color text candidate ĉw ∈ Ĉw as in Equation 1, where a larger
decoding score indicates higher correlation between ĉv and ĉw. To select the color texts that are
sensitive by VL-PTMs, we retain the color texts that achieve the largest decoding scores for visual
appearance candidates: Cw = {cw|cw = arg maxĉjw∈Ĉw

s(ĉiv, ĉ
j
w), ĉiv ∈ Ĉv}. Similarly, we can

obtain the visual appearances according to the largest decoding score, resulting in the color set:
C = {(cv, cw)|cv = arg maxĉiv∈Ĉv

s(ĉiv, c
j
w), cjw ∈ Cw}. We refer readers to Section B for the

pseudo-code of the algorithm. In experiments, we find that the resultant colors yield better results
than the naive ones. To make the raw content of the colored image regions available to VL-PTMs, a
transparency hyperparameter α ∈ (0, 1) is further applied to color visual appearances in practice.

Image Region Batching. In visual grounding, the number of region proposals in an image usually
exceeds the size of C (∼ 10). Besides, we observe that heavily overlapped colored blocks can hinder
visual grounding. Therefore, we divide the image regions into batches, where each batch contains
a handful of moderately overlapping image regions, and mark each batch with a visual sub-prompt
respectively. To handle the batches that do not contain the target region, we further introduce a new
candidate text none in the decoding vocabulary, to indicate that there is no target region in the batch.

3.5 CPT FOR PREDICATE CLASSIFICATION

In the previous sections, we introduced CPT for visual grounding. In fact, CPT can also be easily
adapted to other cross-modal tasks, such as predicate classification. Given an object pair (including
the categories and bounding boxes) in an image, predicate classification aims to classify the relation
into a relation setP , providing structured image representations that can facilitate many cross-modal
tasks (Johnson et al., 2015; Hudson & Manning, 2019; Shi et al., 2019). In the literature, since the
ground-truth relations cannot be exhaustively annotated during evaluation, to avoid false negatives,
previous works typically score the triplets and evaluate the recall of top-N triplets (Xu et al., 2017;
Zellers et al., 2018; Chen et al., 2019; Tang et al., 2019).

Visual and Textual Sub-prompts. As shown in Figure 2, to perform predicate classification, CPT
first marks the image regions with visual sub-prompt as in Section 3.2, and puts the object pair in
the query template as follows:

Tr(s, o) = [CLS] The sw in ciw color is [MASK] the ow in cjw color [SEP]

where sw is the subject text, ow is the object text, and ciw and cjw are the corresponding color texts.
Then VL-PTMs are prompted to recover the relation texts from masked tokens in the template. To
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accommodate the varied number of tokens in relation texts (e.g., wearing, walking on, typically 1∼3
tokens), we introduce a variable l indicating the number of tokens in a relation text (e.g., l = 2 for
walking on). The template T (·; l) will have l consecutive masked tokens for relation prediction. For
each template T (·; l), we introduce a special NA relation consisting of l tokens, which indicates that
there is no relation between the entity pair under T (·; l). Specifically, in our experiments, the NA
relation is irrelevant, no relation, no relation with for l = 1, 2, 3 respectively.

Training. Given a relational triplet (s, r, o), after decorating the input image regions and the object
pair with visual and textual sub-prompts, VL-PTMs are optimized with the MLM loss to recover
the relational tokens. Specifically, denote the number of tokens in r as |r|. (1) For templates where
l = |r|, models are asked to reconstruct the ith masked token in T (s, o; l) with the ith relational
token ri using the MLM head. (2) For templates where l 6= |r|, since there is no relation between
(s, o) under T (s, o; l), models are asked to reconstruct the NA relation. For (s, o) that do not have
any relation in the image, models are asked to reconstruct the NA relation for all T (s, o; l).

Inference. During inference, given an object pair (s, o), we score the relations based on their
fitness to the prompt context. Specifically, the score of each relation r ∈ P ∪ {NA} is ob-
tained by the aggregated MLM scores of its composing tokens under the corresponding template:
s(r) = 1

l

∑l
i=1 logP ([MASK]i = ri|T (s, o; l)), where l = |r|. Intuitively, larger s(r) indicates

that the relation r better fits the prompt context. Finally, the triplets (s, r, o) are ranked according to
the relation score s(r), where r ∈ P .

Compared with visual grounding that aims to locate image regions for ungrounded texts, predicate
classification represents a different series of cross-modal tasks that aim to perform semantic recog-
nition based on grounded inputs, such as object classification (Zhao et al., 2017) and scene graph
classification (Xu et al., 2017). In addition to better data efficiency, a crucial advantage of using CPT
is that the semantic labels can be produced from open-world vocabularies, instead of fixed label sets.

4 EXPERIMENTS

In this section, we empirically evaluate CPT in prompting VL-PTMs for visual grounding in dif-
ferent settings, including zero-shot, few-shot and fully supervised settings. We refer readers to
Section C for the implementation details.

4.1 EXPERIMENTAL SETTINGS

We first introduce the experimental settings of the visual grounding task, including datasets, training
settings, evaluation protocols and baseline models in our experiments.

Datasets. Following previous works (Rohrbach et al., 2016; Zhang et al., 2018), we adopt three
widely used visual grounding datasets collected from MSCOCO images (Lin et al., 2014), including
RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al., 2016) and RefCOCOg (Mao et al., 2016). We
refer readers to Section D.2 for more dataset details.

Training Settings. We report experimental results of different training settings, including (1) zero-
shot setting, where no training data is available, (2) few-shot setting, where K training instances are
available (K = 1, 2, 4, 8, 16), and (3) fully supervised setting, where the full training set is available.

