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ABSTRACT

We study the problem of universal black-boxed reward poisoning attacks against
general offline reinforcement learning with deep neural networks. We consider
a black-box threat model where the attacker is entirely oblivious to the learning
algorithm, and its budget is limited by constraining the amount of corruption at
each data point and the total perturbation. We require the attack to be universally
efficient against any efficient algorithms that might be used by the agent. We
propose an attack strategy called the ‘policy contrast attack.’ The idea is to find
low- and high-performing policies covered by the dataset and make them appear
to be high- and low-performing to the agent, respectively. To the best of our
knowledge, we propose the first universal black-box reward poisoning attack in the
general offline RL setting. We provide theoretical insights on the attack design and
empirically show that our attack is efficient against current state-of-the-art offline
RL algorithms in different learning datasets.

1 INTRODUCTION

Reinforcement learning (RL) in the offline setting (Levine et al., 2020; Agarwal et al., 2020) has
become a promising framework for realizing reinforcement learning applications in practice. Offline
RL avoids the necessity of potentially expensive online data collection and can work with offline data
directly. Taking medical treatment problems as an example, collecting online data would require
testing on humans, which is dangerous and infeasible. In contrast, abundant recordings of how a
human doctor treats a patient are available for offline training.

A number of effective algorithms have been proposed for the offline RL problem and achieve
promising empirical performance on simulated environments. (Bhardwaj et al., 2024; Kumar et al.,
2020; Fujimoto & Gu, 2021; Kidambi et al., 2020; Wu et al., 2019; Cheng et al., 2022). However,
a practical threat arises in the real world that is usually overlooked in the simulations. In many
applications, the offline data is usually based on human feedback (Zheng et al., 2018; Kiran et al.,
2021), making it possible for an adversary to poison the reward signal in the training dataset. For
example, the learning agent may ask a third-party agent to provide offline data. If the third-party
agent is dishonest, it may provide human data with subtle malicious changes that are hard to detect
but can potentially cause unwanted results for the learning agent. The threat of poisoning attacks even
draws attention in recent reinforcement learning from human feedback (RLHF) Baumgärtner et al.
(2024); Wang et al. (2023); Wu et al. (2024), and people are concerned that such attacks may greatly
influence the performance of current RLHF approaches. The state-of-the-art offline reinforcement
learning algorithms mentioned above only consider ideal environments without such threats. A few
works Li et al. (2024); Ye et al. (2023) investigate the settings with the poisoning attack. However,
they only consider the attacker adopting some random attack strategies, which may not be enough
to evaluate the robustness of an algorithm properly. Therefore, it is important to investigate the
vulnerabilities of current algorithms to the poisoning attacks with more efficient attack strategies.

In Fig 1, we show the framework of the attack. Specifically, we focus on a universal black-box
reward-poisoning attack with a limited budget such that under the attack, any originally efficient
learning algorithm can no longer learn a high-performing policy. Such an attack setting is more
realistic due to the following reasons:

1. Universal and Black box: First, it is not in the interest of the learning agent to reveal its
algorithm to the attacker. Second, offline RL algorithms are very different in learning strategies
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and frameworks. Therefore, it is hard for the attacker to assume which kind of learning algorithm
the agent will use. The attacker has to work without any knowledge of the algorithm used by the
agent and expect the agent to choose any efficient algorithm arbitrarily.

2. Reward poisoning: In RL environments, the reward signals are usually provided by the envi-
ronment, such as human users, while the state signals are determined by the agent. For example,
in reinforcement learning from human feedback (RLHF), the state signals are the prompts the
learner gives, while the reward signals are feedback from humans. Therefore, it is more feasible
for the attacker to poison rewards.

3. Limited budget: Too much perturbation on the reward signals makes it easier for the learning
agent to detect. So, it is more practical for the attacker to work with limited budgets and perturb
the training process as little as possible.

We formally introduce our criteria for an attack to be practical in Section 3.

Challenges: We find the following challenges for developing a practical reward poisoning attack.

1. Fixed training dataset: In the online learning setting, an attacker can mislead the learner to
collect data that only covers states and actions with low long-term rewards so that the learner never
observes how a high-performing policy would work, making it fail to learn a high-performing
policy (Xu et al., 2022). In contrast, the training dataset is fixed in the offline learning setting. This
results in the famous ‘pessimistic’ learning (Levine et al., 2020) in offline RL, and the learning
agent is inclined to stick to the behaviors covered by the dataset. The learner can always observe
how an expert would behave (the action) in the dataset regardless of the attack. This contributes to
the fundamental difficulty of misleading the learning agent.

2. Universal and Black box attack: A practical attacker should be oblivious to the learning agent
and universal efficiency against any algorithms it might use. First, it is challenging to list all
possible efficient learning algorithms that an agent might use. Second, without knowing the details
of an offline learning algorithm, it would be challenging to predict the exact learning result of the
algorithm under the attack.

