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Abstract

The performance of machine learning models under distribution shift has been the focus of
the community in recent years. Most of current methods have been proposed to improve
the robustness to distribution shift from the algorithmic perspective, i.e., designing better
training algorithms to help the generalization in shifted test distributions. This paper studies
the distribution shift problem from the perspective of pre-training and data augmentation,
two important factors in the practice of deep learning that have not been systematically
investigated by existing work. By evaluating seven pre-trained models, including ResNets
[1] and ViT’s [2] with self-supervision and supervision mode, on five important distribution-
shift datasets, from WILDS [3] and DomainBed [4] benchmarks, with five different learning
algorithms, we provide the first comprehensive empirical study focusing on pre-training
and data augmentation. With our empirical result obtained from 1,330 models, we provide
the following main observations: 1) ERM combined with data augmentation can achieve
state-of-the-art performance if we choose a proper pre-trained model respecting the data
property; 2) specialized algorithms further improve the robustness on top of ERM when
handling a specific type of distribution shift, e.g., GroupDRO [5] for spurious correlation
and CORAL [6] for large-scale out-of-distribution data; 3) Comparing different pre-training
modes, architectures and data sizes, we provide novel observations about pre-training
on distribution shift, which sheds light on designing or selecting pre-training strategy
for different kinds of distribution shifts. In summary, our empirical study provides a
comprehensive baseline for a wide range of pre-training models fine-tuned with data
augmentation, which potentially inspires research exploiting the power of pre-training and
data augmentation in the future of distribution shift study.

1 Introduction
Machine learning (ML) has received much success in many computer vision applications such as
image classification. However, it heavily depends on an in-distribution (ID) assumption that the
training data and testing data are identically and independently from the same data distribution.
Unfortunately, this ID assumption may be hardly satisfied in practice, which leads to distribution
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WILDS-Waterbirds WILDS-FMoW WILDS-Camelyon WILDS-iWildCam DomainNet

Metric WG
Acc.

Avg.
Acc.

WG
Acc.

Avg.
Acc. OOD Acc.

OOD
Macro

F1

ID
Macro

F1
Avg. Acc.

SotA 91.4(1.1)
[5]

93.5(0.3)
[5]

35.5(0.8)
[16]

52.8(1.2)
[16] 93.3(1.0) [17] 38.5(0.6)

[18]
52.8(1.4)

[18] 49.8(0.1) [19]

Our Best 92.6(0.8) 94.1(0.7) 40.7(1.0) 57.4(2.1) 94.7(0.2) 43.2(0.9) 52.1(2.4) 52.1(1.1)
Our ERM Best 92.6(0.8) 94.1(0.7) 40.2(1.6) 57.1(1.0) 94.5(0.5) 41.3(2.4) 55.7(2.1) 49.8(0.1)

Table 1: The datasets with distribution shift evaluated in this paper. Spurious correlation (Water-
birds), subpopulation shift (FMoW) and out-of-distribution generalization (Camelyon, iWildCam and
DomainNet) are considered. Our best result achieved by ERM combined with data augmentation
matches state-of-the-art results on the five datasets, demonstrating the importance of selecting pre-
trained models in improving distribution shift robustness. The state-of-the-art result is from [20] and
[21] for a single model without model averaging and ensemble.
shifts. In the past several years, there has been a line of work proposed to study distribution shifts
from different perspectives [7, 5, 8, 6]. Arjovsky et al. [7] proposed Invariant Risk Minimization
(IRM) to learn invariant prediction across multiple training environments, which does not need the
assumption of i.i.d. in training and testing. Follow-up works of IRM consider both theoretical and
empirical aspects (e.g., see [9, 10, 11, 12]). On the other hand, robust optimization is a popular
technique for distribution shift problems, which minimizes the worst-case loss. Examples include
Distributionally Robust Optimization (DRO) [13, 14, 5], minimax Risk Extrapolation (MM-REx) [8],
and Heterogeneous Risk Minimization (HRM) [15]. However, most existing methods focus on
developing new specialized learning algorithms to improve the generalization under distribution
shifts, without considering deep learning (DL) characteristics such as training procedure and model
architecture which are the important components to performance improvement in deep learning.

In the paper, we empirically investigate the importance of pre-training and model architectures for
generalization under distribution shift, with a focus on image classification tasks. To this end, we
consider Empirical Risk Minimization (ERM) [22], the most commonly-used learning paradigm in
DL. We identify the source of naturally arising distribution shifts and study the impact of pre-training,
which is carried out on a well-controlled training set without distribution shifts such as ImageNet
[23], on downstream datasets with distribution shifts when fine-tuning with data augmentations. The
contributions of our paper are:

1. We provide the first extensive empirical study on how pre-training and data augmentation
affect robustness to distribution shifts on various computer vision datasets. We consider seven
pre-training models (including self-supervised and supervised ResNets and ViT’s), three data
augmentations (including a group-aware mixup), and five datasets with distribution shifts (e.g.,
spurious correlation, subpopulation shift and OOD generalization), totaling 1,330 trained models.

2. We find that specialized algorithms such as GroupDRO [5] and CORAL [6] for distribution
shifts achieve the state-of-the-art performance with proper pre-trained models on some datasets,
while ERM with data augmentation is also a quite competitive baseline.

3. Comparing different pre-training strategies, models and data sizes, we summarize key obser-
vations about the impact of pre-training on distribution shifts, and provide practical tips on
selecting pre-trained models under different types of distribution shifts.

2 Related Work
Out-of-Distribution Generalization. The OOD generalization task assumes that the generation
processes of training and test samples conditioned on the target label are different. For example,
the environment or background of objects changes between training and test (WILDS-Camelyon,
WILDS-iWildCam, ImageNet-C [24]) or the visual features of objects are changed during test
(DomainNet, ImageNet-A [25]). Various methods have been proposed to improve the generalization
under OOD, including domain adversarial learning [26, 27] and domain feature aligning [6, 28].
We propose to study the performance of different OOD generalization algorithms including the
popular method CORAL [26], when different pre-trained models and data augmentation tricks are
used. Similar to the finding for spurious correlation, different pre-trained models have substantially
different impacts on OOD generalization. Key observations and tips about OOD generalization are
provided based on our empirical results. Please refer to the survey [29] for more methods on OOD
generalization.

The Impact of Pre-Training and Data Augmentation. [30] summarizes a framework for distribution
shift, consisting of spurious correlation, low-data shift and unseen data, and evaluates the performance
of representation learning, data augmentation and neural architectures. However, [30] analyzed those
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ERM GroupDRO CORALPT mode Model PT data Data Aug. Mixup GroupMix
MoCo ViT IN-1k 84.7(1.3) 83.5(2.8) 85.8(1.4) 86.7(0.8) 83.3(1.9)
MoCo R50 IN-1k 82.5(0.8) 86.7(0.7) 87.7(0.7) 88.1(0.8) 83.2(1.8)
MAE ViT IN-1k 81.7(2.0) 80.3(1.5) 82.2(2.5) 87.4(1.0) 80.0(2.3)

Sup.

ViT IN-1k 76.3(2.4) 79.5(4.5) 84.1(1.9) 87.0(1.1) 81.4(1.7)
R50 IN-1k 80.7(1.1) 82.6(2.5) 85.0(2.3) 87.6(0.4) 79.4(1.9)
ViT IN-21k 88.5(0.6) 88.2(1.2) 91.5(0.8) 92.6(0.5) 86.5(1.3)
R50 IN-21k 82.9(1.4) 86.5(1.3) 87.5(1.6) 86.6(1.1) 83.2(1.2)

Avg. Over Models 82.5 83.9 86.3 88.0 82.4
Table 2: WILDS-Waterbirds Result. We report the worse-group accuracy. The bold numbers are the
best performance in the row and the green numbers are the best performance in a column. GroupDRO
is a strong algorithm for spurious correlation and GroupMix substantially improves the DA and
Mixup baseline.