Evaluation Protocols. (1) Evaluation metrics. Following Zhang et al. (2018); Lu et al. (2019),
we adopt accuracy of the grounding results as the evaluation metrics. An expression is considered
correctly grounded if the IoU of the top predicted region and the ground truth is greater than 0.5.
(2) Model validation. To better approximate the few-shot scenario where only a few labeled in-
stances are available, inspired by Gao et al. (2021), we use a few-shot validation set (consisting of
16 instances) for few-shot and zero-shot experiments, and use full validation set for fully supervised
experiments. (3) Robust evaluation. Previous works have shown that model training on limited data
can suffer from instability (Dodge et al., 2020; Gao et al., 2021). For a robust and comprehensive
evaluation, we report mean results over 5 random training set splits, as well as the standard deviation.
For fair comparisons, the training and validation sets are identical for our baselines and CPT.

Baselines. We evaluate two variants of CPT, including CPT using colored blocks (CPT-Blk) and
colored segmentation masks (CPT-Seg). We adopt the widely used VinVL (Zhang et al., 2021)
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Table 1: Main results. Accuracies (%) of grounding referring expressions in zero-shot, few-shot and
fully supervised settings. We report mean and standard deviation performance over 5 random splits.
ZS: zero-shot. Blk: colored block, Seg: colored segmentation mask.

Shot Model RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

Z
S 0

Random 15.9± 0.2 19.4± 0.6 13.4± 0.4 16.1± 0.1 13.3± 0.6 20.0± 0.2 18.8± 0.4 19.2± 0.3
CPT-Blk 26.9 27.5 27.4 25.4 25.0 27.0 32.1 32.3
CPT-Seg 32.2 36.1 30.3 31.9 35.2 28.8 36.7 36.5

Fe
w

-S
ho

t

1
Fine-tuning 16.5± 4.9 12.0± 6.6 23.5± 5.7 22.2± 7.6 20.6± 9.3 25.7± 5.2 26.9± 8.4 26.9± 8.1
CPT-Blk 34.1± 1.3 37.7± 1.7 32.2± 1.5 35.9± 4.1 40.4± 5.4 32.2± 2.6 39.7± 3.4 39.9± 3.0
CPT-Seg 37.2± 0.9 41.5± 1.5 33.2± 1.7 37.9± 4.0 42.3± 5.9 33.9± 2.4 43.1± 2.9 43.4± 3.1

2
Fine-tuning 22.5± 4.5 21.0± 7.2 25.9± 4.7 27.0± 3.1 27.8± 4.2 27.0± 2.6 28.4± 12.0 28.1± 11.3
CPT-Blk 35.3± 3.2 39.6± 3.0 30.9± 1.7 33.3± 3.6 37.5± 4.8 30.3± 2.5 40.1± 5.1 40.0± 4.7
CPT-Seg 39.8± 1.7 45.6± 3.2 33.9± 0.4 38.6± 3.6 44.5± 4.5 32.8± 3.8 44.7± 5.1 44.3± 4.8

4
Fine-tuning 29.1± 5.0 29.9± 7.8 29.8± 5.3 34.2± 4.2 37.7± 5.2 30.5± 3.3 34.0± 13.1 33.7± 12.8
CPT-Blk 38.3± 2.1 43.6± 3.3 34.0± 1.6 38.8± 3.8 44.4± 6.4 33.5± 1.5 40.6± 7.9 40.9± 7.9
CPT-Seg 40.7± 3.2 47.4± 4.1 35.3± 1.8 40.3± 2.0 46.5± 3.1 34.5± 1.5 44.4± 6.9 44.4± 6.9

8
Fine-tuning 34.6± 4.8 37.8± 5.5 31.4± 5.1 36.2± 3.6 40.1± 4.6 32.7± 2.3 40.6± 11.2 40.4± 11.7
CPT-Blk 41.0± 1.5 43.9± 1.7 35.8± 2.2 39.3± 1.5 46.1± 1.8 33.2± 1.3 43.4± 6.5 43.6± 6.4
CPT-Seg 41.3± 2.6 48.2± 4.6 35.7± 2.5 42.6± 2.9 49.3± 4.7 35.4± 1.0 47.4± 3.5 47.4± 3.5

16
Fine-tuning 39.8± 4.2 45.5± 5.0 34.9± 3.0 41.8± 3.0 47.3± 3.1 36.2± 2.3 47.5± 4.1 47.8± 4.7
CPT-Blk 44.8± 3.3 51.4± 4.1 38.2± 2.3 41.5± 1.3 48.2± 2.1 34.7± 0.9 47.8± 2.1 48.2± 2.8
CPT-Seg 45.3± 1.8 53.3± 3.0 37.5± 1.3 44.8± 0.9 52.5± 1.2 36.6± 1.2 51.0± 2.6 51.4± 2.8

Fu
lly

Su
pe

rv
is

ed

|Dtrain|

MAttNet 76.7 81.1 70.0 65.3 71.6 52.0 66.6 67.3
VL-T5 − − − − − − 71.2 71.3
ViLBERT − − − 72.3 78.5 62.6 − −
VLBERT − − − 71.6 77.7 61.0 − −
ERNIE-ViL − − − 74.0 80.3 64.7 − −
UNITER 81.2 86.5 73.9 75.3 81.3 65.6 74.3 74.5
Fine-tuning 81.8 87.2 74.3 74.5 80.8 64.3 74.6 75.7
CPT-Blk 81.9 87.1 73.8 74.4 80.4 64.1 75.3 75.3
CPT-Seg 81.9 86.4 74.4 73.9 79.5 64.4 74.4 75.2

as the CPT backbone. We compare CPT with a series of strong baselines that utilize detected
proposals, including vanilla fine-tuning of VinVL and other VL-PTMs (see Section D.1 for more
baseline details). For fair comparisons, we adopt the base size for all VL-PTMs. We refer readers to
Section A.1 for the results of large size VL-PTMs.

