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ABSTRACT

Machine learning models based on the aggregated outputs of submodels, either at
the activation or prediction levels, lead to strong performance. We study the in-
terplay of two popular classes of such models: ensembles of neural networks and
sparse mixture of experts (sparse MoEs). First, we show that the two approaches
have complementary features whose combination is beneficial. Then, we present
partitioned batch ensembles, an efficient ensemble of sparse MoEs that takes the
best of both classes of models. Extensive experiments on fine-tuned vision Trans-
formers demonstrate the accuracy, log-likelihood, few-shot learning, robustness,
and uncertainty improvements of our approach over several challenging baselines.
Partitioned batch ensembles not only scale to models with up to 2.7B parameters,
but also provide larger performance gains for larger models.

1 INTRODUCTION

Neural networks typically use all their parameters to process an input. Sustaining the growth of such
models—reaching today up to 100B parameters (Brown et al., 2020)—is challenging, e.g., due to
their high computational and environmental costs (Strubell et al., 2019; Patterson et al., 2021). In this
context, sparse mixtures of experts (sparse MoEs) employ conditional computation (Bengio et al.,
2013) to combine multiple submodels (experts) and route examples to certain experts (Shazeer et al.,
2017; Lepikhin et al., 2021; Fedus et al., 2021; Riquelme et al., 2021; Yang et al., 2021). Conditional
computation can decouple the growth of the number of parameters from the training and inference
costs, by only activating a subset of the overall model in an input-dependent fashion.

Paralleling this trend, the deployment of ML systems in safety-critical fields, e.g., medical diag-
nosis (Dusenberry et al., 2020b) and self-driving cars (Levinson et al., 2011), has motivated the
development of reliable deep learning, e.g., for calibrated and robust predictions (Ovadia et al.,
2019). Among the approaches, ensembles of neural networks have remarkable performance for cal-
ibration and accuracy under dataset shifts (Ovadia et al., 2019). These methods improve reliability
by aggregating the predictions of individual submodels (ensemble members).

While sharing conceptual similarities, these two classes of models—MoEs and ensembles—have
different properties. Sparse MoEs adaptively combine their experts depending on the inputs, and the
combination generally happens at internal activation levels. Ensembles typically combine several
models in a static way and at the prediction level. Moreover, these two classes of models tend to
be benchmarked on different tasks: few-shot classification for MoEs (Riquelme et al., 2021) and
uncertainty-related evaluation for ensembles (Ovadia et al., 2019; Gustafsson et al., 2020).

CONTRIBUTIONS: In this paper, we study the interplay between sparse MoEs and ensembles. This
results in two sets of contributions.

Contribution 1: Complementarity of MoEs and ensembles. We show that sparse MoEs and en-
sembles have complementary features and benefit from each other. Specifically:
• The adaptive computation in sparse MoEs and the static combination in ensembles are orthogonal,
with additive benefits when associated together. Their association results in insightful performance
versus FLOPs trade-offs while varying the ensemble size and sparsity.
• In sparse MoEs, combining models at the prediction level leads to improved uncertainty estimates.
• Over tasks where either sparse MoEs or ensembles are known to perform well, naive—and com-
putationally expensive—ensembles of MoEs provide the best predictive performance. Our bench-
marking effort includes the first evaluation of sparse MoEs on uncertainty-related vision tasks, which
builds upon the empirical work of Riquelme et al. (2021).
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Figure 1: End-to-end overview of pBE with E=6 experts, M=2 partitions, sparsity of K=2, and
a “last-2” configuration. Top: pBE contains a sequence of ViT blocks, followed by alternating p-
MoE and ViT blocks. Images are split into patches whose linear embeddings are processed by each
block. Here, we show 1 embedding for each of three images ( , , ). In practice, we have many
embeddings including a special class embedding, as in Dosovitskiy et al. (2021). Bottom left: in
a p-MoE block, we replace the ViT block’s MLP with parallel partitioned expert MLPs, see (3). Em-
beddings are tiled ( ) in the first p-MoE block only. The effect of the routing weights is not depicted.
Bottom right: the classifier uses the class embeddings ( ) to make predictions. Ensembling of
the predictions for the embeddings and corresponding tiled versions happens only at test time.

Contribution 2: Partitioned batch ensembles. We propose partitioned batch ensembles (pBE),
see Figure 1, an efficient ensemble approach tailored to sparse MoEs. Specifically:
• pBE improves over sparse MoEs across metrics including few-shot performance, likelihood and
calibration error. pBE matches the performance of deep ensembles for 30%-43% fewer FLOPs.
• pBE gracefully scales up to vision Transformers with up to 2.7B parameters.
• pBE is both simple (requiring only minor implementation changes) and convenient because stan-
dard sparse-MoE checkpoints can be used directly to initialize pBEs for fine-tuning.

2 PRELIMINARIES

We focus on classification tasks where we learn classifiers of the form f(x;θ) based on some train-
ing data D = {(xn, yn)}Nn=1. A pair (xn, yn) corresponds to an input xn ∈ RP together with its
label yn ∈ {1, . . . , C} belonging to one of the C classes. The model f(·;θ) is parametrized by θ
and outputs a C-dimensional probability vector. We use ◦ to refer to matrix element-wise product.