ERM GroupDRO CORALPT mode Model PT data Data Aug. Mixup GroupMix
MoCo ViT IN-1k 36.2(1.4) 37.0(1.7) 36.5(1.5) 35.2(1.6) 35.8(1.7)
MoCo R50 IN-1k 36.4(2.3) 36.0(1.2) 37.1(1.4) 37.2(1.1) 36.1(0.7)
MAE ViT IN-1k 39.1(0.5) 38.8(1.1) 40.2(1.6) 37.9(1.4) 40.4(0.8)

Sup.

ViT IN-1k 34.5(0.8) 34.4(0.3) 35.8(0.7) 35.8(1.8) 35.9(1.2)
R50 IN-1k 34.9(1.9) 35.9(1.8) 36.8(1.3) 36.1(1.6) 34.2(1.2)
ViT IN-21k 37.9(1.3) 38.5(0.9) 38.6(1.5) 39.0(1.0) 40.7(1.0)
R50 IN-21k 37.2(2.9) 38.4(0.6) 39.0(0.8) 37.1(1.9) 36.6(0.8)

Avg. Over Models 36.6 37.0 37.7 36.9 37.1
Table 3: WILDS-FMoW Result. The worse-group accuracy is reported. ERM is a quite competitive
baseline and the self-supervised pre-trained model MAE is more suitable to the satellite imaging data
than other models.

factors independently and only evaluated the pre-trained ResNet50. In contrast, our paper investigates
the de facto training setting in distribution shift problem, i.e., fine-tuning a pre-trained model on
a target task, and we comprehensively evaluate the performances of different pre-training models
and neural architectures when combined with data augmentation and fine-tuning. [4] focuses on the
role of data augmentation on domain generalization, where the visual features of objects are shifted
during test such as DomainNet [31] (Fig. 1), and draws a similar conclusion that ERM is a strong
baseline in their context. Our work uses the largest dataset in [4] as representative of domain shift
and studies the impact of pre-training in addition to the data augmentation. [32] provides a nice
benchmark on distribution shift consisting of different levels of semantic hierarchies with ImageNet
[23]. We do not evaluate on [32] because our study focuses on the performance of pre-trained models
on ImageNet in various downstream applications, instead of the subpopulation shift in ImageNet data.
[33] studies the domain generalization from the perspective of pre-training. The major differences
are: 1) our paper has a focus on both pre-trained models and data augmentation, especially mixup
and the proposed GroupMix, while [33] only considers pre-trained models; 2) we evaluate not only
supervised pre-trained models but also self-supervised pre-trained ViT and ResNet models, including
both MoCo and MAE training, while [33] only considers (semi) supervised pre-trained models; 3)
our paper evaluates on the WILDS benchmark in addition to the domain generalization data. Similar
to our GroupMix, [16] proposes to use a selective mix-up augmentation to interpolate samples with
the same label or the same environment. The difference is that we investigate the performance of
GroupMix on a variety of pre-trained models to reveal the impact of pre-training on the GroupMix.
[34] also studies the impact of pre-training on robustness to distribution shift, where they assume
there is an OOD training set for fine-tuning the classification layer. In our paper, there is no such a
strong assumption and we not only consider pre-training but also data augmentation in the fine-tuning.

3 Experiment Settings and Results
Our experiment uses seven pre-trained models, i.e., MoCo-ViT, MoCo-R50 [35], MAE pre-trained
[36] on ImageNet-1k (IN-1k), Supervised ViT and R50 pre-trained on ImageNet-1k and ImageNet-
21k (IN-21k). ERM, Mixup, GroupDRO, group-based Mixup and CORAL are evaluated on four
WILDS datasets (Waterbirds [5], Camelyon [37], FMoW [38], iWildCam [39]) and the large-scale
domain generalization dataset DomainNet [31]. See the Appendix for details of experiment.

We next report the experimental results. Data augmentation (DA), MixUp and GroupMix are included
as the generalized ERM algorithm since they are often considered as general data augmentation
methods in DL and simple to implement. Thus, we denote the DA, mixup and GroupMix as general
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ERM GroupDRO CORALPT mode Model PT data Data Aug. Mixup GroupMix
MoCo ViT IN-1k 89.9(2.1) 92.6(0.7) 92.6(0.9) 89.7(2.0) 92.7(0.4)
MoCo R50 IN-1k 90.9(1.3) 91.8(1.8) 90.6(2.9) 91.2(1.6) 88.2(4.6)
MAE ViT IN-1k 93.7(0.7) 94.4(0.4) 94.5(0.5) 94.4(0.2) 94.7(0.2)

Sup.

ViT IN-1k 90.1(1.2) 92.2(1.8) 93.3(0.8) 93.3(0.5) 92.9(1.1)
R50 IN-1k 85.5(4.6) 78.9(11.6) 80.3(8.5) 87.5(3.9) 78.9(11.6)
ViT IN-21k 93.9(0.7) 93.5(0.7) 94.2(0.3) 90.8(2.3) 93.5(0.7)
R50 IN-21k 93.7(0.3) 91.1(1.1) 89.6(2.7) 93.1(1.7) 91.1(1.1)

Avg. Over Models 91.1 90.6 90.7 91.4 90.3
Table 4: WILDS-Camelyon Result. We report the OOD average accuracy. GroupMix and CORAL
perform the best on Camelyon and MAE is the best pre-trained model for the tissue slide data in most
cases.

ERM GroupDRO CORALPT mode Model PT data Data Aug. Mixup GroupMix
MoCo ViT IN-1k 34.0(0.5) 31.7(2.1) 32.8(0.7) 13.5(1.0) 35.2(0.6)
MoCo R50 IN-1k 34.5(1.5) 36.8(1.6) 36.0(1.1) 20.8(0.8) 37.2(1.1)
MAE ViT IN-1k 28.4(2.0) 27.3(2.2) 28.0(2.9) 9.2(0.9) 31.4(2.6)

Sup.

ViT IN-1k 38.9(0.7) 41.0(0.7) 40.9(1.2) 20.5(0.5) 41.9(0.9)
R50 IN-1k 32.2(1.2) 32.8(1.4) 31.9(0.9) 18.9(0.8) 33.4(0.5)
ViT IN-21k 39.0(2.7) 41.3(2.4) 41.1(1.4) 19.0(1.2) 36.4(1.6)
R50 IN-21k 40.9(1.3) 40.8(0.4) 41.2(1.3) 24.0(0.8) 43.2(0.9)

Avg. Over Models 35.4 36.0 36.0 18.0 37.0
Table 5: WILDS-iWildCam Result. The macro F1 score of OOD data is reported as in WILDS
benchmark. CORAL is the best algorithm in most cases while GroupMix is also a strong baseline.
In the wild recognition task, supervised pre-training is generally better than the self-supervised
counterpart.

DA in the following content. In our experiment, DA is used with ERM (mixup and GroupMix),
GroupDRO and CORAL to make a fair comparison. On four WILDS datasets and DomainNet, we
report the result of fine-tuning seven pre-trained models with three different algorithms in Tabs. 2-6.
The bold numbers indicate the algorithm with the best performance when fixing the pre-trained model,
while the green number denotes the best pre-trained model for each algorithm. Next we analyze the
empirical result for the five datasets respectively.

4 Conclusion: Key Observations and Tips

Dataset ERM GroupDRO CORALDA Mixup GroupMix
Waterbirds 82.5 83.9 86.3 88.0 82.4

FMoW 36.6 37.0 37.7 36.9 37.1
Camelyon 91.1 90.6 90.7 91.4 90.3
iWildCam 35.4 36.0 36.0 18.0 37.0

DomainNet 45.8 44.7 44.2 37.8 45.7

Table 7: The performance of five learning algorithms on
all datasets, averaged over pre-trained models.

Self-supervised or supervised pre-
training? Fig. 1 shows the accuracy
of seven pre-trained models, averaged
over learning algorithms. For spurious
correlation and subpopulation shift
(Waterbirds and FMoW), self-supervised
pre-training has a clear benefit over the
supervised pre-training, when using the
IN-1k. It indicates that the high-level
features learned in supervised training are not robust to spurious correlation and subpopulation shift.
On Camelyon, MAE is better than the remaining models including ViT and R50 trained on IN-21k,
since the tissue images only contain low-level features. In contrast, the self-supervised model has
not much benefit over supervised ones on iWildCam and DomainNet for ViT models. The OOD
generalization in object recognition may need high-level features from the labels in pre-training. For
ResNet, when the pre-training data is insufficient, MoCo-R50 is better than Sup. R50 on IN-1k.