4.2 MAIN RESULTS

The main results are reported in Table 1, from which we observe that: (1) CPT outperforms the
random baseline and the strong fine-tuning baseline by a large margin in zero-shot and few-shot
settings. For example, using colored blocks as visual sub-prompts, CPT achieves 17.3% absolute
accuracy improvement on average with one shot in RefCOCO evaluation. This indicates that CPT
can effectively improve sample efficiency in tuning VL-PTMs. (2) Coloring objects with segmen-
tation masks in visual sub-prompts (CPT-Seg) achieves even better results than blocks (CPT-Blk).
The reason is that solid colors that fit the outlines of objects are more common in real-world im-
ages, making CPT-Seg more natural visual sub-prompts (despite requiring stronger annotation to
train the segmentation tools). (3) Notably, CPT achieves significantly smaller standard deviation
than fine-tuning. For example, CPT-Blk achieves 73.8% relative standard deviation reduction on
average with one shot in RefCOCO evaluation. This shows that a coherent tuning approach from
pre-training can lead to substantially more stable few-shot training, which is a crucial factor for eval-
uating few-shot learning models (Gao et al., 2021). (4) We note that CPT-Blk slightly underperforms
fine-tuning with 16 shots in RefCOCO+ evaluation. The reason is that RefCOCO+ has more color-
based expressions (e.g., the person in red shirt and blue hat), which can disturb our color-based
CPT. However, this problem can be alleviated with more tuning instances in the fully supervised
scenario, where models can learn to better distinguish colors in the query text and prompt template.
(5) CPT models achieve comparable performance to strong fine-tuned VL-PTMs in the fully super-
vised settings. This shows that CPT is a competitive tuning approach for VL-PTMs even in the fully
supervised scenario. We note that CPT-Blk slightly outperforms CPT-Seg in the fully supervised
setting, and we refer readers to Section A.3 for a detailed analysis. In summary, compared to the
vanilla fine-tuning approach, CPT achieves superior/comparable, and more stable performance in
zero-shot, few-shot and fully supervised visual grounding.
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4.3 INFLUENCE OF COLORS IN CPT’S VISUAL GROUNDING

In our analysis, we first investigate the influence of colors—the key ingredients—in the visual
grounding performance of CPT. Specifically, we compare colors obtained from the frequency-based
baseline (Freq) (See Section 3.4) and our cross-modal prompt search method CPS (Ours) in two
dimensions, including an overall evaluation of top-N colors and a zoom-in study of individual col-
ors. Unless otherwise specified, all the following experiments are conducted based on CPT-Blk on
the validation set of RefCOCO in 0, 2, 8 shot settings.

Table 2: Top-6 colors from the frequency-based baseline and our CPS. Visual appearances and color
texts are reported. Best viewed in color.

Model Color #1 Color #2 Color #3 Color #4 Color #5 Color #6

Freq (255,0,0), red (0,0,0), black (0,0,255), blue (0,255,0), green (255,255,0), yellow (165,42,42), brown
Ours (240,0,30), red (155,50,210), purple (255,255,25), yellow (0,10,255), blue (255,170,230), pink (0,255,0), green

Overall Evaluation of Top-N Colors. We first show the top-6 colors recommended by each ap-
proach in Table 2. To evaluate the overall performance of the top colors from different models,
we evaluate CPT equipped with each color from the top-6 colors respectively, and report the mean
accuracy and standard deviation over different colors. From the experimental results in Figure 3a,
we observe that the top colors produced by CPS achieve both higher mean accuracy and lower stan-
dard deviation than the baseline method in different shot-settings. The reason is that CPS jointly
considers visual and textual semantics in searching cross-modal prompts, and therefore is able to
effectively adjust and rank the colors for more accurate and stable visual grounding.
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(b) Zoom-in study of individual colors in different shots.

Figure 3: Results of utilizing different colors for visual grounding, including (a) an overall evaluation
of top-6 colors from different models, and (b) a zoom-in study of aligned individual colors.

Zoom-In Study of Individual Colors. To investigate the fine-grained influence of specific colors in
CPT’s visual grounding, we further perform a zoom-in study of individual colors. To align the colors
for comparison, we merge the top-6 colors from the baseline and CPS, and remove the colors that are
not included in the models’ complete color sets (e.g., black /∈ C in CPS). We report the accuracies
in Figure 3b, from which we observe that: (1) The performance of different colors varies greatly in
prompting VL-PTMs in the same shot-settings, and the optimal colors are different in different shot-
settings. The results indicate the large influence of cross-modal prompt configurations, consistent
with the findings from recent studies in textual prompt tuning (Jiang et al., 2020; Gao et al., 2021).
(2) Colors produced by CPS achieve comparable or superior performance compared to the baseline
in individual colors. The results show that given the color texts, CPS can properly adjust the color
visual appearance (i.e., RGB) to improve the visual grounding performance. (3) We note that in
some cases, colors produced by CPS slightly underperform the baseline. We hypothesize the reason
is that, CPS uses a single textual template to compute the decoding scores for color adjustment,
which can be biased. The problem can potentially be addressed by ensembling templates as in Qin
& Eisner (2021), which we leave for future work.

4.4 CASE STUDY

To provide a more intuitive understanding of CPT, we conduct a case study on the validation set
of RefCOCO in 8-shot setting. From the results in Figure 4, we have the following observations:
(1) CPT enables VL-PTMs to distinguish target objects distracted by the same of type objects using
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Query Text: right elephant in water

(a) Correctly predicted

Query Text: apple on the bottom to
the right of the orange in middle

(b) Disturbed by objects of the
same type, but still reasonable

Query Text: food in red bowl

(c) Disturbed by colors in raw
image regions and text

Figure 4: Case study. The bounding boxes given by image region proposals (olive), ground-truth
annotation (pink), CPT (green), and fine-tuning baseline (yellow) are highlighted accordingly.