Contributions: To address the challenges above, our insight is to characterize general efficient
offline RL algorithms with the pessimistic learning feature. For a pessimistic algorithm, it will find
nearly the best policy well covered by the dataset. Based on the insight, we construct an attack
framework called the ‘adversarial reward engineering framework’ such that one can evaluate the
efficiency of an attack against universal efficient algorithms in the framework. To find an efficient
attack under the framework, the key idea of our attack is to find the high-performing policies covered
by the dataset and make them appear low-performing to the agent and vice versa. In this case, the
algorithm will believe that some poor-performing policies are near optimal. We build our main attack
method, ‘policy contrast attack,’ based on the idea and theoretically analyze the insight behind it
based on general assumptions. To the best of our knowledge, this is the first universal black-box
reward poisoning attack in the general offline RL setting. We empirically test the efficiency of our
attack on various standard datasets from the D4RL benchmark (Fu et al., 2020) learned by different
state-of-the-art offline RL algorithms (Kumar et al., 2020; Fujimoto & Gu, 2021; Kostrikov et al.,
2021). Our attack is efficient in most cases with a limited attack budget. We also show that our attack
is not sensitive to the choice of hyper-parameters. One can use our attack to assess the practical
robustness of offline RL algorithms. We hope that our work can inspire the development of more
robust offline RL algorithms.

2 RELATED WORK

Reward poisoning attack in online RL: Most studies on reward poisoning attacks against RL focus
on the online learning setting. Zhang et al. (2020a); Huang et al. (2017) investigate observation
perturbation attack where the attacker modifies the state signals to adversarial examples during
training. Rakhsha et al. (2020); Zhang et al. (2020b) theoretically investigate the attack problem in
the online RL setting with tabular MDPs. They show that given a specific learning algorithm or an
algorithm with certain learning guarantees, attack strategies exist such that the learning algorithm
will learn a low-performing policy even if the attack only slightly perturbed the training process.
However, many of these are white-box attacks, and it remains unknown how to scale these techniques
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Figure 1: Reward poisoning attack framework.

to general RL environments that require function approximation with deep neural networks. In the
more complicated general RL setting, Sun et al. (2020) empirically shows that current state-of-the-art
DRL algorithms are vulnerable under the poisoning attack when the attacker is aware of the learning
algorithm. Xu et al. (2022); Xu & Singh (2023) further shows that even in the black-box setting
where the attacker is oblivious to both the environment and the learning algorithm, the data poisoning
attack can achieve targeted and untargeted attack goals with limited budgets.

Reward poisoning attack and defense in offline RL: There is limited work on the poisoning attack
in offline RL. Ma et al. (2019) theoretically studies the problem for tabular MDPs that cannot scale to
the more complicated general RL setting considered in our work. Furthermore, their attack assumes
that the learning agent can learn the globally optimal policy, which is not appropriate and practical
for recent offline RL algorithms. Li et al. (2024) theoretically and empirically shows that the learning
efficiency of an efficient offline RL algorithm is related to the dataset quality regardless of the reward
signals, which is closely related to our assumption in Section 4. To defend against the attack, Zhang
et al. (2022); Ye et al. (2023) design algorithms and theoretically prove their robustness. They also
empirically test their algorithm against some specific random attack strategies. We empirically show
that our attack is much more efficient than such random attacks for different learning scenarios. No
attack exists for general offline RL except for the random attacks. Still, we also adapt a state-of-the-art
online RL attack from Xu et al. (2022) to our setting as an additional baseline.

3 PRELIMINARIES

Offline RL: We consider a standard offline RL setting (Cheng et al., 2022) where an agent trains
on an offline dataset to learn how to perform well in an RL environment. An RL environment is
characterized by an MDP M = (S,A,P,R) where S is the state space, A is the action space,
P = S × A → ∆(S) is the state transition function, and R = S × A → R is the reward
function. A policy π : S → ∆(A) is a mapping from the state space to a distribution over
action space suggesting the way one behaves in the environment. Without loss of generality, we
assume the initial state is always s0. Then the performance of a policy π for the environment is
defined as JR(π) = Eπ,P [

∑∞
t=0 γ

tR(st, at)|at ∼ π(st)], which represents the long-term discounted
cumulative rewards for running the policy in the environment.

An offline reinforcement learning dataset is a collection of observation tuples collected from the
environment: D = {(si, ai, s′i, ri), i = [0, . . . , N ]} where s′i ∼ P(si, ai) and ri ∼ R(si, ai). The
state action distribution µ = {(si, ai), i = [0, . . . , N ]} represents the trajectories covered in the
dataset. An offline reinforcement learning agent has access to the offline dataset D as well as the state
and action spaces S,A, and its goal is to find a high-performing policy.

Reward poisoning attack against offline RL: We consider a reward poisoning attack model where
a malicious adversary can poison the reward signals in the offline dataset to mislead the learning
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agent. Formally, for the ith observation tuple (si, ai, s
′
i, ri), the attacker can inject a perturbation ∆i

to the reward signal, then the corrupted observation tuple becomes (si, ai, s′i, ri +∆i). We denote
∆ = ∆1, . . . ,∆N to be the corruption strategy of the attack.For a practical threat model, the attacker
should have limited abilities. Formally, we consider the following constraints on the attacker.

