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ABSTRACT

We consider learning underlying laws of dynamical systems governed by ordi-
nary differential equations (ODE). A key challenge is how to discover intrinsic
dynamics across multiple environments while circumventing environment-specific
mechanisms. Unlike prior work, we tackle more complex environments where
changes extend beyond function coefficients to entirely different function forms.
For example, we demonstrate the discovery of ideal pendulum’s natural motion
a?sin 0, by observing pendulum dynamics in different environments, such as the
damped environment o sin(6;) — pw; and powered environment o sin(6;) + Pioh-
Here, we formulate this problem as an invariant function learning task and pro-
pose a new method, known as Disentanglement of Invariant Functions (DIF),
that is grounded in causal analysis. We propose a causal graph and design an
encoder-decoder hypernetwork that explicitly disentangles invariant functions from
environment-specific dynamics. The discovery of invariant functions is guaran-
teed by our information-based principle that enforces the independence between
extracted invariant functions and environments. Quantitative comparisons with
meta-learning and invariant learning baselines on three ODE systems demonstrate
the effectiveness and efficiency of our method. Furthermore, symbolic regression
explanation results highlight the ability of our framework to uncover intrinsic laws.

1 INTRODUCTION

Deep neural networks (Goodfellow et al., 2016) have been widely used for predicting dynamical
systems (Aussem, |1999;Singh et al., 2012; Wang et al., 2016} |Lusch et al., 2018};Yeo & Melnykl |2019;
Giannakis, [2019). Numerous efforts (Kirchmeyer et al., 2022; Wang et al.|[2022; Mouli et al., 2024)
have focused on modeling dynamical systems by forecasting future states from past observations,
often emphasizing rapid adaptation to new systems or improved model architectures. However, an
important scenario in scientific discovery has been overlooked, i.e., learning invariant mechanisms,
which aims to identify shared motion patterns across dynamical systems observed in multiple
environments. This task not only facilitates scientific equation discovery but also holds potential
for advancing the understanding and extraction of physical laws from observational data—such as
images and videos—where physical laws are highly entangled. As the first step in invariant function
learning, this paper focuses on ordinary differential equation (ODE) systems.

The need for invariant function learning arises because data collected is often observed under
varying environments and entangled with multiple factors. For instance, the oscillation of a simple
pendulum (Yin et al.,|2021b) is commonly influenced by air friction; a prey-predator system (Ahmad,
1993) can be affected by limited resources. These factors significantly hinder deep models from
learning the true and invariant dynamics. Instead of capturing invariant dynamical patterns, deep
models tend to be sensitive to trivial information and spurious correlations, leading to failures in
identifying the true and isolated mechanisms. In light of this challenge, we explore an innovative
setting called invariant function learning, which aims to extract intrinsic mechanisms from data
observed in multiple environments. Unlike prior work, we aim to tackle broader and more complex
environments where changes extend beyond function coefficients to entirely different function forms.
For example, we target the discovery of ideal pendulum’s natural motion o sin #; by observing
pendulum dynamics in different environments such as the damped environment o sin(6;) — pw; and
powered environment o sin(6;) + 1oL, as shown in our motivation examplem

tl”’

Invariant function learning presents two key challenges. Firstly, invariant mechanisms are not isolated
entities, and being intertwined with varying initial conditions, system parameters, and time makes
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Figure 1: Multi-environment Pendulum ODE systems. In this example, ODEs with different
coefficients and function forms are used to extract their corresponding invariant functions (green).

them difficult to define or disentangle. Secondly, existing invariant learning techniques (Arjovsky,
et al.,|2019; Lu et al.| 2021a; |[Rosenfeld et al., 2020; Peters et al., 2016), which are primarily designed
for categorical tasks, do not extend effortlessly to dynamical systems, requiring the design of new
invariant principles. To overcome these challenges, we formulate our invariant function learning
framework as a causal graph where functions are parameterized and isolated to be learned and disen-
tangled. Furthermore, we propose an invariant function learning principle and the implementation
of an encoder-decoder hypernetwork (Ha et al.l 2016) to identify the true invariant mechanism.
Specifically, our contributions are listed as follows. (1) We introduce a new task, invariant function
learning, aimed at scientific discovery. (2) We formulate its framework with causal foundations. (3)
We propose an invariant function learning principle to identify true invariant mechanisms and design
a method, Disentanglement of Invariant Function (DIF), with hypernetwork implementation. (4)
To facilitate comprehensive benchmarking, we design several new baselines by adapting existing
meta-learning and invariant learning techniques to our function learning framework and conducting
extensive experimental studies.

2 INVARIANT FUNCTION LEARNING FOR DYNAMICAL SYSTEM

In this section, we first provide the background on ODE:s, followed by the introduction and formulation
of our invariant function learning task, along with the causal analyses that underpin our proposal.

2.1 ORDINARY DIFFERENTIAL EQUATION DYNAMICAL SYSTEM

We describe a dynamical system using an ordinary differential equation (ODE) as:

d:vt

&b _ 1

dt f (mt)v ( )
where ; € X C R? includes d hidden states of the system at time t. f € F : X — TX is the
derivative function of the dynamical system mapping the hidden states to their tangent space, where

F is the function space containing functions that describe all dynamical systems with d hidden states.

Given proper time discretization, we consider 7" time steps denoted as ¢t = to, t1, ..., tr—1. The corre-
sponding T-length trajectory can be written as a matrix X = [x¢,, Xty ..., T, ] € R¥*T. Given the
system hidden states before a certain time step 7. € N, denoted as X, = X. 0.1, = [Ttg,- -, Tep, 1] €
R4*Te the forecasting task aims to predict the future trajectory X. r,.7 = (@7, s Ty, ]. For
theoretical analysis, we represent random variables in boldface, e.g., the matrix-valued random
variable corresponding to X is denoted as X; the function f is a realization of the function variable f
from a given function space. Full notations are detailed in Tab. 3]

2.2 INVARIANT FUNCTION LEARNING

In this paper, we introduce a new task, invariant function learning (IFL). Specifically, given the
prior distribution of trajectories, denoted as p(X), we consider a scenario where trajectories are
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Table 1: Comparison of environments with previous works in the pendulum ODE system. We
list examples from 2 environments, the pendulum states and coefficients distribution within one
environment, and inference time targets. The blue factors are changing across different environments.
Full function environments are provided in Appx. Q

Type |  Environmente = 1 Environment e = 2 Distribution Inference
Coefficient environment | f; = —a? sin(0¢) — prwe  fa = —a3 sin(60:) — paws p(00,wo) fa = —a sin(0) — pswe
Function environment fi = —a?sin(@;)—pw; f2 = —a? sin(01)+p“:—:‘ (00, wo, ¢, p) f, = —a’sin(6;)

observed under multiple environments. The trajectories observed in an environment e € £ are
sampled from the conditional distribution p(X|e = ¢). Given a trajectory X from environment e, our
goal is to discover its invariant function f., which generates the invariant trajectory X°. f. and X°
only include the shared mechanisms across all environments, thus capturing the underlying natural
laws unaffected by environmental factors. For instance, as illustrated in Fig. [T} in the case of a
pendulum system with varying environmental effects such as frictions or power, the goal is to extract
the natural motion of an ideal pendulum when excluding these external influences. A set of specific
examples for the task is provided below, more examples are available in Appx.[C]

Function environments. The environments in this paper are different from those defined in
CoDA (Kirchmeyer et al.| [2022)), LEAD (Yin et al.| |2021a)), and MetaphysiCa (Mouli et al., [ 2024).
As shown in Tab. |I|, the environments/tasks used in previous works, namely, coefficient environments,
are defined by the changes on the function coefficients « and p, i.e., each environment contains only
one function while different environments include functions with different coefficients. In contrast,
we consider more complex cases and define environments as the interventions on function forms, i.e.,
each environment can contain functions with the same function form and different coefficients, while
different environments differ in function forms. Specifically, in Tab.[T} while coefficient environment
1 consists of a single function f1, our function environment 1 includes all the functions in form of
—a?sin(f;) — pw: where a ~ p(ax), p ~ p(p). Here, we model these functions as a function random
variable f;.

Challenges. However, extracting such invariant dynamics presents two significant challenges. Firstly,
invariant mechanisms are intertwined with varying initial conditions, system parameters, and time,
making them particularly difficult to isolate or define. Secondly, in dynamical systems, state values
and their derivatives evolve over time, meaning that there is no single invariant representation fixed
across time steps. This requires defining invariant factors in a function space, where functions can
cover dynamical states. Conventional invariant learning techniques are not directly applicable in this
context, as they are typically not designed to capture invariance in function spaces. These challenges
necessitate the development of new function representations and the development of a novel invariant
learning principle tailored to dynamical systems.