Table 3: Predicate classification results on Visual Genome. ZS: zero-shot, FS: fully supervised. We
report the mean and standard deviation performance over 2 random splits.

Shot Model Val Test
R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100

Z
S 0 Random 1.6± 0.2 1.8± 0.2 1.1± 0.2 1.3± 0.1 1.5± 0.0 1.8± 0.1 1.2± 0.1 1.6± 0.1

CPT-Blk 33.6 34.7 14.8 15.5 29.3 30.5 13.0 14.5

Fe
w

-S
ho

t

1 Fine-tuning 3.8± 0.1 4.2± 0.1 7.8± 0.9 8.7± 1.0 4.1± 0.1 4.7± 0.0 6.7± 0.3 7.6± 0.4
CPT-Blk 16.3± 2.0 17.5± 2.3 25.2± 0.7 27.4± 0.8 18.0± 2.8 20.0± 3.0 23.9± 0.3 26.3± 0.3

4 Fine-tuning 7.1± 1.9 7.6± 2.0 10.3± 0.8 11.7± 0.8 7.3± 1.5 7.9± 1.7 11.8± 1.0 13.2± 0.9
CPT-Blk 14.4± 0.4 15.4± 0.4 30.4± 1.5 32.8± 1.6 17.7± 0.6 19.3± 0.6 28.5± 1.5 32.1± 1.0

16 Fine-tuning 8.4± 0.3 8.9± 0.3 20.7± 0.6 21.7± 0.6 10.4± 0.7 11.2± 0.8 19.7± 0.1 21.7± 0.1
CPT-Blk 15.0± 0.6 16.0± 0.8 33.0± 0.2 35.4± 0.6 18.4± 1.0 20.0± 1.1 32.5± 0.5 36.1± 0.6

32 Fine-tuning 9.7± 1.1 10.2± 1.1 21.9± 0.6 22.9± 0.2 11.7± 0.2 12.4± 0.3 22.0± 0.1 24.1± 0.0
CPT-Blk 17.2± 0.4 18.2± 0.4 34.6± 0.2 37.9± 0.1 20.8± 0.1 22.3± 0.1 34.0± 0.1 37.7± 0.3

FS |Dtrain|
Neural Motif - - - - 65.2 67.0 14.8 16.1
BGNN - - - - 59.2 61.3 30.4 32.9
PCPL - - - - 50.8 52.6 35.2 37.8
DT2-ACBS - - - - 23.3 25.6 35.9 39.7

only a few training instances, while the fine-tuning method struggles to succeed (Figure 4a). (2) CPT
can be distracted by hard candidates (e.g., objects of the same type as the target that requires complex
reasoning to identify), but will typically produce reasonable predictions. For example, in Figure 4b,
CPT predicts a nearby apple while the fine-tuning baseline predicts a bowl. The reason is that
CPT maximally reuses the pre-trained parameters of VL-PTMs, which can help prevent outrageous
predictions that typically happen in few-shot fine-tuning. (3) However, we find that CPT can be
disturbed by colors in raw image regions and text. For example, it can be difficult for the model to
identify a red bowl when the candidate regions are colored by red blocks (Figure 4c).

4.5 EXPERIMENTS ON PREDICATE CLASSIFICATION

To investigate the generalization capability of CPT, we evaluate CPT on predicate classification task.

Experimental Settings. (1) Datasets. We adopt the popular Visual Genome dataset (Krishna et al.,
2017), which contains 50 visual relations. We refer readers to Section D.2 for the dataset details.
(2) Evaluation protocols. Following previous works (Xu et al., 2017; Chen et al., 2019), we use
recall@N (R@N) and mean recall@N (mR@N) as the evaluation metrics. During training, K la-
beled instances are provided for each relation. (3) Baselines. We adopt fine-tuning of VinVL as our
most direct baseline model. Specifically, we feed the image regions and their categories into the
model, and concatenate the visual hidden representations of the subject and object. Then the object
pair representation is fed into a softmax classifier. All VL-PTMs are in base size. We also report
the results of strong baselines that are tailored for the task, and are fully supervised with 315, 642
labeled triplets, including Neural Motif (Zellers et al., 2018), BGNN (Li et al., 2021a), PCPL (Yan
et al., 2020) and DT2-ACBS (Desai et al., 2021).
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Results. From the results in Table 3, we observe that: (1) CPT significantly outperforms the ran-
dom baseline and the strong fine-tuning baseline in zero-shot and few-shot settings. For example,
using 32 shots, CPT achieves a strong mR@100 of 37.7%, outperforming fine-tuning by 13.6% ab-
solute points, and closely approaching state-of-the-art fully supervised DT2-ACBS. This indicates
that CPT can improve sample efficiency in tuning VL-PTMs. (2) We note that while the macro per-
formance of CPT monotonically increases as the shot number grows, the micro performance drops
first in 1- and 4-shot settings. This is due to the distribution gap between the balanced training set
(i.e., K shot for each relation) and the long-tail test set. Since the relations in the pre-training corpora
also follow a long-tail distribution, CPT can achieve a high starting point for micro performance.

5 RELATED WORK

Pre-trained Vision-language Models. Existing VL-PTMs can be roughly divided into three cate-
gories according to their pre-training objectives and architectures: (1) Masked language modeling
based VL-PTMs are mainly pre-trained to recover the masked tokens (Lu et al., 2019; Su et al., 2019;
Tan & Bansal, 2019; Li et al., 2020; Yu et al., 2021); (2) Auto-regressive language modeling based
VL-PTMs model image and text tokens with Transformer decoders auto-regressively (Ramesh et al.,
2021; Wang et al., 2021); (3) Contrastive learning based VL-PTMs are pre-trained to holistically
match image-text pairs (Radford et al., 2021; Li et al., 2021b). Note that our Cross-modal Prompt
Tuning (CPT) framework is orthogonal to VL-PTM design. In this work, without loss of generality,
we focus on prompting masked language modeling based VL-PTMs due to their prevalence and
superior performance, while applying CPT to other VL-PTMs is also applicable.

