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Abstract001

Event Argument Extraction (EAE) aims to002
identify arguments and assign them to prede-003
fined roles within a document. Existing meth-004
ods face challenges in modeling intra-class005
variance and inter-class ambiguity, hindering006
accurate role assignment. Inspired by how007
humans dynamically adjust classification cri-008
teria while maintaining category consistency009
(e.g., distinguishing “victim” and “attacker”010
roles based on contextual relationships), We011
propose HDMAR (Hyperspherical Dynamic012
Multi-Prototype with Arguments Dependen-013
cies and Role Consistency), where three in-014
novations tackle these challenges: (1) Hyper-015
spherical dynamic multi-prototype learning is016
used to capture intra-role diversity and en-017
force inter-role separation via hyperspherical018
optimization and optimal transport, (2) cross-019
event role consistency is used to align role020
representations across events, and (3) an ar-021
guments dependencies-guided encoding mod-022
ule enhances contextual understanding of intra-023
event and inter-event dependencies. Experi-024
ments on RAMS and WikiEvents demonstrate025
gains in accuracy, with further analysis validat-026
ing the contributions of each module.027

1 Introduction028

Event Argument Extraction (EAE) is a pivotal task029

in information extraction (Xia et al., 2022), and030

aims to identify event-related arguments and their031

corresponding roles within natural language texts032

(Doddington et al., 2004). As a foundational com-033

ponent of event understanding, EAE underpins nu-034

merous downstream applications, including ques-035

tion answering (Souza Costa et al., 2020), recom-036

mendation systems (Han et al., 2025), and dialogue037

systems (Zhang et al., 2020a). Despite substantial038

advancements in EAE research, existing method-039

ologies encounter significant challenges when ad-040

dressing the complexities inherent in document-041

level documents, particularly in terms of ineffec-042

Event Type:  Conflict.Attack.Unspecified

... McWatters urged Tsarnaev to show remorse to discourage other 

jihadis from killing people in similar <trg> attacks </trg>. 

... Insurgents also launched <trg> attacks </trg> on a military base 

near the town of Dhuluiyah , 

Target

Attacker

Place

Intra-class 
variance

Ambiguous argument 
boundaries

Figure 1: A document from WikiEvents (Li et al., 2021)
for document-level EAE. The trigger word is included
in special tokens <trg>and </trg>with red color. We
demonstrate two kinds of inductive biases found in EAE.
(1) Intra-class variance, due to semantic variations, ar-
guments sharing the same role might be assigned to
distinct sub-clusters, and (2) Ambiguous role arguments
boundaries, the large margin separations are disregarded,
resulting in unclear distinctions between arguments of
different roles.

tiveness in cross-event reasoning and difficulties in 043

modeling role diversity. 044

Mainstream EAE works (Liu et al., 2023; Ren 045

et al., 2023; Mettes et al., 2019) typically process 046

a single event at a time or assign only one proto- 047

type per category, overlooking the semantic vari- 048

ations that exist within the same category. A sig- 049

nificant challenge in EAE pertains to role-based 050

inductive biases. Specifically, two key phenomena 051

complicate the extraction process. Intra-class vari- 052

ance, where arguments assigned to the same role 053

may cluster into distinct subspaces due to semantic 054

differences. For instance (Figure 1), in a “Con- 055

flict.Attack.Unspecified” event, both “Insurgents” 056

and “McWatters” can fulfill the “Attacker” role; 057
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however, the former represents an organization,058