2.2.1 CAUSALITY-BASED DEFINITIONS

First challenge: causal formulation. In light of the first challenge, we aim to formulate the invariant
function learning and the dynamical system forecasting problem from a causal perspective. As
shown in Fig. 2] we formulate the trajectory data generation process as a Structural Causal Model
(SCM) (Pearl, 2009)), where c, e, and X, are exogenous variables. All endogenous variables, except
the function composition step f.,f. — f, are generated with extra random noises to model complex
real-world scenarios. Please refer to Appx. [B.1] for more details. The optimization goal of the
forecasting task is to estimate the true distribution p(X). As can be observed from the causal graph,
our function learning framework can be considered as two phases, namely, function prediction and
forecasting. For the function prediction phase, similar to inverse problems (Lu et al.,|2021b)), given
the observed trajectory X,, the target is to reversely infer the invariant derivative function f that can
represent the dynamics of the system, i.e., fitting p(f|X,). Intuitively, taking Fig.[I]as an example, this
phase aims at the reasoning of the function basis sin(6;), —ws, 1ok, and the coefficients «a, p. After

obtaining the derivative function f, the forecasting phase feeds it into a numerical integrator with the

initial condition X, for the X forecasting, which can be demonstrated as p(X|f, Xo). Note that the
bold font variables are random variables instead of individual realizations.
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Second challenge: function disentanglement. To han-
dle the second challenge of extracting invariant mecha- \ =~/ "\ ¢/ 1 "\ ( ~-7----=-- >
nisms in dynamical systems, we aim to define invariant
representation in the function space, which requires the
access to intermediate functions and the disentanglement
formulations. With the two-phase function prediction to
forecasting process, we explicitly expose the derivative

function, allowing us to isolate the function prediction e e
process and disentangle the learning of invariant functions.
In the invariant function learning problem, we decompose
the exposed function variable f into an invariant function
variable f, and an environment-specific function variable ~Figure 2: Structurgl causal model. The
f., as in Fig.[2} These two functions are caused by the ~causal data generation process includes
exogenous factors ¢ and e, respectively. Intuitively, the ¢ tWo phases: function generation and tra-
variable includes the common and invariant mechanism, Jectory generation, which correspond to
while e is the environment variable determined by the ©ur two learn.mg phage; in parentheses,
observational environment of the trajectory, e.g., the pen- namely, function prediction and forecast-
dulum dynamics can be observed in different mediums 10&- The gray nodes in the causal graph
(environments), such as air and water. indicate observable variables.

Trajectory generation

I
|
|
I
!
! (Forecasting)

Function generation

Formally, the invariant function learning target is the dis-

covery of f., which eliminates the effect of environments and obtains the invariant mechanism.
However, from the d-separation perspective (Pearl, 2009), since X, is the descendent of the collider f
of f. and f., given X, f. and f. are correlated/biased and not distinguishable, preventing the direct fit-
ting of f. given X,,. Therefore, we aim to identify this intermediate hidden variable by characterizing
the unique properties of the prior distribution of p(f.). Theoretically, since f is the collider between f.
and e, f. is expected to be independent of e. In addition, among all the functions that are independent
of e, f. should be the most informative with respect to the observed trajectories, which will be proved
in Thm. [3.1] This forms the foundation of invariant function learning.

3 A METHOD: DISENTANGLEMENT OF INVARIANT FUNCTION

Following the two-phase function learning framework, we now propose the first method for IFL,
Disentanglement of Invariant Function (DIF), with hypernetwork-based implementations of the two
corresponding networks. For the forecasting network, similar to traditional representation learning
tasks, we aim to learn a function f € F : R? — R<. For the function prediction, however, it requires
learning a function that returns a function, h € H : R%*™ - F i.e., learning a hyper-function, which
is enabled using a hypernetwork.

3.1 HYPERNETWORK DESIGN

Function prediction. To quantify the objective of the hyper-function, we approximate its output
function as a neural network with m parameters. The function space F consists of all possible
neural networks with m parameters, and a function f € F can be represented as a vector in R™.
Thus this parameterization process introduces a hypernetwork structure (Ha et al., [2016) into the
implementation, as shown in Fig.[3] Note that since our parameterization transfers functions into the
real number space, it is now possible to apply invariant learning techniques such as IRM (Arjovsky
et al.,[2019) and VREx (Krueger et al.l 2021), where invariant (function) representations need to be
extracted. In the following sections, we use F and omit R™ for simplicity.

Practically, since the number of parameters in a network is generally large, we propose to compress
the invariant function representations into hidden representations, thus forming an encoder-decoder
framework. Specifically, as shown in the Fig. 3] the trajectory encoder is a transformer-based network
with positional embedding design, denoted as hg,,, : R**?¢ - Z. Given the hidden representation
from the encoder, we further encode an invariant function embedding 2. € Z and an environment
function embedding z. € Z using two multilayer perceptrons (MLPs), denoted as hy,,, and hy,,,, ,
respectively. Then, aligning with our causal graph as Fig.[2] we combine Z. and z. by summing them
as the function representation zZ € Z, which can be used for full dynamics prediction. Finally, we
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MLP Multilayer Perceptron he R he,.. N ;

TF Transformer
— —* Insert network parameters
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Figure 3: DIF framework. ¢ denotes outputs of the discriminator g, introduced in Sec.

learn an decoder MLP hy,__ to decode the function representation into m-dimensional neural network
parameters, i.e., fe, f€F.

To facilitate theoretical analysis, we simplify the notations and denote the function prediction process
in the hypernetwork as two functions f = hy(X,) and f. = hg, (X,), Where hg, hg, : R¥*Tc s F;
0 = {benc, Oinv, Oenv, Odec }3 0c = {Benc, Oinv, Baec }- In addition, we slightly abuse the notations of he
and he, on random variables X, for simplicity, producing f = kg (X,p) and f. = ho, (X,), respectively.

Forecasting. Given the produced neural network function f, we apply a numerical integrator as our
forecastor, a function g;,,; that takes a derivative function f and initial states X, as inputs, to obtain
X = gint(f, X0)+€ where € is sampled from a Gaussian noise \* (X;0,0°1) introduced by calculation
deviations. This forecasting formulation enables the following probability modeling, where we

obtain the forecasting given realizations X, and f as a Gaussian distribution A/ (X; gint (f, X0), 021 )
denoted as p(X|f, Xo). Therefore, in probability modeling, X is sampled from p(X|f, Xo). It is worth

noting that unlike in inference time and analyses, it is time-consuming to use numerical integrators
during training; therefore, we follow [Mouli et al.| (2024) and train the model by fitting the derivative

dai f(X,) with numerical derivatives from the ground-truth X instead. For simplicity, we denote

f(-) as a neural network based derivative function with parameters f € R™.

3.2 DISCOVERY OF INVARIANT FUNCTION

With the above hypernetwork design, we can now propose the discovery of the invariant function
f.. Following the independence and information properties of f. discussed in Sec.[2.2.T we achieve
invariant function learning with the following theorem, which is our main theoretical result.

Theorem 3.1 (Invariant function learning principle). Given the causal graph in Fig. |2| and the

predicted function random variable f. = hg,(X,), it follows that the true invariant function random
variable . = hex (X,), where 0; is the solution of the following optimization process, described as

0; = argmax I (he,(X,); f|Xo) s.t. he, (X,) 1L e, 2)
where 1(-;-) is mutual information that measures the information overlap between the predicted
invariant function random variable hy_(X,) and the true full-dynamics function random variable f.

The proof is available in Appx.[B.2] Thm.[3.T]establish guarantees and conditions for the function
output f. of the hypernetwork to be the invariant function f., fulfilling the goal of the IFL task.

3.2.1 IMPLEMENTATION OF INVARIANT FUNCTION LEARNING PRINCIPLE

Following Thm. 3.1} next we introduce the implementation and optimization process of our proposed
networks. We first train the encoder and decoder of our hypernetwork by approximating the trajectory
distribution p(X), parameterized as p(X|ho (X, ), Xo), where we apply the cross-entropy minimization.
Given that our supervision signals only come from the ground-truth trajectories, we introduce a
simple lemma for our optimization processes. The proof is provided in Appx.[B3]

Lemma 3.2 (ODE cross-entropy minimization). Given forecasting model p(X|ho(X,), Xo), it fol-
lows that the cross-entropy minimization between the data distribution p(X) and p(X|he(X,), Xo)
is equivalent to minimizing mean square error ming Ex-,||X — X||3, where X is sampled from
p(X[ho(Xp), Xo).
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In order to discover invariant functions, we apply the invariant function learning principle, which
requires maximizing the conditional mutual information between the predicted function random
variable f. = hy_(X,) and f. Based on the derivation of Lemma we have the following proposition.

Proposition 3.3 (ODE conditional mutual information maximization). Given forecasting
model p(X|he (Xp), Xo), it follows that the conditional mutual information maximization
maxg, I(he, (X,); f|Xo) is equivalent to minimizing mean square error ming, Exp | X — X¢||3, where
X¢ is the predicted trajectory sampled from p(X|he,(X,), Xo).

The proof is provided in Appx. %Lemma [3.2] and Prop. [3.3] essentially transfers the mutual
information maximization of Thm. into an implementable optimization of mean square error
(MSE) loss, enabling the practical use of the invariant function learning principle. In addition,
the independence constraint in Thm. [3.1] requires that the extracted functions should not be over-
informative or contain biased information from environments e. This independence constraint can be
implemented in an adversarial way, where we require the environment prediction P(e[f.) to be as
less informative as possible, i.e., minimizing the mutual information of 7(e; ﬂ). Thus we introduce
an environment discriminator g,, a.k.a., P, (e|f), which aims to distinguish the environment of any
function from F. The hypernetwork is trained adversarially to enforce f. as indistinguishable as
possible. The theoretically analysis of this independence training is provided in Appx.[B.3]

Objective. The overall optimization objective can be obtained with three training strategies. First,
the training of the discriminator is conducted on both f. and fE to fully capture environment patterns.
Second, we use the corresponding hidden representations of f. and f., 2. and 2., as the input of the
discriminator. Third, as we mentioned in Sec[3.1] during training, we fit derivatives instead of using
an integrator.