2.1 VISION TRANSFORMERS AND SPARSE MOES

Vision Transformers. Throughout the paper, we choose the model f to be a vision Transformer
(ViT) (Dosovitskiy et al., 2021). ViT is growing in popularity for vision, especially in transfer-
learning settings where it was shown to outperform convolutional networks while requiring fewer
pre-training resources. ViT operates at the level of patches. An input image is split into equal-sized
patches (e.g., 32× 32, 16× 16, or 14× 14 pixels) whose resulting sequence is (linearly) embedded
and processed by a Transformer (Vaswani et al., 2017). The operations in the Transformer then
mostly consist of a succession of multiheaded self-attention (MSA) and MLP layers. ViT is defined
at different scales (Dosovitskiy et al., 2021): S(mall), B(ase), L(arge) and H(uge); see specifications
in Appendix A. For example, ViT-L/16 stands for a large ViT with patch size 16× 16.

Sparse MoEs and V-MoEs. The main feature of sparsely-gated mixture-of-experts models (sparse
MoEs) lies in the joint use of sparsity and conditional computation (Bengio et al., 2013). In those
models, we only activate a small subset of the network parameters for a given input, which allows
the total number of parameters θ to grow while keeping the overall computational cost constant.
The subparts of the network that are activated on a per-input fashion are known as experts.

Central to our study, Riquelme et al. (2021) recently extended ViT to sparse MoEs. Their extension,
referred to as V-MoE, follows the successful applications of sparse models in NLP (Shazeer et al.,
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2017). Riquelme et al. (2021) show that V-MoEs dominate their “dense” ViT counterparts on a
variety of tasks for the same computational cost. In the specific case of V-MoEs, the experts are
placed in the MLP layers of the Transformer, a design choice reminiscent of Lepikhin et al. (2021)
in NLP. Given the input h ∈ RD of such a layer, the output of a single MLP(h) is replaced by

MoE(h) =

E∑
e=1

ge(h) · MLPe(h) with {ge(h)}Ee=1 = topK(softmax(Wh)), (1)

where the routing weights {ge(h)}Ee=1 combine the outputs of the E different experts {MLPe}Ee=1.
To sparsely select the experts, topK sets all but the K largest weights to zero. The router param-
eters W ∈ RE×D are trained together with the rest of the network parameters. We call the layer
defined by (1) an MoE layer. In practice, the weights {ge(h)}Ee=1 are obtained by a noisy version
of the routing function topK(softmax(Wh+ σε)) with ε ∼ N (0, I), which mitigates the non-
differentiability of topK when combined with auxiliary losses (Shazeer et al., 2017). We use the
shorthand gateK(z) = topK(softmax(z + σε)) and take σ = 1/E (Riquelme et al., 2021).

In this paper, we take the “last-n” setting of Riquelme et al. (2021) wherein only a few MoE layers
are placed at the end of the Transformer (n = 2 for the {S, B, L} scale and n = 5 for H). This
setting retains most of the performance gains of V-MoEs while greatly reducing the training cost.

2.2 ENSEMBLES OF NEURAL NETWORKS

Ensembles. We build on the idea of ensembles, which is a known scheme to improve the perfor-
mance of individual models (Hansen & Salamon, 1990; Geman et al., 1992; Krogh & Vedelsby,
1995; Opitz & Maclin, 1999; Dietterich, 2000; Lakshminarayanan et al., 2017). Formally, we as-
sume a set of M model parameters Θ = {θm}Mm=1. We refer to M as the ensemble size. Pre-
diction proceeds by computing 1

M

∑
θ∈Θ f(x;θ), i.e., the average probability vector over the M

models. To assess the diversity of the predictions in the ensemble, we will use the KL divergence
DKL(f(xt;θm)‖f(xt;θm′)) between the predictive distributions f(xt;θm) and f(xt;θm′), aver-
aged over the test input xt and all pairs (m,m′) of ensemble members.

Batch ensembles. Ensembles differ in the way Θ is defined. Central to our study, batch ensem-
bles (BE) (Wen et al., 2019) build the ensemble as a collection of submodels, with the parameters
θm ∈ Θ sharing components. This mitigates the computational and memory cost of ensembling,
enabling one to improve the performance of the original model at little extra cost. We focus on the
example of a single dense layer in f with parameters U ∈ RD×L, assuming no bias. BE defines
M copies of parameters {Um}Mm=1 so that Um = U ◦ (rms

>
m), where U are parameters shared

across ensemble members, and rm and sm are separate D- and L-dimensional vectors for ensemble
member m. Given an input, the BE produces M outputs, and the M outputs are averaged after
applying all layers. Despite the simple rank-1 parametrization, BE leads to remarkable predictive
performance and robustness (Wen et al., 2019). Notably, the efficiency of BE relies on tiling the
inputs to simultaneously predict with the M ensemble members, an insight that we also exploit.

2.3 UPSTREAM PRE-TRAINING AND DOWNSTREAM FINE-TUNING

Large-scale Transformers pre-trained on upstream tasks were shown to have strong performance
when fine-tuned on smaller downstream tasks, across a variety of domains (Devlin et al., 2018;
Dosovitskiy et al., 2021; Radford et al., 2021). We follow this paradigm and focus on the fine-
tuning of models pre-trained on JFT-300M (Sun et al., 2017), similar to Riquelme et al. (2021).
We will thus assume the availability of already pre-trained ViT and V-MoE model checkpoints.
Our assumption relies on the growing popularity of transfer learning, e.g. Kolesnikov et al. (2020),
and the increasing accessibility of pre-trained models in repositories such as www.tensorflow.
org/hub or www.pytorch.org/hub. The fine-tuning of all the approaches we study here,
including extensions of ViT and V-MoE, will be either directly compatible with those checkpoints or
require only mild adjustments, e.g., reshaping or introducing new downstream-specific parameters
(see Appendix C). Also, unless otherwise mentioned, the performance we report will always be
downstream, e.g., for ImageNet (Deng et al., 2009) or Cifar10/100 (Krizhevsky, 2009). In all our
comparisons, we will use the downstream training floating point operations per second (FLOPs), or
GFLOPs (i.e., 109×FLOPs), to quantify the computational cost of the different methods.
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Table 1: Overview of key properties of sparse MoEs and ensembles. dense is a base model upon
which we add the sparse MoE or ensemble logic, e.g., a ViT model in this paper.