Prompt Tuning for NLP. Prompt tuning for pre-trained language models is a rapidly emerging
field in NLP (Raffel et al., 2019; Brown et al., 2020; Liu et al., 2021). Originally designed for prob-
ing knowledge in pre-trained language models (Petroni et al., 2019), prompt tuning has now been
extended to handle a variety of NLP tasks, including language understanding (Schick & Schütze,
2021a;b) and generation (Li & Liang, 2021). To facilitate prompt engineering, Shin et al. (2020) pro-
pose to automatically generate prompt templates via gradient-based search. Most related to our work
are Tsimpoukelli et al. (2021); Zhou et al. (2021); Wang et al. (2021) that present textual prompt
tuning for VL-PTMs, achieving promising results on some vision-language tasks. However, simi-
lar to existing works in NLP, they focus on prompt engineering in text, keeping images untouched,
and therefore can only perform holistic implicit visual grounding. In comparison, to the best of our
knowledge, CPT is the first cross-modal prompt tuning framework tailored for both image and text,
and is capable of explicitly grounding natural language to fine-grained image regions.

Visual Grounding. There is a general consensus that visual grounding plays an essential role in
solving vision-language tasks (Karpathy & Fei-Fei, 2015; Plummer et al., 2015; Goodfellow et al.,
2016; Krishna et al., 2017; Lu et al., 2019). Mao et al. (2016) propose the referring expression
comprehension task to explicitly evaluate the visual grounding capability. To address the task, most
models learn to classify or rank image region candidates based on the expressions in a fully super-
vised fashion (Mao et al., 2016; Zhang et al., 2018; Lu et al., 2019; Chen et al., 2020), requiring
large amounts of costly human-annotated data. To alleviate reliance on human annotation, some
works have investigated zero-/few-shot grounding of new object types (Sadhu et al., 2019; Blukis
et al., 2020), whereas amounts of training data are still needed for existing object types. In com-
parison, we prompt general VL-PTMs for zero- and few-shot visual grounding in a reformulated
fill-in-the-blank paradigm independent of specific object types.

6 CONCLUSION AND FUTURE WORK

In this work, we present the first Cross-modal Prompt Tuning (CPT) framework for VL-PTMs. To
facilitate prompt engineering, we present a principled approach to search for cross-modal prompt
configurations. Comprehensive experimental results demonstrate the effectiveness of CPT on zero-
shot, few-shot and fully supervised visual grounding. In future, we plan to address the color dis-
turbance and improve the computation efficiency of CPT, and also investigate the effectiveness of
CPT on other vision-language tasks. As the first attempt in cross-modal prompt tuning, we propose
a color-based framework as one of the possible prompt tuning solutions. We leave exploring other
plausible prompt tuning approaches of VL-PTMs for future work.

9



Under review as a conference paper at ICLR 2022

7 ETHICS STATEMENT

In this section, we discuss the main ethical considerations of CPT: (1) Intellectual property pro-
tection. The codes and data adopted from previous works are granted for research-purpose usage.
(2) Privacy. The data adopted in this work (i.e., the pre-training data and tuning data) is created by
human annotators for research purposes, and should not cause privacy issues. (3) Potential prob-
lems. VL-PTMs may be biased towards some objects and attributes. There are increasing efforts to
address the problem in the community (Ross et al., 2021; Zhao et al., 2021).

8 REPRODUCIBILITY STATEMENT

To maximize the reproducibility, we provide a clear description of the methodology in Section 3,
the pseudo-code of the model in Section B, implementation details in Section C, and detailed data
characteristics and evaluation protocols in Section 4.1. All the data and codes will be available to
facilitate future research.
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Parikh, and Dhruv Batra. Visual dialog. In Proceedings of CVPR, pp. 326–335, 2017.

Alakh Desai, Tz-Ying Wu, Subarna Tripathi, and Nuno Vasconcelos. Learning of visual relations:
The devil is in the tails. In Proceedings of ICCV, pp. 15404–15413, 2021.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of ACL, 2021.

10



Under review as a conference paper at ICLR 2022

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of CVPR, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In Proceedings of
the ICCV, pp. 2961–2969, 2017.

Drew A. Hudson and Christopher D. Manning. Learning by abstraction: The neural state machine.
In Proceedings of NeurIPS, pp. 5901–5914, 2019.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? TACL, 8:423–438, 2020.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and
Li Fei-Fei. Image retrieval using scene graphs. In Proceedings of CVPR, pp. 3668–3678, 2015.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In Proceedings of CVPR, pp. 3128–3137, 2015.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferitGame: Referring to
objects in photographs of natural scenes. In Proceedings of EMNLP, pp. 787–798, 2014.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. IJCV, 123(1):32–73, 2017.

Rongjie Li, Songyang Zhang, Bo Wan, and Xuming He. Bipartite graph network with adaptive
message passing for unbiased scene graph generation. In Proceedings of CVPR, pp. 11109–
11119, 2021a.

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao Liu, Jiachen Liu, Hua Wu, and Haifeng Wang.
UNIMO: Towards unified-modal understanding and generation via cross-modal contrastive learn-
ing. In Proceedings of ACL, pp. 2592–2607. Association for Computational Linguistics, 2021b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language
tasks. In Proceedings of ECCV, pp. 121–137. Springer, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In Proceedings
of ECCV, pp. 740–755. Springer, 2014.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. arXiv preprint arXiv:2107.13586, 2021.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. Proceedings of NeurIPS, 32:13–23, 2019.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of CVPR, pp.
11–20, 2016.
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A SUPPLEMENTARY EXPERIMENTS

A.1 RESULTS OF LARGE SIZE VL-PTMS

In this section, we report the experimental results of large size VL-PTMs, including vanilla fine-
tuning of baseline VL-PTMs, CPT-Blk and CPT-Seg with large size backbone (i.e., 1, 024 dimen-
sional hidden representations and 24 layers). From the experimental results in Table 4, we observe
that compared with vanilla fine-tuning, CPT achieves significantly better and more stable perfor-
mance in zero-shot and few-shot settings, and comparable results in the fully supervised settings,
which is consistent with the conclusions of main experiments in Section 4.2. In summary, the results
show that CPT can generalize to VL-PTMs of different sizes.