2
mlnEXNPZ H% — f (Xe)

X,
+>\ mmEXNpZH L (X))

? (3)
+ Adis - {m(gn —Ex~ploggs(2:) + min —Ex~plog gs (26)} + Xado - max —Ex ., 10g go (Zc)

Ve c

where we denote 0. = {Ocnc, Oenv }; 0c = {Oene, Oiny }. Please refer to Appx. for more details.

Efficient hypernetwork implementation. Last but not least, one of the major challenges that limits
the usage of hypernetworks is the implementation complexity. In this work, we propose a reference-
based hypernetwork implementation to accelerate the running speed using only PyTorch |Paszke
et al.| (2019)) without re-implementing basic neural networks. The speedup compared to the naive
implementation and the vectorized functional implementation are 16.8x and 2x, respectively. Please
refer to Appx. [F] for implementation and experimental details.

4 RELATED WORK

This work is inspired by the ideas and limitations of previous research in dynamical system forecasting,
meta-learning, and invariant learning.

Deep learning models are widely applied in many physical applications (Lusch et al.| 2018} |Yeo &
Melnyk, 2019; [Kochkov et al., 2021} |Chen et al.} 2018)) including partial differential equations (PDEs)
with the focus on the multi-scale (L1 et al., 2020; |Stachenfeld et al., [2021)), multi-resolution (Kochkov:
et al.l 2021; [Wu et al.l 2022), and long-term stability (Li et al., 2021} |Lippe et al., |2023) issues.
Operator learning and neural operators (Gupta et al., 2021} |Kovachki et al.,[2023) are popular for
PDE estimations. Although the ODE dynamical system does not contain the multi-scale problem that
Fourier neural operator (Kovachki et al.,|2023)) tried to solve, our framework can be considered as a
kind of operator learning.

Meta-learning methods (Finn et al., 2017; Rusu et al., 2018} [Li et al., 2017} |Zintgraf et al., 2019
Perez et al., 2018)) aim to learn meta-parameters that can be used across multiple tasks, where the
meta parameters are generally learned to make rapid adaptations. In previous meta-learning studies
on dynamical systems (Kirchmeyer et al.,|2022; Wang et al.,[2022; Yin et al.,|2021a)), the objective
was to find a meta-function that could quickly adapt to multiple new systems, where hypernetworks
are only employed as low-rank adaptors for new dynamical system trajectories, similar to the idea
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of LoRA (Hu et al.| 2021)). Our work differs from such meta-learning approaches in two key ways.
First, we focus on discovering invariant functions rather than quickly adaptable ones. Second, while
meta-learning methods seek to learn a single meta-function, our framework learns multiple functions,
represented by an invariant function random variable f.. This distinction stems from our more
complex environment definition, detailed in Sec.[2.2] From another aspect, learning an invariant
function distribution instead of a single function can be considered as generalized meta-learning with
an invariant function learning goal.

Current invariant learning methods (Arjovsky et al.,|2019; |[Lu et al.,|2021a; Rosenfeld et al., [2020;
Krueger et al., 2021} [Sagawa et al.| [2019) follow the framework of invariant risk minimization
(IRM) (Arjovsky et al., 2019), which was inspired by invariant causal predictor (Peters et al.,|2016).
This invariant learning framework aims to learn a hidden invariant representation that generalizes
across multiple environments, ensuring out-of-distribution performance. However, this approach
cannot work on dynamical forecast tasks due to the lack of invariant function definition and the
violation of the categorical data assumption. To be more specific, first, invariant functions cannot
be naturally defined in the real number vector space. Second, invariant learning commonly assumes
the prediction results are categorical, where a single invariant representation can fully determine the
corresponding label. However, this assumption is violated in dynamical system forecasting, where
the invariant mechanism is only partially responsible for the output. In this case, the IRM principle
can not hold even when the invariant function ground truth is provided. To address the issues, we
introduce the causal assumption (see Fig. [2)) that defines the invariant function space, and propose the
corresponding invariant function learning principle and implementation.

A related line of research involves symbolic regression for ordinary differential equations (ODEs),
where transformer models have shown significant success (Becker et al., 2023 |d’ Ascoli et al., [2023;
Seifner et al.| 2024). While these approaches primarily focus on deriving symbolic expressions
for individual trajectories, rather than identifying invariant functions across groups of trajectories,
exploring the interplay between these two directions presents an exciting avenue for future research.

5 EXPERIMENTS

We conduct experiments to address the following research questions. RQ1: Are existing meta-
learning and invariant learning techniques effective for extracting invariant functions? RQ2: Can the
proposed invariant function learning principle outperform baseline techniques? RQ3: How do the
full functions f and the invariant functions f. differ in performance? RQ4: Are the extracted invariant
functions explainable and aligned with the true invariant mechanisms? RQS: How will performance
change given different lengths of inputs and types of environments? (See Appx. [E) RQ6: Is the
proposed hypernetwork implementation more efficient than previous implementations? (See Appx. [

5.1 DATASETS

In our experiments, we introduce three multi-environment (ME) datasets, ME-Pendulum, ME-Lotka-
Volterra, and ME-SIREpidemic. These three datasets are generated by simulators modified from the
DampedPendulum (Yin et al., [2021b)), Lotka-Volterra (Ahmad, [1993)), and SIREpidemic (Wang et al.,
2021). Specifically, each of the dataset’s training sets includes four environments with 200 samples
for each environment. Specifically, each environment corresponds to one specific environmental
effect. ME-Pendulum contains three types of friction and one effect with external energy. ME-Lotka-
Volterra modified the common predatory relationship into four modified relationships, e.g., adding
resource limits. ME-SIREpidemic produces four conceptual epidemiology models with the same
susceptible population to infected population relationship. In addition to the training set, we generate
200 samples with 50 samples for each environment as an in-distribution test set. Please refer to
Appx. [C] for more details.

5.2 EXPERIMENTAL SETUP

To quantitatively evaluate the invariant function extraction performance, we need to remove the
environment-related effects to generate invariant trajectories X ¢ as the invariant function ground-
truth, e.g., we simulate new data by eliminating —pw; from —a? sin(6;) — pw; in the ME-Pendulum
dataset (Fig.[I). To be more specific, a generated invariant trajectory X ¢, aligning the causal graph, has
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the same system parameters as the corresponding biased trajectory X for the invariant part controlled
by c, i.e., they have the same « in the pendulum example. This invariant trajectory generation is
being done on the in-distribution test set so that each trajectory X in this test set has its special
corresponding invariant trajectory ground truth X°.

This test set design enables us to mimic the situation of scientific discoveries, where we only
observe environment-biased data but are required to find and evaluate invariant function candidates.
Specifically, given the biased X, the hypernetwork is supposed to predict the corresponding invariant
derivative function fc. Then, with a numeral integrator, the output of this invariant forecaster Xe
will be evaluated by comparing with the corresponding invariant trajectory ground truth X° using
normalized root mean square error (NRMSE).

5.3 PROPOSED META-LEARNING AND INVARIANT LEARNING BASELINES

General dynamical system forecasting is different from invariant function learning significantly,
where they focus on how to adapt to new trajectories, which commonly requires further optimization,
e.g., test-time adaptation (Mouli et al., 2024) or adaptations with meta information (Wang et al.|
2022; |[Kirchmeyer et al.,[2022). Unfortunately, under our scientific discovery setting, there is no extra
information provided at test time, making them inapplicable to this setting. Therefore, we construct 4
new baseline settings by transplanting the techniques of previous meta-learning and invariant learning
to our proposed framework detailed in Appx.[D.T]

We first adopt the meta-learning baseline MAML (Finn et al.| 2017, where we use its learned meta-
parameters for invariant learning to evaluate whether the fastest adapted parameter is the invariant
function parameter. Our second meta-learning baseline is CoDA (Kirchmeyer et al., [2022), where we
replace its hypernetwork decoder with the full encoder-decoder hypernetwork in our framework to fit
in our task. Aligning with the original CoDA paper, we set the dimension of the hidden representation
to be 2. Similar to MAML, we eliminate the adaptation part and use only the learned meta-parameter
for invariant state prediction.

For invariant learning baselines, we adopted the two most typical techniques, IRM (Ahuja et al.|
2021) and VREx (Krueger et al.,2021). These two techniques are applied to the proposed framework,
where IRM stands for the most typical definition of invariant learning, while VREx stands for
the distributionally robust optimization baseline, which can be considered as the generalization of
GroupDRO (Sagawa et al., 2019).

5.4 QUANTITATIVE RESULTS

Similar to other scientific discovery tasks, such as drug discovery, constructing a proper validation
set is challenging. Instead, with only observational data available, we generate invariant function
candidates that can be further validated in real experimental settings, e.g., through the introduction of
interventions (Pearl, 2009).

