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ABSTRACT

Transformer-based large language models (LLMs) use the key-value (KV) cache
to significantly accelerate inference by storing the key and value embeddings of
past tokens. However, this cache consumes significant GPU memory. In this work,
we introduce LSH-E, an algorithm that uses locality-sensitive hashing (LSH) to
compress the KV cache. LSH-E quickly locates tokens in the cache that are co-
sine dissimilar to the current query token. This is achieved by computing the Ham-
ming distance between binarized Gaussian projections of the current token query
and cached token keys, with a projection length much smaller than the embedding
dimension. We maintain a lightweight binary structure in GPU memory to facil-
itate these calculations. Unlike existing compression strategies that compute at-
tention to determine token retention, LSH-E makes these decisions pre-attention,
thereby reducing computational costs. Additionally, LSH-E is dynamic – at every
decoding step, the key and value of the current token replace the embeddings of a
token expected to produce the lowest attention score. We demonstrate that LSH-
E can compress the KV cache by 30%-70% while maintaining high performance
across reasoning, multiple-choice, long-context retrieval and summarization tasks.

1 INTRODUCTION

The advent of large language models (LLMs) has enabled sharp improvements over innumerable
downstream natural language processing (NLP) tasks, such as summarization and dialogue gener-
ation (Zhao et al., 2023; Wei et al., 2022). The hallmark feature of LLMs, the attention module
(Bahdanau, 2014; Luong, 2015; Vaswani, 2017), enables contextual processing over sequences of
tokens. To avoid repeated dot products over key and value embeddings of tokens, a key-value (KV)
cache is maintained in VRAM to maintain these calculations. This technique is particularly popular
with decoder LLMs.

However, the size of the KV cache scales quadratically with sequence length n and linearly with
the number of attention layers and heads. Assuming the size of the KV cache is n tokens, for
each new decoded token, n attention scores need to be added which requires a total of O(dn2)
computation, where d is the projection dimension, andO(n2) storage. For example, maintaining the
KV cache for a sequence of 4K tokens in half-precision (FP16) can require approximately ∼16GB
of memory for most models within the Llama 3 family (Dubey et al., 2024). These memory costs are
exacerbated with batched inference and result in high decoding latency (Fu, 2024). Consequently,
there is significant interest in compressing the size of the KV cache to enable longer context windows
and low-resource, on-device deployment.

An emerging strategy for reducing the size of the KV cache is token eviction. This approach drops
the key and value embeddings for past tokens in the cache, skipping future attention calculations
involving these tokens. Various token eviction/retention policies have been explored in recent liter-
ature, including the profiling of token type preferences (Ge et al., 2023), retention of heavy-hitter
tokens (Zhang et al., 2024b;a), and dropping tokens based on the high L2 norms of their key em-
beddings (Devoto et al., 2024). The latter approach (Devoto et al., 2024) is intriguing as eviction
decisions are performed pre-attention. However, this L2 dropout strategy in inclined towards long-
context retrieval tasks. It developed based on an empirical observation that smaller norm of key

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

embedding correlates with higher attention score. For long-context retrieval tasks, high-attention
score tokens are the most important tokens since the question’s text will overlap with the piece of
context that needs to be retrieved. Thus, it is specialized to retain only those tokens with the highest
attention, which we find unsuitable for free response reasoning tasks. Existing literature suggests
that retaining tokens with a diverse spectrum of attention scores (skewing high) is necessary (Guo
et al., 2024; Zhang et al., 2024b; Long et al., 2023).

Is there a non-attentive KV cache compression strategy that is performant over a wide variety of
tasks, including multiple-choice, summarization, long-context retrieval, and free response question-
answering? This work answers this question positively by introducing a novel strategy, LSH-E, that
dynamically determines token eviction pre-attention via locality-sensitive hashing (LSH) (Goemans
& Williamson, 1995; Charikar, 2002). LSH-E evicts a past token from the cache whose key em-
bedding is highly cosine dissimilar to the current query token embedding. The intuition behind this
strategy is that high cosine dissimilarity indicates a low dot-product attention score. To efficiently
scan for cosine (dis)similar tokens without performing attention, LSH-E leverages the SimHash
(Charikar, 2002; Goemans & Williamson, 1995) to instead compare Hamming distances between
c-length binary hashes of cached key embeddings and the current query embedding. We depict a
high-level visualization of this strategy in Figure 1.

LSH-E requires minimal overhead: for a total sequence length of ℓ tokens with embedding dimen-
sion d, LSH-E maintains a constant-size, low-cost binary array in GPU memory of size c×k bytes,
where c ≪ d is the hash dimension and k ≪ ℓ. Cached tokens with key embeddings that register
low Hamming similarity measurements to decoded query embeddings are gradually replaced.

(a) KV cache during decoding (b) LSH comparison at decoding step 4

Figure 1: An abstract visualization of LSH-E eviction strategy. Figure 1a depicts the strategy
for several decoding steps. The cache can only maintain 5 tokens due to memory constraints. At
each decoding step, LSH-E projects the query embedding of the current token i and all previous
key embeddings to binary hash codes. LSH-E then measures the negative of Hamming distances
between the query code of token i and key codes of all tokens j in the cache. Each step, LSH-E
evicts the key/values of the token with the lowest score (marked as red) from the cache. Figure 1b
depicts the LSH comparison for decoding step 4, marking the token “said” for removal, as its high
Hamming indicates low cosine similarity (and thus, low attention).

Our contributions are as follows:

• Novel Attention-Free Token Eviction We introduce a novel attention-free token eviction strat-
egy, LSH-E, that leverages locality-sensitive hashing (LSH) to quickly locate which token in the
cache is the least relevant to the current query. This ranking procedure consists entirely of cheap
Hamming distance calculations. The associated binary array for computing these similarities re-
quires minimal memory overhead. For a Llama 3 model, LSH-E can compress the KV cache by
30%-70% with minimal performance drop

• State-of-the-Art Performance LSH-E demonstrates high performance on reasoning tasks
(GSM8K Cobbe et al. (2021), MedQA Cobbe et al. (2021)), multiple-choice (GSM8K MC,
MedQA MC), long-context retrieval (Needle-in-a-Haystack, Common Word (Hsieh et al., 2024)),
and long-text summarization (MultiNews, GovReport Bai et al. (2023)). To the best of our knowl-
edge, LSH-E achieves state-of-the-art performance for attention-free eviction, outperforming
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the similar attention-free L2 method. Additionally, LSH-E outperforms attention-accumulation-
based methods on long text summarization tasks and achieves 1.5x speedup in the prefilling stage
and comparable speed in the decoding stage withoug low-level optimiations.

• Open-Source Implementation Upon public release of our manuscript, we will release an open-
source implementation of LSH-E through a fork of the popular cold-compress library (https:
//github.com/AnswerDotAI/cold-compress).