1. No access to the offline training process: Since the training is offline, the learning agent can
host the training process on local machines. Therefore, it would be impractical for the attacker to
observe the training process of the learning agent.

2. No knowledge of the learning algorithm: There are a variety of efficient offline RL algorithms
with very different learning strategies. Unless the learning agent announces its learning algorithm
to the public, it would be impractical for the attacker to assume which learning algorithm the agent
would choose. Therefore, the attacker should not have any detailed knowledge of the learning
algorithm.

3. Limited Budget: To make the attack stealthy, the attacker should make the corruption as small
as possible. First, the attacker should limit the maximal perturbation on each reward signal
||∆||∞ = max |∆i|, as an extreme value of reward would make the data point very suspicious.
Second, the attacker should limit the total amount of perturbation ||∆||1 =

∑N
i=0 |∆i|. The

reason is that too many slightly problematic data points can also make the agent realize that the
dataset is unreliable.

Given a fixed budget, the general goal of the attacker is to make the learning agent learn a low-
performing policy. We will formally formulate the attacker’s goal as an optimization problem in the
next section.

4 POLICY CONTRAST ATTACK

In this section, we formally define and formulate the universal black-box offline RL attack as
an optimization problem. We consider the attacks that are universally effective against any data-
driven learning algorithms of high learning efficiency. We highlight the challenges in finding the
efficiency of an arbitrary attack and focus on a framework called the ‘adversarial reward engineering
framework’ where the behavior of any efficient algorithm becomes predictable under any instance of
the framework. Finally, we present our attack algorithm, ‘policy contrast attack,’ which is an efficient
instance under the framework.

4.1 UNIVERSAL ATTACK ON GENERAL OFFLINE REINFORCEMENT LEARNING AS AN
OPTIMIZATION PROBLEM

Here, we formally formulate the universal black-box offline RL attack as an optimization problem.
Let L be a class of offline RL algorithms that a learning agent might use. Let πAlg(D ⊕ ∆) be a
random variable representing the policy learned by a learning algorithm Alg training on the dataset
D with corruption ∆. By applying a limited amount of perturbation, the attacker should make the
agent learn a low-performing policy no matter which algorithm it chooses from L.

min
∆1:N

V

s.t.,∀Alg ∈ L,E[JR(πAlg(D ⊕∆))] ≤ V

∥∆∥0 ≤ B, ∥∆∥1 ≤ C

(1)

The problem is not complete yet as we have not specified L, the class of algorithms an agent might
use. The problem becomes trivial if L includes all possible policies. In this case, the agent can choose
an algorithm that outputs a specific policy with maximal performance regardless of the reward signals
poisoned by the attack. Then, all attacks that satisfy the budget constraints are ‘optimal’ solutions. As
a result, it is meaningless for the attacker to consider all possible algorithms, especially the ones that
are not reward-driven and inefficient. A rational learning agent will only consider using an algorithm
that ‘efficiently’ learns the reward signals to find a decent policy based on the dataset. Therefore,
it is more important for an attack to focus on the effect of the attack against such algorithms. For
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this purpose, in this work, we assume L to include all δ-optimal pessimistic learning algorithms in
Assumption 4.1 below.

Assumption 4.1. (δ-optimal pessimistic learning algorithms assumption) Given an offline RL dataset
D collected from an environment M = (S,A,P,R) with state-action distribution µ. For all efficient
offline RL algorithm Alg ∈ L that might be used by the agent, there exists a small value δ > 0 and a
class of policies Πµ supported by the distribution µ such that JR(πAlg(D)) ≥ maxπ∈Πµ JR(π)− δ.
That is, the agent will always use an algorithm that can learn the policy with nearly the highest
performance on M among the supported policies.

Here, we justify that Assumption 4.1 is practical and can represent current efficient offline RL
algorithms. It has become common sense that pessimistic learning is the key to efficiency in offline
RL Levine et al. (2020). A pessimistic learning algorithm avoids the policies not supported by the
dataset to minimize the chance of reward hacking, that is, outputting a policy that appears promising
by the dataset but has poor performance. Li et al. (2024) has the same insight in explaining the
‘survival instinct’ of existing offline RL algorithms against attack: a pessimistic algorithm will stick to
the policies covered by the dataset so that it won’t output any low-performing and out-of-distribution
policies regardless of the reward signals.

By the optimization problem in Eq 1, we can naturally define the efficiency of an attack as follows.