(a) Waterbirds (b) FMoW (c) Camelyon (d) iWildCam (e) DomainNet

M
et

ric
 (A

vg
.)

Self-Supervised Supervised ViT ResNet
Figure 1: The performance of seven pre-trained models on five datasets, averaged over five algorithms.
The triangle and circle denote self-supervised and supervised pre-trained model, while blue and
pink denote ViT and R50. The large and small marker mean pre-training with IN-21k and IN-1k
respectively.
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ERM GroupDRO CORALPT mode Model PT data Data Aug. Mixup GroupMix
MoCo ViT IN-1k 47.5(0.1) 46.7(0.1) 46.3(0.2) 37.6(0.0) 46.2(1.1)
MoCo R50 IN-1k 44.2(0.1) 41.6(0.1) 41.3(0.2) 35.9(0.1) 42.6(0.3)
MAE ViT IN-1k 43.6(0.2) 41.6(0.5) 41.5(0.6) 31.7(0.1) 43.5(0.1)

Sup.

ViT IN-1k 47.7(0.1) 47.3(0.1) 47.3(0.2) 42.4(0.0) 48.0(0.0)
R50 IN-1k 40.9(0.1) 39.2(0.1) 37.3(0.2) 33.3(0.2) 41.5(0.1)
ViT IN-21k 47.4(0.2) 47.8(0.2) 47.6(0.3) 40.8(0.2) 52.1(1.1)
R50 IN-21k 49.8(0.1) 48.5(0.1) 48.2(0.2) 43.1(0.0) 48.8(0.1)

Avg. Over Models 45.8 44.7 44.2 37.8 45.7
Table 6: Experimental Results on DomainNet. The six domains are set as held-out target domain
respectively and the averaged accuracy of six experimental results is reported. On the object
recognition data, supervised pre-training on IN-21k triumphs over other models.

ResNet or ViT? On Waterbirds, FMoW and Camelyon, ViT’s achieve the best performance, while
on iWildCam and DomainNet, the supervised pre-trained R50 on IN-21 achieves a better result than
the ViT counterpart. On Waterbirds, ViT’s benefit is quite substantial when pre-trained on IN-21k,
indicating that with more fine-grained labels, the spurious correlation problem can be alleviated
as a result of narrowed ambiguity. On OOD generalization datasets (Camelyon, iWildCam and
DomainNet), an interesting phenomenon is that ViT is more data-efficient in supervised pre-training
than R50: ViT outperforms R50 with a large margin using IN-1k while the benefit is washed out if
using the larger IN-21k.

Larger pre-training dataset leads to stronger robustness? Comparing the performance of different
pretraining sizes (corresponding to marker sizes in Fig. 1), the larger dataset IN-21k substantially
improves the performance of IN-1k in most cases. Thus, it is validated that generalization under
distribution shift in a downstream can be achieved by pre-training on a standard large-scale dataset.

Which learning algorithm is best? Tab. 7 shows the averaged accuracy of each algorithm over
pre-trained models. GroupDRO is the best training method on average when evaluated on Waterbirds
and Camelyon, where the data size is quite small and the difficulty of classification is not high (both
are binary classification task). In contrast, on large-scale datasets such as iWildCam and DomainNet,
GroupDRO is the worse one compared with others, indicating that GroupDRO is specialized for
small-scale data. CORAL is quite competitive on iWildCam and DomainNet but not on small datasets
such as Waterbirds. The possible reason is that CORAL relies on estimated means and variances of
features, whose stability and accuracy will be affected if the data is scarce. ERM with GroupMix is a
strong baseline on Waterbirds and FMoW, showing the importance of using group-information in
spurious correlation with spurious correlation and subpopulation shift. On Camelyon, iWildCam and
DomainNet, ERM with general DA is also quite competitive, ranking the first or second on the three
datasets.

Tips. Finally, from these observations, we provide tips for practitioners for improving robustness to
distribution shift:

1. For OOD generalization and spurious correlation in object recognition, use a supervised pre-
trained model with as much pre-training data as possible. When the pre-training data is limited,
self-supervised pre-trained models can be better.

2. If the target data is small, use algorithms respecting the group information such as GroupDRO
and GroupMix. If the target data is large, CORAL and ERM with general DA are quite
competitive.

3. For distribution shift in dense image classification, use a patch-based self-supervised pre-trained
model, e.g., MAE.
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[7] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

[8] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In
International Conference on Machine Learning, pages 5815–5826. PMLR, 2021.

[9] Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk minimization
games. In International Conference on Machine Learning, pages 145–155. PMLR, 2020.

[10] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimization. arXiv
preprint arXiv:2010.05761, 2020.

[11] Yo Joong Choe, Jiyeon Ham, and Kyubyong Park. An empirical study of invariant risk minimization.
arXiv preprint arXiv:2004.05007, 2020.

[12] Kartik Ahuja, Jun Wang, Amit Dhurandhar, Karthikeyan Shanmugam, and Kush R Varshney. Empirical or
invariant risk minimization? a sample complexity perspective. arXiv preprint arXiv:2010.16412, 2020.

[13] John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally
robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

[14] Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust optimiza-
tion with f-divergences. Advances in neural information processing systems, 29, 2016.

[15] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan Shen. Heterogeneous risk minimization. In
International Conference on Machine Learning, pages 6804–6814. PMLR, 2021.

[16] Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improving
out-of-distribution robustness via selective augmentation. In Proceeding of the Thirty-ninth International
Conference on Machine Learning, 2022.

[17] Alexander Robey, George J. Pappas, and Hamed Hassani. Model-based domain generalization. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 20210–20229. Curran Associates, Inc., 2021.

[18] John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy
Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation between out-of-
distribution and in-distribution generalization. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 7721–7735. PMLR, 18–24 Jul 2021.

[19] Chengqiu Dai, Fan Li, Xiyao Li, and Don Xie. Cadg: A model based on cross attention for domain
generalization. ArXiv, abs/2203.17067, 2022.

6



[20] Papers with code: DomainNet Benchmark (domain generalization). https://paperswithcode.com/
sota/domain-generalization-on-domainnet.

[21] WILDS Benchmark. https://wilds.stanford.edu/leaderboard/.

[22] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[24] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[25] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15262–15271, 2021.

[26] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. J. Mach. Learn.
Res., 17(1):2096–2030, jan 2016.

[27] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In Interna-
tional conference on machine learning, pages 1180–1189. PMLR, 2015.

[28] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[29] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

[30] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishnamurthy Dj
Dvijotham, and Ali Taylan Cemgil. A fine-grained analysis on distribution shift. In International
Conference on Learning Representations, 2022.

[31] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1406–1415, 2019.

[32] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation shift.
In International Conference on Learning Representations, 2021.

[33] Yaodong Yu, Heinrich Jiang, Dara Bahri, Hossein Mobahi, Seungyeon Kim, Ankit Singh Rawat, Andreas
Veit, and Yi Ma. An empirical study of pre-trained vision models on out-of-distribution generalization. In
NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications, 2021.

[34] Yuge Shi, Imant Daunhawer, Julia E Vogt, Philip HS Torr, and Amartya Sanyal. How robust are pre-trained
models to distribution shift? arXiv preprint arXiv:2206.08871, 2022.

[35] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

[36] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

[37] Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke Hermsen,
Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, et al. From detection of
individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge.
IEEE Transactions on Medical Imaging, 2018.

[38] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[39] Sara Beery, Elijah Cole, and Arvi Gjoka. The iwildcam 2020 competition dataset. arXiv preprint
arXiv:2004.10340, 2020.

[40] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

7

https://paperswithcode.com/sota/domain-generalization-on-domainnet
https://paperswithcode.com/sota/domain-generalization-on-domainnet
https://wilds.stanford.edu/leaderboard/


[41] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million
image database for scene recognition. IEEE transactions on pattern analysis and machine intelligence,
40(6):1452–1464, 2017.