To quantitatively compare these methods, we provide the corresponding hyper-parameter search
spaces for each technique in Appx.|D|and plot the results of random hyper-parameter sampling as
distributions using Boxen plots. As shown in Fig.[d] we compare the quality of the invariant function
candidates based on their median, best result, and quantiles. Specifically, the median performance
of our proposed method surpasses the middle candidates of all other approaches. The performance
gaps are particularly notable on the ME-Pendulum and ME-SIR-Epidemic datasets. For example,
on ME-Pendulum, over 75% of our method’s candidates outperform the best results of MAML and
CoDA, and more than 93.75% candidates of IRM and VREx. On ME-Lotka-Volterra, the median of
our candidates still outperforms nearly all candidates from other methods. In addition, as shown in
the visualizations on ME-Pendulum our learned invariant function f. eliminates environmental
resistances from the original trajectory (Fig. [5a) and obtain a simple pendulum motion without
attenuation (Fig.[5b). Both quantitative and visualization results demonstrate the superior capability
of our method in extracting invariant functions (RQ2).

To address the first research question (RQ1), we observe that the invariant learning techniques, IRM
and VREX, are generally more stable than the meta-learning baselines. Although IRM and VREx do
not surpass MAML on ME-Lotka-Volterra, they outperform MAML on 2 out of 3 datasets and are
consistently better than CoDA. However, when compared to our proposed method, the best function
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Figure 4: Invariant trajectory prediction errors on 5 methods under 3 multi-environment ODE
systems. For each method, we provide model candidates with 80+ random hyper-parameter selections
in their searching spaces, i.e., more than 1200 models in the figure.
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Figure 5: Visualization of trajectory predictions on ME-Pendulum
Table 2: Invariant function validation and symbolic regression. NAN denotes that the result is not
applicable or not of interest.
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candidates from these invariant learning techniques are suboptimal. This confirms that the general
invariant learning principles fall short in the context of invariant function extraction, aligning with the
discussions in Sec. 4l

5.5 FULL FUNCTION V.S. INVARIANT FUNCTION

To analyze RQ3, we benchmark our best invariant function learning models on the invariant state
ground truth X° and the multi-environment state ground truth X, comparing their results using the
predicted invariant function f. and the full function f. As shown in Tab.[2] the performance on X using
f. represents the core results of our invariant function learning approach. In contrast, the predictions
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on X° using f serve as a baseline for the ablation study, where no invariant function learning principle
is applied. Additionally, the prediction error on X using f. implies the environmental information
eliminated by the invariant function learning principle, while the NRMSEs on X using f reflect
standard in-distribution (ID) test errors. We observe that the ME-Lotka-Volterra dataset is the most
challenging, with an NRMSE of 0.3881 in the ID test. This result is consistent with general deep
learning outcomes in|Mouli et al.[(2024), given that ME-Lotka-Volterra is more complex than its
original version.

As expected, f performs well on X, while f. excels in predicting X¢. In our ablation study, we
compare the performance of invariant state predictions X¢ across all datasets. The predicted invariant
functions f, significantly outperform the full predicted functions f in terms of NRMSE, validating the
effectiveness of the proposed invariant function learning principle.Furthermore, we conduct more
strict ablation study with independent f and f. training in Appx.

5.6 SYMBOLIC REGRESSION EXPLANATION

Furthermore, to address RQ4, we analyze the extracted invariant functions f. by applying symbolic
regression using PySR (Cranmer, 2023). As shown in Tab.[2] we compare the symbolic regression
(SR) explanations of the extracted invariant functions f. with the true invariant functions f.. On
the ME-Pendulum dataset, the frictionless pendulum function is nearly perfectly extracted, with
0.99w; matching w; and —0.97a”sin (6;) closely approximating the true —a?sin (6;). Given the
complexity of the ME-Lotka-Volterra dataset, the extracted invariant functions f. are non-trivial
and significantly outperform the full function f. On the ME-SIREpidemic dataset, the near-perfect
NRMSE for the invariant state indicates that the invariant function must have been correctly extracted.
However, although the expression for 2%t is correct, the extracted expressions for 22t and <t do
not precisely match the expected f.. Specifically, the coefficient from

d
dSi :
© et does not equal the inverse
1 t
of the coefficient from £,

though this discrepancy should be constant. These mismatches attribute
to the limitations of PySR given the large number of variables and samplesﬂ Future work could
explore incorporating stronger inductive biases, similar to physics-informed machine learning (PIML)
methods (Mouli et al., 2024} |Yin et al., 2021b; (Cranmer et al., | 2020), to address these challenges.
Please refer to Appx. [E.3|for symbolic comparisons with all baseline.

6 LIMITATIONS

While this work provides a foundation for invariant function learning in dynamical systems, several
limitations and opportunities for future exploration remain. These include extending the framework
to more complex entanglements, exploring applications in PDE systems, strengthening theoretical
guarantees with advanced error bounds, and developing comprehensive benchmarks. Additionally,
broader applications such as generalizable physics learning and foundational model development
represent exciting directions for further research. Please refer to Appx. [[| for more discussions.

7 CONCLUSION

In this work, we target addressing the challenge of the invariant mechanism discovery in ODE
dynamical systems by extending invariant learning into function spaces. We introduce a new task,
invariant function learning, which aims to extract the invariant dynamics across all environments with
different environment-specific function forms. We design a causal analysis based disentanglement
framework DIF to expose the underlying invariant functions. Additionally, we propose an invari-
ant function learning principle with theoretical guarantees to optimize the framework and ensure
effective invariant function discovery. Our experiments, including invariant trajectory validations,
visualizations, ablation studies, and symbolic regression analyses, demonstrate the effectiveness of
our method. Finally, as discussed in Sec. [6] the introduced invariant function learning task has wide
application scenarios and many challenges remain to be addressed. We expect that our work will
shed light on numerous future explorations in this field.

!'Superior PySR explanations indicate great invariant function learning results, but effective invariant function
learning results might not lead to good PySR explanations.

10
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REPRODUCIBILITY STATEMENT

To make sure the reproducibility of this work, for our theoretical results, all assumptions and proofs
are included in Appx.[B| For the datasets, the system parameters, simulator expressions, and datasets
visualizations are provided in Appx.[C| For the model, we provide full details including all the training
setup, architecture, objectives, and hyper-parameter searching spaces in Appx.[D] The finalized code
will be released upon acceptance.
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A NOTATIONS

For the ease of reading, we providing a table including major notations below for reference.

Table 3: Notation table

Notation

Explanation

N X8
cE

ST e

o

o

3

o

o B b e e
0 4
b M

bS]

M >
-

>

S tﬁ)

> =h

R S e
(D)

5}
®

X ~ P

X ~ p(X)
Ex~p[f(X)] or Ef(X)
{1

{a =}

{a — a}

Dynamical system states at time ¢

Dynamical system state space

Tangent state space

Real number space

The number of state

Time

The first future time step

A trajectory; A state matrix with T-step states

Past states before time step T¢

An invariant trajectory

The predicted trajectory of X, X,,, and X°¢ (by a model)
The matrix-valued random variable of X, X,,, and X°

The predicted matrix-valued random variable of X, X, and
XC

A derivative function (of an underlying dynamical system)
An invariant derivative function

An environment derivative function

The predicted functions of f, f., and f. (by a model)

The derivative function random variable of f, f., and f.
The predicted derivative function random variable of f, f.,
and f.

Function space/Functional vector space

A predicted full/invariant/environment hidden function rep-
resentation

Hidden function space/Hidden functional vector space

A hypernetwork

Hypernetwork function space

A probability distribution over a random variable

Mutual information between random variables

Shannon entropy of the matrix-valued random variable X
Expectation of f(X) with respect to p(X)

Random variable X has distribution P

X is sampled from distribution p(X)

Expectation of f(X) with respect to p(X)

An assignment/A substitution rule

A symbol without an assigned value

A symbol with an assigned value a

B INVARIANT FUNCTION LEARNING FOUNDATION

B.1 STRUCTURAL CAUSAL MODEL

In this section, we discuss the trajectory generation process under the Structural Causal Model (SCM)
assumption in Fig.[6] To begin with, this SCM is a directed acyclic graph (DAG) with the following

components:

» Exogenous variables U = {c, e, Xy, €, €, €5, €} are not caused by any variables within the
model and are from their own independent distributions. Here e., €., €,, € are noise terms

introduced during the function generation and trajectory integral.
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Trajectory generation
(Forecasting)

Figure 6: Structural causal model.

* Endogenous variables V' = {f..f., f, X°, X,,, X} are caused by the causal mappings within
the model.

 Structural equations define the direct causation in the model.

= le = gC(C7 EC)

- f.:=ge(e, e)

- f = gcomp(fev fe)

- = Gint (fm Xo )

- P = g1nt(f XO) + €p

- XC — gznt(fC7X0) +e€
where g;,: 1s a T-step integrator, while gmt only applies integral for 7. steps. While g, ge,
Jeomp are assumed to be unknown, g;». is assumed to be an ideal integrator with an extra
random noise ¢ to model the real world situations. Note that the cause of X can be written
as f. and f. without side effects, so f is used for analytical purposes. Therefore, gcomp 1S @
conceptual function composition without introducing noises.