PREDICTIONS COMBINATIONS CONDITIONAL COMPUTATION COST

Sparse MoEs Single At activation level Yes, adaptively per-input ≈ dense
Ensembles Multiple At prediction level No, static > dense

3 SPARSE MOES MEET ENSEMBLES

As illustrated in Table 1, sparse MoEs and ensembles have different properties. For instance, en-
sembles typically do not use conditional computation and just statically combine members at the
prediction level. This contrasts with sparse MoEs where the different experts are combined at inter-
nal activation levels while enjoying per-input adaptivity through the routing logic; see (1). In terms
of cost, sparse MoEs are usually designed to match the cost of their dense counterparts whereas
ensembles, in their simplest forms, will typically lead to a substantial overhead. In this section, we
study the extent to which these properties are complementary and may benefit from each other. In
Section 5, we further evaluate this complementarity on tasks where either sparse MoEs or ensembles
are known to perform well, e.g., few-shot and out-of-distribution (OOD) evaluations, respectively.
More details about the experiments in this section can be found in Appendix B.6.

3.1 STATIC VERSUS ADAPTIVE COMBINATION
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Figure 2: The effect of increasing static (M ) and adaptive (K) ensembling. ImageNet performance
for ViT-S/32 models. Yellow indicates better performance; purple indicates worse performance.

2 3 4

0.4

0.5

0.6

0.7

0.8

0.9

N
LL

 (l
ow

er
 is

 b
et

te
r)

downstream log(GFLOPs) (lower is better)

Figure 3: ViT ( ) and V-MoE ( )
ensembles of size M ∈ {1, 2, 4}
(denoted by markers of increas-
ing size) for S/32 ( ), B/32 ( ),
L/32 ( ), L/16 ( ), and H/14 ( )
on ImageNet.

We first focus on the interplay between the (a) static combina-
tion in ensembles and (b) the adaptive combination of experts in
sparse MoEs. To this end, we study the performance of down-
stream deep ensembles (i.e., with all ensemble members having
the same upstream checkpoint) formed by M independent V-
MoEs with E experts per MoE layer and a sparsity level K (the
larger K, the more selected experts). The parameter M con-
trols the static combination, while K and E impact the adap-
tive combination of experts in each sparse MoE model. We re-
port in Figure 2 the ImageNet performance and compute cost
for ensembles with varying choices of K and M , while keep-
ing E = 32 fixed. We focus on K rather than E as the axis to
explore adaptive computation, as we find that the performance
changes forE plateau relatively quickly (see Figure 8 in the Ap-
pendix). Also, by fixing E = 32, we match more closely the
experimental setup of Riquelme et al. (2021). The architecture
of the V-MoE is ViT-S/32; see details in Appendix B.6.1. We
make the following observations:

Cumulative effect. In the absence of ensembles (M = 1), and
given a fixed number of experts, Riquelme et al. (2021) already
reported an increase in performance as K gets larger. Interestingly, we observe that for each value
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Table 2: Feature-level vs. prediction-level ensembling. ImageNet performance of V-MoE and a
naive multi-head variant (means ± standard errors over 5 replications). All models have a ViT-B/32
architecture. For the multi-head variant the last MoE layer is modified as in (2).

K NLL ↓ ERROR ↓ ECE ↓ KL ↑
V-MoE 2 0.638 ± 0.001 16.76 ± 0.05 0.033 ± 0.001 —

Naive Multi-head 2 0.633 ± 0.001 16.85 ± 0.01 0.025 ± 0.000 0.033 ± 0.000

V-MoE 4 0.636 ± 0.001 16.70 ± 0.04 0.034 ± 0.001 —
Naive Multi-head 4 0.638 ± 0.001 17.23 ± 0.04 0.020 ± 0.000 0.012 ± 0.000

of K, it is also beneficial to increase the ensemble size M . In other words, the static combination
of ensembles is beneficial when applied to sparse MoEs. This observation is perhaps surprising
since adaptive combination may already encapsulate the effect of static combination. Figure 3, and
Appendix H.1, show that the combination of static and adaptive ensembling is beneficial to NLL for
a range of ViT families. We also see that the benefits of static ensembling are similar for V-MoE
and ViT (which does not have any adaptive ensembling).

Taking FLOPs into account. Without any computational constraints, the previous observation
would favor approaches with the largest values of K and M . However, different values of (K,M)
lead to different computational costs, as measured here by FLOPs, with (K,M) = (1, 1) being the
cheapest. Figure 2b shows, as expected, that the number of FLOPs grows more quickly along the
M axis than along the K axis. To capture the various trade-offs at play, in Figure 2c we report
the logarithm of the normalized gains in log likelihood LL(K,M)−LL(1,1)

GFLOPs(K,M)−GFLOPs(1,1)
when going from

(K,M) = (1, 1) to other choices of (K,M). Interestingly, it appears more advantageous to first
grow K, i.e., the adaptive combination, before growing M .