[42] Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant learning. In
International Conference on Machine Learning, pages 2189–2200. PMLR, 2021.

[43] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy
Liang, and Chelsea Finn. Just train twice: Improving group robustness without training group information.
In International Conference on Machine Learning, pages 6781–6792. PMLR, 2021.

[44] Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham Neubig. Examining and combating spurious
features under distribution shift. In International Conference on Machine Learning, pages 12857–12867.
PMLR, 2021.

[45] Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel Synnaeve.
Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937, 2021.

[46] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can distort
pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054, 2022.

[47] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pages 5542–5550,
2017.

[48] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1657–1664, 2013.

[49] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5018–5027, 2017.

[50] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the
European conference on computer vision (ECCV), pages 456–473, 2018.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[52] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[53] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020.

[54] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer.
How to train your vit? data, augmentation, and regularization in vision transformers. arXiv preprint
arXiv:2106.10270, 2021.

[55] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for the
masses. arXiv preprint arXiv:2104.10972, 2021.

[56] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 18613–18624.
Curran Associates, Inc., 2020.

[57] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

[58] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

[59] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9640–9649, 2021.

8



A An Overview of Distribution Shift
We summarize two common sources of distribution shift in practice. The first source is the bias in
data, as a result of real-world bias. Assuming the data distribution is p(x,y) where y is an attribute
vector, the conditional distribution of one attribute given another p(yi|yj) may be high, indicating a
spurious correlation between yi and yj , e.g., the background and bird species in WILDS-Waterbirds.
Some marginal distributions of p(yi) may be relatively small or large, leading to a subpopulation
shift, e.g., the size of African images in WILDS-FMoW. The second source is the scarcity of data,
i.e., the dataset cannot contain all possible images from the support of p(x,y) as a result of the
high dimensionality of the continuous space. In other words, the training set contains data from a
certain distribution ptr(x|y) but the test set have a different distribution pte(x|y) ̸= ptr(x|y), e.g.,
WILDS-iWildCam [3] and DomainNet [31]. Note that these two types of distribution shifts could
be conceptually addressed by deliberately sampling a balanced dataset to avoid spurious correlation
and subpopulation shift, and collecting all possible data from the distribution support. But in reality,
we cannot obtain such a perfect dataset to train the model in many real-world applications. A
pre-trained model on a balanced large-scale dataset is often used as the initialization when training
on such downstream tasks, because the pre-trained model learns good representations and benefits
the optimization. Our work mainly investigates the impact of pre-training on distribution shift, and
aims to answer the following question: How does the pre-training, i.e., training on the standard
large-scale dataset that is more carefully curated, affect the fine-tuning result on downstream datasets
with distribution shift? To this end, we study different aspects of pre-training including training
strategies, neural architectures and pre-training data sizes in our paper and summarize our findings in
Section 4.

B Experimental Settings

In this section we discuss our experiment settings, including datasets, pre-trained models, and learning
algorithms.

B.1 Datasets

To have a comprehensive evaluation on the effect of pre-training and data augmentation, we use five
datasets that represent different types of distribution shifts. A general description of the five datasets
follows. For more details about the datasets, see the original papers [3] and [31].

WILDS-Waterbirds [3, 5] is a bird classification task and has two kinds of birds in two types of
environments. Specifically, bird images from CUB [40] are cropped and pasted to scene images from
Places [41]. The training set of Waterbirds has 3,498 landbirds on land, 1,057 waterbirds on water,
184 landbirds on water and 56 waterbirds on land, inducing a spurious correlation in the data: the
environment label (land/water) is correlated with the target label (waterbird/landbird). If the classical
ERM is used, the environment features will be exploited and the performance of minor groups will
be substantially worse than of major groups. Following the common practice [5, 42, 43, 44, 8], we
use the worse-group (WG) accuracy as a metric for robustness to spurious correlation and report
the average accuracy weighted by the training group size. As in WILDS benchmark [3], we use
the input resolution of 224×224, the training epoch of 200 and batch size of 128 in this paper. We
search the learning rate from {0.000001,0.000002, 0.000004, 0.000008, 0.00001, 0.00002, 0.00004,
0.00008} and weight decay (WD) from {0.0,1e-3,1e-2,1e-1,1.0}, α of mixup from {0.1,0.3,1.0}.
For GroupMix, we search the constant C from {1.0,3.0,10.0,30.0}. For GroupDRO, the constant
CDRO is searched from {1.0,2.0,4.0,8.0,16.0} and the step size ηq is fixed as 0.01 for all datasets.
For CORAL, the λ is searched from {0.3,1.0,3.0}. Thus, in the hyperparameter search stage, we train
960 models.

WILDS-FMoW [3, 38] is a satellite imagery data consisting of dense objects in the image. We use
the satellite images to predict land usage as in [3, 45, 46]. The images are divided into five groups
according to their regions (Asia, Europe, Africa, Americas and Oceania). Due to historical and
economic reasons, developing regions have fewer satellite images than developed regions. So in the
FMoW data, the Africa region (1,582 training images) has much fewer images than Europe (34,816
training images) or Americas (20,973 training images). With the unbalanced groups and the fact that
image features often vary across different continents, training with classical ERM may have a lower
accuracy in minor groups compared with major groups, and has the risk of learning biased models
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with discriminatory prediction. The input resolution is set as 224×224, the training epoch as 50 and
batch size as 72. We fix the WD as 0.0 following existing practice and search the learning rate from
{0.00001, 0.0001, 0.001} and the α from {0.1,0.3,1.0}. We do not use the adjustment GroupDRO on
this dataset and the following datasets. For GroupMix, we search C from {3.0,10.0,30.0,100.0}. The
λ in CORAL is searched from {0.3,1.0,3.0}. We trained 60 models for hyperparameter search on
FMoW.

WILDS-Camelyon [3, 37] contains tissue slide images from five hospitals, and the task is to predict
the presence of tumor tissue. The ways to collect and process the slide images differ among hospitals,
while it is often desired that the trained model on limited data from a few hospitals generalizes to
unseen data from a novel environment. Three hospitals are used for training, one hospital is for
validation and the other is for test. The input resolution is set as 96×96, the training epoch as 10
and batch size as 168. The WD and learning rate are searched from {0.000001, 0.000003, 0.00001,
0.00003, 0.0001, 0.0003, 0.001, 0.003, 0.01} and {0.0,1e-5,1e-4,1e-3,1e-2}. The α is searched
from {0.1,0.3,1.0}. For GroupMix, C is searched from {3.0,10.0,30.0,100.0}. For CORAL, the λ is
searched from {0.3,1.0,3.0}. So we trained 900 models in total for Camelyon for hyperparameter
search.

WILDS-iWildCam [3, 39] is collected by cameras in the wild, and the task is to predict wild animal
species. The data are split into 323 groups according to the location of cameras since the environment
has an impact on the image features. The trained model on certain groups is expected to generalize to
OOD, i.e., images from unseen or new cameras. As in [3], we use the Macro F1 score as the metric
of the performance on iWildCam. The input resolution is set as 448×448, the training epoch as 12
and batch size as 24. The learning rate is searched. The WD is fixed as 0.0, according to existing
experiment in [3] and the learning rate is searched from {0.000001, 0.000002, 0.000004, 0.000008,
0.00001, 0.00002, 0.00004, 0.00008,0.0001}. The α in mixup is searched from {0.1,0.2,0.4,1.0}.
For GroupMix, we search the constant C from {1.0,3.0,10.0,30.0}. For CORAL, the λ is searched
from {0.3,1.0,3.0}. In the hyperparameter search stage, we train 225 models.