B.2 PROOF OF INVARIANT FUNCTION LEARNING PRINCIPLE

Theorem B.1 (Invariant Function Learning Principle[3.1). Given the causal graph in Fig.2|and the
predicted function random variable f. = hg_(X,), the true invariant function random variable is
fe = hox (Xp), where 8 is the solution to the following optimization problem:

0 = argmax I(hg.(X,);f|Xo) subjectto he. (X,) 1L e, @)
0

c

where I(-;-) denotes mutual information, which quantifies the informational overlap between the
predicted invariant function he,(X,,) and the true full-dynamics function f.

Proof. Existence:

We first prove the existence of a solution 67 to the optimization problem, such that f. = hgx (X,,). To
establish this, we proceed by contradiction. Assume no such 6} exists, implying that I(f.; f|Xo) is not
maximized. Then, there must exist some f,, such that f. 1l e and I(f.; f|Xo) > I(f.; f|Xo). Given the
mutual information expression I (f.; f|Xo) = H(f|Xo) — H(f|f;, Xo), this inequality implies:

H(f|f:) > H(f|f,). (5)
Since X, is independent of f and f. (as per Fig.2)), and given that f = g;(f., f.) implies H (f|f.,f.) = 0,

we derive:

H(f|f.) = H(f.). (6)

Similarly, for f.., we have:
H(f|f,) > H(f|f). (7

Combining these results with Eq.[5] we obtain:
H(fe) > H(f|f), ®)
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which contradicts the independence condition . 1L e, as this would require H(f.) = H(f.|f.).
Therefore, a solution ¢ exists, satisfying f. = hox (X,).

Uniqueness: We now prove that for any solution ¢; of the optimization process, it holds that
fo = hox (Xyp).

We use a proof by contradiction. Assume that there exists another solution f,, # f. that satisfies the
independence constraint and achieves the maximum mutual information. By assumption, we have
H(e) = H(elf.) and I(f.; f|Xo) = I(f.; f|Xo), which implies H (f|f.) = H(f|f.).

Since f = gi(f., f.), we expand the entropy terms:
H(f|fe) = H(fe, fe|fe) = H(f), ©)
and
H(flfe) = H(fe, fe|fe) = H(f[f) + H(fe|f) = H(fe|fe) + H(f.). (10)
Substituting H (f|f.) = H(f|f..) into these equations, we find:
H(f.|f.) = 0. (11)
Based on this, we now aim to prove that f. = f... First, given H(f.|f.) > 0, we need to show that
H(f,|f.) = 0. Assume that H(f,|f.) > 0. In this case, f, can determine f. while containing more
information than f., all while remaining independent of f.. This would imply that H (f'|f) > 0, where

' = g¢(f', f.), which would in turn affect the corresponding prediction, leading to H(X'|X) > 0. Such
a situation would violate the MSE minimization condition.

Therefore, we must have both H(f.|f.) = 0 and H(f.|f.) = 0. This implies that f. and f, are
isomorphic functions, i.e., there exists a bijective function g, such that f. = g, (f.).

Furthermore, since minimizing the MSE of X is equivalent to minimizing the MSE of £* given Xo,
this minimization ensures that, for the same f., f.(X) = f.(X) for all X. As a result, the bijective
function g, must be the identity mapping, and we conclude that f, = f. in the support of p(X).

Thus, for any solution #; of the optimization process, it follows that f. = hgx (X,).

B.3 PROOF OF ODE CROSS-ENTROPY MINIMIZATION

Lemma B.2 (ODE cross-entropy minimization[3.2). Given our forecasting model p(X|ho(Xy), Xo), it
follows that the cross-entropy minimization between the data distribution p(X) and p(X|he(X,), Xo)
is equivalent to minimizing mean square error ming Ex.,||X — X||3, where X is sampled from
P(X[ho(Xp), Xo).

Proof. The forecasting optimization goal is to use our framework to approximate the data dis-
tribution p(X), parameterized as p(X|ho(X,), Xo), where we apply the cross-entropy minimiza-
tion, i.e.,H(p(X),p(X|he(X,), X0)) = —Ex~p [logp(X|he(X,), Xo)]. Furthermore, this negative
log-likelihood optimization can be further reduced to the common mean squared error (MSE).

min Ex | X — X3, (12)

where X ~ p(X|ho(X,), Xo). Since the distribution p(X|he(X,), Xo) is modeled as a Gaussian
N (X; gint (ho(Xp), Xo), 0°1) (Sec., we have X =y + ¢, where € ~ N (0,0°1).

mgiﬂ—EX~p[10gp(X|he(Xp)7X0)]

— minEx-, | 2 log(270%) + —— || X — ul?2

=minEx~; | 5 log(2m07) + o5 | X — ull (13)
1
207

=minEx~p [ X - ull%} + glog(ZMQ)
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Since % log(270?) is a constant, we ignore it in the minimization process.

. (1 2 n 2
min Exp _EHX —MHQ] + 510g(27m )
I, [ 1 o 2
—momEXw _T‘Q”X — (X =92
. [ 1 S 2
~ minEx, _T‘Q||X—X+e||2] (14)

. M1 . .
—mjn x| o (1 - I+ el +20¢ - 79

: 1 112 1 2, 1 AT
:mOmIEpr _ﬁ”X - X\b} + ﬁEe[”eHﬂ + ;EXw(X — X)) Ecl¢]

Here, 2 Ex~[||e|/3] is a constant; Ex~p [0—12(X - X)Te] = LEx~p(X — X)"Ec[¢] = 0 since e is

independently sampled with a zero mean. Therefore,
inE Lix - X LB Jel2] + L Exen(X — X)7E
minBxcp | 51X = XI3| + 55 Eellel] + 5 Exep(X — X)TE[d
. 1 5
~ minEx, {@HX - xug} (15)
= minEx~p [|1X - X|I3]
This reduction connects the information theory and the practical MSE optimization, which further

helps us to transform the mutual information maximization into a similar MSE optimization below.
O

B.4 PROOF OF ODE CONDITIONAL MUTUAL INFORMATION MAXIMIZATION

Proposition B.3 (Proof of ODE conditional mutual information maximization [3.3). Given fore-
casting model p(X|he,(X,), Xo), it follows that the conditional mutual information maximization
maxg, I(ho,(X,); f|Xo) is equivalent to minimizing mean square error ming, Ex.p|| X — X |3, where
X¢ is the predicted trajectory sampled from p(X|hg, (X,), Xo).

Proof. According to Lemma [3.2] we can reduce a negative log-likelihood minimization
ming, —Ex~p log p(X |he, (X}), Xo) to ming, Ex~p||X — X°||5.

Therefore, we only need to prove the equivalence between the —Ex ., log p(X|he, (X,), Xo) mini-
mization and the I(he.(X,); f|Xo) maximization. It follows that

max I (he. (X5); £]Xo)

(16)
= max H(f|Xo) — H(flho, (X,), Xo).
Since H (f|Xo) is a constant, we ignore it in the maximization process and obtain
max H (f{Xo) — H (flho, (X;), Xo)
= max —H (f[hs. (X5), Xo) (17)

= n;in H(flho.(Xp), Xo).

Since X = gine(f,Xo) + ¢ where € is an indepedent random noise, H(X|he.(X,),Xo,f) =
H(elhg, (X)) = H(e). Since given specific 0., H(ho,(X,)|X) = 0, with the conditional entropy
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chain rule, it follows that

min H (flho. (X5), Xo)
=min H(f, X|ho. (Xp), Xo) = H(X|ho. (Xp), Xo, 1)
= min H(f, X|ho, (X;), Xo) = H(c)
=min 1 (f, X|ho. (Xp), Xo)
=min H (flho. (Xp), Xo,X) + H(X[ho.(X,), Xo) (18)
- mmH(ﬂxo, X) + H(X]|ho.(Xp), Xo)

=min H(X|ho. (X;), Xo)
=min —Ex x, xo~p 10g p(X|ho. (Xp), Xo)
= n;in —Ex~p log p(X|he, (Xp), Xo)

where H (f|Xo,X) is a constant. Here, we finish building the equivalence between the function
conditional mutual information maximization and the trajectory negative log-likelihood minimization.
Using the proof in Lemma 3.2] our final optimization goal can be reduced to

min Ex~p[| X — X°|3. (19)
O

B.5 THEORETICAL JUSTIFICATION FOR ADVERSARIAL TRAINING

To incorporate the independence constraint, we enforce the condition f. 1L e, where f. = ho_(X,) is
the predicted function random variable, not a realization. Since f. 1l eis equivalent to I(e; fc) =0
and I(e;f.) > 0, the objective I(e; f.) reaches its minimum when and only when f. L e. This leads
us to define minimizing I(e; fC) as our training criterion.
Definition 1. The environment independence training criterion is

6; = argmin I(e; f.). (20)

Oc

This training criterion can be used directly, since the mutual information I(e; fc) =E [log L I(De(f;)}

while P(e|f.) is unknown. Following Proposition 1 in GAN |G00dfe110w et a1.| (]2020|), we intrqduce
an optimal discriminator g, : F — & with parameters ¢ to approximate the unknown P(e|f.) as
P,(e|f.), minimizing the negative log-likelihood —E [log P¢(e|fc)] . We then have the following two
propositions:

Proposition B.4. For 0. fixed, the optimal discriminator ¢ is

¢* = argmin —E [1og P¢(e|fc)] . 1)
¢

This proposition can be proved straightforwardly by applying the cross-entropy training criterion.