while the latter denotes an individual. Similarly,059

“military base” and “people” may both serve as060

“Target”, yet they belong to different semantic cat-061

egories (facility vs. social group). Ambiguous062

role arguments boundaries, where semantically063

similar arguments (e.g., “military base” vs. “Dhu-064

luiyah”) blur the distinctions necessary for accurate065

classification. These issues complicate the repre-066

sentation of arguments in the embedding space and067

hinder precise role assignment. Although DEEIA068

(Liu et al., 2024) employs a multi-event prompt069

mechanism and HMPEAE (Zhang et al., 2024)070

utilizes hyperspherical multi-prototype to address071

these problems, the accuracy remains suboptimal.072

To address these limitations, this paper intro-073

duces HDMAR (Hyperspherical Dynamic Multi-074

Prototype with Arguments Dependencies and Role075

Consistency), a novel model designed to handle076

the intricacies of multi-event documents. Build-077

ing upon the TableEAE (He et al., 2023) architec-078

ture, HDMAR integrates key advancements to mit-079

igate the aforementioned challenges: (1) Hyper-080

spherical Dynamic Multi-Prototype Learning:081

This component captures intra-role diversity by as-082

signing multiple dynamically learned prototypes083

to each role, thereby accommodating the varied se-084

mantic nuances within the same role. Concurrently,085

hyperspherical optimization and optimal transport086

techniques are employed to maintain inter-role dis-087

tinctions. (2) Cross-Event Role Consistency: HD-088

MAR models document-level event correlations089

by propagating and aligning role representations090

across events within a document, ensuring coherent091

extractions for recurring roles.092

Furthermore, HDMAR leverages arguments093

dependencies-guided context encoding, enhancing094

the TableEAE framework with a specialized atten-095

tion bias that incorporates both intra- and inter-096

event dependencies. This mechanism enables the097

model to better understand the relationships be-098

tween event triggers, roles, and arguments, facili-099

tating efficient and contextually aware processing100

of complex multi-event scenarios. The contribu-101

tions of this paper can be summarized as follows:102

• Introduce HDMAR, an EAE method that103

leverages argument dependencies across dif-104

ferent events, thereby improving the perfor-105

mance of the EAE task.106

• To address the challenges of EAE, we propose107

a hyperspherical dynamic multi-prototype108

learning module and a cross-event role consis- 109

tency module, which capture intra-class vari- 110

ance and model inter-event correlations, re- 111

spectively. 112

• Extensive experiments demonstrate that HD- 113

MAR outperforms major benchmarks in per- 114

formance. 115

2 Related Work 116

2.1 Span-Based and Generation-Based 117

Methods 118

Span-based methods represent a traditional line 119

of research in EAE, where candidate spans are 120

identified and then classified into roles (Zhang 121

et al., 2020b; Yang et al., 2023). These methods 122

are widely used due to their intuitive structure and 123

reasonable performance but often struggle with 124

modeling long-distance dependencies and seman- 125

tic correlations across arguments. To address these 126

limitations, generation-based methods (Li et al., 127

2021; Du et al., 2021; Wei et al., 2021) leverage 128

generative pre-trained language models (PLMs), 129

such as BART (Lewis et al., 2020) and T5 (Raffel 130

et al., 2020), to sequentially generate arguments 131

for events. While effective in capturing complex 132

dependencies, these generation-based approaches 133

often suffer from high computational costs and lim- 134

ited scalability, especially in multi-event scenarios. 135

2.2 Prompt-Based Methods 136

Prompt-based methods have recently gained promi- 137

nence due to their flexibility and generalizability in 138

handling diverse EAE scenarios. Approaches like 139

(Ma et al., 2022) and (Nguyen et al., 2023) employ 140

slotted prompts for argument extraction, utilizing 141

generative slot-filling techniques to enhance effi- 142

ciency and performance. TableEAE (He et al., 143

2023) further explores the multi-event paradigm 144

by training models to process events in a tabu- 145

lar format, enabling direct modeling of event co- 146

occurrence (Zeng et al., 2022). Despite their ad- 147

vancements, these methods require separate pro- 148

cessing of prompts for individual events, making 149

them computationally expensive and less efficient 150

for multi-event documents. 151

2.3 Multi-Event Argument Extraction and 152

Role Diversity 153

While most traditional EAE approaches process 154

events in isolation (Single-EAE), recent research 155

highlights the importance of modeling correlations 156
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between events in multi-event documents (Liu157