DomainNet [31] is often used to test domain generalization or adaptation, and consists of six domains
that have the same categories but different image styles, e.g., painting, real and clipart. There are
several other domain generalization datasets but we use the DomainNet because it is the largest dataset
among its counterparts, e.g., PACS [47], VLCS [48], OfficeHome [49] and TerraIncognita [50]. We
follow the common practice [4] to train a model on five domains and evaluate the performance on
the held-out domain. Thus, we train six models since we repeat the process to test on each domain,
and report the average results. Following [4], the input resolution is set as 224×224 and the training
lasts for 5000 update steps. The batch size is 32 for each environment, resulting in a 32*5=160
samples for the whole batch. We search the learning rate from {0.00001, 0.0001, 0.001}, WD from
{0.0,1e-5,1e-4}, α from {0.1,0.3,1.0}. The C in GroupMix is searched from {1.0,3.0,10.0}, the λ in
CORAL is searched from {0.3,1.0,3.0}. This amounts to 810 trained models in this stage.

Finally, we use the PyTorch [51] code from WILDS [3] and DomainBed [4] benchmark. All of our
experiment is run on a single Nvidia-V100 GPU with 32GB.

B.2 Pre-Trained Models

The benchmarks in WILDS and DomainNet use a pre-trained ResNet [1] on ImageNet-1k [23] as
the initialization for training. Specifically, Waterbirds and iWildCam use ResNet50 [1], FMoW
and Camelyon use DenseNet121 [52]. In a domain generalization benchmark [4], the pre-trained
ResNet50 is the default model for DomainNet. In this work, the following seven pre-trained models
are evaluated to study the impact of pre-training strategies, neural architectures and pre-training data
size on the distribution shifts.

MoCo-R50 and MoCo-ViT-B/16 [35, 53] are self-supervised pre-trained models using contrastive
learning to learn generic visual features. We use pre-trained ResNet50 (R50) and ViT-B/16 from [53].

MAE-ViT-B/16 [36] uses a masked image modeling task for self-supervised pre-training of the
patch-based transformer architecture. We use the ViT-B/16 version of MAE.

Supervised ViT-B/16 and R50 that are trained on ImageNet-1k (IN-1k) and ImageNet-21k (IN-21k)
are evaluated. There are 1,281,167 images and 1,000 classes in IN-1k, and 14,197,122 images and
21,841 classes in IN-21k. We use ViT-IN-1k and ViT-IN-21k model from [54]. The R50-IN-21k
model is from [55]. Since all pre-trained ViT models have the same architecture, i.e., ViT-B/16, we
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use ViT for short in this paper. By comparing the performance of models pre-trained on 1k and 21k,
we can investigate the impact of pre-training data scale on downstream distribution shifts.

B.3 Learning Algorithms

ERM is the classical objective function used in ML. We note that in stochastic gradient descent, the
ERM is related to batch sampling. On Waterbirds and DomainNet, we follow the common practice
[5, 4] to use the weighted sampling so that each batch has the same number of samples for all groups.
On other datasets, the standard batch sampling is used.

Data augmentation. On Waterbirds, we use the standard data augmentation, i.e., random resizing
and cropping, and random horizontal flipping. On Camelyon and FMoW, we use the 2-level of
randaug [56]. On iWildCam, the 1-step randaug is used. On DomainNet, we use the standard data
augmentation in Waterbirds, along with color jittering and random grayscale.

Mixup [57] optimizes a convex hull of training samples to improve the generalization, by augmenting
the training data with random combination of input images and labels. Specifically, two samples x1
and x2 with labels y1 and y2 will generate a new training sample as follows

λ ∼ Beta(α, β), x′ = λx1 + (1− λ)x2, y′ = λy1 + (1− λ)y2, (1)
where λ is sampled from a Beta distribution with parameters α and β.

GroupDRO [5]. GroupDRO takes {(xi, yi, gi)} as the input, where the gi is the group label for xi,
and updates the network by minimizing a group-weighted loss. Specifically, the group weight of jth
group is updated as

qj(t+ 1) = qj(t) exp(ηq
1

Nj(t+ 1)

∑
xi∈gj

l(xi, yi)) = qj(t) exp(ηqlj(t+ 1)), (2)

where the ηq is the step size for group weight update, Nj(t+ 1) is the number of samples from jth
group in the current batch. For GroupDRO with adjustment, there is an extra term CDRO/

√
nj added

in ηqlj(t+ 1) of Equation 2. We use the shorthand notation lj(t+ 1) for the jth group’s loss in the
batch. Then the loss is weighted in a group-wise way,

L(t+ 1) = qj(t+ 1)

G∑
j=1

lj(t+ 1). (3)

GroupMix We add the group information in the mixup step,

λ ∼ Beta(g
(b)
1 α, g

(b)
2 β), (4)

x′ = g
(x)
1 λx1 + g

(x)
2 (1− λ)x2, (5)

y′ = g
(l)
1 λy1 + g

(l)
2 (1− λ)y2. (6)

The default GroupMix in our paper is to set g(b)1 = g
(b)
2 = g

(x)
1 = g

(x)
2 = 1 and g

(l)
1,2 is related to group

size, i.e., the number of training samples in a group. Assume the number of training samples of jth
group is nj , the group weight is defined as the output of a softmax function gj = softmax(C/

√
nj)

where the C is a hyperparameter. So the summation of group weights is one and smaller groups have
larger weights. As in the main paper, we use the function g(·) for x to denote the group weight of x.

We also investigate three variants of GroupMix, i.e.,

2) g(b)1 = γg(x1) and g
(b)
2 = γg(x2), keep other four weights to be 1. The γ > 0 is a constant

hyperparameter to control the parameters in Beta distribution. To keep a stable sampling for two
input images from the same group, we fix the α, β to be 0.1 if two images are from the same group.
This variant uses the property of Beta distribution to give a larger λ for an image from minor groups.

3) g(b)1 = γg(x1) and g
(b)
2 = γg(x2), g

(x)
1 = g

(x)
2 = 1.0 and g

(l)
1 = g(x1), g

(l)
2 = g(x2). Then

normalize each sample’s weight so that the summation of weight for a batch is 1. The difference
between this method and 2) is that the label is multiplied by group weight and the coefficient/weight
for losses is normalized.

4) g(x)1 = g
(x)
2 = g

(b)
1 = g

(b)
2 = 1, g(l)1 = g(x1), g

(l)
2 = g(x2) and normalize the loss weights as in

the third variant. This is the normalized version of the default GroupMix.

11



Waterbirds FMoW Camelyon iWildCam
Metric WG Acc. Avg. Acc. WG Acc. Avg. Acc. OOD Acc. OOD Macro F1
ERM 63.7(1.9) 97.0(0.2) 34.8(1.90) 55.6(0.23) 70.8(7.2) 32.0(1.5)

GroupDRO 91.4(1.1) 93.5(0.3) 30.8(0.18) 52.1(0.50) 68.4(7.3) 23.9(2.1)
IRM 67.4(5.2) 73.4(9.7) 30.0(1.37) 50.8(0.13) 64.2(8.1) 15.1(4.9)

CORAL 79.4(1.9) 94.1(0.9) 31.7(1.24) 50.5(0.36) 59.5(7.7) 32.8(0.1)
ERM+data aug 80.7(1.1) 93.6(1.4) 34.8(1.48) 55.4(0.52) 82.0(7.4) 32.2(1.2)
ERM+Mixup 82.6(2.5) 93.7(1.3) 36.8(0.93) 55.0(0.73) 91.8(0.7) 32.8(1.4)

ERM+GroupMix 85.0(2.3) 89.6(2.6) 39.0(1.22) 54.8(0.92) 92.7(0.2) 31.9(0.9)
Table 8: WILDS benchmarks with data augmentation, mixup and GroupMix, using the default
pre-trained model in each dataset. With mixup or GroupMix, the ERM outperforms GroupDRO, IRM
and CORAL on FMoW, Camelyon and iWildCam.

PT Model Metric GroupMix GroupDROV1 V2 V3 V4

Sup.,ViT,IN-21k WG Acc. 91.5(0.8) 92.0(1.1) 92.6(0.8) 91.9(0.9) 92.6(0.5)
Avg. Acc. 93.6(1.0) 95.6(0.6) 94.1(0.7) 96.0(0.5) 93.2(0.5)

Table 9: Worse-group (Row 3) and average (Row 4) test accuracy of different versions of GroupMix
on Waterbirds, compared with GroupDRO. GroupMix-v3 achieves the same worse-group accuracy
as GroupDRO, demonstrating the potential of GroupMix. Also note that the average accuracy of
GroupMix is generally higher than that of GroupDRO.