3.2 FEATURE-LEVEL VERSUS PREDICTION-LEVEL ENSEMBLING

As highlighted in Table 1, an ensemble of size M outputs M predictions for a given input (there-
after, averaged) while sparse MoEs only produce a single prediction. We study the impact of this
differentiating property. To this end, we propose a simple variant of sparse MoEs wherein the last
MoE layer of the form (1) is replaced by

multihead-MoE(h)={ge(h) · MLPe(h)}ge(h)>0 ∈ RK×Q, {ge(h)}Ee=1 =gateK(Wh), (2)

where we have assumed MLPe(h) ∈ RQ. Instead of summing the expert outputs like in (1), we stack
the K selected expert contributions (as a reminder, gateK zeroes out the E−K smallest weights).
Keeping track of those K contributions makes it possible to generate K predictions per input as in
the classifier of Figure 1, thus capturing model uncertainty around the true prediction.

Table 2 compares the ImageNet performance—negative log likelihood (NLL), classification error
and expected calibration error (ECE) (Guo et al., 2017)—of this naive multi-head method with the
standard V-MoE. For K = 2, the multi-head method provides small but statistically significant
gains in NLL and ECE. However, its classification error is worse. On the other hand, for K =
4, both the NLL and classification error for multi-head are worse than V-MoE, despite an even
larger improvement in ECE. In fact, the multi-head for K = 4 performs worse in terms of NLL,
classification error, and diversity than forK = 2. Note that the KL diversity metric indicates that the
multi-head variant is unable to provide diverse predictions (e.g., a downstream ensemble of two V-
MoEs with K = 1 provides a much higher diversity of 0.073, see Table 10). Following Havasi et al.
(2020); Soflaei et al. (2020), a possible fix to this problem would be to consider a multi-head and
multi-input approach, but we show in Appendix F that this strategy is not effective in our context.

Thus, while prediction level ensembling can be beneficial for uncertainty calibration of MoEs, a
different strategy is required such that the error is not worse. We propose a better approach next.

4 PARTITIONED BATCH ENSEMBLE

Equipped with the insights from Section 3, we describe partitioned batch ensemble (pBE), with the
goal of keeping the strengths of both sparse MoEs and ensembles. Conceptually, we can view pBE
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as jointly learning an ensemble of smaller sparse MoEs, where all the layers that do not contain
experts are shared across the members, e.g., the self-attention layers. As its name indicates, pBE is
inspired by batch ensemble in that (a) ensemble members have shared parameters—here, the sharing
is tailored to sparse MoEs—and (b) we reuse the idea of tiled representations.

4.1 THE ARCHITECTURE

There are two main components in PBE:

Disjoint subsets of experts as ensemble members. We change the structure of (1) by partitioning
the set of E experts into M sets of E/M experts (we assume that E is a multiple of M ). We denote
this partition by ∪Mm=1Em, for example E1 = {1, 2, 3} and E2 = {4, 5, 6} for E = 6 and M = 2.
The M sets of E/M experts play the role of the M ensemble members. Intuitively, the ensemble
members have separate parameters for independent predictions, while efficiently sharing parameters
among all non-expert layers.

Instead of having a single routing function gateK(W ·) like in (1), we apply separate routing
functions {gateK(Wm·)}Mm=1 to each member of the partition. Note that this does not affect
the total number of parameters since W has E rows while each Wm has E/M rows. A similar
partitioning of the experts was proposed in Yang et al. (2021) but not exploited to create different
ensemble members, in particular not in conjunction with tiled representations, which we show to be
required to get performance gains (see comparison in Section 4.2.1).

Tiled representation. To jointly handle the predictions of the M ensemble members, we tile the
inputs by a factor M , as proposed in Wen et al. (2019). Tiling naturally fits into the formalism of
sparse MoEs, as illustrated by the connection we draw between BE and sparse MoEs (Appendix I).
This enables a simple implementation of pBE on top of an existing one of sparse MoEs.

Because of the tiling, a given image patch has M different representations that, when entering an
MoE layer, are each routed within their respective parts of the partition ∪Mm=1Em. Formally, con-
sider some tiled inputs H ∈ RB×M×D where B refers to the batch size and hi,m ∈ RD is the
representation of the i-th input for the m-th member. The routing logic in pBE can be written as

pBE-MoE(hi,m) =
∑
e∈Em

ge,m(hi,m)·MLPe(hi,m), {ge,m(hi,m)}e∈Em= gateK(Wmhi,m), (3)

where the routing weights are now parametrized by Wm ∈ R(E/M)×D; see Figure 1. To echo
the observations from Section 3, we can first see that pBE brings together the static and adaptive
combination of ensembles and sparse MoEs, which we found to be complementary. However, we
have seen that static ensembling comes at the cost of a large increase in FLOPs, thus we opt for
an efficient ensembling approach. Second, we “split” the MoE layers along the axis of the experts,
i.e., from E experts to M times E/M experts. We do so since we observed that the performance
of sparse MoEs tends to plateau quickly as the number of experts grows. Finally, pBE retains the
important property of ensembles to output multiple predictions per input, which we also saw to be
beneficial for uncertainty calibration.

In a generic implementation, we tile a batch of B inputs X ∈ RB×P by a factor M to obtain the
tiled inputs Xtiled = [X; . . . ;X] ∈ R(M ·B)×P and the model processes f(Xtiled;θ). Since tiling
in pBE has an effect only from the first MoE layer onwards, we postpone the tiling operation to
that stage, thus saving all prior computations in non MoE-layers that would have been redundant
otherwise. For example, for L/16 and K = M = 2, we can save about 47% of the FLOPs. We
apply the same optimization for all the efficient ensembles methods we compare to in Appendix F.
We provide further implementation details of pBE in Appendix D.