Table 4: Results of large size VL-PTMs. Accuracies (%) of grounding referring expressions in zero-
shot, few-shot and fully supervised settings. We report mean and standard deviation performance
over 5 random splits. ZS: zero-shot. Blk: colored block, Seg: colored segmentation mask.

Shot Model RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

Z
S 0

Random 15.9± 0.2 19.4± 0.6 13.4± 0.4 16.1± 0.1 13.3± 0.6 20.0± 0.2 18.8± 0.4 19.2± 0.3
CPT-Blk 25.7 25.4 27.0 25.9 25.8 25.7 32.9 32.6
CPT-Seg 29.5 30.6 28.7 28.8 30.3 27.4 34.6 34.8

Fe
w

-S
ho

t

1
Fine-tuning 18.5± 3.4 13.7± 4.8 25.0± 3.7 23.0± 6.5 22.8± 8.2 23.6± 4.5 30.6± 7.3 31.5± 7.4
CPT-Blk 36.4± 3.5 39.1± 4.3 34.3± 2.7 34.4± 3.8 38.7± 5.4 31.2± 2.5 38.7± 4.8 38.7± 4.6
CPT-Seg 39.3± 4.2 43.2± 5.6 35.5± 2.4 35.9± 3.8 41.0± 5.0 31.2± 2.8 40.9± 6.0 41.0± 6.1

2
Fine-tuning 23.4± 3.5 21.1± 5.2 26.7± 4.5 28.3± 2.3 30.1± 5.3 26.4± 2.8 33.1± 8.3 33.4± 8.2
CPT-Blk 38.3± 2.9 40.5± 4.2 35.3± 1.2 36.2± 5.5 41.1± 7.6 31.9± 3.3 40.6± 5.9 41.3± 6.1
CPT-Seg 41.4± 1.5 45.8± 3.6 36.6± 2.0 38.7± 3.8 44.7± 5.2 33.5± 2.6 43.2± 5.9 43.4± 5.8

4
Fine-tuning 27.8± 4.8 26.0± 7.8 30.1± 3.4 33.4± 3.5 36.8± 5.1 28.3± 2.1 36.9± 8.9 37.2± 8.7
CPT-Blk 40.9± 1.8 45.0± 2.0 36.6± 1.6 37.2± 3.6 42.4± 5.4 33.6± 2.3 42.2± 6.5 42.7± 6.9
CPT-Seg 41.3± 5.2 45.9± 7.1 36.5± 3.7 39.8± 3.8 45.7± 5.7 34.1± 1.8 45.7± 7.3 45.8± 7.6

8
Fine-tuning 33.3± 4.2 35.6± 7.4 31.2± 2.7 38.1± 3.7 43.5± 3.9 31.2± 3.8 41.9± 8.0 42.5± 7.9
CPT-Blk 42.7± 4.1 48.4± 5.7 37.3± 2.4 39.9± 2.2 45.8± 3.0 34.6± 2.1 44.8± 4.1 45.5± 4.6
CPT-Seg 45.2± 3.6 51.4± 4.9 38.7± 2.4 42.4± 3.8 49.0± 4.9 35.7± 1.8 48.1± 5.4 48.6± 5.8

16
Fine-tuning 38.4± 2.4 42.8± 4.2 33.4± 2.5 40.7± 3.2 45.6± 3.5 34.7± 2.8 48.7± 3.5 49.4± 3.5
CPT-Blk 45.7± 2.5 53.0± 3.2 37.9± 1.5 41.8± 2.0 48.8± 2.6 35.7± 1.4 47.7± 2.4 48.6± 2.8
CPT-Seg 48.6± 3.1 55.9± 3.5 40.3± 2.0 43.8± 2.0 50.9± 2.5 36.5± 1.3 50.8± 3.6 51.6± 3.7

Fu
lly

Su
pe

rv
is

ed

|Dtrain|

MAttNet 76.7 81.1 70.0 65.3 71.6 52.0 66.6 67.3
ViLBERT - - - 72.3 78.5 62.6 - -
VLBERT - - - 72.6 78.6 62.3 - -
ERNIE-ViL - - - 76.0 82.1 66.9 - -
UNITER 81.4 87.0 74.2 75.9 81.5 66.7 74.9 75.8
Fine-tuning 81.8 87.5 73.7 74.8 81.0 64.1 74.7 75.8
CPT-Blk 81.5 87.0 74.3 73.6 80.1 64.1 74.1 75.2
CPT-Seg 81.8 87.3 74.1 74.1 79.5 63.8 73.6 74.7

A.2 EFFECT OF COLOR TRANSPARENCY
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Figure 5: Experimental results with dif-
ferent color transparencies.