CORAL [6] aligns the feature means and covariances of different groups by minimizing the squared
L2/Frobenius norm of the difference in means/covariances, i.e.,

λ(∥µj − µk∥22 + ∥Σj −Σk∥2F ), (7)

where the j and k denote two groups and the mean and covariance are computed from the features of
two groups, i.e., the last backbone layer’s output.

B.4 Training Settings

We use the official training/validation/testing split for WILDS datasets. For DomainNet, if a domain
is used for training, then the data is randomly split into 80% and 20% as training and validation set
following [4]. As the de facto setting in WILDS and DomainBed benchmark, the training starts with
a pre-trained model and optimizes all parameters with the training data. In other words, we study
the performance of fine-tuning all parameters of a pre-trained model on distribution-shift datasets.
The training epochs/steps are set as the same in the WILDS [3] or DomainBed [4] benchmark. On
WILDS datasets, we use the official (out-of-distribution) validation set to do the model selection. On
DomainNet, we use the training domain validation set in the model selection, as suggested by [4].
In Table 8, the optimizer is the same as the benchmark. In all other experiments, AdamW [58] is
used as the optimizer. We search the hyperparameters for each setting by the grid search, where the
parameter space is determined by either existing training practice or our pilot study on those datasets
and models. For the search space for each dataset, please see the appendix. In total, we trained
about 3000 models during the hyperparameter searching. Following the common practice [3, 4], on
WILDS datasets, we report the mean and standard deviation of 5 trials; on DomainNet, we report
the result of 3 trials. The model selection (early-stopping) uses the default validation ood set, i.e.,
choose the model with the best validation accuracy. Different from the original WILDS benchmark,
the hyperparameters are chosen based on the accuracy of the test ood set, instead of the validation
ood set.

C More Experimental Result

Tab. 8 shows the performance of ERM with DA, mixup and GroupMix, compared on several WILDS
baselines using the pre-trained models. On Camelyon, we use a pre-trained DenseNet121, which is
different from the default setting of WILDS benchmark. Except for Waterbirds, ERM with general
DA achieves the best result. On Waterbirds, GroupMix substantially improves ERM with other types
of data augmentation. For the result of ERM on DomainNet, [4] draws a similar conclusion that
ERM with data augmentation is a quite strong baseline on all popular domain generalization datasets.
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Waterbirds FMoW
Metric WG Acc. Avg. Acc. WG Acc. Avg. Acc.
ERM 63.7(1.9) 97.0(0.2) 34.8 (1.9) 55.6 (0.2)

ERM+data aug 80.7(1.1) 93.6(1.4) 34.8(1.5) 55.4 (0.5)
GroupDRO 91.4(1.1) 93.5(0.3) 30.8(0.2) 52.1 (0.5)

IRM 67.4(5.2) 73.4(9.7) 30.0(1.4) 50.8 (0.1)
CORAL 79.4(1.9) 94.1(0.9) 31.7(1.2) 50.5 (0.4)

ERM (MoCo, ViT-B, IN-1k) 84.7(1.3) 90.1(1.94) 36.2(1.4) 55.8(0.5)
ERM (MoCo, R50, IN-1k) 82.5(0.8) 92.7(0.9) 36.4(2.3) 53.8(1.0)
ERM (MAE, ViT-B, IN-1k) 81.7(2.0) 92.8(2.1) 39.1(0.5) 58.1(0.4)
ERM (Sup., ViT-B, IN-1k) 76.3(2.4) 94.7(0.6) 34.5(0.8) 56.4(0.4)
ERM (Sup., R50, IN-1k) 80.7(1.1) 93.6(1.4) 34.9(1.9) 52.3(0.7)

ERM (Sup., ViT-B, IN-21k) 88.5(0.6) 96.2(0.7) 37.9(1.3) 59.2(0.8)
ERM (Sup., R50, IN-21k) 82.9(1.4) 96.0(0.5) 37.2(2.9) 55.1(1.3)

GroupDRO (MoCo, ViT-B, IN-1k) 86.7(0.8) 90.1(0.9) 35.2(1.6) 55.5(1.0)
GroupDRO (MoCo, R50, IN-1k) 88.1(0.9) 90.6(0.6) 37.2(1.1) 54.5(0.7)
GroupDRO (MAE, ViT-B, IN-1k) 87.4(1.0) 88.6(0.8) 37.9(1.4) 57.8(0.6)
GroupDRO (Sup., ViT-B, IN-1k) 87.0(1.1) 88.8(1.4) 35.8(1.8) 56.5(0.4)
GroupDRO (Sup., R50, IN-1k) 87.6(0.4) 88.5(0.7) 36.1(1.6) 52.0(0.7)

GroupDRO (Sup., ViT-B, IN-21k) 92.6(0.5) 93.2(0.5) 39.0(1.0) 59.2(0.5)
GroupDRO (Sup., R50, IN-21k) 86.6(1.1) 93.5(0.3) 37.1(1.9) 55.9(0.7)
CORAL (MoCo, ViT-B, IN-1k) 83.3(1.9) 93.1(1.2) 35.8(1.7) 53.5(1.7)
CORAL (MoCo, R50, IN-1k) 83.2(1.8) 92.6(1.7) 36.1(0.7) 53.3(0.7)
CORAL (MAE, ViT-B, IN-1k) 80.0(2.3) 93.7(0.6) 40.4(1.0) 54.8(0.8)
CORAL (Sup., ViT-B, IN-1k) 81.4(1.7) 94.2(1.3) 35.9(1.2) 53.1(1.5)
CORAL (Sup., R50, IN-1k) 79.4(1.9) 94.1(0.9) 34.2(1.2) 52.0(1.3)

CORAL (Sup., ViT-B, IN-21k) 86.5(1.3) 95.7(0.6) 40.7(1.0) 57.4(2.1)
CORAL (Sup., R50, IN-21k) 83.2(1.2) 96.1(0.5) 36.6(0.8) 54.6(1.4)
Mixup (MoCo, ViT-B, IN-1k) 83.5(2.7) 92.7(1.9) 37.0(1.7) 56.4(0.3)
Mixup (MoCo, R50, IN-1k) 86.7(0.7) 93.4(0.7) 36.0(1.2) 56.7(0.2)
Mixup (MAE, ViT-B, IN-1k) 80.3(1.5) 94.1(1.1) 38.8(1.1) 58.4(0.7)
Mixup (Sup., ViT-B, IN-1k) 79.5(4.5) 94.5(1.8) 34.4(0.3) 56.5(0.5)
Mixup (Sup., R50, IN-1k) 82.6(2.5) 93.7(1.3) 35.9(1.8) 54.6(0.7)

Mixup (Sup., ViT-B, IN-21k) 88.2(1.2) 96.9(1.3) 38.5(0.9) 60.0(0.2)
Mixup (Sup., R50, IN-21k) 86.5(1.3) 95.3(0.5) 38.4(0.6) 57.6(0.7)

GroupMix (MoCo, ViT-B, IN-1k) 85.8(1.4) 89.6(1.2) 36.5(1.5) 56.1(0.6)
GroupMix (MoCo, R50, IN-1k) 87.7(0.7) 91.0(0.7) 37.1(1.4) 55.2(1.3)
GroupMix (MAE, ViT-B, IN-1k) 82.2(2.5) 92.4(1.6) 40.2(1.6) 57.1(1.0)
GroupMix (Sup., ViT-B, IN-1k) 84.1(1.9) 90.8(1.9) 35.8(0.7) 54.4(0.8)
GroupMix (Sup., R50, IN-1k) 85.0(2.3) 89.6(2.6) 36.8(1.3) 53.5(1.7)

GroupMix (Sup., ViT-B, IN-21k) 91.5(0.8) 93.6(1.0) 38.6(1.5) 60.1(0.2)
GroupMix (Sup., R50, IN-21k) 87.5(1.6) 93.5(0.6) 39.0(0.8) 58.1(0.5)

Table 10: The full result of Waterbirds and FMoW with worse-group accuracy and averaged accuracy.