4.2 ABLATION STUDIES: PARTITIONING AND TILING

Our method introduces two changes to V-MoEs: (a) the partitioning of the experts and (b) the tiling
of the representations. In this section, we assess the separate impact of each of those changes and
show that it is indeed their combination that explains the performance gains. We summarize the
results of the ablation in Table 3 where we show the ImageNet performance of the different variants
of V-MoE. All models have a ViT-B/32 base architecture and K = M = 2.
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Table 3: ImageNet performance (means ± standard errors over 8 replications) of pBE and two abla-
tions, disabling either the tiling or the expert partitioning. All models have a ViT-B/32 architecture.
The level of noise in gateK is denoted by σ.

NLL ↓ ERROR ↓ ECE ↓ KL ↑
pBE 0.612 ± 0.001 16.49 ± 0.02 0.013 ± 0.000 0.198 ± 0.003

Only tiling (σ × 1) 0.637 ± 0.002 16.74 ± 0.06 0.028 ± 0.001 0.000 ± 0.000

Only tiling (σ × 2) 0.638 ± 0.001 16.72 ± 0.03 0.033 ± 0.001 0.001 ± 0.000

Only tiling (σ × 4) 0.638 ± 0.001 16.74 ± 0.03 0.033 ± 0.001 0.002 ± 0.000

Only partitioning 0.640 ± 0.001 16.72 ± 0.05 0.034 ± 0.001 –

4.2.1 PARTITIONING WITHOUT TILING

We first compare pBE with a variant of V-MoE where we only partition the set of experts (“Only
partitioning”). In that variant, each input hi ∈ RD (note the dropping of the index m due to the
absence of tiling) can select K experts in each part of the partition ∪Mm=1Em, resulting in a total of
K×M selected experts per input. Formally, (3) becomes

∑M
m=1

∑
e∈Em ge,m(hi) ·MLPe(hi). The

expert prototyping of Yang et al. (2021) leads to a similar formulation. As shown in Table 3, “Only
partitioning” is not competitive with pBE across all metrics. We do not report the KL since without
tiling, “Only partitioning” does not output multiple predictions per input.

4.2.2 TILING WITHOUT PARTITIONING

We now compare pBE with the variant where only the tiling is enabled (“Only tiling”). In that case,
we have tiled inputsH ∈ RB×M×D applied to the standard formulation of (1). Compared with (3),
there is no mechanism to enforce the M representations of the i-th input across the ensemble mem-
bers, i.e., {MoE(hi,m)}Mm=1, to be different. Indeed, without partitioning, each hi,m could select
K identical experts. As a result, we expect “Only tiling” to output M similar predictions across
ensemble members. We capture this intuition in Table 3 where we observe that the KL for “Only
tiling” is orders of magnitude smaller than for pBE.

To mitigate this effect, we also tried to increase the level of noise σ in gateK (by a factor {2, 4}),
to cause the expert assignments to differ across {hi,m}Mm=1. While we do see an increase in KL,
“Only tiling” still performs worse than pBE across all metrics. Interestingly, we can interpret “Only
tiling” as an approximation, via M samples, of the marginalization Eε1,...,ε` [f(x;θ)] with respect
to the noise {εl}`l=1 in the ` MoE layers of f(·;θ) (further assuming the capacity constraints of the
experts, as described in Riquelme et al. (2021), does not bias the M samples).

5 EVALUATION

We now benchmark pBE against V-MoE. As a baseline we also include results for downstream
ensembles of V-MoE and ViT. These ensembles offer a natural baseline against pBE as they also
use a single upstream checkpoint, are easy to implement, and provide consistent improvements
upon V-MoE. In Appendix G, we compare with upstream ensembles that require multiple upstream
checkpoints (Mustafa et al., 2020). In Appendix F, we compare with other efficient ensembling ap-
proaches: MIMO (Havasi et al., 2020), BE (Wen et al., 2019), and MC Dropout (Gal & Ghahramani,
2016). All results correspond to the average over 8 (for {S, B, L} single models) or 5 (for H single
models and all up/downstream ensembles) replications. In Appendix H we provide standard errors
as well as results for additional datasets and metrics. Following Riquelme et al. (2021), we com-
pare the predictive-performance vs. compute cost trade-offs for each method across a range of ViT
families. In the results below, pBE uses (K,M) = (1, 2), and V-MoE uses K = 1. Experimental
details, including about our upstream training, downstream fine-tuning, hyperparameter sweeps and
our (linear) few-shot evaluation can be found in Appendix B. Our main findings are as follows:

(a) V-MoE versus ViT. Predictive performance and robustness.
• Ensembles help V-MoE just as much as ViT. Ensembles were expected to benefit ViT models.
However, Figure 3 and Figure 4 suggest that ensembling provides similar gains for V-MoE models
in terms of both few-shot performance and NLL. We believe this has not been observed before.
Moreover, a downstream ensemble with four H/14 V-MoEs leads to a 88.8% accuracy on ImageNet

7



Under review as a conference paper at ICLR 2022

2 3 4

0.4

0.5

0.6

0.7

0.8
N

LL
 (l

ow
er

 is
 b

et
te

r)