2 PRELIMINARIES

We aim to capture tokens whose query embeddings will form a large sum of dot products (i.e.,
attention scores) with other key embeddings, but without explicitly calculating attention. We will
leverage locality-sensitive hashing (LSH) to quickly determine cosine similarities since the angle
is equivalent to the dot product (for unit vectors). In this section, we review technical concepts
crucial to attention and locality-sensitive hashing. We assume some base level of similarity with
transformers, but we refer the reader to precise formalism (Phuong & Hutter, 2022).

Scaled Dot-Product Attention Consider a sequence of n tokens with e-dimensional real-valued
representations x1, x2, . . . , xn. Let Q = [q1 q2 · · · qn] ∈ Rn×d, K = [k1k2 · · · kn] ∈ Rd×n

where qi = Wqxi, ki = Wkxi and W,K ∈ Rd×e. The query and key projectors Wq and Wk are
pre-trained weight matrices. We also define a value matrix V = [v1 v2 v2 · · · vn] ∈ Rdout×n with
vi = Wvxi with trainable V ∈ Rdout×d, the scaled dot-product attention mechanism is given as

Attention(Q,K, V ) = V · softmax
(Q⊤K√

d

)
. (1)

Typically, attention layers contain multiple heads {hi}Ji=1 each with distinct query, key, and value
projectors {W (hi)

q ,W
(hi)
k ,W

(hi)
v }Ji=1. In a multi-head setup, attention is computed in parallel across

all heads, and the outputs are concatenated together and then passed through a linear layer for pro-
cessing by the next transformer block.

As Q,K, V are updated with each new incoming token, to avoid significant re-computation, the
current state of Q⊤K, Q, and K are maintained in the KV cache. Our goal is to bypass attention
computation and caching for select tokens, i.e., sparsify the attention matrix Q⊤K, K, and V .

Locality-Sensitive Hashing We will now describe a family of locality-sensitive hashing (LSH)
functions able to efficiently approximate nearest neighbors (per cosine similarity) of key/query vec-
tors in high-dimensional Rd through comparison in a reduced c-dimensional space (per Hamming
distance) with c≪ d. Here, ”locality-sensitive” means points that are close together according to a
distance function distd(·, ·) in the ambient space remain close per another distance function distc(·, ·)
in the lower-dimensional space with high-probability. For a rigorous treatment of LSH functions,
see (Andoni et al., 2018; Charikar, 2002).

Formally for our setup, distd(x, y) ≜ cos θx,y = x⊤y
||x|| ||y|| and distc(p, q) ≜ dH(p, q) which denotes

the Hamming distance. We will project each vector from Rd into Zc
2, the space of c-bit binary strings

(which is often referred to as a binary hash code). To acquire a c-bit long hash code from an input
vector x ∈ Rd, we define a random projection matrix R ∈ Rc×d whose entries are independently
sampled from the standard normal distribution N (0, 1). We then define

h(x) = sgn(Rx), (2)
where sgn(·) (as an abuse of conventional notation) is the element-wise Heaviside step function:

sgn(x) :=
{
1, x ≥ 0

0, x < 0
.

For two unit vectors x, y ∈ Rd we have that,

1

c
· E[dH

(
h(x), h(y)

)
] =

θx,y
π

, (3)
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where θx,y = arccos(cos(θx,y)). We do not prove equation 3 in this work; see Theorem §3.1 in
(Goemans & Williamson, 1995, Theorem 3.1). In particular, if x and y are close in angle, the
Hamming distance between h(x) and h(x) is low in expectation. Increasing the hash dimension c
reduces variance.

The geometric intuition behind this LSH scheme is the following: each row R:,i of R defines a
random hyperplane in Rd. The Heaviside function sgn(·) indicates whether x is positively or nega-
tively oriented with respect to the hyperplane R:,i. Thus, the c hyperplanes divide the d dimensional
space into multiple partitions, and the resulting c-dimensional hash code is an index into one of the
partitions in which x is located. Therefore, vectors with the same or similar hash codes lie in the
same or close-by partitions and, therefore, are likely similar in angle. cwecwasdf

2.1 RELATED WORKS

KV Cache Compression Many popular compression strategies adopt an eviction approach, which
removes embeddings from the KV cache. H2O (Zhang et al., 2024b) and Scissorhands (Liu et al.,
2024b) calculate token importance by their accumulated attention scores and keep the “heavy hit-
ters” in the cache. FastGen (Ge et al., 2023) performs a profiling pass before the generation stage
that assigns to each head, according to the head’s attention patterns, a pruning policy which only
retains categories of tokens (punctuation, special, etc.) favored by the head. These eviction strate-
gies depend on the computation of attention scores for their policy. An attention-free L2 dropout
method (Devoto et al., 2024), which we compare ourselves to in this work, uses the observation
that high-attention tokens tend to have low L2 key norms to approximately keep important tokens
in cache. Other methods seek to merge KV caches across heads, such as grouped query attention
(GQA) (Ainslie et al., 2023; Dubey et al., 2024). KVMerger (Wang et al., 2024) and MiniCache
(Liu et al., 2024a), which searches for similarity between tokens in consecutive attention layers and
subsequently merges KV cache entries across these layers. While these consolidation approaches
prevent memory complexity associated with KV caches from scaling with depth or multi-head at-
tention, the size of any singular cache still tends to scale with sequence length.

LSH Based Attention Similar to our work, Reformer (Kitaev et al., 2020) employs LSH to find
similar tokens, but as a way to replace the softmax attention as opposed to token eviction. It creates
hash buckets of tokens that form local attention groups and only attends to tokens in the same and
neighboring buckets. However, this makes Reformer vulnerable to missing important tokens due
to hash collision or boundary issues, and therefore, it must use multiple hash tables to mitigate this
issue. In a similar vein, KDEFormer (Zandieh et al., 2023), HyperAttention (Han et al., 2023), and
Zandieh et al. (2024a), use LSH to stably approximate and compressing the attention module thus
accelerating the computation, but without token eviction. SubGen (Zandieh et al., 2024b) uses LSH
to cluster key embeddings and samples representatives from each cluster to reduce the size of the
KV Cache and consequently speed up attention, though it must initially view all queries and keys to
perform this clustering which could result in VRAM blowup, which our method avoids.

3 LSH-E: A LOCALITY-SENSITIVE EVICTION STRATEGY

We now formalize our eviction method reflected in Algorithm 1. We assume that the KV cache has a
limited and fixed budget and conceptually divide the KV cache management during LLM inference
into two stages: the initial Prompt Encoding Stage and then a Decoding Stage (i.e., generation).