et al., 2023; Xu et al., 2024). Multi-event argu-158

ment extraction methods, such as DEEIA (Liu159

et al., 2024), attempt to concurrently extract argu-160

ments for all events in a document, significantly im-161

proving efficiency. However, these methods often162

neglect the challenges posed by intra-role diversity163

and inter-role ambiguity. For instance, arguments164

assigned to the same role may exhibit significant165

semantic differences (e.g., organization vs. indi-166

vidual for the “Attacker” role), while semantically167

similar arguments may blur the boundaries between168

roles (e.g., “military base” vs. “Dhuluiyah”).169

3 Methodology170

In this section, we present HDMAR (Hyperspheri-171

cal Dynamic Multi-Prototype with Arguments De-172

pendencies and Role Consistency for Event Argu-173

ment Extraction), a novel framework developed174

to address the challenges of multi-event argument175

extraction. Building upon the TableEAE frame-176

work, HDMAR introduces significant advance-177

ments: (1) Dynamic Multi-Prototype Learning,178

which captures intra-role diversity and inter-role179

relationships, and (2) Cross-Event Role Consis-180

tency, which ensures coherence across roles within181

multi-event documents. They helps to effectively182

model the intricacies of document-level multi-event183

extraction tasks.184

3.1 Overview185

Given a document D containing a set of trig-186

gers T = {t1, t2, . . . , tm} representing events,187

and a predefined set of argument roles R =188

{r1, r2, . . . , rk}, the objective of HDMAR is to ex-189

tract arguments A = {a1, a2, . . . , an} correspond-190

ing to specific roles in R for each trigger t. Unlike191

previous approaches that treat events independently192

or rely solely on fixed role representations, HD-193

MAR processes entire documents holistically by194

modeling table-structured embeddings for triggers195

and roles, while integrating dynamic prototypes196

and cross-event constraints.197

3.2 Arguments Dependencies-guided Context198

Encoding199

To address the differences and similarities be-200

tween various arguments in multi-event documents,201

we employ an Arguments Dependencies-guided202

Context Encoding (ADCE) module, which ex-203

tends the TableEAE (He et al., 2023) framework204

through the incorporation of dependency-guided at- 205

tention mechanisms. This module generates table- 206

structured representations for events and roles, si- 207

multaneously capturing both intra-event and inter- 208

event dependencies. 209

3.2.1 Table-Based Contextual Representation 210

Following the structured embedding approach of 211

TableEAE, the document D is encoded into a table- 212

based representation that aligns triggers, roles, 213

and contextual information. Specifically, for a doc- 214

ument D, we construct a table HD, where each row 215

corresponds to an event trigger ti, each column cor- 216

responds to a role rj , and each cell HD[i, j] cap- 217

tures the joint representation of ti and rj within 218

the document context. The table embeddings are 219

generated using a hierarchical transformer encoder: 220

221

HD = EncoderTable(D,T,R) (1) 222

where HD ∈ Rm×k×d, with m triggers, k roles, 223

and d representing the embedding dimension. This 224

representation ensures structured and role-specific 225

embeddings for all triggers and roles within the 226

document. 227

3.2.2 Arguments Dependencies Types 228

To further enhance the table-based representations, 229

we incorporate explicit dependency constraints that 230

model relationships between triggers, roles, and 231

arguments. Inspired by DEEIA (Liu et al., 2024), 232

we define two types of dependencies: 233

Intra-Event Dependencies: These dependen- 234

cies model the connections within an event, ensur- 235

ing that argument roles are contextually aligned 236

with their respective events. 237

Inter-Event Dependencies: These dependen- 238

cies capture relationships between different events, 239

where one event may overlap with or influence the 240

same role in another event. 241

3.2.3 Dependency-Guided Attention 242

To integrate these dependencies into the encoding 243

process, we extend the transformer’s self-attention 244

mechanism with a dependency-guided attention 245

bias. For a pair of tokens (xi, xj), the attention 246

score is adjusted as follows: 247

aij =
exp(ei · ej + bij)∑n
k=1 exp(ei · ek + bik)

(2) 248

where ei and ej are the embeddings of tokens xi 249

and xj , and bij is a learnable bias encoding the 250

dependency relation between xi and xj . 251
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Figure 2: An overview of our proposed HDMAR.