Proposition B.S. Denoting KL-divergence as KL[-||], for 0. fixed, the optimal discriminator ¢ is ¢*,
such that A A
KL [P(elf.) | Py (elf)] = 0. (22)

Proof. Given a fixed 6., both I(e; f.) and H(e) are constants. Therefore, we have:
¢* = argmin —E [log P¢(e|fc)]
@

= argmin I(e; fc) —E [log Py (e|fc)} — Hfe) (23)
¢

= arg min KL [P(e|fc)\|P¢(e|fc)] .
o
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Thus, minimizing the negative log-likelihood of P, (e|f.) is equivalent to minimizing the KL diver-
gence between P(e|f.) and its approximation P, (e|f.). Since KL divergence is bounded by 0, we
have KL [P(e|fc)||P¢* (e\fc)] = 0. This concludes the proof. O

With these propositions, the mutual information can be computed with the help of the optimal
discriminator ¢*. According to Proposition [B.3] we have:

1(e; ) = E [log Po- (elf)| + H(e) + KL [P(e[f) | Po- (elf.)

. (24)
—E [log Py- (e|fc)} + H(e) +0.
Thus, by disregarding the constant H (e), the training criterion becomes:
0. = argmin I (e; fc)
0c
- inE |log Py~ (e|f.
arg min [ og Py~ (e )] (25)

c

= argmin {maxE [log P¢(e\7f5)] } ,
0c ¢

where P¢(e\fc) is the probability modeling of g,. Therefore, the log-likelihood adversarial training
can enforce the independence hg_ (X,) L e.

C DATASETS

C.1 BASIC SETUP

We conduct experiments on the proposed three multi-environment datasets ME-Pendulum, ME-Lotka-
Volterra, and ME-SIREpidemic. Each of these datasets includes 1000 samples, where 800 and 200
samples are assigned to training set and test set, respectively. Each training set has 4 environments
where 200 samples are generated in each environment. Each sample is observed over 10 units of time,
and each time is discretized by regularly-spaced discrete time steps from ¢, to ¢, where T = 99, i.e.,
there are 100 time intervals of 0.1 unit of time each. A sample generation process is controlled by a
set of ODEs with common parameters W€ ~ U(W},,,,, Wi, ) and environment-specific parameters
W ~ UWws Wiign) sampled from their uniform distributions, e.g., in the pendulum system,
W¢ = {a} and W° = {p}, where a ~ U(ow, @hignh) and p ~ U(piow, prignh). Note that each
environment has its specific function form with its environment-specific parameters W*°.

The environment split is the same in the test set. The only difference is that in the test set each
sample X has one additional prediction target X ¢ with only the invariant dynamics. For example, the
invariant trajectory X ¢ of the one generated by —a? sin 6, — pw; will be created by —a? sin 6;.

C.2 ME-PENDULUM

ME-Pendulum is motivated by the DampedPendulum system (Yin et al., 2021b). The state X; =
[6¢,w:] € R? are the angle and angular velocity of the pendulum at time ¢, where we have W¢ = {a},
W¢ = {p}, and Tc = L. The underlying invariant ODE is %t = w,;, %t = —a’sin (6;). As
shown in Tab.[4] this invariant ODE is entangled with different environmental factors, forming four

environments, namely, damped, powered, spring, air.

C.3 ME-LOTKA-VOLTERRA

Motivated by the Lotka-Volterra system (Ahmad, [1993), the state X: = [p:, ¢:] € R? are the population
of preys and predators at time ¢, where we have W° = {«a,3,v,6}, W¢ = {a/,3',v',8'}, and
Tc = Z. The underlying invariant ODEs are 2 = ap — Bpq, 44 = §pg — ~vg. As shown in Tab.
these invariant ODEs are entangled in 4 environments, i.e., save, fight, resource, omnivore. The
save environment ODEs simulate the decrease of food wastage along with the increase of predators.
The fight environment ODEs simulate the decrease of hunting efficiency along with the increase of

21



Under review as a conference paper at ICLR 2025

Table 4: ME-Pendulum ODEs with 6y ~ ¢/(0, 5) and wo ~ U(—1,0).

Environment | ODE for 6, | ODE for w; | Distribution of Parameters
Damped dd—(? = wy % = —a’sin (0:) — pws
Powered G =we | Gt =—olsin(0) + pry o~ U(1.0,2.0)
Spring bt = w, Gt = —a’sin (6:) — pby p~U(0.2,0.4)
Air D=y det — —a®sin (0y) — plwe|we
Invariant | e = wy | der — —a”sin (6y) |

predators. The resource environment ODEs limit the increase rate of the prey population. In the
omnivore environment ODEs, the predators are omnivores that can build the population without preys
under certain resource limits.

We plot the trajectories X in the training set, and the invariant trajectories X in the test set in Fig.[7}

Training Set: ME-Pendulum Invariant Test: ME-Pendulum
Powered -0 Air-0 o Spring -0 Damped- 0 n

Time. Time Time Time. Time

Figure 7: ME-Pendulum trajectories.

Table 5: ME-Lotka-Volterra ODEs with p, ~ 1/(1000,2000) and ¢o ~ 2(10, 20).

Environment | ODE for p; | ODE for g; | Distribution of Parameters |
dp _ — — B'pa - _a dg _ _
Save L =ap dﬂppq B'pq - 10exp (—5) i ot =9pa—g . o, ~U(1.2,2.4)
Fight E:ap—?pq 24 = §pg+6'pg - 10exp (— %) —vq 8,3 ~U(6e—2,1.2¢ 1)
d, d ’ v
Resource d =ap- o' 55 — Bra § &= opa =g ~. 7 ~ U(0.48,0.96)
Omnivore & =op—Bpy G =0pa+20v' (1- 1&5) — g 5,6' ~ U(4.8¢ — 4,9.6¢ — 4)
Invariant | @ — op— fBpg | 99— pg—~q ‘ ‘

We plot the trajectories X in the training set, and the invariant trajectories X ¢ in the test set in Fig.

C.4 ME-SIREPIDEMIC

In the SIREpidemic (Wang et al [2021) system, the states X; = [S:, I, R:] € R® are the suscepti-
ble, infected, and recovered individuals at time ¢, respectively. In this adapted ME-SIREpidemic
system, we have W° = {8}, W° = {~}, and 7. = Z. The underlying invariant ODEs are
48 = B2, 4 = B55, 4E = 0, where we only care about the S to I transformation
relationship. As shown in Tab.|6] we introduce 4 environments, origin, enlarge, loop, negative. These
four environments describe four different models, where some of them are only for math modeling.
The origin environment is the same as the original SIREpidemic model. The enlarge environment
ODE:s expand the epidemic range. The loop environment ODEs include deaths and second-time
infections. The negative environment ODE:s is a pure math model allowing negative numbers.

We plot the trajectories X in the training set, and the invariant trajectories X in the test set in Fig.
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Training Set: ME-Lotka-Volterra Invariant Test: ME-Lotka-Volterra

save p Fight - p

2000

Figure 8: ME-Lotka-Volterra trajectories.

Table 6: ME-SIREpidemic ODEs with Sy ~ 14(9, 10), Io ~ U(1,5), and Ry = 0.

Environment | ODE for S; | ODE for I, | ODE for R, | Distribution of Parameters
{oi dl _ SI dR _
Origin s @ ﬂS+I+R ar = ﬁ@ Rl G =
Priwee |, %= ‘Bsw AU L R I Sl B ~u(s9
Loop G =~ Psrrm LY YR | G =Bsirn — 2] | G =R ¥ ~ U(0.4,0.8)
Negative 'fit —B5irR U= S +ylogl dR —vlogI
: as _ _ 1 _
Invariant ‘ a5 — —ﬂm ‘ R i _ g ‘
Nestve 5 ongn_s TINING Set: ME SIREpidemic s Invariant Tst: MESIREpidemic

1 1 1 1 1

o o

Negative -1 origin -1

Negative - R origin - R Enlarge - R

Time. Time. Time Time Time

Figure 9: ME-SIREpidemic trajectories.

D EXPERIMENTAL DETAILS

We conduct experiments on 800-sample training sets with a training batch size of 32, which leads
to 25 iterations per epoch. For each run, we optimize the neural network with 2,000 epochs, which
is equivalent to 50,000 iterations. Given fixed learning iterations, the learning rate is selected from
U(le —4,1e — 3).
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D.1 BASELINES

In our experiments, we design four adapted baselines, since this new task has never been explored
before. The selection of baselines is based on the following two questions.

* As invariant learning has been successfully applied in many representation learning tasks,
can general invariant learning principle still work for invariant function learning?

* Meta-learning techniques has been well designed to solved problems in dynamical systems
due to their quick adaptation characteristics. However, there is no evidence that the quick
adaptable functions are the invariant function that shares across environments. Are they?

For the first question, since our method is based on enforcing independence which shares a similar
philosophy as domain adversarial neural network |Ganin et al.|(2016)), we consider other invariant
methods going different ways. There are many methods well-known in the field of invariant learning,
but considering our invariant function learning formulation, we found the discovery of invariant
function requires independence that is different from the most typical "well performed across all
environments" invariant learning requirements. Therefore, as a validation of our guess, we adapt two
widely used and known invariant learning methods, IRM |Arjovsky et al.| (2019) and VREx Krueger
et al.| (2021). These two techniques are directly applied to our framework with the same architecture
and their typical hyper-parameters searching spaces:

 Nirm ~U(le — 2, 1€2)
° )\vrez ~ u(le - 17 163)

As shown in our result plot[d] the results are not surprising. That means that the function can perform
well across multiple environments is not the invariant function.