ImageNet

3.0 3.2 3.4 3.6
0.40

0.42

0.44

0.46

0.48
ImageNet

2 3 4

15

20

25

10
-S

ho
t E

rr
or

 (l
ow

er
 is

 b
et

te
r)

Mean Across Datasets

3.0 3.2 3.4 3.6

14

15

16

17

Mean Across Datasets

downstream log(GFLOPs) (lower is better)

pBE V-MoE ViT S/32 B/32 L/32 L/16 H/14 1 Model 2 Models 4 Models

Figure 4: ImageNet NLL (left, center left) and mean 10-shot error across datasets (center right,
right). We provide zoomed-in plots of the highlighted areas. The dashed lines show Pareto frontiers.
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Figure 5: Quality of uncertainty estimates. ImageNet ECE (left), near (center left) and far (cen-
ter right, right) OOD detection, measured by false positive rate at 95% precision (Fort et al., 2021).
These are metrics for which ensembles are known to perform well whereas, to the best of our knowl-
edge, the performance of V-MoE has not been evaluated. The dashed lines represent Pareto frontiers.

(even reaching an impressive 89.3% for an upstream ensemble, see Table 10).
• ViT consistently provides better ECE than V-MoE. Surprisingly, despite V-MoE tending to
have better NLL than ViT (Figure 3), their ECE is worse (Figure 5).
• ECE is not consistent for different ViT/V-MoE families. We see the ECE, unlike other metrics
presented in this work, provides no consistent trends as we increase the ViT family size (Figure 5).
• V-MoE outperforms ViT in OOD detection. With L/32 being the only exception, V-MoE out-
performs ViT on a range of OOD detection tasks (Figure 5).
• For smaller ViT families, V-MoE outperforms ViT in the presence of distribution shift. In
contrast to the OOD detection results, Figure 6 shows that for smaller ViT families V-MoE improves
on the performance of ViT, however, as the ViT family becomes larger, this trend reverses.

(b) Partitioned Batch Ensembles. Predictive performance and robustness.
• pBE improves classification performance. As shown in Figure 4, pBE is either on or very near
to the Pareto frontiers for NLL and 10-shot classification error, despite the fact that these are metrics
for which ensembles and V-MoE, respectively, are known to perform well. Furthermore, Figures 14
and 15 show that even starker conclusions hold on Cifar10/100.
• pBE performs best at the largest scale. The difference in predictive performance between pBE
and V-MoE—or ensembles thereof—increases as the ViT family becomes larger (Figures 4, 5 and 6).
See Appendix E for further motivation of this point.
• pBE tends to be Pareto efficient in the presence of distribution shift. Figure 6 shows that pBE
is more robust to distribution shift for larger ViT families, despite the opposite being true for V-MoE.
• pBE improves ECE over ViT and V-MoE. Despite V-MoE providing poor ECE, pBE does not
suffer from this limitation (Figure 5). Furthermore, for most ViT families, pBE also provides better
ECE than V-MoE ensembles.
• pBE does not provide consistent OOD detection performance. Firstly, Figure 5 shows that for
small ViT families, pBE performs worse than V-MoE and (even ViT in some cases). Nevertheless,
as above, the relative performance improves for larger ViT families such that pBE becomes Pareto
efficient for two dataset pairs. Secondly, pBE seems to perform better on the more difficult near
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Figure 6: NLL in the presence of distribution shift for models trained on ImageNet. For ImageNet-
C, we provide a zoomed-in plot of the highlighted area. The dashed lines represent Pareto frontiers.
We provide results for additional distribution shift datasets and metrics in Appendix H.

OOD detection task (Cifar10 vs. Cifar100). These results, although sometimes subtle, are consistent
across OOD detection metrics and dataset pairs, as shown in Appendix H.

6 RELATED WORK

Mixture of Experts. MoEs (Jacobs et al., 1991; Jordan & Jacobs, 1994; Chen et al., 1999; Yuksel
et al., 2012; Eigen et al., 2014) combine the outputs of different submodels, or experts, in an input-
dependent way. Sparse MoEs only select a few experts per input, enabling to greatly scale models
while keeping the prediction time constant. Sparse MoEs have been used to build large language
models (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al., 2021). Recently, sparse MoEs have
been also successfully applied to vision problems (Riquelme et al., 2021; Yang et al., 2021; Lou
et al., 2021; Xue et al., 2021). Our work builds on the V-MoE architecture proposed by Riquelme
et al. (2021), which is based on the vision Transformer (ViT) (Dosovitskiy et al., 2021). While
previous work studied ViT’s calibration and robustness (Minderer et al., 2021; Fort et al., 2021; Paul
& Chen, 2021; Mao et al., 2021), we are the first to study the robustness of V-MoE models.

Ensembles. Ensemble methods combine several different models to improve generalization and un-
certainty estimation. In their simplest form, they can be inefficient because they consist of multiple
models themselves potentially expensive. To reduce test time, Xie et al. (2013) and Hinton et al.
(2015) respectively use compression and distillation mechanisms. To reduce training time, ensem-
bles can be constructed with cyclical learning-rate schedules to snapshot models along the training
trajectory (Huang et al., 2017; Zhang et al., 2019). Our work builds on batch ensemble (Wen et al.,
2019) where a single model encapsulates an ensemble of networks, a strategy also explored by Lee
et al. (2015); Havasi et al. (2020); Antorán et al. (2020); Dusenberry et al. (2020a); Rame et al.
(2021). Wenzel et al. (2020) extended BE to combine models with different hyperparameters.