The bias bij is computed as:252

bij = Wdep · ϕ(xi, xj) (3)253

where ϕ(xi, xj) encodes the type (intra-event or254

inter-event) and strength of the dependency, and255

Wdep is a learnable weight vector.256

Utilizing the refined attention scores, the DCE257

module generates role-trigger-specific representa-258

tions hrjti for each (t, r) pair:259

h
rj
ti

= Attention(HD, HD[i][j]) (4)260

where HD[i][j] corresponds to the cell embedding261

for trigger ti and role rj in the table.262

3.3 Hyperspherical Dynamic Multi-Prototype263

Learning264

Traditional methods assume that each role rj can265

be represented by a single static prototype. How-266

ever, in real-world scenarios, the same role (e.g.,267

Attacker) may exhibit diverse semantic behaviors268

depending on the event context, while inter-role269

boundaries (e.g., military base vs. Dhuluiyah) may270

overlap. To address these issues, we propose a271

hyperspherical dynamic multi-prototype learning272

mechanism that assigns multiple dynamic proto-273

types to each role and adapts them to contextual274

variations.275

3.3.1 Multi-Prototype Representation276

For each role r, we define M prototypes Prj =277

{p1rj , p
2
rj , . . . , p

M
rj }, where each prototype pkrj ∈278

Rd is a vector in a hyperspherical space. To ensure 279

diversity among prototypes and avoid redundancy, 280

we initialize the prototypes with maximal inter- 281

prototype distances: 282

∥pi − pj∥ ≥ δ, ∀i ̸= j (5) 283

where δ is a margin controlling the distance be- 284

tween prototypes. 285

Given the role-specific representation h
rj
ti

, the 286

assignment of an argument a to a prototype is mod- 287

eled as a soft probability distribution: 288

π(a, pkrj ) =
exp

(
− ∥ hrjti − pkrj ∥

2
)

∑M
l=1 exp

(
− ∥ hrjti − plrj ∥2

) (6) 289

3.3.2 Optimal Transport for Prototype 290

Assignment 291

The prototype-argument assignment process is for- 292

mulated as an optimal transport (OT) problem, min- 293

imizing the overall transport cost of assigning ar- 294

guments to prototypes: 295

LOT = min
π

∑
a∈A

M∑
k=1

π(a, pkrj )· ∥ h
rj
ti
− pkrj ∥

2

(7) 296

with the constraint
∑M

k=1 π(a, p
k
rj ) = 1 for 297

all arguments a. To ensure prototypes are well- 298

separated, we add a separation regularization 299

term: 300
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LProto-Sep =
∑
i ̸=k

max(0, δ− ∥ pirj − pjk ∥) (8)301

The total prototype optimization objective is:302

LProto = LOT + λSep · LProto-Sep (9)303

where λSep balances the contributions of the OT304

loss and separation regularization.305

3.4 Cross-Event Role Consistency Modeling306

Multi-event documents often include recurring307

roles (e.g., the same “Agent” across multiple308

events), which require consistency in their represen-309

tation. Existing methods process events indepen-310

dently, leading to fragmented role representations.311

To address this, we introduce a Cross-Event Role312

Consistency (CERC) mechanism, which propa-313

gates role semantics across events within a docu-314

ment.315

3.4.1 Graph-Based Role Propagation316

We represent the document as a graph G = (V,E),317

where nodes V are role representations h
rj
ti

, and318

edges E capture semantic relationships between319

roles across events. A Graph Neural Network320

(GNN) is used to propagate information across321

nodes:322

h
rj
ti
← GNN(h

rj
ti
, {hrltk : (rj , rl) ∈ E}) (10)323

where the GNN aggregates role representations324

hrltk from neighboring nodes. This ensures that325

recurring roles across events share consistent repre-326

sentations while maintaining inter-role distinctions.327

3.4.2 Contrastive Role Alignment328

To further enforce cross-event consistency, we329

adopt a contrastive loss to align representations330

of the same role across events while separating331

different roles:332

LCERC = −
∑

(rj ,r
′
j)

log
exp(sim(hrj , h

′
rj ))∑

rk ̸=rj
exp(sim(hi, hk))