Let C be a constant and fixed cache budget, K be the key cache, and V be the V cache in a K-V
attention head. We define our eviction policy as a function

Kt,Vt,Ht ← P (q,Kt−1,Vt−1,Ht−1) (4)

where Ht ∈ {0, 1}b×C is a hash table that contains hash codes of keys in K. We then define a
function Fscore to assign a score for each key inside the K cache. Fscore outputs an array which
contains the negative of hamming distances dH between the hash code of a query vector q and
columns ofH, which are hash codes of all non-evicted keys.

Fscore(q,K) = −dH(h(q),H) (5)

4
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The eviction index et at any step t is selected as the index with the lowest score:

et ← argminFscore(qt−1,Ht−1) (6)

which points to the key that is most distant from the query vector at time step t. Entries at index et
from the K and V are evicted andH is updated (step 3-6 of Algorithm 1).

Algorithm 1 LSH-E (timestep t)

Require: query q, key k, value v, key cache K, value cache V , hash tableH
1: et ← argminFscore(qt,Ht−1) ▷ Determine eviction index et
2: del Ket

t−1, Vet
t−1,Het

t−1 ▷ Remove entries at index et from KV cache and hash table
3: Kt ← Kt−1 ∪ kt ▷ Update key cache
4: Vt ← Vt−1 ∪ vt ▷ Update value cache
5: Ht ← Ht−1 ∪ h(kt) ▷ Add hash of kt to the hash table
6: A← Attention(q,KT ,VT ) ▷ Calculate attention

Prompt Encoding Stage During the prompt encoding stage, the model processes the prompt,
xprompt = [x1, ..., xN ] ∈ RN×d. The KV cache and the hash table are first filled to full by the
first C tokens. K0 = {k1, ..., kC},V0 = {v1, ..., vC},H0 = h(K0) =

⋃
i∈[1,C] h(ki). We then set

t← C + 1, and begin Algorithm 1.

Decoding Stage Let xdecoding = [z1, ...zT ] ∈ RT×d be the generated tokens during auto-
regressive decoding. In the decoding stage, we continue Algorithm 1 by setting t < −N + 1.
The generation completes at time step N + T .

Complexity Our strategy assumes a fixed memory budget, and therefore, uses constant memory.
The computation overhead per time step is also constant, because Fscore is calculated for a constant
C number of key vectors in the cache. The extra memory overhead that LSH-E introduces to each
attention head is the hash table H, which only uses C ∗ b bits of space and is independent of the
sequence length. The hash table is stored on GPU memory and does not introduce any latency
bottlenecks associated with CPU-to-GPU streaming (Strati et al., 2024).

4 EXPERIMENTS

Tasks We evaluated our LSH eviction strategy across various tasks to demonstrate its effectiveness
in reducing the memory cost of the KV cache while preserving the language quality of the generated
text. Our experiments are split into four main categories: free response question answering, multiple
choice, long-context retrieval and long-context summarization. Our long context retrieval tasks
include the multi-key needle-in-a-haystack task and the common words task from (Hsieh et al.,
2024). Question answering tasks include GSM8K (Cobbe et al., 2021) and MedQA (Jin et al.,
2021). Summarizaiton tasks include GovReport and MultiNews from Bai et al. (2023).

Metrics The question-answering tasks were evaluated using BERTScore (which includes preci-
sion, recall, and F1 scores), ROUGE (ROUGE-1, ROUGE-2 and ROUGE-L and ROUGE-Lsum),
and GPT4-Judge. GPT-4 was prompted to look at both the model prediction and the ground truth an-
swer, then provide a score from 1 - 5 on the coherence, faithfulness, and helpfulness of the answer in
addition to similarity between the prediction and ground truth (we named this metric GPT4-Rouge).
In this section, we report the average of these four scores. For details on individual scores, please
see Appendix B. For the system prompts given to GPT-4, refer to Appendix G.2. For multiple-
choice tasks, we use accuracy as our metric. The metric used to evaluate long context retrieval tasks
is the string matching score from Hsieh et al. (2024), whose definition is in Appendix G.1. For
summarization tasks, we use Rouge as the metric as per direction from Bai et al. (2023).

Configuration and Setup We conducted most experiments using Meta’s Llama3 8B-Instruct
model (Dubey et al., 2024) with the exception of long text summarization tasks which were tested
using the Llama3.1 8B-Instruct model. Our method is agnostic to grouped-query attention, so we
used the default group size of 4. The maximum sequence length was set to the sum of the maximum

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

prompt length and the maximum number of allowed generated tokens needed for each task. We con-
ducted experiments using cache budgets of 10%, 30%, 50%, 70%, and 90% of the full KV cache.
Based on insights from (Xiao et al., 2023; Child et al., 2019; Beltagy et al., 2020), we also keep
the most recent 10 tokens and the first 4 tokens of the prompt always in the KV cache. The sum-
marization tasks were performed on Nvidia H100 80GB graphics cards due to their long contexts.
All other experiments were conducted on the Google Cloud Platform G2 instances with Nvidia L4
24GB graphics cards.

Baseline Methods We chose the L2 norm-based eviction method (Devoto et al., 2024) as our main
baseline for comparison because it is also an attention-free KV cache eviction method. We also
included two attention-accumulation-based methods: H2O Zhang et al. (2024b) and Scissorhands
Liu et al. (2024b), as well as a hybrid method: Fastgen Ge et al. (2023).

4.1 FREE RESPONSE QUESTION ANSWERING

We tested our strategy against tasks that require generating accurate answers using multi-step rea-
soning. Specifically, we used the GSM8K and MedQA datasets to assess language quality for each
strategy, given a constrained KV cache budget. Both tasks are used to test the potential side effects
of compression on the LLM’s reasoning ability.

GSM8K GSM8K consists of grade-school-level math problems that typically require multiple
reasoning steps. As shown in Figure 2, our LSH eviction strategy consistently outperforms the L2

norm-based method across various cache sizes. Notably, even when the KV cache budget is set to
50% of the full capacity, the LSH eviction strategy maintains a high answer quality, with minimal
degradation in BERTScore F1, ROUGE-L, and GPT4-Judge scores. Additionally, LSH-E performs
on par with H2O and Scissorhands without accumulating attention scores.

(a) BERTScore F1 (b) Rouge L (c) GPT4-Judge

Figure 2: GSM8K Question Answering Performance. We measure BERTScore F1, Rouge-L, and
GPT4-Judge for different cache budgets on a grade school math task. LSH-E outperforms L2 for
all three metrics for every budget, with sharp differences for the 50% and 30% compression. LSH-E
performs similarly to H2O and Scissorhands except at 10% cache budget.