In practice, the color transparency is a crucial hyperpa-
rameter in CPT. Essentially, the choice of transparency
is a trade-off between two factors: a small transparency
can establish strong connections between color texts and
visual appearances, but will undermine the visibility of
the raw image region contents, and vice versa. To inves-
tigate the effect of color transparency, we evaluate CPT
with different transparency of the default color (i.e., (240,
0, 30), red), with step size 0.1 in grid search. From
the results in Figure 5, we observe that: (1) The per-
formance peaks at moderate transparencies in different
shot-settings, which is consistent with our analysis of the
trade-off. (2) Interestingly, the optimal transparency in-
creases as the number of training shots grows. The rea-
son is that the bottleneck of visual grounding in low shot
settings is to learn to utilize obvious colors in CPT to establish coarse-grained connections between
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Query Text: middle cat with tail
hanging down

(a) CPT: X

Query Text: the first half of the
sandwich to the left

(b) CPT: X

Query Text: back of second chair
from left

(c) CPT: ×

Query Text: blue and yellow bus 
first one

(d) CPT: X, FT: X

Query Text: whole bear next to 
empty spot on center seat

(e) CPT: X, FT: ×

Query Text: chef glancing over at
a restaurant its blurry

(f) CPT: ×, FT: X

Figure 7: Visualization of grounding results. First row: zero-shot setting. Second row: fully su-
pervised setting. FT: fine-tuning. The bounding boxes given by image region proposals (olive),
ground-truth annotation (pink), CPT (green), and fine-tuning baseline (yellow) are highlighted ac-
cordingly. Some images are cropped for better visual effects.

images and text. In comparison, in many shot settings, with a better mastery of colors, fine-grained
reading and understanding of image regions become more important to handle hard instances that
require complex reasoning (e.g., composition of attributes and relations).

A.3 ANALYSIS OF VISUAL SUB-PROMPT SHAPE

Figure 6: Performance of CPT-Blk and
CPT-Seg with base size in different box
areas in the fully supervised setting.

In the main experimental results in Table 1, we note that
although CPT-Seg significantly outperforms CPT-Blk in
the zero-shot and few-shot settings, it slightly underper-
forms CPT-Blk in the fully supervised setting. To in-
vestigate the reason, we divide target objects in the val-
idation set of RefCOCOg into disjoint bins according to
the area of the bounding boxes, where each bin contains
equal numbers of target objects (thus contributes equally
to the overall result), and report the average performance
of each bin in the fully supervised setting. From the re-
sults in Figure 6, we find that CPT-Seg outperforms CPT-
Blk on large objects, but is inferior in grounding small ob-
jects. We hypothesize the reason is that CPT-Seg changes
the object outlines with imperfect colored segmentation
masks, hindering the understanding and reasoning of ob-
jects to some extent. The problem is exacerbated in small
objects, since compared with large objects, the segmentation error of small objects is essentially en-
larged when the object feature maps are pooled into input features of the same size for Transformers.

A.4 VISUALIZATION

The few-shot grounding results are visualized in Figure 4. In this section, we further visualize the
grounding results in zero-shot and fully supervised settings, as shown in Figure 7. We find that
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CPT can make reasonable zero-shot predictions. Moreover, we observe that the color disturbance
problem is largely alleviated in the fully supervised setting, i.e., CPT is less disturbed by colors in
raw image and text, as shown in Figure 7d. The reason is that a capable VL-PTM can learn to largely
distinguish the colors of varying objects and pre-defined maker blocks.

B PSEUDO-CODE OF CROSS-MODAL PROMPT SEARCH

Here we provide the pseudo-code of cross-modal prompt search. The algorithm aims to jointly
consider visual and textual semantics in real-world cross-modal data to search for the color set C
in CPT. The algorithm is simple in its design, and we leave exploring more advanced cross-modal
prompt search methods for future work.

Algorithm 1 Cross-modal Prompt Search

Require: P (·, ·): VL-PTM with image regionsR and query
text q as input

Require: Ĉw: candidate color text set
Require: Ĉv: candidate color RGB set

1: for ĉiv in Ĉv do
2: R = {a pure color block of ĉiv}
3: q = “[CLS] a photo of [MASK] color [SEP]”
4: for ĉjw in Ĉw do
5: s(ĉiv, ĉ

j
w) = P ([MASK] = ĉjw|R, q)

6: end for
7: end for
8: Discard color candidates with low decoding scores
9: // Select sensitive color texts

10: Cw = {cw|cw = arg max
ĉ
j
w∈Ĉw

s(ĉiv, ĉ
j
w), ĉiv ∈ Ĉv}

11: // Select corresponding sensitive color RGB
12: C = {(cv, cw)|cv = arg maxĉiv∈Ĉv

s(ĉiv, c
j
w), cjw ∈ Cw}

C IMPLEMENTATION DETAILS

In this section, we provide the implementation details about model training and inference, object
detection and segmentation, as well as cross-modal prompt search.

Backbone. We adopt the widely used VinVL (Zhang et al., 2021) as the backbone, which achieves
strong performance on many vision-language tasks. We use the VinVLbase model in the main
experiments, with 768 dimensional hidden representations and 12 encoding layers.

Object Detection and Segmentation. During training and inference, we use the region proposals
predicted by the Faster-RCNN (Ren et al., 2015) and object segmentation masks predicted by the
Mask-RCNN (He et al., 2017), which are provided by MAttNet (Yu et al., 2018). Both Faster-RCNN
and Mask-RCNN are based on ResNet101 (He et al., 2016) with a region proposal network and a
fully connected classifier for object detection. For Mask-RCNN, an additional mask branch is added
to conduct multi-task learning. The Faster-RCNN and Mask-RCNN provided by MAttNet (Yu et al.,
2018) achieve 34.1 and 30.7 average precision on the COCO test set respectively.

Visual Grounding. During training, an image region is considered as the target if its intersection-
over-union (IoU) with the ground-truth region is greater than 0.5. During inference, we select the
target region with the largest decoding score. All the hyperparameters and models are selected by
grid search based on the performance on the few-shot/full validation set. The learning rate is 6e−5,
and decreases linearly towards 0, which will be achieved at the end of the training (500 and 20, 000
steps for few-shot and fully supervised training respectively). The batch size is 32 and identical to
shot size in fully supervised and few-shot settings respectively. The size of image region batch is 1.