(11)333

where sim(, ) is cosine similarity, and (rj , r
′
i)334

are instances of the same role across events.335

3.4.3 Training Objective 336

The overall training objective integrates span se- 337

lection, prototype optimization, and cross-event 338

consistency: 339

L = LSpan +λProto ·LProto +λCERC ·LCERC (12) 340

where LSpan is the span-based argument extrac- 341

tion loss, and λProto, λCERC controls the contri- 342

butions of the prototype and consistency losses 343

respectively. By jointly optimizing for dynamic 344

prototypes, cross-event consistency, and argument 345

extraction accuracy, HDMAR achieves superior 346

performance in multi-event scenarios. 347

4 Experiments 348

4.1 Experiment Setup 349

Datasets We evaluate our model on two widely- 350

used event argument extraction benchmarks: 351

RAMS (Ebner et al., 2020) and WikiEvents (Li 352

et al., 2021). These datasets provide comprehensive 353

coverage of event argument structures and roles, fa- 354

cilitating robust assessment of our approach. 355

RAMS is a document-level EAE corpus with 356

3,993 English annotated documents totaling 9,124 357

examples, 139 event types, and 65 argument roles. 358

Each example contains five sentences, one event, 359

and some arguments. We follow the original dataset 360

split. 361

WikiEvents is another document-level EAE 362

corpus with 246 English annotated documents, 50 363

event types, and 59 argument roles. These docu- 364

ments are obtained from English Wikipedia arti- 365

cles that describe real-world occurrences and then 366

follow the reference links to crawl related news 367

articles. 368

Evaluation Metric Following previous works 369

(Ma et al., 2022; He et al., 2023), we evaluate per- 370

formance using two metrics: (1) Argument Identi- 371

fication F1 (Arg-I), where a predicted argument is 372

considered correct if its span matches that of any 373

golden argument for the event. (2) Argument Clas- 374

sification F1 (Arg-C), where a predicted argument 375

is considered correct if both its span and role type 376

are accurate. 377

Baselines We compare HDMAR against state- 378

of-the-art methods in EAE, including: (1) 379

Classification-based methods, EEQA (Du and 380

Cardie, 2020) and TSAR (Xu et al., 2022); (2) 381

Generation-based methods, BART-Gen (Li et al., 382
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Model PLM
RAMS WikiEvents

Arg-I Arg-C Arg-I Arg-C

EEQA⋆ (2020) BERT 48.7 46.7 56.9 54.5
EEQA⋆ (2020) RoBERTa 51.9 47.5 60.4 57.2

BART-Gen⋆ (2021) BART 51.2 47.1 66.8 62.4
TSAR⋆ (2022) RoBERTa 57.0 52.1 71.1 65.8
PAIE⋆ (2022) BART 57.1 52.6 70.2 65.1

TabEAE∗ (2023) RoBERTa 57.0 52.5 70.8 65.4
DEEIA∗ (2024) RoBERTa 58.0 53.4 71.8 67.0

HMPEAE∗ (2024) RoBERTa 58.6 53.7 72.1 66.6

HDMAR (Ours) RoBERTa 58.7 54.6 72.4 67.4

Table 1: Overall results. We highlight the best result in bold and underline the second-best result. * indicates that
we have rerun the relevant code. The symbol ⋆ indicates results from He et al. (2023). All pre-trained models
(PLMs) are of large-scale.