C.1 Variants of GroupMix

We evaluate four variants of GroupMix on Waterbirds. In addition to original V1, we consider the
following 3 variants: 2) the weight g(b)1 , g

(b)
2 is proportional to g(x1), g(x2), which gives larger

λ to a sample from minor groups, and keep other weights 1; 3) (g
(b)
1 , g

(b)
2 ) ∝ (g(x1), g(x2)),

g
(x)
1 = g

(x)
2 = 1.0, g

(l)
1 = g(x1), g

(l)
2 = g(x2) and normalize the loss weight so that the weight sums

to 1 as in ERM; 4) g(b)1 = g
(b)
2 = g

(x)
1 = g

(x)
2 = 1.0, g(l)1 = g(x1), g

(l)
2 = g(x2) and normalize

the weight as in 3). Tab. 9 shows the result of four variants, where the GroupMix-V3 is the best
one in terms of worse-case accuracy and matches the performance of GroupDRO. It indicates that
the group-condition sampling can further improve the performance of GroupMix. Moreover, all
versions of GroupMix have a higher average accuracy than GroupDRO, because mixup alleviates the
overfitting in training.
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A) Model selection: Out-of-distribution validation set
ERM GroupDRO CORALPT Model Data Aug. Mixup GroupMix

MoCo-ViT-IN-1k 34.0(0.5) 51.1(1.0) 31.7(2.1) 49.3(1.1) 32.8(0.7) 48.7(1.7) 13.5(1.0) 22.6(1.2) 35.2(0.6) 47.5(2.1)
MoCo-R50-IN-1k 34.5(1.5) 51.7(1.2) 36.8(1.6) 51.2(1.4) 36.0(1.1) 50.2(2.0) 20.8(0.8) 30.2(1.0) 37.2(1.1) 51.1(1.6)
MAE-ViT-IN-1k 28.4(2.0) 44.3(1.7) 27.3(2.2) 44.6(1.9) 28.0(2.9) 44.5(2.0) 9.2(0.9) 14.7(1.1) 31.4(2.6) 42.1(1.2)
Sup-ViT-IN-1k 38.9(0.7) 53.6(1.3) 41.0(0.7) 54.7(1.2) 40.9(1.2) 54.6(1.1) 20.5(0.5) 30.2(1.1) 41.9(0.9) 51.8(1.5)
Sup-R50-IN-1k 32.2(1.2) 47.0(1.4) 32.8(1.4) 49.6(0.6) 31.9(0.9) 48.4(1.2) 18.9(0.8) 28.9(0.7) 33.4(0.5) 48.1(1.2)
Sup-ViT-IN-21k 39.0(2.7) 55.4(2.4) 41.3(2.4) 55.7(2.1) 41.1(1.4) 57.2(0.4) 19.0(1.2) 28.7(1.5) 36.4(1.6) 47.3(1.8)
Sup-R50-IN-21k 40.9(1.3) 55.5(0.9) 40.8(0.4) 55.1(1.0) 41.2(1.3) 55.0(1.0) 24.0(0.8) 33.4(0.7) 43.2(0.9) 52.1(2.4)

B) Model selection: In-distribution (ID) validation set
ERM GroupDRO CORALPT Model Data Aug. Mixup GroupMix

MoCo-ViT-IN-1k 32.5(0.8) 49.8(0.6) 30.6(1.6) 47.8(1.7) 33.6(1.5) 48.8(1.5) 13.4(0.5) 21.9(1.7) 36.2(0.7) 48.9(2.0)
MoCo-R50-IN-1k 34.9(1.6) 51.7(1.1) 36.5(1.4) 50.6(1.3) 36.1(1.1) 49.0(1.5) 20.8(0.8) 30.7(0.8) 37.9(1.2) 50.6(1.6)
MAE-ViT-IN-1k 28.6(1.6) 43.9(1.4) 27.4(1.8) 44.7(1.9) 28.1(3.0) 43.9(2.7) 9.6(1.3) 14.8(1.5) 31.8(1.9) 42.3(1.8)
Sup-ViT-IN-1k 39.1(0.9) 54.0(1.0) 40.3(1.5) 54.5(2.0) 40.2(1.4) 53.2(0.8) 20.3(0.4) 30.0(0.8) 42.2(0.9) 51.5(1.2)
Sup-R50-IN-1k 31.1(0.9) 45.6(0.4) 32.6(1.2) 49.9(0.9) 31.8(0.7) 47.7(1.0) 19.3(0.6) 29.8(1.3) 34.4(0.9) 47.6(1.4)
Sup-ViT-IN-21k 38.4(2.9) 54.9(2.0) 40.7(1.9) 55.3(2.1) 41.6(2.2) 56.1(1.2) 18.7(1.5) 28.8(1.5) 36.6(0.8) 47.5(1.2)
Sup-R50-IN-21k 40.0(0.6) 55.1(1.1) 40.4(0.8) 54.8(1.6) 40.4(2.0) 54.8(1.6) 23.9(0.9) 33.5(0.8) 43.2(0.8) 52.8(1.7)

Table 11: WILDS-iWildCam result of OOD and ID validation set model selection. The left and right
cell of each learning algorithm denote OOD and ID Macro F1 score. The best performance in each
column is highlighted.

clipart infograph painting quickdraw real sketch Avg
ERM (MoCo, ViT-B, IN-1k) 66.8 ± 0.2 24.2 ± 0.3 54.5 ± 0.1 17.3 ± 0.3 65.7 ± 0.1 56.4 ± 0.1 47.5 ± 0.1
ERM (MoCo, R50, IN-1k) 62.5 ± 0.1 22.0 ± 0.2 50.5 ± 0.1 14.5 ± 0.2 62.4 ± 0.1 53.3 ± 0.1 44.2 ± 0.1
ERM (MAE, ViT-B, IN-1k) 61.8 ± 0.1 21.5 ± 0.1 49.4 ± 0.4 17.4 ± 0.4 59.6 ± 0.4 51.7 ± 0.3 43.6 ± 0.2

ERM (Supervised, ViT-B, IN-1k) 67.5 ± 0.2 23.6 ± 0.2 54.1 ± 0.3 17.6 ± 0.2 68.7 ± 0.1 54.7 ± 0.2 47.7 ± 0.1
ERM (Supervised, R50, IN-1k) 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9 ± 0.1

ERM (Supervised, ViT-B, IN-21k) 68.1 ± 0.3 23.1 ± 0.2 54.1 ± 0.1 18.0 ± 0.5 65.6 ± 0.3 55.7 ± 0.2 47.4 ± 0.2
ERM (Supervised, R50, IN-21k) 67.7 ± 0.1 26.5 ± 0.2 57.1 ± 0.1 16.2 ± 0.1 73.2 ± 0.1 58.2 ± 0.2 49.8 ± 0.1

GroupDRO (MoCo, ViT-B, IN-1k) 50.8 ± 0.3 22.0 ± 0.1 43.4 ± 0.2 12.7 ± 0.1 53.3 ± 0.1 43.6 ± 0.1 37.6 ± 0.0
GroupDRO (MoCo, R50, IN-1k) 50.7 ± 0.4 18.5 ± 0.2 39.5 ± 0.2 10.0 ± 0.2 53.2 ± 0.3 43.4 ± 0.3 35.9 ± 0.1
GroupDRO (MAE, ViT-B, IN-1k) 44.5 ± 0.5 19.5 ± 0.4 32.8 ± 0.2 11.1 ± 0.4 45.6 ± 0.5 36.9 ± 0.4 31.7 ± 0.1
GroupDRO (Sup., ViT-B, IN-1k) 60.6 ± 0.2 20.9 ± 0.4 46.8 ± 0.4 13.8 ± 0.4 64.6 ± 0.1 47.6 ± 0.2 42.4 ± 0.0
GroupDRO (Sup., R50, IN-1k) 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3 ± 0.2