Definition 4.2. ((V,B,C)-efficient attack) An attack is (V,B,C)-efficient if it satisfies the following
conditions:

∀Alg ∈ L, (D ⊕∆)) ≤ V

∥∆∥0 ≤ B, ∥∆∥1 ≤ C
(2)

Given attack budgets B and C, finding the optimal attack for Eq 1 is equivalent to finding the most
efficient (V,B,C)-efficient attack with the minimal value of V . Given an arbitrary attack strategy,
the attack budgets B and C can be computed by the attack construction. However, evaluating the
learning outcome of the agent under the attack is challenging. First, the influence of a universal attack
should be evaluated on all algorithms from L, and it is challenging to find all the algorithms that
satisfy the near-optimal efficient learning conditions. Second, evaluating the exact influence of an
attack on a specific learning algorithm is challenging in the black-box setting, as the neural network
used by the agent is unknown to the attacker. In conclusion, it is challenging to evaluate the exact
efficiency of an arbitrary attack; hence, it is also challenging to find the optimal attack. To deal with
the challenges and find an attack of high efficiency, we adopt an attack framework where one can
analyze the efficiency of the attack instances under the framework.

4.2 ADVERSARIAL REWARD ENGINEERING FRAMEWORK

Definition 4.3. (Adversarial reward engineering framework) In the adversarial reward engineering
framework, an instance of attack constructs an adversarial reward function R̂. The corresponding
corruption on the ith data (si, ai, ri) from D satisfies ∆i = R̂(si, ai)− ri.

In the adversarial reward engineering framework, it is equivalent to say the corrupted dataset is
collected from the adversarial environment M̂ = (S,A,P, R̂) with the same state-action distribution
µ as the original dataset. Therefore, we can apply assumption 4.1 to characterize the behavior of the
agent under the attack: it will learn a supported policy that is near-optimal on the adversarial reward
function R̂. Formally, the efficiency of an instance of adversarial reward engineering framework is
guaranteed in Lemma 4.4 below.

Theorem 4.4. Let R̂ be the adversarial reward of an instance of the adversarial reward engineering
framework. Let Π̂∗ := {π|π ∈ Πµ, JR̂(π̂

∗) ≥ maxπ∈Πµ
JR̂(π) − δ} be the δ-optimal supported

policies in R̂. The efficiency of the attack satisfies V ≤ maxπ∈π̂∗ JR(π), B = maxi |R̂(si, ai)− ri|
and C =

∑
i |R̂(si, ai)− ri|.

The proof for all theorems and lemmas can be found in the Appendix. Recent works about robust
offline RL widely consider an attack we call ‘random inverted reward attack’ for empirical evaluation
against their learning algorithms Zhang et al. (2022); Ye et al. (2023); Li et al. (2024). Such an attack
randomly flips the signs of a portion of rewards in the datasets and can be treated as an instance of
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the adversarial reward engineering framework. One can find a detailed analysis in the Appendix.
Next, we show a way to construct a more efficient instance of the adversarial reward engineering
framework and justify the design of our policy contrast attack.

4.3 TOWARDS EFFICIENT ADVERSARIAL REWARD ENGINEERING ATTACK: POLICY
CONTRAST ATTACK (PCA)

To ensure that the agent learns a low-performing policy, an efficient instance of the adversarial reward
engineering attack needs to make the optimal or near-optimal supported policies in the adversarial
environment have poor performance in the true environment. So, our goal is to find a way to construct
such an adversarial reward model while limiting the required attack budget. However, it is still
impractical to find all near-optimal supported policies and their performance in the true environment
as the environment dynamics are unknown to the attacker. Therefore, we focus on finding a feasible
way to construct a reward function such that any near-policy policies in the reward function are likely
to perform poorly in the true environment.

In Theorem 4.5, we show a sufficient condition and a necessary condition for the adversarial reward
function to make the agent learn a low-performing policy with performance less than V . The two
conditions are the same when δ = 0.
Theorem 4.5. Consider an attack in the adversarial reward engineering framework with R̂. To
make the actual performance of the learned policy by an arbitrary δ-optimal pessimistic learning
algorithm lower than a value JR(π0) < V , a sufficient condition is that the adversarial reward
function satisfies

∃π1 ∈ Πµ. JR(π1) < V, ∀π2 ∈ Πµ.JR(π2) ≥ V,

JR̂(π1) > JR̂(π2) + δ,

and a necessary condition that it should satisfy is

∃π1 ∈ Πµ. JR(π1) < V, ∀π2 ∈ Πµ.JR(π2) ≥ V,

JR̂(π1) > JR̂(π2)− δ,

In both cases, we call π1 that satisfies the conditions ‘bad policy’ and π2 ‘good policy.’

Theorem 4.5 suggests that the attacker should make a low-performing policy have a higher per-
formance in the adversarial reward function than any high-performing policies. Formally, denote
∆J(π) = JR̂(π) − JR(π), to make JR̂(π1) > JR̂(π2) + δ, the attacker needs to ensure that
∆J(π1)−∆J(π2) > J(π2)− J(π1) + δ. In other words, the attacker needs to make ∆J(π1) high
for some bad policy π1 and ∆J(π2) low for any good policy π2. To limit the cost of the attack,
the attacker should also determine the rewards to poison that have more influence on ∆J(π1) and
∆J(π2). This directly inspires the key idea for finding an efficient attack that in the adversarial
reward function, the rewards for some low-performing policies are increased so that they appear as
high-performing and vice versa.