MedQA MedQA is a free response multiple choice question answering dataset collected from
professional medical board exams. We randomly sampled 100 questions from this dataset. Each
question has 5 choices and only one correct answer, along with ground truth explanations and rea-
soning steps. Figure 3 illustrates that LSH-E performs better than all baseline methods for all cache
budgets tested. For both datasets, LSH-E produced more coherent and helpful answers across all
cache budgets than the baselines per Table 8.

For detailed experiment results of both question anwering tasks, and for comparison with Fastgen at
various attention recovery ratios, please refer to Appendix B.

4.2 MULTIPLE CHOICE QUESTION ANSWERING

We evaluated our method on multiple-choice versions of GSM8K and MedQA. Multiple choice is a
more difficult test of a model’s reasoning capability under the constraint of cache compression, as it
takes away the ability to use intermediate results in the generated text. The model has to keep useful
tokens during prompt compression in order to pick the correct answer choice.

6
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(a) BERTScore F1 (b) Rouge L (c) GPT4-Judge

Figure 3: MedQA Question Answering Performance. We measure BertScore F1, Rouge-L, and
GPT4-Judge for different cache budgets on a medical exam task. LSH outperforms L2 for all three
metrics for every budget, with a significantly higher performance for the 30% and 10% budgets.

GSM8K Multiple Choice For the GSM8K multiple choice experiments, LSH significantly out-
performs L2 for cache budgets of 30% and 50%. As shown in Figure 4a, the L2 method’s accuracy
drops significantly at smaller cache sizes, while the performance of LSH-E does not significantly
drop until the cache budget is set at 10%.

(a) Accuracy on the GSM8K Multiple Choice (b) Accuracy on the MedQA Multiple Choice

Figure 4: Multiple Choice Tasks Performance. On GSM8K, LSH-E outperforms the baseline full
cache on GSM8K at 70% and 50% cache budgets and significantly outperforms L2 at 70%, 50%,
and 30%. LSH-E performs on par with L2 overall on MedQA with higher performance at 90%
(near uncompressed performance) and 70% budget and slightly lower performance at 50% budget.

MedQA Multiple Choice Per Figure 4b, the MedQA multiple choice experiment, LSH offers
better performance than L2 eviction for all tested cache budgets except for 50%. Performance
between both methods is highly similar at lower budgets.

4.3 LONG-CONTEXT RETRIEVAL

To evaluate LSH-E’s ability to retain and retrieve important pieces of information from long con-
texts, we used the Needle-in-a-Haystack and Common Words tasks from Hsieh et al. (2024) with
4K context length. These tests benchmark the ability of a compression strategy to retain important
tokens inside the KV cache within a large, complext stream of context.

Needle-in-a-Haystack In the Needle-in-a-Haystack task, the model must extract specific informa-
tion buried within a large body of text. As illustrated in Figure 5b, LSH-E slightly outperforms L2

at every cache budget except for 90%, and both methods see a sharp drop in the ability to recall the
“needle” (a small, targeted piece of context) after the cache budget drops to 50% and lower. LSH-E
outperforms L2 for these smaller cache sizes.

7
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Common Words In the Common Words task, the model must identify the most frequent words
from a long list. Figure 5a demonstrates that LSH-E performs on par with L2 eviction in general
and slightly better at 30%, 50%, and 90% cache budget. Both methods outperform the full cache
model at 90% cache size, indicating that some cache compression can actually increase performance.
Neither method experienced a significant drop in performance until the cache budget was reduced
to 30%.

(a) String Match Score on Common Words (b) String Match Score on Needle-in-a-Haystack

Figure 5: Long-Context Tasks. We measure string-matching scores for two long-context retrieval
tasks. LSH-E performs on par with L2 on the Common Words task with slightly higher perfor-
mance at a 30% cache budget and slightly lower performance at a 10% budget. For the Needle-in-
a-Haystack task, LSH-E performs on par with L2 with slightly higher performance at a 50% cache
budget.

4.4 LONG TEXT SUMMARIZATION

To evaluate LSH-E’s ability to handle exceptionally long context lengths, we incorporated the Multi-
News and GovReport summarizations tasks from LongBench Bai et al. (2023). We tested both tasks
using the Llama3.1-8B-Instruct model and used context size of 16K tokens.

(a) Rouge-L on MultiNews (b) Rouge-L on GovReport

Figure 6: LongBench Summarization Tasks We measure Rouge-L for two long text summarization
tasks. LSH-E outperforms all baseline methods on MultiNews at 30 - 70% cache budget. LSH-E
performs better than L2 on GovReport at 50% cache budget similarly at 30% and 70%.

MultiNews The MultiNews dataset contains clusters of 2-10 news articles discussing the same
event or topic. The model is asked to provide a one-page summary of the articles. LSH-E outper-
forms all baselines in the MultiNews summarization task at 30-70% cache budget. At 90% cache
budget, LSH-E still outperforms H2O and Scissorhands while being slighly lower thant L2.

8
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GovReport The GovReport dataset contains reports spanning a wide variety of national policy
issues from the U.S. Government. The model is asked to produce a one-page summary of the reports.
LSH-E performs on par with and sometimes slightly better than L2 at 30-70% cache budget, while
not as well as H2O or Scissorhands.

4.5 THROUGHPUT

To evaluate the speed of LSH-E and baseline methods, we measured the decoding and prefilling
speed during the MultiNews evaluation. Because the length of answers generated by each eviction
strategy generates can be different, we report decoding and prefilling speed in tokens per second
instead of elapsed time.

Table 1: Throughput on LongBench MultiNews Summarization Task LSH-E method is as fast
as L2 and faster than other baselines at both prefilling and decoding, even without low-level opti-
mizations (i.e., expressing our hash tables in true binary bits). At the prefill stage, LSH-E is 1.5x as
fast as H2O and Scissorhands and 17x as fast compared to FastGen.

Cache Budget (%)
/ Fastgen Attn

Recovery Frac (%)
Strategy Rouge L Decode

Toks Per Sec
Prefill

Tokes Per Sec

30

LSH-E 0.180 22.880 20293.524
L2 0.165 23.981 20628.160

H2O 0.175 21.555 13025.776
Scissorhands 0.175 21.448 13004.254

50

LSH-E 0.186 22.846 20459.961
L2 0.174 16.013 15851.952

H2O 0.181 21.973 13969.985
Scissorhands 0.182 20.978 13549.967

70

LSH-E 0.187 22.914 21002.334
L2 0.187 24.305 21303.763

H2O 0.184 21.793 14050.521
Scissorhands 0.183 21.705 13954.693

90

LSH-E 0.185 22.873 21229.230
L2 0.186 24.010 21305.693

H2O 0.181 21.665 14007.697
Scissorhands 0.182 21.411 14025.440

100 Full 0.192 16.071 16573.492

70

Fastgen

0.129 12.752 1171.069
75 0.174 12.291 1157.987
80 0.184 11.850 1142.679
85 0.183 11.658 1164.689

4.6 MEMORY USAGE

Table 2 compares the memory usage of the KV cache and relevant data structures of L2 and LSH-E
on the GSM8K and MedQA question answering experiments. LSH-E maintains H, a binary hash
matrix of the attention keys in memory and, therefore, has slightly higher memory usage than L2

eviction. Our implementation uses 8 bits for binary values instead of 1 bit. Using 1-bit binary
numbers would reduce the memory overhead of LSH-E by a factor of 8 and narrow the difference
in memory usage between LSH-E and L2.