7 CONCLUSIONS AND FUTURE WORK

Our study of the interplay between sparse MoEs and ensembles has shown that these two classes of
models are symbiotic. Partitioned batch ensemble exemplifies those mutual benefits—as illustrated
by its accuracy, log-likelihood, few-shot learning, robustness, and uncertainty calibration improve-
ments over several challenging baselines in a range of benchmarks. While our study has focused on
downstream fine-tuned models, we believe that an extension to the upstream case would also result
in a fruitful investigation. Similarly, although we have focused on computer vision, our approach
should be readily applicable to the modelling of text, where sparse MoEs have been shown to be
remarkably effective. With the growing prevalence of sparse MoEs in NLP (Patterson et al., 2021),
the questions of understanding and improving the robustness and reliability of such models become
increasingly important. Furthermore, the computational scale at which those models operate make
those questions even more challenging to tackle. We believe that our study, and approaches such as
pBE, make steps in those directions.
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Ethics Statement. Our research lies at the intersection of two topics where we hope that our work
can make positive contributions.

First, following the conclusions of Patterson et al. (2021), we develop an approach based on sparse
MoEs that were shown to reduce the environmental footprint of standard “dense” models. Second,
for any decision-making process, it is critical to be able to reliably trust the uncertainty output by
ML systems. In particular, this desirable property has a growing importance within a context where
those systems are being widely deployed in safety-critical fields such as self-driving cars and medical
diagnosis. We think that approaches such as pBE can help make progress in this area.

Reproducibility Statement. We are fully aware that (i) relying on the proprietary JFT-300M
dataset for our upstream models, as well as (ii) not having already open-sourced code are two obsta-
cles for reproducibility. We are focusing on a lightweight open-sourced version of V-MoE and pBE
together with the release of checkpoints pre-trained on ImageNet-21k. We are actively working to
release those with the camera-ready version of the paper.

We would like to stress the fact that we have provided as many details as possible about the ex-
perimental settings (see Appendix B) and the hyperparameter sweeps. Furthermore, we aimed to
provide well-considered and fair experimental setups for all of the baselines used in this work. For
instance, to illustrate the fairness of our approach, our experimental design choices tend to make the
baselines we compare to more competitive; see Table 6. Moreover, we performed the evaluation of
our models using the open-sourced library robustness metrics (Djolonga et al., 2020).

Finally, we have also reported results that could be regarded as “negative” with the hope to inform
other researchers about those findings. For instance, in Appendix F.3, we systematically described
in detail the failures we encountered while trying to apply MIMO to ViT and V-MoE. Similarly,
we have transparently reported—in the core paper—results of pBE for OOD detection where our
approach seems to perform worse than the baselines in several settings.
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HIDDEN DIMENSION MLP DIMENSION # LAYERS

Small 512 2048 8
Base 768 3072 12
Large 1024 4096 24
Huge 1280 5144 32

Table 4: Specifications of ViT-S, ViT-B, ViT-L and ViT-H.

A VIT MODEL SPECIFICATIONS

Following Dosovitskiy et al. (2021), we recall the specifications of the ViT models of different scales
in Table 4.

B EXPERIMENT SETTINGS

B.1 UPSTREAM SETTING

For all our upstream experiments, we scrupulously follow the setting described in Riquelme et al.
(2021), see their Section B.2 in their appendix. For completeness, we just recall that S/32 models are
trained for 5 epochs while B/{16, 32} and L/32 models are trained for 7 epochs. For L/16 models,
both 7 and 14 epochs can be considered (Dosovitskiy et al., 2021; Riquelme et al., 2021); we opted
for 7 epochs given the breadth of our experiments. Finally, the H/14 model are trained for 14 epochs.

In particular, the models are all trained on JFT-300M (Sun et al., 2017). This dataset contains about
305M training and 50 000 validation images. The labels have a hierarchical structure, with a total of
18 291 classes, leading on average to 1.89 labels per image.

B.2 DOWNSTREAM SETTING

During fine-tuning, there is a number of common design choices we apply. In particular:

• Image resolution: 384.

• Clipping gradient norm at: 10.0.

• Optimizer: SGD with momentum (using half-precision, β = 0.9).

• Batch size: 512.

• For V-MoE models, we finetune with capacity ratio C = 1.5 and evaluate with C = 8.

We use the following train/validation split partitions depending on the dataset:

DATASET TRAIN DATASET FRACTION VALIDATION DATASET FRACTION

ImageNet 99% 1%
CIFAR10 98% 2%

CIFAR100 98% 2%
Oxford-IIIT Pets 90% 10%

Oxford Flowers-102 90% 10%

All those design choices follow from Riquelme et al. (2021) and Dosovitskiy et al. (2021).

B.3 HYPERPARAMETER SWEEP FOR FINE-TUNING

In all our fine-tuning experiments, we use the sweep of hyperparameters described in Table 5. We use
the recommendations from Dosovitskiy et al. (2021) and Riquelme et al. (2021), further considering
several factors {0.5, 1.0, 1.5, 2.0} to sweep over different numbers of steps. Riquelme et al. (2021)
use a half schedule (with the factor 0.5) while Dosovitskiy et al. (2021) take the factor 1.0.
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Table 5: Hyperparameter values for fine-tuning on different datasets. Compared with Dosovitskiy
et al. (2021) and Riquelme et al. (2021), we further consider several factors {0.5, 1.0, 1.5, 2.0} to
sweep over different numbers of steps.