2021), PAIE (Ma et al., 2022), TabEAE (He et al.,383

2023), HMPEAE (Zhang et al., 2024) and DEEIA384

(Liu et al., 2024).385

Implementations. Each experiment is conducted386

on a single NVIDIA GeForce RTX 3090 24 GB.387

Due to the GPU memory limitation, we use dif-388

ferent batch sizes for diverse models and corpora.389

For the RAMS and WikiEvents, the batch size for390

the base and large models are 8 and 4, respectively.391

The learning rate is set to 2e-5 for the AdamW392

optimizer with Linear scheduler, and the warmup393

ratio is 0.1. The epoch is set to 50, and the early394

stop is set to 8, denoting the training will stop if395

the F1 score does not increase during 8 epochs396

on the development set. Furthermore, the max de-397

coder sequence length of the EAE template is set398

to 50 and 80 for RAMS and WikiEvents, respec-399

tively. Moreover, the input in the document-level400

dataset sometimes exceeds the constraint of the401

max encoder sequence length; thus we add a win-402

dow centering on the trigger words and only encode403

the words within the window. Following Ma et al.404

(2022), the window size is 250. Considering that405

a word will be tokenized into multiple sub-words,406

we average the representation of sub-words as the407

representation of the original word.408

4.2 Main Results409

Table 1 summarizes the performance compari-410

son between HDMAR and baseline models on411

the RAMS and WikiEvents datasets. Our model412

demonstrates comprehensive improvements across413

both datasets, with notable improvements in Arg-C. 414

The following observations can be made from the 415

results: (1) HDMAR achieves the highest scores for 416

both Arg-I and Arg-C on RAMS and WikiEvents. 417

Specifically, on the Arg-C metric, which measures 418

the correctness of both boundaries and role types, 419

HDMAR outperforms the second-best model by 420

0.9 on RAMS and 0.4 on WikiEvents. This indi- 421

cates that HDMAR significantly enhances classifi- 422

cation accuracy by addressing role ambiguity and 423

improving role-specific representation. (2) While 424

the improvement in Arg-I is more modest, with HD- 425

MAR surpassing HDMAR by 0.1 on RAMS and 426

0.3 on WikiEvents, the Arg-C improvement is sig- 427

nificantly larger. This suggests that the innovations 428

in HDMAR, such as Dynamic Multi-Prototype 429

Learning and Cross-Event Role Consistency, not 430

only improve argument identification but also re- 431

fine the model’s ability to classify arguments into 432

their correct roles, especially for complex multi- 433

event scenarios. (3) Compared to other prompt- 434

based methods, such as DEEIA and TabEAE, HD- 435

MAR achieves higher scores on all metrics. Even 436

when directly compared with the hyperspherical 437

HDMAR model, which shares a similar design phi- 438

losophy, HDMAR demonstrates its superiority by 439

effectively modeling intra-role diversity and inter- 440

role distinctions through its dynamic prototype ap- 441

proach. 442

4.3 Ablation Study 443

To evaluate the contribution of each component 444

in HDMAR, we conduct ablation studies on the 445
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Model
RAMS Wikievents

Arg-I Arg-C Arg-I Arg-C

w/o DMP 56.8 51.7 69.8 62.9
w/o CERC 57.2 52.4 70.1 65.1
w/o ADCE 56.8 51.3 69.5 63.6

w/o CL 57.5 52.7 69.6 64.9
w/o Hypersphere 57.3 52.1 69.1 63.5

w/o EMA 55.4 50.7 70.4 65.3

HDMP 58.7 54.6 72.4 67.4

Table 2: Ablation experiments on both datasets.The
score would decrease without any kind of module.

RAMS and WikiEvents datasets (Table 2).446

(1) w/o Dynamic Multi-Prototypes (DMP). We447

drop dynamic update mechanism and just set448

multiple prototypes for each role.449

(2) w/o Cross-Event Role Consistency (CERC).450

In the structure of the model, we removed the451

cross-event role consistency mechanism.452

(3) w/o Arguments Dependencies-guided453

Context Encoding (ADCE). We replace the454

arguments dependencies-guided encoding module455

with a vanilla transformer encoder.456

(4) w/o Compactness Loss (CL). In training the457

EAE model, we remove the compactness loss.458

(5) w/o Hypersphere. We remove the hypersphere459

setting, and just simply randomly generate multiple460

prototypes for each role.461

(6) w/o EMA. During training, we freeze the462

prototypes and do not optimize them.463

464

The results from the ablation study (Table 2) con-465

firm the effectiveness of each individual component466

in the HDMAR framework. Removing any of the467

modules leads to a decline in performance, high-468

lighting the complementary nature of the proposed469

innovations. Specifically, dynamic multi-prototype470

learning and cross-event role consistency are crit-471

ical for addressing role diversity and capturing472

inter-event correlations. The dependency-guided473

encoding and compactness loss further enhance474

the model’s ability to maintain context and regular-475

ize the embedding space, while the hyperspherical476

constraint and EMA ensure stable and effective477

prototype learning. Together, these components478

contribute significantly to the superior performance479

of HDMAR on both the RAMS and WikiEvents480

datasets.481

4.4 Experiments on Different Number of 482

Prototypes 483

M RAMS WikiEvents

Arg-I Arg-C Arg-I Arg-C

1 57.1 52.3 69.3 63.1
2 58.6 53.7 70.2 65.1
3 57.1 52.4 72.1 66.6
4 57.3 52.6 69.9 65.0

Table 3: Experiments with the different numbers of
prototypes. M denotes the number of prototypes for
each role.