4.7 ABLATION ON LSH DIMENSION

To determine the effect of the LSH compression dimension, we conducted an ablation study using
the GSM8K free response dataset. Fixing the cache budget to 50%, we tested LSH dimensions of 4,

9
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Table 2: GSM8K and MedQA Question Answering KV Cache Memory Usage. LSH-E main-
tains a binary hash matrix of attention keys in memory and, therefore, has slightly higher memory
usage than L2. Our implementation uses 8-bits for binary values instead of 1-bit. Using 1-bit binary
numbers will reduce the memory overhead of LSH-E by a factor of 8 and decrease the difference in
memory usage between LSH-E and L2.

GSM8K MedQA

Cache
Budget

(%)
Strategy Compression

Ratio

Cache
Memory

(GB)

Compression
Ratio

Cache
Memory

(GB)

10 L2 0.8355 0.7603 0.9289 2.5342
LSH-E 0.8380 0.8120 0.8812 2.6338

30 L2 0.6234 1.7740 0.6957 7.3492
LSH-E 0.6018 1.8531 0.6360 7.5786

50 L2 0.3968 2.7876 0.4175 12.1641
LSH-E 0.3716 2.8941 0.3901 12.5235

70 L2 0.1967 3.8013 0.1803 17.2325
LSH-E 0.1857 3.9351 0.1740 17.7285

90 L2 0.0859 4.8150 0.0498 22.0474
LSH-E 0.0823 4.9761 0.0483 22.6734

100 Full 0.0000 12.6934 0.0000 51.1181

8, 16, 32 and 64 bits. The choice of LSH dimension does not significantly impact performance. In
fact, 8 bits performed the best, but not noticeably better than higher dimensions. This demonstrates
that LSH-E does not require a high hashing dimension and can be executed with minimal storage
overhead. When using 8 bits, the storage overhead is 1 byte× cache size. For example, in a Llama3
70B-Instruct deployment with 80 layers, 8 KV-heads, sequence length of 8192, batch size of 8 and
50% cache budget, LSH dimension of 8-bits, we have that 16-bits and 32-bits only use an extra
20MB, 40MB, and 80MB respectively, which are significantly smaller than the KV cache size of
640GB. Detailed results can be found in Table 9 of Appendix C.

5 DISCUSSION & CONCLUSION

In this paper, we introduce LSH-E, a novel attention-free eviction strategy for KV cache compres-
sion in transformer-based LLMs. By leveraging locality-sensitive hashing (LSH) to approximate
cosine similarity, LSH-E dynamically determines which tokens to evict from the cache without
performing costly attention calculations. Our experiments demonstrate that LSH-E can achieve
30-70% compression of the KV cache while maintaining strong performance across various tasks,
including free-response Q&A, multiple-choice Q&A, and long-context retrieval.

The key advantage of LSH-E lies in its ability to efficiently compress the KV cache pre-attention,
enabling significant memory savings and faster inference times. Compared to traditional strategies
like L2 norm-based eviction (Devoto et al., 2024), LSH-E excels particularly in reasoning and
multiple-choice tasks, where maintaining a diverse set of tokens in the cache is crucial for generating
accurate and coherent responses.

There are several potential areas for future work. Investigating hybrid approaches that combine
LSH-based eviction with attention-based mechanisms such as (Zhang et al., 2024b; Ge et al., 2023)
could offer a middle ground between computational efficiency and retention of high-importance
tokens. Further, reducing the overhead associated with maintaining binary hash codes (e.g., by
optimizing bit precision) could further enhance the applicability of LSH-E to memory-constrained
environments.
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APPENDIX

A FURTHER RELATED WORKS

Memory Efficient Transformers Multi-Query Attention (Shazeer, 2019) and Grouped Query At-
tention (Ainslie et al., 2023) reduce the number of key-value matrices by sharing them across mul-
tiple query heads to save KV cache memory usage. However, they require re-training or up-training
the LLM. Cache quantization methods (Hooper et al., 2024; Sheng et al., 2023) reduce the KV cache
size by compressing the hidden dimension instead of along the sequence dimension but can result in
information loss. Linear Transformer (Katharopoulos et al., 2020) reduces memory usage by replac-
ing the softmax attention with linear kernels and, therefore, achieves constant memory requirement

B QUESTION ANSWERING GRANULAR EXPERIMENT RESULTS

Table 3: GSM8K and MedQA Question Answering BERTScore

GSM8K Medqa

Cache Budget /
Fastgen Attn

Recovery Frac (%)
Strategy Precision Recall F1 Precision Recall F1

10

LSH-E 0.859 0.806 0.831 0.857 0.808 0.832
L2 0.858 0.798 0.826 0.833 0.813 0.823

H2O 0.877 0.830 0.853 0.866 0.795 0.829
Scissorhands 0.873 0.825 0.848 0.867 0.795 0.829

30

LSH-E 0.893 0.854 0.873 0.867 0.834 0.850
L2 0.885 0.847 0.865 0.855 0.834 0.844

H2O 0.893 0.860 0.877 0.878 0.802 0.838
Scissorhands 0.893 0.858 0.875 0.877 0.802 0.838

50

LSH-E 0.897 0.865 0.880 0.869 0.842 0.855
L2 0.891 0.861 0.875 0.866 0.841 0.853

H2O 0.896 0.866 0.881 0.879 0.803 0.839
Scissorhands 0.896 0.864 0.879 0.878 0.804 0.839

70

LSH-E 0.896 0.866 0.881 0.869 0.843 0.855
L2 0.894 0.865 0.879 0.868 0.842 0.855

H2O 0.897 0.867 0.881 0.879 0.801 0.838
Scissorhands 0.896 0.864 0.880 0.879 0.803 0.839

90

LSH-E 0.897 0.867 0.881 0.868 0.843 0.855
L2 0.896 0.866 0.881 0.868 0.843 0.855

H2O 0.897 0.867 0.881 0.879 0.801 0.838
Scissorhands 0.896 0.864 0.880 0.880 0.802 0.839