In terms of finding the bad policies, we show in Lemma B.2 that the attacker can find nearly the worst
policy supported by the dataset by training on the dataset of all rewards inverted.
Lemma 4.6. When training on the dataset D with the signs of all rewards inverted, the learning agent
will learn the policy supported by the dataset with nearly the worst performance V ≤ JR(π0) =
minπ∈Πµ JR(π) + δ.

In terms of finding the good policies, Lemma 4.7 shows that policies of high performance will behave
similarly to some policies from the good policy set constructed through Alg 2.
Lemma 4.7. Let V be the performance of the learned good policy in the last iteration of Alg 2.
For any policy π ∈ Πµ such that mins∈S,π2∈Π2

da(π(s), π2(s)) > d, its performance satisfies
JR(π) < V + δ.

After finding the good and bad policies, the final step is to make them look bad and good in the
adversarial environment. This can be achieved straightforwardly by decreasing or increasing the
rewards associated with the actions given by the good or bad policies.
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Algorithm 1 Policy Contrast Attack
Input: dataset D of size N , efficient offline RL algorithm Alg
Params: distance measure da, distance threshold d, corruption parameters ∆1, ∆2, number of
iterations K
Initialize D̂ = {}.
Learn a bad policy π1 from dataset with inverted rewards −D
Learn a good policy set Π2 through Alg 2 with K iterations
for i = 1 to N do

Get state-action-reward (si, ai, ri) from D
if minπ∈Π2

da(ai, π(si)) ≤ d then
Modify r̂i = −∆2

end if
if da(ai, π1(si) ≤ d then

Modify r̂i = ri +∆1 · (1− da(ai, π1(si)/d)
end if
Update D̂ = D̂ ∪ {(si, ai, r̂i)}.

end for
Output: D̂

Based on the discussion above, we formulate ‘policy contrast attack.’ The attack consists of two parts
as follow:

1. Bad policies look good: The attacker trains on the training dataset with all rewards inverted and
learns ‘bad’ policies. Then, the attacker poisons the dataset by increasing the rewards associated
with the actions close to that given by the ‘bad’ policies.

2. Good policies look bad: The attacker iteratively learns a set of ‘good’ policies with Algorithm 2.
Then, the attacker poisons the dataset by decreasing the rewards associated with the actions close
to that given by the ‘good’ policies.

Formally, the policy contrast attack is given in Alg 1. Here ∆1, ∆2, and d are the hyper-parameters
of the attack and set to utilize given attack budgets B and C fully. da is a measure of the distance
between actions. For the actions from a continuous space, we choose da(a1, a2) = ||a1 − a2||2. The
corresponding adversarial reward function in Alg 1 satisfies:

R̂(s, a) =


R(s, a) + ∆1 · (1− da(a,π1(s))

d ), if da(a, π1(s2)) ≤ d

−∆2, else if minπ2∈Π2
da(a, π2(s)) ≤ d

R(s, a), otherwise

The first part of the reward function is to increase the rewards associated with the bad actions given
by the bad policy. The formation of the reward modification in this part follows Xu & Singh (2023).
The penalty on the reward is a linear function depending on the distance between an action and the
bad policy’s action. This is to make it easier for the agent to converge to the bad policy. The second
part of the reward function is to decrease the rewards associated with good policies. The penalty here
is simply making the reward a low value, as in this case, we merely want the agent to learn something
different from the good policies.

Note that there are some cases where the actions given by the good and bad policies are close. There
will be a conflict for the aforementioned corruption strategy in this case. Intuitively, these cases
are less common as usually good and bad actions should not be similar. In addition, in these cases,
a change in reward has a similar influence on the performances of good and bad policies in the
adversarial function, suggesting that the corruption in these cases has a limited impact on the ranking
of good and bad policies in the adversarial reward. To ensure that the bad policy always performs
better in the adversarial environment, we always increase the reward associated with the bad actions
whenever there is a conflict.
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D4RL Dataset Normal Fully inverted PCA Rand 30% RPP RPI
HalfCheetah-ME - TD3_BC 91.0 ± 2.9 13.1 ± 1.9 76.2 ± 2.1 89.8 ± 3.2 88.95 ± 2.65 81.3 ± 5.1
Hopper-ME - TD3_BC 105.9 ± 3.3 16.9 ± 6.3 82.1 ± 6.4 99.8 ± 8.9 88.22 ± 8.37 97.4 ± 6.9
HalfCheetah-MR - IQL 44.3 ± 0.4 1.07 ± 0.1 37.8 ± 3.2 43.5 ± 0.8 1.72 ± 0.98 43.9 ± 1.1
Walker2D-M - CQL 81.8 ± 0.7 67.7 ± 2.0 73.1 ± 0.2 77.4 ± 2.1 77.45 ± 1.66 80.1 ± 0.4
Walker2D-MR - IQL 80.2 ± 3.6 -0.2 ± 0.1 31.9 ± 1.5 78.7 ± 5.5 60.21 ± 3.8 37.5 ± 2.8
Hopper-MR - CQL 85.2 ± 8.1 0.7 ± 0.01 30.3 ± 4.7 25.1 ± 4.9 86.05 ± 13.64 19.2 ± 10.3
Sum Totals 488.4 99.27 331.4 414.3 402.6 359.4

Table 1: Performance of learning algorithms under the attacks.