For the second question, our initial guess is that meta-learning is very sensitive to the distribution of
the training set. If certain pattern exists in multiple environments (not all), the meta-learning methods
are prone to capture it as a part of the meta-function, which satisfies their quick adaptation goals.
In our experiments, we choose MAML |Finn et al.|(2017)) and CoDA |Kirchmeyer et al.[(2022) as
our adapted baselines. CoDA is adapted since it uses hypernetwork as a full network adaptor which
is similar to our framework. However, CoDA is applied on coefficient-environments and requires
test-time adaptation without a trajectory encoder, leading to significant architecture differences.
Therefore, we apply CoDA as meta-learning techniques focusing on its low-dimension (2-dimension)
environment representation and regularization. MAML is selected as the most typical meta-learning
baseline, which does not require the use of hypernetwork, and only learns a meta function used to
predict invariant trajectories. Their typical hyper-parameters searching spaces are shown as follows.

o )\coda ~ L{(le — 5, le — 3)
* Amami ~U(le —3,1) (Meta learning rate)

D.2 DISENTANGLEMENT OF INVARIANT FUNCTION SETUP
D.2.1 ARCHITECTURE

Transformer. For the trajectory encoder in our hypernetwork, we apply a 6-layer 8-head 256-
dimension FFN transformer|Vaswani| (2017 with frequency positional encoding |Gehring et al.|(2017).
We tried different architectures like GRUs|Cho|(2014), but the transformer encoder can provide the
best in-domain test performance easily. We also sweeped to the depth, width, and number of heads,
and found that 6-layer 8-head 256-dimension FFN transformer is strong enough for our ODE systems
without making training difficult.

Function embedding. In the hidden function embedding space, we select the function embedding
dimension to be 32 or 64, while these two selections perform quite similar. For the MLPs used to
disentangle and decode hidden function embedding, we use 3-layer MLPs with ReLU as the activa-
tions. While for the decoder, the last layer projects the hidden function embedding to parameterized
function space R™ where m is the number of parameters in the derivative neural network.
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Derivative function network. The derivative neural network is a 4-layer or 5-layer MLP with width
16 or 32, which takes X; € R as input and output <t € R?. This neural network is transformed to

be a functional in our implementation.

Discriminator. Our discriminator is a 3 to 6 layer MLP with width 64 or 128. The size of discrimina-
tor can be easily chosen since the main goal of it is to discriminate the environment information in
the hidden function space. Therefore, the simplest way to filter non-qualified discriminators is using
the prediction entropy of P¢(e|f ), since f. should contain rich environment information, different to

the prediction from f.. Our experiments also validate that the failure to distinguish f. will always
cause the failure of invariant function discovery, which is natural, since the adversarial training is
based on the optimal discriminators (Goodfellow et al.| (2020).

Note that for all our MLPs, we apply one LayerNorm before each activationE]

D.2.2 TRAINING OBJECTIVES

We restate our three additional strategies here. Firstly, the adversarial training of f. will cause the
loss of environment information in f.., leading to the tralnlng difficulty of the discriminator; therefore,
this discriminator is not only trained on f. but also on f. with the same hyper-parameter Ay, i.e.,
ming g —Ex c~p [log Py(e| fe)]. Secondly, instead of using the large f. and f. as the input of the
discriminator, we input the the corresponding embeddings z. and z.. Thirdly, to avoid the use of a
numerical or neural integrator which causes long training time, we follow Mouli et al.| (2024) to fit
derivatives only. That is, instead of using the inference forecaster p(X|ho, (X,), Xo), we calculate the
derivatives of X using f and f., and replace the MSE over trajectory matrices with the MSE over
derivative matrices. Note that this modification only eliminates the use of integrator for stability
during training and thus does not affect our analysis and optimization goal.

We introduce our hyper-parameter searching space as follows.

« Ao~ U(le—T,1e — 4)
© Aais ~U(le — 1,1)

* Nogo ~ U(1e2,1e6)

* Xado = Ac " Augw

The most critical hyper-parameters are . and \.q, Which control the information overlap between
f. and f. Conceptually, A. controls the conditional mutual information (MI) maximization in our
invariant function learning principle, while \.4, enforces the independence constraint. The intensity
of the independence enforcing A, is dependent on the intensity of MI maximization \.; thus, we set
Aadv according to A., leading to Aggo = Ac - ALy,

Adis 18 only discriminator training, which is relatively trivial according to our discriminator descrip-

tions in Appx.

D.2.3 METRIC

Root mean square deviation (RMSE) is a commonly used metric, but it suffers difficulties when
comparing datasets with different value scales. Therefore, we normalize it using its standard deviation.

Expl| X — X3

NRMSE = SX)

(26)

’The code will be released upon acceptance.
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Figure 10: Ablation study on 3 DIF variants under 3 multi-environment ODE systems. For each
pipeline, we provide model candidates with 50+ random hyper-parameter selections in their searching
spaces, i.e., more than 450 models in the figure.
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Figure 11: Trajectory input length study on models trained with different training input length
factors under 3 multi-environment ODE systems.

D.3 SOFTWARE AND HARDWARE

Our implementation is under the architecture of PyTorch [Paszke et al.| (2019). The deployment
environments are Ubuntu 20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB
RAM, and graphics cards NVIDIA RTX 2080Ti.

E SUPPLEMENTARY EXPERIMENTS

E.1 ABLATION STUDY

As a complementary ablation study of Sec.[5.3] we train two models by eliminating two important
components from the original model, namely, f pipeline and f. pipeline. The f pipeline removes
the discriminator and only output f to the forecasting, which neglects the disentanglement process.
The f. pipeline prunes the f output while maintaining the adversarial training process. As shown
in Fig.[T0] both f and f. pipelines fail to perform valid invariant function learning aligning with
our theoretical results. Specifically, the f pipeline faces difficulties in extracting invariant functions
without environment information. The unsatisfactory performance of the f. pipeline is attributed
to the discriminator’s training failure. This is because the training of the discriminator requires the
capture of environment information, but the elimination of the f part also removes the training of z.,
the critical environment information captor. Therefore, the discriminator loses the most important
environment information input, leading to training failure.

E.2 INPUT LENGTH AND ENVIRONMENT ANALYSIS

In order to ensure fairness, we fix the input length and the number of environments in our experiments.
However, it is also interesting to figure out the effects of the input trajectory length 7. and the
number of environments on the model performance. Fig.[TT|shows the performance of DIF given
different input length factor I/;, where T, = % The results indicate the input length does not affect
the performance significantly, where the only variances are attributed to the training difficulty of the
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Figure 12: Environment analysis on models trained with different numbers of training environments
under 3 multi-environment ODE systems.

Table 7: Symbolic regression explanation comparisons.

| ME-Pendulum | ME-Lotka-Volterra | ME-SIREpidemic
Method
| NRMSE | SR Explanation | NRMSE | SR Explanation | NRMSE | SR Explanation
dSy _ —Sily — I + cos (S1)
o _ 0.036 (6 + wr) % —a +10 o (~0.022) dat 0.69
MAML | 09704 | d = 0.6774 Pt 063 02673 | Ut _ 495, 4 O g1
dw;,  sin(0;) . o dq. Pt dt
T = Cogr — 0A8sin (0 +0.68) sin () Pl —— a5
a0 A Tr‘ = cos (Iysin (S)) (—0.087)
dt 0.44
% = wipsin (0 + wr + 0.94) + w; + 0.074 P (1 ppy 054 dl, 358, 0007
CoDA | 0.9695 e ) ) 07097 | 9t 03184 | @ 5o
dwi _ sin (—0; + wi (=0.20) + 0.37) dg: . ” 5 6m
T om LT —= = (pr +pe) (pe + ¢ (—0.26)) — 0.66 dR S
dt 049 dt 2t 10029
- —+0.
dt L+ L+
% _ Setsin(S1) _qq
(Zﬁ = w093 % = 0,012 dl S
IRM | 07042 | 0.6989 | 09768 | Tt =sin | 25 — 012
L bty 2t _ 0,083 k Set+ S+ 5
dt dt AR
=083 - 0.0215,
45 _ g, (~1, —0.108)
do, . dp. . di
L= - 0.92 —— = —0.032 dl; St -
VREx | 0.7274 | 06877 | 4 04652 | o= o 5 +0.078
dw; dq dt S+ S+ £
= a(-1.1)6; I —0.12 S
dt dt dRe o704 S0 (8)
a el
ds.
— = —1.75:1
‘fiﬁ = 0.99w; dlﬂ = 1.254p; — 0.38¢:p: g}
Ours | 0.3561 dw‘ 0.6194 (}‘ 00652 | Tt = 04251,
T = ~0.97” sin (6) % = 4.1p, — 0.30g; — o
g Tr‘ = —0.0088
s _ . Sl
o _ W o i Si+ I+ R
GT | NAN dt NAN dt NAN dh g Sl
@:wzsmw) ﬂ:rimfw dt Se+ 1o+ R
7 sin (0, o g = a dR
dt

transformer given different input lengths. Therefore, a shorter input length can perform slightly better
given the same training steps.