50

Fastgen

0.811 0.770 0.789 0.816 0.763 0.788
60 0.827 0.778 0.801 0.806 0.766 0.785
70 0.837 0.788 0.811 0.811 0.766 0.787
80 0.874 0.840 0.857 0.866 0.793 0.828
90 0.896 0.864 0.879 0.876 0.800 0.836

100 Full 0.897 0.867 0.882 0.868 0.843 0.855

C RESULTS OF ABLATION ON LSH DIMENSION

Please see Table 9
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Table 4: GSM8K Question Answering Rouge

Cache Budget /
Fastgen Attn

Recovery Fra(%)
Strategy Rouge 1 Rouge 2 Rouge L Rouge Lsum

10

LSH-E 0.206 0.051 0.157 0.186
L2 0.196 0.050 0.151 0.179

H2O 0.300 0.090 0.227 0.263
Scissorhands 0.271 0.074 0.205 0.238

30

LSH-E 0.446 0.187 0.341 0.383
L2 0.392 0.149 0.288 0.337

H2O 0.481 0.208 0.364 0.410
Scissorhands 0.471 0.203 0.357 0.403

50

LSH-E 0.511 0.234 0.393 0.438
L2 0.476 0.205 0.355 0.409

H2O 0.517 0.238 0.398 0.442
Scissorhands 0.509 0.232 0.389 0.433

70

LSH-E 0.521 0.240 0.401 0.446
L2 0.509 0.230 0.386 0.435

H2O 0.523 0.243 0.404 0.446
Scissorhands 0.510 0.233 0.392 0.435

90

LSH-E 0.525 0.243 0.403 0.449
L2 0.522 0.241 0.400 0.446

H2O 0.523 0.243 0.406 0.446
Scissorhands 0.512 0.235 0.393 0.436

50

Fastgen

0.112 0.017 0.095 0.106
60 0.133 0.024 0.113 0.126
70 0.171 0.036 0.139 0.160
80 0.356 0.128 0.264 0.305
90 0.509 0.231 0.391 0.434

100 Full 0.526 0.244 0.403 0.449
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Table 5: GSM8K Question Answering GPT4-Judge

Cache Budget /
Fastgen Attn

Recovery Frac (%)
Strategy Similarity to GT Coherence Faithfulness Helpfulness

10

LSH-E 1.018 1.387 1.147 1.083
L2 1.005 1.293 1.098 1.033

H2O 1.172 2.304 1.566 1.630
Scissorhands 1.138 2.132 1.424 1.452

30

LSH-E 2.520 3.767 3.216 3.190
L2 1.356 2.428 1.895 1.841

H2O 3.014 4.252 3.706 3.860
Scissorhands 2.906 4.184 3.636 3.798

50

LSH-E 3.457 4.530 4.212 4.241
L2 2.190 3.494 3.035 3.027

H2O 3.798 4.712 4.434 4.534
Scissorhands 3.582 4.604 4.276 4.400

70

LSH-E 3.734 4.671 4.404 4.444
L2 2.934 4.184 3.817 3.820

H2O 3.940 4.774 4.576 4.656
Scissorhands 3.712 4.668 4.334 4.462

90

LSH-E 3.569 4.578 4.324 4.361
L2 3.837 4.722 4.468 4.525

H2O 3.970 4.814 4.596 4.688
Scissorhands 3.750 4.676 4.392 4.504

50

Fastgen

1.000 1.074 1.040 1.028
60 1.000 1.054 1.022 1.010
70 1.008 1.116 1.048 1.014
80 1.472 2.602 2.118 2.234
90 3.838 4.714 4.448 4.554

100 Full 3.845 4.716 4.499 4.545
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Table 6: MedQA Question Answering BERTScore

Cache Budget /
Fastgen Attn

Recovery Fra(%)
Strategy Precision Recall F1

10

LSH-E 0.857 0.808 0.832
L2 0.833 0.813 0.823

H2O 0.866 0.795 0.829
Scissorhands 0.867 0.795 0.829

30

LSH-E 0.867 0.834 0.850
L2 0.855 0.834 0.844

H2O 0.878 0.802 0.838
Scissorhands 0.877 0.802 0.838

50

LSH-E 0.869 0.842 0.855
L2 0.866 0.841 0.853

H2O 0.879 0.803 0.839
Scissorhands 0.878 0.804 0.839

70

LSH-E 0.869 0.843 0.855
L2 0.868 0.842 0.855

H2O 0.879 0.801 0.838
Scissorhands 0.879 0.803 0.839

90

LSH-E 0.868 0.843 0.855
L2 0.868 0.843 0.855

H2O 0.879 0.801 0.838
Scissorhands 0.880 0.802 0.839

50

Fastgen

0.816 0.763 0.788
60 0.806 0.766 0.785
70 0.811 0.766 0.787
80 0.866 0.793 0.828
90 0.876 0.800 0.836

100 Full 0.868 0.843 0.855
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Table 7: MedQA Question Answering Rouge

Cache Budget (%) Strategy Rouge 1 Rouge 2 Rouge L Rouge Lsum

10

LSH-E 0.346 0.110 0.171 0.324
L2 0.304 0.072 0.154 0.289

H2O 0.236 0.092 0.138 0.220
Scissorhands 0.237 0.091 0.139 0.221

30

LSH-E 0.449 0.170 0.227 0.426
L2 0.429 0.146 0.213 0.407

H2O 0.255 0.118 0.151 0.239
Scissorhands 0.252 0.116 0.151 0.236

50

LSH-E 0.481 0.194 0.245 0.455
L2 0.474 0.184 0.240 0.449

H2O 0.243 0.107 0.149 0.229
Scissorhands 0.244 0.110 0.150 0.230

70

LSH-E 0.487 0.197 0.249 0.461
L2 0.484 0.194 0.247 0.458

H2O 0.229 0.097 0.143 0.216
Scissorhands 0.234 0.103 0.147 0.219

90

LSH-E 0.487 0.197 0.249 0.461
L2 0.487 0.197 0.249 0.461

H2O 0.223 0.095 0.142 0.211
Scissorhands 0.228 0.099 0.145 0.214

50

Fastgen

0.068 0.013 0.052 0.066
60 0.079 0.014 0.061 0.077
70 0.103 0.020 0.074 0.099
80 0.208 0.069 0.126 0.192
90 0.220 0.092 0.140 0.207

100 Full 0.486 0.198 0.248 0.460
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Table 8: MedQA Question Answering GPT4-Judge