GroupDRO (Sup., ViT-B, IN-21k) 58.8 ± 0.2 20.5 ± 0.7 44.9 ± 0.4 15.4 ± 0.5 59.6 ± 0.1 45.7 ± 0.5 40.8 ± 0.2
GroupDRO (Sup., R50, IN-21k) 59.1 ± 0.2 22.3 ± 0.1 49.6 ± 0.1 11.0 ± 0.1 66.4 ± 0.1 50.2 ± 0.2 43.1 ± 0.0
CORAL (MoCo, ViT-B, IN-1k) 66.8 ± 0.1 16.1 ± 6.5 54.9 ± 0.1 17.9 ± 0.3 65.5 ± 0.1 56.2 ± 0.6 46.2 ± 1.1
CORAL (MoCo, R50, IN-1k) 61.4 ± 0.6 20.6 ± 0.2 47.4 ± 0.2 13.8 ± 0.4 59.6 ± 0.4 52.5 ± 0.4 42.6 ± 0.3
CORAL (MAE, ViT-B, IN-1k) 61.9 ± 0.2 21.6 ± 0.1 49.4 ± 0.2 16.8 ± 0.4 59.7 ± 0.1 51.7 ± 0.5 43.5 ± 0.1
CORAL (Sup., ViT-B, IN-1k) 67.8 ± 0.2 23.9 ± 0.2 55.1 ± 0.3 17.5 ± 0.1 68.6 ± 0.2 55.2 ± 0.3 48.0 ± 0.0
CORAL (Sup., R50, IN-1k) 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5 ± 0.1

CORAL (Sup., ViT-B, IN-21k) 69.5 ± 0.1 24.8 ± 0.1 56.5 ± 0.1 19.9 ± 0.5 67.2 ± 0.1 57.5 ± 0.4 52.1 ± 1.1
CORAL (Sup., R50, IN-21k) 67.2 ± 0.4 25.2 ± 0.2 55.7 ± 0.1 14.9 ± 0.3 71.5 ± 0.2 58.6 ± 0.2 48.8 ± 0.1
Mixup (MoCo, ViT-B, IN-1k) 65.0 ± 0.3 23.4 ± 0.1 54.3 ± 0.2 18.1 ± 0.5 63.7 ± 0.2 55.4 ± 0.3 46.7 ± 0.1
Mixup (MoCo, R50, IN-1k) 58.7 ± 0.5 19.0 ± 0.2 49.0 ± 0.4 13.2 ± 0.2 58.8 ± 0.2 51.2 ± 0.4 41.6 ± 0.1
Mixup (MAE, ViT-B, IN-1k) 59.7 ± 0.1 20.1 ± 0.7 47.6 ± 0.4 17.0 ± 0.1 55.0 ± 1.6 50.2 ± 0.2 41.6 ± 0.5
Mixup (Sup., ViT-B, IN-1k) 66.9 ± 0.2 23.4 ± 0.3 54.0 ± 0.4 17.1 ± 0.2 67.8 ± 0.2 54.4 ± 0.3 47.3 ± 0.1
Mixup (Sup., R50, IN-1k) 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2 ± 0.1

Mixup (Sup., ViT-B, IN-21k) 68.4 ± 0.3 23.8 ± 0.6 54.4 ± 0.7 19.8 ± 0.4 65.1 ± 0.2 55.1 ± 0.6 47.8 ± 0.2
Mixup (Sup., R50, IN-21k) 65.7 ± 0.2 24.3 ± 0.2 57.0 ± 0.5 14.9 ± 0.1 70.9 ± 0.2 58.3 ± 0.2 48.5 ± 0.1

GroupMix (MoCo, ViT-B, IN-1k) 64.0 ± 0.5 23.6 ± 0.1 54.3 ± 0.4 17.5 ± 0.3 62.9 ± 0.6 55.1 ± 0.3 46.3 ± 0.2
GroupMix (MoCo, R50, IN-1k) 58.8 ± 0.2 19.5 ± 0.3 47.6 ± 0.8 12.9 ± 0.1 57.7 ± 0.5 51.3 ± 0.4 41.3 ± 0.2
GroupMix (MAE, ViT-B, IN-1k) 58.6 ± 0.9 20.7 ± 0.4 45.8 ± 2.5 17.2 ± 0.3 56.7 ± 0.1 50.2 ± 0.2 41.5 ± 0.6
GroupMix (Sup., ViT-B, IN-1k) 66.8 ± 0.3 23.4 ± 0.5 54.4 ± 0.9 17.3 ± 0.1 67.5 ± 0.1 54.3 ± 0.4 47.3 ± 0.2
GroupMix (Sup., R50, IN-1k) 52.9 ± 0.2 17.2 ± 0.3 43.3 ± 0.8 11.8 ± 0.4 51.5 ± 0.3 47.3 ± 0.2 37.3 ± 0.2

GroupMix (Sup., ViT-B, IN-21k) 67.8 ± 0.6 23.7 ± 0.5 54.5 ± 0.5 19.4 ± 0.5 65.4 ± 0.2 55.0 ± 0.6 47.6 ± 0.3
GroupMix (Sup., R50, IN-21k) 65.6 ± 0.1 24.3 ± 0.4 55.9 ± 0.7 14.3 ± 0.1 70.8 ± 0.3 58.2 ± 0.2 48.2 ± 0.2

Table 12: The full experimental result on DomainNet.

D The full experimental results
Tab. 10 shows the full result of Waterbirds and FMoW in our paper, including the averaged accuracy.
On Waterbirds, it is worth noting that the averaged accuracy of GroupMix is generally higher than
that of GroupDRO. On FMoW, even though the worse-group accuracy of CORAL is higher than
GroupMix, the average accuracy of GroupMix is significantly higher than CORAL’s. In conclusion,
ERM with GroupMix is quite competitive in both worse-group accuracy and averaged performance.

Tab. 11 shows the result of WILDS with ID and OOD Macro F1. To compare the difference between
ID and OOD validation set based model selection, we report the result using ID validation set in
the model selection in Tab. 11.B. We observe that CORAL has the drawback of sacrificing the ID
accuracy to achieve a high OOD accuracy, whil GroupMix does not reduce the ID accuracy compared
with DA and Mixup. Thus, the ERM with data augmentation which uses group information is a
strong baseline in both ID and OOD distribution. The table also shows that the two model selection
methods do not differ at a significant level. For example, the top-1 models in Tab. 11.A and B overlap
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Figure 2: The correlation analysis between ImageNet accuracy of a pre-trained model and its
downstream performance under distribution shift. The x-axis is IN accuracy and the y-axis is the
performance of distribution shift in each dataset. The Pearson’s R and p value of the linear regression
are shown in each figure.

in most learning algorithms. So the ID validation set based model selection will not change our
general conclusion in the main paper.

Tab. 12 reports the result of 6 domain generalization accuracy for each experimental setting. It
is interesting that on the two most challenging domains, i.e., infograph and quickdraw, ViT and
R50 supervised pre-trained on IN-21k have quite different performance. Sup-ViT-IN21k is better at
generalizing to quickdraw, the most difficult domain, while Sup-R50-IN21k is better at infograph.
This phenomenon indicates that the performance in domain generalization can be further improved
by using an ensemble of different neural architectures.

Fig.2 shows the result of linear regression between ImageNet (IN) [23] test accuracy of a pre-trained
model and its performance in a target task with distribution shift. For self-supervised models, we use
the linear probing result as the IN accuracy as reported in their paper [36, 59, 35]. Fig.2 shows all
the regression analyses of learning algorithms and datasets. For Waterbirds, the correlation between
IN accuracy and downstream performance is statistically significant for GroupMix and CORAL. On
iWildCam and DomainNet, the correlation is more obvious than on Waterbirds. However, on FMoW
and Camelyon, there is no significant correlation between the two performances. This phenemenon
further validates our hypothesis that for object recognition task, increasing the performance on the
standard dataset (IN) is helpful for downstream tasks under distribution shift. But the benefit of IN
performance is no longer valid if the downstream task has quite different visual features such as dense
images in FMoW and Camelyon.
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