5 EXPERIMENTS

5.1 PERFORMANCE OF DIFFERENT ATTACK STRATEGY

We test the effectiveness of our attack against current state-of-the-art offline RL algorithms training
on the standard D4RL offline RL benchmarkFu et al. (2020). We show that with limited attack
budgets, our policy contrast attack is generally more effective.

Experiment setup: The offline datasets we choose from the D4RL benchmark include different
combinations of environments and types of trajectories. We consider HalfCheetah, Hopper, Walker2d,
and Ant environments. We consider the data collected by a single medium policy (medium), a single
expert policy (expert), a single random policy (random), a mixture of medium and expert policies
(medium-expert), and the replay buffer of a medium policy (medium-replay).

For the learning algorithms, we choose IQL Kostrikov et al. (2021), CQL Kumar et al. (2020), and
TD3-BC Fujimoto & Gu (2021), which are frequently used as baselines in current offline RL studies.
These algorithms are implemented based on CORL library Tarasov et al. (2022). Recall that the
attacker also needs a learning algorithm to learn good and bad policies. To ensure that the attacker
has no information about the learning agent, the learning agent and the attacker always use different
learning algorithms.

We choose three baseline attacks. The first one is the random invert attack, the only non-trivial attack
against offline RL in the current literature. The second and the third ones are the random policy invert
(RPI) attack and random policy promote (RPP) attack proposed in Xu et al. (2022) for the online
setting, as it is the only existing attack closely related to and can be adapted to work in the offline
setting. In the appendix, we show the result of using only one part of the attack strategy from the
policy contrast attack.

For the attack budget, following Ye et al. (2023), we always set the budget for B and C to be the
amount required by the random inverted reward attack that corrupts 30% of the data. In the ablation
study, we tested the influence of different attack budgets on the attack’s efficiency.

For the hyper-parameters of the attack, the corruption parameters ∆1 and ∆2 are set to fully utilize
the budget B, and the attack radius d is set to fully use the budget C. The number of good policies,
i.e., the number of iterations K, is set as 5. In the appendix, we show that the algorithm’s efficiency
is not sensitive to the choice of corruption parameters and the number of good policies. We run 5
times for each experiment with different random seeds and show the average result.

Note that the construction of our attack does not depend on the assumption we made for the learning
algorithms. Although the learning algorithms may not strictly satisfy the assumption of efficient
learning algorithms, we show that our attack is still effective.

Main Results: The offline RL algorithms we choose iteratively update their learned policies. To
straightforwardly show the effectiveness of attacks, we use the performance of the policy learned
by the agent at the end of training to represent its learning efficiency. In the appendix, to intuitively
show the details of the training process under the attacks, we show the performance of the policies
learned by the algorithm at each iteration during training. We will also show the full training log for
the experiments in the ablation studies.

To cover as diverse offline datasets as possible, here we use only one learning algorithm for each
dataset. Next, we will show the case where we test the performance of different learning algorithms
on the same dataset poisoned by our attack. Table 1 shows the main results of running our policy
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contrast attack in different learning scenarios. The naive baseline is the training with no attack. The
ideal effect of the attack is the training with fully inverted rewards, as the learning algorithm tries to
learn the worst-performing policy in this case. We observe that our policy contrast attack is usually
effective for any combination of datasets and learning algorithms. In contrast, the random inverted
attack has almost no effect on the learning result except for the Hopper-Medium Replay dataset,
where both attacks are similarly effective. In many cases, our attack is also significantly more efficient
than the RPI and RPP baseline attacks.

Here, we briefly discuss why the policy contrast attack should be more efficient than other baseline
attacks. 1. random inverted attack: At a high level, both the policy contrast and the inverted reward
attack want to inverse the agent’s ranking of good and bad policies. The inverted reward attack treats
all state actions equally and inverse the performance of all policies. In contrast, the policy contrast
attack focuses on the policy and the more important state actions. This could be the reason for making
the policy contrast attack more efficient in terms of budget. 2. RPI and RPP attacks: The PCA
attack focuses on the supported policies, while the RPI and RPP attacks focus on arbitrary policies.
Since the efficient learning algorithm mostly considers only supported policies, the poisoning of such
policies should have more influence on the learning process.

5.2 UNIVERSAL ATTACK AND ROBUSTNESS EVALUATION

To verify that our attack is universal against different learning algorithms, we take the Hopper-
medium-expert dataset as an example, apply the policy contrast attack using the same setup as in
the main results, and run four different learning algorithms including TD3 BC, CQL, AWAC, and
ReBRAC on the corrupted dataset. The results in Figure 5.2 show that our attack is always effective
against all four learning algorithms.