Cache Budget /
Fastgen Attn

Recovery Frac (%)
Strategy Similarity to GT Coherence Faithfulness Helpfulness

10

LSH-E 1.970 3.517 2.665 2.547
L2 1.103 1.695 1.639 1.283

H2O 2.138 3.206 2.594 2.416
Scissorhands 2.144 3.202 2.580 2.402

30

LSH-E 2.511 4.415 3.533 3.613
L2 1.939 3.633 2.942 2.843

H2O 3.428 3.818 3.608 3.276
Scissorhands 3.406 3.850 3.602 3.286

50

LSH-E 3.022 4.730 4.139 4.254
L2 2.850 4.511 3.797 3.950

H2O 2.938 3.632 3.280 2.762
Scissorhands 2.918 3.634 3.308 2.748

70

LSH-E 3.232 4.809 4.292 4.434
L2 3.194 4.755 4.235 4.385

H2O 2.414 3.396 2.958 2.178
Scissorhands 2.554 3.454 3.098 2.328

90

LSH-E 3.291 4.839 4.355 4.507
L2 3.265 4.818 4.318 4.458

H2O 2.400 3.232 2.830 2.016
Scissorhands 2.404 3.346 2.980 2.098

50

Fastgen

1.002 1.004 1.006 1.000
60 1.005 1.004 1.005 1.000
70 1.008 1.014 1.014 1.008
80 1.620 2.783 2.270 1.512
90 2.356 3.242 2.748 1.870

100 Full 3.337 4.817 4.342 4.500

Table 9: LSH Hash Dimension Ablation. We assesses GSM8K Question Answering performance
for different LSH dimensions. The cache budget is fixed at 50%. LSH dimension does not signifi-
cantly impact performance. Small LSH dimensions slightly outperform larger LSH dimensions.

LSH
Dim

BERTScore
F1 Rouge L GPT4

Judge
Compression

Ratio

Cache
Memory

(GB)

4 0.8807 0.3974 4.3833 0.3728 2.8062

8 0.8802 0.3975 4.4113 0.3734 2.8355

16 0.8807 0.3972 4.3753 0.3716 2.8941

24 0.8802 0.3951 4.3733 0.3711 2.9527

32 0.8796 0.3926 4.3220 0.3710 3.0113

64 0.8797 0.3900 4.2333 0.3702 3.2456
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D ATTENTION SCORES AND KEY NORMS VISUALIZATION

We further examine the method of our chief competitor, the L2 eviction method (Devoto et al., 2024).
In particular, in Figure 7 we examine the key-norm-attention correlation suggested by the authors.
Indeed, low key-norms, even across prompts, demonstrate a strong correlation with attention score.

Figure 7: Attention and Key Norms. Attention scores and corresponding L2 norms of key vectors
(excluding the first token) for a sample of heads (0,8,16,24,31) in the 8th layer for a sample input
sequence. Each subplot shows the attention heatmap (top) and the corresponding key norm values
(bottom) for a particular head, allowing for a direct comparison between attention patterns and key
norm values across different heads.

E ATTENTION LOSS RATIO ANALYSIS

We perform an attention loss ratio (ALR) analysis between LSH-based ranking and L2-based rank-
ing. Our implementation is an adaptation of the methodology described in Devoto et al. (2024). This
section explores how much of the uncompressed attention matrix is preserved between LSH-E and
the L2 eviction strategy in Devoto et al. (2024).

Compressing the KV cache entails dropping KV pairs. Per (Devoto et al., 2024), we can define
the attention loss caused by the compression as the sum of the attention scores associated with the
dropped KV pairs in layer l and head h via the equation Lm

l,h =
∑

p∈Dm
l,h

al,h,p, where al,h,p is the
average attention score at position p for layer l and head h, and Dm

l,h denotes the positions of the m

dropped KV pairs, with |Dm
l,h| = m. We process a selection of prompts and examine how proposed

evictions by the L2 eviction strategy and LSH-E would affect the sum of attention scores.

To quantify the additional attention loss introduced by using an alternative ranking method (such as
L2 norm or LSH-E’s Fscore) instead of the true attention-based ranking, we define the cumulative
attention loss difference as:

Yl,h =

n∑
m=1

(
Lm
l,h − Lm

l,h,ref

)
, (7)

where Lm
l,h,ref is the cumulative attention loss when dropping the KV pairs with the actual lowest

attention scores. The value Yl,h is non-negative, and a lower value indicates that the ranking method
closely approximates non-compressed attention. Figure 8 depicts the ALR for the L2 eviction rank-
ings and an LSH ranking.

It is important to note that LSH-E is not designed to produce a global ranking among the keys as
the L2 method is designed to do (via a low-to-high ordering of all L2 key norms). LSH-E ranks
the importance of past tokens with regards to the current token – and this ranking changes every
step. To simulate a comparison, we record the average Hamming distance between the key code of
token i and the query codes of all tokens j > i. We then sort tokens from lowest to highest average
Hamming distance. Figure 8a reflects the ALR according to this ranking system. The L2 ranking
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exclusively prefers high-attention tokens, while the LSH ranking prefers medium-to-high-attention
tokens. Based on our empirical results in Section 4, the selection of tokens over a spectrum of
attention scores skewing towards high results in greater task versatility compared to the L2 eviction.

(a) ALR using LSH ranking (b) ALR using L2 ranking

Figure 8: Attention Loss Ratio (ALR). We compare how the eviction strategy of LSH-E and the
L2 method (Devoto et al., 2024) affects the ALR per equation 7. Our tested model is Llama3-
8B-Instruct, which contains 32 heads and 32 attention layers. Cell (i, j) depicts the ALR of head
i in attention layer j. A darker score indicates a lower ALR. The L2 method exhibits extremely
low ALR, thus indicating exclusive preference for high-attention tokens. LSH-E prefers to select
medium-to-high attention tokens.

F ANALYSIS OF THE RELATIONSHIP BETWEEN ATTENTION SCORES AND
LSH HAMMING DISTANCE

In this section, we follow up on our ALR in Appendix Section E. We analyze the relationship
between attention scores and average LSH Hamming distances using 50 randomly selected prompts
from GSM8K. We stress that this metric does not perfectly capture the ”ranking” system of LSH-E
(which cannot perform a global/full-sequence token-importance ranking like L2 eviction).

For each prompt, we performed the following:

1. Captured States: Extracted normalized key and query vectors from every layer and head
combination after applying rotary positional embeddings.

2. Applied Random Projections: Applied multiple random Gaussian projections, varying
the projection length (number of bits). We tested with projection lengths of 8, 16, 24, and
32.

3. Computed Hamming Distances: Computed the Hamming distances between the pro-
jected and binarized vectors and averaged this over multiple projections to mitigate the
randomness that LSH introduces and to obtain a more stable estimate of the Hamming
distances.

4. Computed Correlations: Calculated the Pearson correlation coefficient between the atten-
tion scores and the inverted average Hamming distance for each layer and head combination
and for each projection length.

F.1 RESULTS

The average Pearson correlation between the attention scores and the inverted average Hamming
distances is 0.2978 ± 0.1947. Table 10 and Figure 9a detail the average Pearson correlation per
projection length.