Predicate Classification. The hyperparameters and models are selected by grid search on the vali-
dation set. The learning rate is 3e-5, and decreases linearly towards 0, which will be achieved at the
end of the training (200 steps). The batch size is identical to shot size.
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Table 5: Relations in Visual Genome dataset (Krishna et al., 2017). Some relations are renamed
(shown in parentheses) to better fit the query template.

at in to on of and for has (having)
says (saying) over from with near wears (wearing) under above
using along behind riding across eating holding wearing
between against playing watching carrying covering made of part of
lying on parked on flying in laying on growing on looking at walking on walking in
sitting on covered in mounted on painted on standing on attached to belonging to hanging from
in front of on back of

Cross-modal Prompt Search. The color text candidate set Ĉw is obtained from Wikipedia at
en.wikipedia.org/wiki/Lists_of_colors. The color appearance candidate set Ĉv is
obtained by grid searching RGB candidates around the standard RGBs of color texts in Ĉw. In grid
searching RGB candidates, the range is±30 around standard RGBs with step size 5 in each channel.
Colors candidates are discarded if the decoding score is less than 0.8. The specific color choice from
C is determined based on the performance on the few-shot/full validation set. The optimal color used
in our experiments are c = ((240, 0, 30), red) with transparency value 0.5 in zero-shot and few-shot
settings, and c = ((255, 170, 230), pink) with transparency value 0.45 in the fully supervised setting.

D EXPERIMENT DETAILS

D.1 BASELINE DETAILS

We provide baseline details for visual grounding. (1) Vanilla fine-tuning for VinVL (Zhang et al.,
2021). This model adopts the same backbone as CPT, and serves as the most direct baseline in few-
shot and fully supervised experiments. Following Chen et al. (2020), the logits for all regions are fed
into a softmax layer, and the score of the target region is optimized using cross-entropy objective.
(2) Vanilla fine-tuning for other VL-PTMs. For fully supervised experiments, we also report previ-
ous results of fine-tuning other VL-PTMs, including ViLBERT (Lu et al., 2019), VLBERT (Su et al.,
2019), UNITER (Chen et al., 2020), ERNIE-ViL (Yu et al., 2021) and VL-T5 (Cho et al., 2021). (3)
Visual grounding model. MAttNet (Yu et al., 2018) is a strong model tailored for visual grounding,
and is compared in fully supervised setting. (4) Random baseline. For zero-shot experiments, we
compare with a random baseline that randomly guesses the target region. For fair comparisons, we
use the object proposals detected by MAttNet (Yu et al., 2018) for all baselines and CPT-Blk.

D.2 DATASET DETAILS

Visual Grounding Datasets. (1) RefCOCO (Yu et al., 2016) is collected through a two-player ref-
erential game (Kazemzadeh et al., 2014), and contains 142,210 referential expressions for 50,000
object instances in 19,994 images. The dataset is split into train, validation, testA and testB sets, with
120,624, 10,834, 5,657 and 5,095 expression-object pairs respectively. TestA set only contains peo-
ple as target objects, while testB set contains all other types of objects as targets. (2) RefCOCO+ (Yu
et al., 2016) is also collected in an interactive way, and contains 141,564 referential expressions for
49,856 object instances in 19,992 images. The difference from RefCOCO is that RefCOCO+ fo-
cuses on distinguishing objects using appearance-based expressions, and excludes location-based
expressions. The dataset is split into train, validation, testA and testB sets, with 120,191, 10,758,
5,726 and 4,889 expression-object pairs respectively. (3) RefCOCOg (Mao et al., 2016) is collected
in a non-interactive way, and contains 95,010 referential expressions for 49,822 object instances in
25,799 images. The referential expressions in RefCOCOg are typically longer and more complex.
The train, validation and test sets contain 80,512, 4,896 and 9,602 expression-object pairs.

Predicate Classification Datasets. We provide the relations of Visual Genome dataset in Table 5.
The dataset contains 65, 651, 5, 000 and 32, 422 images in training, validation and test set respec-
tively, where each image contains an average of 10.3 objects and 4.8 labeled relation instances.
There are 150 distinct object categories and 50 relation categories in the dataset.
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E DISCUSSION AND OUTLOOK

In this section, we discuss the limitations of CPT and promising directions for future research.

Limitations. Despite its promising performance on visual grounding, we note that there are several
limitations in CPT: (1) Color disturbance. CPT takes advantage of colors to bridge visual and textual
semantics, by adding color-based sub-prompts in both images and text. As shown in Section 4.4, the
color-based prompt can be disturbed by colors in raw images and text. (2) Computation efficiency.
In our experiments, to maximally avoid color disturbance and account for the limited number of
color candidates, we adopt small image region batch sizes. This means that a data instance needs
to be fed into the model multiple times in order to obtain the result. We believe addressing these
challenges are promising directions for improving CPT.

Outlook. In this work, we take visual grounding as a representative example to demonstrate the
effectiveness of CPT. In fact, CPT can be easily adapted to other vision-language tasks. Here we
discuss the promising directions, as illustrated in Figure 8. The visual and textual sub-prompts in
CPT can well capture fine-grained object-level semantics for object-level tasks, such as: (1) Object
classification. By coloring object proposals with visual sub-prompt, VL-PTMs can be prompted to
produce object labels for object classification. (2) Scene graph classification. Moreover, by further
decomposing textual sub-prompts, complex tasks involving different sub-tasks can be solved in a
unified cross-modal prompt tuning framework. For example, VL-PTMs can be prompted to jointly
produce object and predicate labels for challenging scene graph classification. In addition to data
efficiency, a crucial advantage of using CPT is that the object/predicate labels can be produced from
open-world vocabularies, instead of fixed label sets.
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Figure 8: Outlook for adapting cross-modal prompt tuning (CPT) to other tasks.
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