We analyze the impact of the number of proto- 484

types by increasing the number of role prototypes 485

to find the optimal setup for each dataset. As shown 486

in Table 3, setting two prototypes for each role 487

achieves the best performance on RAMS. Setting 488

three prototypes for each role achieves the best 489

performance on WikiEvents. We did not conduct 490

prototype experiments with more settings because 491

additional prototypes would incur higher compu- 492

tational costs. And setting too large will affect the 493

performance because there may not be enough ar- 494

gument features to learn representative prototypes, 495

which leads to underfitting. 496

4.5 Comparing with Large Language Models 497

ChatGPT has stimulated the research boom in the 498

field of large language models (LLMs). To investi- 499

gate the effect of LLMs on EAE, we follow (Wad- 500

den et al., 2019) and (Lin et al., 2020) to pre- 501

process, resulting in two variants: ACE05-E and 502

ACE05-E+. Both contain 33 event types and 22 503

argument roles. 504

From Table 4, HDMAR demonstrates compet- 505

itive performance with DEGREE and AMPERE. 506

In contrast to PAIE, HDMAR exhibits a signifi- 507

cant 2.1% improvement in ACE05-E. When con- 508

sidering ACE05-E, ChatGPT could achieve 33.95% 509

and 42.79% performance of our model under zero- 510

shot and 5-shot ICL setting, respectively. Similarly, 511

comparable results could be seen in ACE05-E+. 512

Notably, ChatGPT consistently exhibits superior 513

performance under the 5-shot ICL setting than the 514

zero-shot scenario, highlighting the impact of task- 515

specific information in enhancing model perfor- 516

mance. Nevertheless, there is still a huge perfor- 517

mance gap between ChatGPT and HDMAR. For 518

EAE, it is evident that substantial progress is re- 519
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(a) TableEAE (b) HMPEAE (c) HDMAR

Attacker TargetPlace

Figure 3: The t-SNE visualization above demonstrates the feature distributions of argument roles extracted from the
“Conflict.Attack.Unspecified” event type.

Method ACE05-E ACE05-E+

BERT (Devlin et al., 2019) 65.3 64
RoBERTa (Liu et al., 2019) 68 66.5

PAIE (Ma et al., 2022) 72.7 -
DEGREE (Hsu et al., 2022) 73.5 73
AMPERE (Hsu et al., 2023) 74.2 -

Zero-shot ∗ 25.09 25.80
5-shot ICL ∗ 31.62 32.02

HDMAR 74.8 73.9

Table 4: Argument classification F1-scores for EAE
on ACE05-E and ACE05-E+. ∗ Following Han et al.
(2023), we evaluate the performance of ChatGPT un-
der 2 settings: zero-shot prompts and 5-shot in-context
learning (ICL) prompts.

quired for LLMs. Presently, our model demon-520

strates a notable capacity for achieving superior521

results. Looking ahead to future research, it is522

apparent that large models hold promise as a valu-523

able auxiliary resource for more complex extraction524

tasks.525

4.6 Visual Analysis526

We extract argument features of the event type527

“Conflict.Attack.Unspecified” from the best check-528

point on Wikievents and transform them into 2D529

features using t-SNE. As shown in Figure 3, firstly,530

arguments playing the role of “Attacker” form two531

sub-clusters in the feature space, which suggests532

intra-class variation. HDMAR can capture such533

intra-class variance by setting multiple prototypes534

for each role, resulting in more compact clusters535

for arguments of the same type than TableEAE and536

HMPEAE. Moreover, during the encoding phase,537

we can introduce a bias term to the attention layers 538

of the encoder based on the dependency relation- 539

ships between different arguments, which helps to 540

make the boundaries between the arguments more 541

distinct. 542

Second, compared to TableEAE and HMPEAE, 543

there is a clearer separation between the argument 544

types of “Place” and “Target” in HDMAR. Ad- 545

ditionally, we observe that arguments of “Place” 546

do not partition into multiple sub-clusters within 547

the feature space in HDMAR, while this is more 548

pronounced in TableEAE and HMPEAE. This sug- 549

gests that not all roles exhibit significant semantic 550

differences, and HDMAR better consolidates se- 551

mantically similar arguments, improving the over- 552

all distinction between argument types. 553

5 Conclusion 554

In this paper, we presented HDMAR, a novel 555

approach for document-level Event Argument 556

Extraction (EAE) that effectively addresses the 557

challenges of intra-class variance and ambigu- 558

ous role argument boundaries. By introducing 559

Hyperspherical Dynamic Multi-Prototype Learn- 560

ing, Cross-Event Role Consistency, and an Argu- 561

ments Dependencies-guided Encoding modules, 562

HDMAR offers a comprehensive solution to im- 563

prove both the accuracy and efficiency of multi- 564

event argument extraction. Our method captures 565

intra-role diversity, enforces inter-role separation, 566

and ensures coherent role assignment across events, 567

while simultaneously considering the contextual 568

dependencies between arguments and roles. 569
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6 Limitations570

Our approach exhibits two primary limitations in571

prototype learning and input processing. First,572

the uniform allocation of prototypes across cate-573

gories may artificially inflate inter-class variance574

for classes with inherently low intra-class variation,575

while simultaneously failing to sufficiently model576

the complex substructures of categories contain-577

ing multiple latent subclusters in the embedding578

space. Second, the sequence concatenation strategy579

encounters length constraints that necessitate sub-580

optimal sliding window processing with averaged581

overlapping embeddings, potentially compromis-582

ing the integrity of contextual representations for583

lengthy text inputs.584
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