For the environment analysis, in addition to evaluations on the full set of environments, we benchmark
model performance on datasets with three and two training environments. Specifically, we select
[Powered, Air, Spring] and [Powered, Air] for ME-Pendulum; [Save, Fight, Resource] and [Save,
Fight] for ME-Lotka-Volterra; and [Negative, Origin, Enlarge] and [Negative, Origin] for ME-
SIREpidemic. While not all possible environment combinations are evaluated, these selections
provide intriguing insights. As illustrated in Fig. [I2] changes in the set of environments weakly
affect model performance on ME-Lotka-Volterra. For ME-Pendulum, however, the inclusion of
each additional environment consistently improves model performance. On ME-SIREpidemic, the
performance boost observed with "3 envs" underscores the critical role of the environment Enlarge.

Two key observations regarding the ME-SIREpidemic are worth noting. First, the average perfor-
mance degradation on "4 envs" suggests a reduced focus on the important environment Enlarge due
to the addition of the final environment Loop. Second, the improvement in the best performance
candidate demonstrates the additional benefits of the environment Loop. These findings illustrate
that while adding environments can enhance the best possible discovery of invariant functions, it also
increases the average training complexity that may cause average performance degradations.
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E.3 SYMBOLIC REGRESSION EXPLANATION COMPARISONS

To further evaluate the performance differences between the proposed method and the baselines,
we apply PySR to the four baseline methods and obtain analytical explanations, as summarized
in Tab.[7} The symbolic regression results provide an intuitive understanding of performance in
relation to different NRMSE values. Specifically, when the NRMSE approaches 1, the resulting
explanations are largely meaningless. As the NRMSE decreases to around 0.7, the explanations
become more interpretable but may sometimes converge to oversimplified expressions, such as the
IRM and VREXx results on ME-Lotka-Volterra. When the NRMSE approaches zero, the expressions
become more reasonable but are not always ideal due to the inherent limitations of PySR. This
suggests that strong model performance does not necessarily guarantee high-quality explanations,
highlighting the performance constraints of the explainer (PySR).

F EFFICIENT HYPERNETWORK IMPLEMENTATION

One of the major challenges that limits the usage of hypernetworks

is the implementation complexity. Most current implementations Parameter
requires either re-implementing basic neural networks (von Oswald f € R™  puffer

et al. 2020) or assigning predicted weights to the main function

(forecaster) one by one for each forward pass (Ortiz et al., [2023]
Sudhakaran, 2022; |Kirchmeyer et al., 2022). To overcome these e
issues, we propose a Reference-based hypernetwork implementation v O ,
technique that uses pure PyTorch without introducing any new mod- | o
ules or CUDA kernels. Our proposed technique does not require E
reassigning weights for each sample in one forward pass, i.e., for

any continuous N training iterations with batch size of B and a fore- R
caster with M parameter variables, our computation complexity is :

O(NM + BM), instead of O(BM N) as previous implementations. oo H

Parameter

Specifically, for every forward pass, we create a function parameter )
vector buffer € R™ with fixed storage space, instead of reshaping ’
and assigning the predicted function parameters with complexity 4

O(BM). As shown in Fig.[I3] we consider the derivative neural %
network parameter variables as storage space pointers, i.e., the net-
work stores references instead of matrices. The fractions of function
parameter vector buffer are pointed by these pointers; thus, once the
buffer’s values change by the predicted function parameters, e.g., f,
the derivative network’s parameters will be changed automatically
without any assignment operators. To maintain the buffer’s fixed
storage space, several in-place operations are applied to maintains
computational graphs and gradients.

Figure 13: Reference-based
hypernetwork implementa-
tion.

F.1 EFFICIENCY COMPARISONS

Table 8: Hypernetwork implementation efficiency comparisons

Implementation \Vectorization Copy Reference \ First Step Time (s) Avg Time + Std (s)  Speedup

Non-vectorized X v X 0.2466 0.1818 £ 0.0601 1x

Module-based v v X 0.1768 0.1513 £ 0.0737 1.2x
Functional-based v X X 0.2013 0.0198 + 0.0007 9.2x
Ours v X v 0.1805 0.0108 + 0.0006 16.8x

To evaluate the efficiency of our hypernetwork implementation, we compare it against several common
implementation approaches. Specifically, we measure the forward pass time of our model over 200
continuous iterations in training mode, recording both the time for the first iteration and the average
time for the subsequent iterations. While the first iteration typically takes a similar amount of time
across all implementations, their performance diverges significantly in the subsequent iterations. As
shown in Tab.[8] the Non-vectorized implementation represents methods that do not vectorize the
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Figure 14: A function learning example.

derivative function and therefore must run different derivative functions sequentially. Approaches
like CoDA (Kirchmeyer et al.| [2022) attempt to vectorize the model by employing group-based
convolution networks. However, these module-based implementations rely on stateful PyTorch
modules, requiring the derivative function module to be replicated during each forward pass, which
slows down the process. While these Module-based implementations offer a slight improvement over
non-vectorized methods due to the vectorization benefits, the performance gain is limited.

In contrast, our vectorized Functional-based implementation leverages PyTorch’s functional methods,
achieving 9.2x speedup by avoiding the overhead associated with stateful modules. Note that vector-
izing hypernetworks using libraries such as hypnettorch (von Oswald et al.,[2020) can deliver similar
speedups. Finally, our Reference-based implementation, which eliminates parameter assignment
after the first iteration, nearly doubles the forward pass speed (16.8x) compared to implementations
that require such assignments. Notably, this optimization remains applicable for potential future
CUDA-based parallel hypernetwork implementations.

G SUPPLIMENTARY EXPLANATIONS

The diagram[T4]illustrates the conceptual function learning process associated with the DIF frame-
work, exemplified by the prediction of 42. Each (hidden) function representation, such as Z, Z, fes

and f., implicitly encodes both a symbohc function form and a value- a551gnment/subst1tut10n rule.
For instance, f. represents two types of information: (1) the function form, e.g., —a?sin(6;), and (2)
a partial assignment of values, such as {a — 1.5,60; —}, where « is assigned a value of 1.5 while 6;
remains a symbolic variable. This implies that fc represents the function —1.5? sin(6;), which can
accept input values in the form {0, —7}, effectively evaluated as f.(?). Similarly, f is a function
defined by two symbohc variables and accepts inputs in the form {0 —7,w; —7}. In this specific
example, the input to f is {#; — 1.2,w; — 0.4}, resulting in the evaluation f(1.2,0.4) = —2.23.

H VISUALIZATIONS ON ME-LOTKA-VOLTERRA AND ME-SIREPIDEMIC
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(a) X predictions using f (b) X ¢ predictions using fc

Figure 15: Visualization of trajectory predictions on ME-Lotka-Volterra

In this section, we present visualization comparisons for ME-Lotka-Volterra (Fig. [I3)) and ME-
SIREpidemic (Fig. [I6). The results for ME-SIREpidemic closely align with its quantitative findings.
For the more challenging task of ME-Lotka-Volterra, our method’s predicted trajectories remain
closer to the ground truth. In the X ¢ predictions, where most methods fail, our predicted trajectory has
turning points closest to the ground truth in terms of timing, although there are deviations in magnitude
(Fig.[T3b). The complexity of the ME-Lotka-Volterra task arises from several factors, including the
introduction of exponential functions within environments, the distribution of environments, and
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(a) X predictions using f (b) X ¢ predictions using fc

Figure 16: Visualization of trajectory predictions on ME-SIREpidemic

the limited number of samples in each environment. Addressing these challenges requires carefully
designed benchmarks by domain experts, which we will discuss further in the limitations section.

I LIMITATIONS AND FUTURE WORK

We discuss the limitations and the cover scope of this work; thus, shedding light on potential future
directions accordingly.

First, in this invariant function learning tasks, we only target the function combinations like f(z)+g(z)
and f(z)(1+g(x)) = f(z)+ f(x)g(x) where the invariant and the environment functions are entangled
by additions. We ignore the scenarios that the invariant and environment functions are entangled in
forms like multiplications. Therefore, it may be of interest to disentangle more complex scenarios.
However, for physical systems, given proper derivatives, factors are generally combined by additions,
making the addition situations we considered important and widely applicable.

Second, in this work, we only consider invariant function learning on ODE systems; thus, it will be
of interest to explore invariant function in PDE systems.

Third, although we prove the invariant function learning principle using information theory, it would
still be quite significant to further build invariant error bounds for this invariant function learning task
using VC-Dimension |Vapnik & Chervonenkis|(2015) or PAC-Bayesian | McAllester| (1998)); |Catoni
(2007), which would provide more in-depth insights.

Forth, in this work, we propose 4 multi-environment ODE systems, but we are still lacking com-
prehensive benchmarks that built by domain experts. There are many questions remaining, such as
how many environments are sufficient to infer invariant function, what are the requirements of the
environment distributions to make it possible for invariant function learning.

Last but not least, unlike meta-parameters, the learned invariant functions have broader adaptation
capabilities. For instance, a learned physical law can generalize to any system. It would be fascinating
to explore applications of invariant function learning, such as learning generalizable physics from
videos or developing physics-aware agents. Additionally, it would be interesting to investigate
whether invariant function learning can contribute to the development of foundational models in
physics.
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