In addition, an important direct application of our attack strategy is using the attack to evaluate the
robustness of an algorithm. In this example, we find that compared to other algorithms, the AWAC
algorithm performs much better under our attack, suggesting that it is more robust.

Figure 2: Peformance of different learning algorithms on the same dataset under the attacks.

5.3 INFLUENCE OF ATTACK BUDGET

Attack budget B: Here we study the influence of per-step attack budget B on the attack efficiency.
Denote rmax = maxi |ri| as the maximal absolute reward from the dataset. In the main results, the
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budget required by the attacks is B = 2∗ rmax. Here, we set the value of B to be 1.5 · rmax and 1 · rmax
and test on two randomly chosen datasets. The results in Fig 3 show that our policy contrast attack
remains efficient with a lower budget of B. We note that the attack is slightly more efficient with less
value of B. Intuitively, although the per-step corruption is less, the attack influences the performance
of more policies, making it possible for the agent to learn slightly worse policies. The result also
suggests that the efficiency of our attack is not significantly affected by the choice of the corruption
parameters ∆1 and ∆2 at each step, as their values depend on B.

Figure 3: Influence of different B budget on the attack.

Attack budget C: Here, we study the influence of attack budget C, the total amount of corruption,
on the efficiency of the attack. We set the value of C to be the amount required by a random inverted
attack that corrupts 20% and 40% of data. The results in Fig 4 show that our attack is more efficient
with a higher budget of C and remains effective with a lower budget of C.

We also study the effect of other hyperparameters on our method. We find that the size of the good
policy set has a very small influence on its efficiency. If our method only has the part of making good
policy look bad or making bad policy look good, it will be much less efficient than the full method.
The details of empirical results can be found in the Appendix.

Figure 4: Influence of different C budget on the attack.

6 CONCLUSION AND LIMITATION

In this work, we propose the first black-box reward poisoning attack in offline reinforcement learning
based on our novel theoretical insights. Our empirical results suggest that the attack is effective in
various learning scenarios. However, our work is limited in that we only consider black-box attacks,
and the attacker requires access to the full offline training dataset.
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7 REPRODUCIBILITY

In the main paper, we explain the setting of the problem we study and the threat model we consider.
The proofs for all theorems and lemmas can be found in the appendix. The codes we use for the
experiments can be found in the supplementary materials.
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A PROOF FOR THEOREMS AND LEMMAS

Proof for Theorem 4.4 By the definition of the attack, the perturbation on the ith data is ∆i =

R̂(si, ai) − ri. By Assumption 4.1, the agent should learn a near-optimal policy on the reward
function of the dataset, which is R̂ under the attack. Therefore, the policy π̂∗ learned by the agent
under the attack satisfies JR̂(π̂

∗) ≥ maxπ∈Πµ JR̂(π)− δ.

Proof for Theorem B.2 The adversarial reward function constructed by the fully inverted attack
is R̂ = −R. By Assumption 4.1, the agent will learn a policy π0 that is near-optimal on R̂:
JR̂(π0) ≥ maxπ∈Πµ JR̂(π)− δ. Therefore, the performance of the learned policy on the true reward
function satisfies JR(π0) = −JR̂(π) ≤ −(maxπ∈Πµ JR̂(π)− δ) = minπ∈Πµ JR(π) + δ.

Proof for Theorem 4.5 First, we prove the sufficient condition. For any policy π2 ∈ Πµ : JR(π2) >
V , we have maxπ∈Πµ

JR̂(π) ≥ JR̂(π) ≥ JR̂(π2) + δ. Therefore, π2 is not a near-optimal policy on
the adversarial reward function, and by Assumption 4.1, the agent will not learn such a policy.

Next, we prove the necessary condition. Let π0 be the policy learned by the agent under the attack,
and this policy has a performance less than V on the actual reward function JR(π0) < V . Therefore,
we can take π1 = π0. By Assumption 4.1, the gap between the performance of π1 and any other
policy on R̂ must be less than δ. Therefore, for any policy π2 ∈ Πµ : JR(π2) > V , we have
JR̂(π1) > JR̂(π2)− δ.

Proof for Theorem 4.7 At the last iteration of Alg 2, the performance of the policy πK learned in
the iteration on the adversarial reward function R̂K in the iteration is no greater than V because
the adversarial reward function is strictly less than the actual reward function. By Assumption
4.1, the performance of any policy π ∈ Πµ on R̂K satisfies JR̂K

(π) ≤ V + δ. For any policy
π ∈ Πµ : minπ2∈Π2,s ||π(s) − π2(s)||2 > d, their performance on the actual reward function and
the adversarial reward function are the same. Therefore, their actual performance must be less than
V + δ.