F.2 OBSERVATIONS

• Correlation with Projection Length: As shown in Figure 9a and Table 10 the average
Pearson correlation increases with projection length. This is likely due to the more detailed

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Average Pearson correlation between attention scores and inverted average Hamming
distances per projection length, computed for 50 randomly selected prompts from GSM8k. Higher
projection lengths have stronger correlations.

Projection Length Mean Standard Deviation

8 0.2017 0.1890
16 0.2793 0.1852
24 0.3345 0.1806
32 0.3754 0.1792

vector representation in the projected space, allowing for finer-grained similarity compar-
isons.

• Layer-wise Trends: Figure 9b shows a slight decrease in the average Pearson correlation
for the later transformer layers. Earlier layers may be more focused on recognizing broader
patterns where the similarity LSH captures is more pronounced compared to the latter lay-
ers, which may focus on specifics not captured as effectively by Hamming distances.

• Head-wise Consistency: The correlation between attention scores and inverted average
Hamming distance is relatively consistent across different attention heads, with little vari-
ance as seen in Figure ‘9c. This uniform behavior indicates that the relationship between
attention scores and LSH-measured similarity is, to a large extent, independent of specific
head functions.

• LSH vs. L2 Norms: While L2 norms were more effective at identifying high-attention
tokes, LSH excelled at identifying tokens with moderate attention scores that are vital for
the generation of coherent language output. This aligns with the findings of Guo et al.
(2024), which suggests that tokens with low to medium attention scores are crucial for
high-quality language generation.

• LSH and Token Similarity: LSH tended to group tokens together that are similar across
dimensions, producing lower Hamming distances. Tokens with very high attention scores
may only have strong associations for a relatively small subset of dimensions, which may
not always be captured effectively by LSH.

F.3 ALR COMPUTATION METHODOLOGY

We compute the Attention Loss Ratio (ALR) for each layer l and head h as follows:

1. Data Capture During the model’s forward pass, we capture the necessary data for analysis:

• Attention Probabilities al,h ∈ Rn×n: The attention scores between queries and keys.
• Key Norms ∥kl,h,p∥2: The L2 norms of key vectors at each position p.
• Key and Query Vectors kl,h,p ∈ Rd and ql,h,p ∈ Rd: Used for LSH ranking.

2. Mean Attention Scores For each token position p, we compute the mean attention score
across all positions it attends to:

āl,h,p =
1

n

n∑
q=1

al,h,p,q. (8)

3. Ranking Methods
• Ideal Attention-Based Ranking Rank positions in ascending order of āl,h,p (from

lowest to highest attention score).
• L2 Norm Ranking Rank positions in descending order of the key norms ∥kl,h,p∥2.
• LSH Ranking Apply Locality-Sensitive Hashing (LSH) to key and query vectors us-

ing random projections, compute Hamming distances, and rank positions in ascending
order of the average Hamming distance.
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(a) Correlations for varying LSH dimension. We
study the Pearson correlations between attention
scores and the inverted average Hamming distances,
computed over 50 randomly selected prompts from
GSM8K, as a function of projection length for Llama-
3-8B-Instruct. The tested projection lengths are 8,16,
24, and 32. The error bars indicate the standard de-
viation. Correlation strengthens as projection length
increases.

(b) Correlations by layer. We measure the Pearson
correlations between attention scores and the inverted
average Hamming distances for each transformer layer
in Llama-3-8B-Instruct computed over 50 randomly
selected prompts from GSM8K. Error bars indicate
standard deviation. The final three layers have the
weakest correlations.

(c) Correlations by head. We study the Pearson cor-
relation between attention scores and the inverted aver-
age Hamming distances for each head in Llama-3-8B-
Instruct computed over 50 randomly selected prompts
from GSM8K. Error bars indicate standard deviation.
There is minimal variation between heads.

(d) Correlation Heat Map. We examine the average
Pearson correlation between attention score and the
inverted average Hamming distances (LSH ranking)
across all layers and attention heads of Llama-3-8B-
Instruct. As attention mass tends to concentrate over
a few tokens (Gupta et al., 2021; Sheng et al., 2023),
the slightly-weak, but positive correlation indicates the
LSH ranking is selecting medium-to-high-attention to-
kens.

Figure 9: Correlations of Attention and Inverted Hamming Distances

4. ALR Calculation For each m from 1 to n, compute the cumulative attention losses: This
allows us to quantitatively compare how well different ranking methods (e.g., L2 norm and
LSH ranking) approximate the ideal scenario where the least important KV pairs (those
with the lowest attention scores) are dropped during cache compression.
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Lm
l,h =

m∑
i=1

āl,h,π(i), (9)

Lm
l,h,ref =

m∑
i=1

āl,h,σ(i), (10)

where π(i) and σ(i) are the indices of the i-th position in the ranking method and the ideal
attention-based ranking, respectively. The ALR for each head and layer is then calculated
as Yl,h =

∑n
m=1

(
Lm
l,h − Lm

l,h,ref

)
.

A lower Yl,h indicates that the ranking method closely approximates the ideal attention-
based compression.

5. Aggregation We repeat the above steps for multiple prompts and average the ALR values
to obtain the final ALR matrix across layers and heads.

G METRICS AND PROMPTS

G.1 STRING MATCH SCORE

The string matching score is calculated as:

String Matching Score =
Number of correctly matched characters in predicted string

Total number of characters in GT
× 100

G.2 GPT-4-JUDGE PROMPT

For the GPT-4-Judge metric used in evaluating free response question answering tasks, we accessed
the GPT-4o model through OpenAI’s API.

For the GPT4-Rouge metric, the prompt given to the model is:

You are shown ground-truth answer(s) and asked to judge the quality of an
LLM-generated answer.

Assign it a score from 1-5 where 1 is the worst and 5 is the best based
on how similar it is to the ground truth(s).

Do NOT explain your choice. Simply return a number from 1-5.

====GROUND TRUTHS====
{labels}

====ANSWER====
{prediction}

For the other three GPT4-Judge based on criteria, the prompt given to the model is:

You are shown a prompt and asked to assess the quality of an LLM-
generated answer on the following dimensions:

===CRITERIA===
{criteria}

Respond with "criteria: score" for each criterion with a newline for each
criterion.

Assign a score from 1-5 where 1 is the worst and 5 is the best based on
how well the answer meets the criteria.

====PROMPT====
{prompt}

====ANSWER====
{prediction}
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The list of criteria is:

CRITERIA = {
"helpful": "The answer executes the action requested by the prompt

without extraneous detail.",
"coherent": "The answer is logically structured and coherent (ignore

the prompt).",
"faithful": "The answer is faithful to the prompt and does not contain

false information.",
}
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