B INVERTED REWARD ATTACK

Here, we discuss the most popular offline reward poisoning attack widely considered in recent RL
studies Ye et al. (2023); Zhang et al. (2022); Li et al. (2024). We start from an illustrative example
first to help better understanding the attack. Following the idea of reward engineering, one can
immediately find an attack that can make the agent learn the worst possible policy under Assumption
4.1.
Definition B.1 (Fully inverted reward attack). The fully inverted reward attack sets R̂ = −R as
the adversarial reward function where R is the true reward function of the underlying environment
behind the dataset. The corresponding attack strategy of the fully inverted reward attack satisfies
∆i = −2 · ri.

The inverted reward attack flips the sign of all the rewards in the dataset. In Theorem B.2 we show
the efficiency of the fully inverted reward attack.
Theorem B.2. Under the fully inverted reward attack, the learning agent will learn the policy
supported by the dataset with nearly the worst performance V ≤ JR(π0) = minπ∈Πµ

JR(π) + δ.
The budgets required by the attack are B = 2 ∗maxi |ri| and C = 2 ∗

∑
i |ri|.

Theorem B.2 can be derived from Theorem 4.4 directly. Maximizing the cumulative reward on −R
is equivalent to minimizing that on R. Therefore, an efficient learning algorithm will learn the policy
with the worst performance on the true reward function among the policies supported by the dataset.
Despite achieving the worst outcome for the learner, the inverted reward attack faces the problem of
requiring high budgets, which is impractical. Since a practical attack should only corrupt a small
portion of data, we consider an attack that can only randomly invert a part of the reward. We call this
attack the ‘random inverted reward attack’. This attack strategy has been widely used in previous
works as a non-trivial attack Ye et al. (2023); Zhang et al. (2022).
Definition B.3 (Random inverted reward attack). The random inverted reward attack has a parameter
p ∈ (0, 1). The attack randomly samples p ·N indexes from [1, . . . , N ] with replacement, where N
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is the size of the dataset. Let the set of indexes be I . The attack strategy of the inverted reward attack
satisfies ∆i∈I = −2× ri and ∆i̸∈I = 0.

We cannot find any strong guarantee for the effect of the attack on the learning agent. Empirically,
we observe that when the attack inverts < 50% of the states, the learner is usually still able to learn
a policy almost as good as the one it learns in the uncorrupted dataset. Since the random inverted
reward attack is not practical, we need to find a more efficient attack that can work with less budget
yet still makes the agent learn a policy of low performance.

The inverted reward attack treats different state actions from the dataset equally, yet the reward for
some state actions can have more influence on the learning process. Therefore, it is possible to
construct more efficient attacks that focus the attack budget on the rewards in some specific state
actions.

C TRAINING LOG OF MAIN RESULTS

Here, we show the performance of the learned policies during training in different datasets under
different attacks.

Figure 5: Peformance of learning algorithms on different datasets under the attacks. We take the title
of the first figure as an example to explain the meaning of the title. ‘HalfCheetah’ means the RL
environment is HalfCheetah; ’Medium Expert’ means the dataset is collected by a mixture of medium
and expert policies. ‘IQL attacks TD3_BC’ means the learning algorithm used by the attacker is IQL,
and the one used by the learning agent is TD3_BC.

D ALGORITHM FOR LEARNING A SET OF GOOD POLICIES

E ADDITIONAL ABLATION STUDY

Size of good policy set: Here, we study the influence of the size of Π2 on the efficiency of the attack.
We set the sizes of the good policy set to be 3, 5, 7, 10, 15. In Fig 6, we observe that the learning
outcomes of the algorithms are similar for different sizes of good policy sets. The results suggest that
the number of good policies does not considerably affect our policy contrast attack.
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Algorithm 2 Learning Set of Good Policies
Input: dataset D of size N , number of iterations K, offline RL algorithm Alg
Params: distance threshold d, corruption ∆

Initialize Π2 = ∅, D̂ = D.
for i = 1 to K do

Learn π from dataset D̂
Update Π2 = Π2 ∪ {π}
for j = 1 to N do

Get state-action-reward (si, ai, ri) from D̂
if minπ∈Π2

da(ai, π(s)) ≤ d then
Modify ri = −∆

end if
Update (si, ai, ri) in D̂

end for
end for
Output: Π2

Only Good/Bad Policies attacks: To show that it is beneficial to do both making good policies
look bad and bad policies look good, we test the efficiency of the attack strategy with only one part.
That is, the attack either only decreases the reward associated with the good policies or increases the
reward associated with the bad policy. In Fig 7, we observe that both attacks lose some efficiency
compared to the policy contrast attack. Here, we provide empirical insights on why these two attacks
do not work alone. For making good policies look bad, it can happen in practice that the good policy
set does not cover all policies of high performance, therefore the agent is still able to identify a
high-performing policy. For making a bad policy look good, in practice, even if the bad policy already
has the highest performance in the adversarial environment, without the good policy attack part, the
learning agent may not be able to learn it and still converge to a good policy as the adversarial reward
function is more complicated. In this case, breaking the optimality of the good policies makes it
easier for the learning agent to converge to the bad policy.

Figure 6: Influence of different sizes of good polices on the attack.
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Figure 7: Attacks that only make bad policies look good and good policies look bad.
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