DATASET STEPS BASE LR EXPERT DROPOUT

ImageNet 20 000 × {0.5, 1.0, 1.5, 2.0} {0.0024, 0.003, 0.01, 0.03} 0.1
CIFAR10 5 000 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03} 0.1
CIFAR100 5 000 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03} 0.1
Oxford-IIIT Pets 500 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03} 0.1
Oxford Flowers-102 500 × {0.5, 1.0, 1.5, 2.0} {0.001, 0.003, 0.01, 0.03} 0.1

Table 6: Impact of using the enlarged sweep of hyperparameters described in Table 5. We typically
improve the results reported in Riquelme et al. (2021), therefore strengthening the baselines we
compare to. The table displays means and standard errors over 8 replications, except for H/14 that
has 4 replications. L/16?: For L/16, we consider the setting where the upstream models are trained
with 7 epochs, as opposed to 14 epochs in Riquelme et al. (2021), hence the slightly worse accuracy
reported in this paper.

MODEL SIZE MODEL NAME ACCURACY (THIS PAPER) ACCURACY (Riquelme et al., 2021)

S/32 ViT 76.31 ± 0.05 73.73
V-MoE (K=2) 78.91 ± 0.08 77.10

B/32 ViT 81.35 ± 0.08 80.73
V-MoE (K=2) 83.24 ± 0.05 82.60

L/32 ViT 84.62 ± 0.05 84.37
V-MoE (K=2) 84.95 ± 0.03 85.04

B/16 ViT 84.30 ± 0.06 84.15
V-MoE (K=2) 85.40 ± 0.04 85.39

L/16? ViT 86.63 ± 0.08 87.12
V-MoE (K=2) 87.12 ± 0.04 87.54

H/14 ViT 88.01 ± 0.05 88.08
V-MoE (K=2) 88.11 ± 0.13 88.23

We show in Table 6 the impact of this enlarged sweep of hyperparameters in the light of the results
reported in Riquelme et al. (2021). We notably tend to improve the performance of ViT and V-MoE
(especially for smaller models), which thus makes the baselines we compare to more competitive.

B.4 DETAILS ABOUT THE (LINEAR) FEW-SHOT EVALUATION

We follow the evaluation methodology proposed by Dosovitskiy et al. (2021); Riquelme et al. (2021)
which we recall for completeness. Let us rewrite our model f with parameters θ = {Q,θ′} as

f(x;θ) = softmax(Qφ(x;θ′))

where Q ∈ RC×S corresponds to the parameters of the last layer of f with the S-dimensional
representation φ(x;θ′) ∈ RS .

In linear few-shot evaluation, we construct a linear classifier to predict the target labels (encoded as
one-hot vectors) from the S-dimensional feature vectors induced by φ(·;θ′); see Chapter 5 in Hastie
et al. (2017) for more background about this type of linear classifiers. This evaluation protocol
makes it possible to evaluate the quality of the representations φ learned by f .

While Dosovitskiy et al. (2021); Riquelme et al. (2021) essentially focus on the quality of the rep-
resentations learned upstream on JFT by computing the (linear) few-shot accuracy on ImageNet,
we are interested in the representations after fine-tuning on ImageNet. As a result, we consider a
collection of 8 few-shot datasets (that does not contain ImageNet):

• Caltech-UCSD Birds 200 (Wah et al., 2011) with 200 classes,
• Caltech 101 (Bansal et al., 2021) with 101 classes,
• Cars196 (Krause et al., 2013) with 196 classes,
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• Cifar100 (Krizhevsky, 2009) with 100 classes,
• Colorectal histology (Kather et al., 2016) with 8 classes,
• Describable Textures Dataset (Cimpoi et al., 2014) with 47 classes,
• Oxford-IIIT pet (Parkhi et al., 2012) with 37 classes and
• UC Merced (Yang & Newsam, 2010) with 21 classes.

In the experiments, we compute the few-shot accuracy for each of the above datasets and we report
the averaged accuracy over the datasets, for various number of shots in {1, 5, 10, 25}. As commonly
defined in few-shot learning, we understand by s shots a setting wherein we have access to s training
images per class label in each of the dataset.

To account for the different scales of accuracy across the 8 datasets, we also tested to compute a
weighted average, normalizing by the accuracy of a reference model (ViT-B/32). This is reminiscent
of the normalization carried out in Hendrycks & Dietterich (2019) according to the score of AlexNet.
We found the conclusions with the standard average and weighted average to be similar.

B.4.1 SPECIFIC CONSIDERATIONS IN THE ENSEMBLE CASE

For an ensemble with M members, we have access to M representations {φ(x;θ′m)}Mm=1 for a
given input x. We have explored two ways to use those representations:

• Joint: We concatenate the M representations {φ(x;θ′m)}Mm=1 into a single “joint” feature
vector in RM×S , remembering that each φ(x;θ′m) ∈ RS . We then train a single a linear
classifier to predict the target labels from the “joint” feature vectors.
• Disjoint: For each of the M representations {φ(x;θ′m)}Mm=1, we separately train a linear

classifier to predict the target labels from the feature vectors induced by φ(x;θ′m). We then
average the predictions of the M linear classifiers trained in this fashion.

In Table 7, we report a comparison of those approaches. We aggregate the results over all ensemble
models (namely, pBE and upstream ViT/V-MoE ensembles of size 2 and 4) and over 8 replications,
for the ViT families S/32, B/32 and L/32.

The results indicate that “joint” and “disjoint” perform similarly. Throughout our experiments, we
use the “joint” approach because it eased some implementation considerations.

B.5 LIST OF DATASETS

For completeness, in addition to the few-shot datasets listed in Appendix B.4, we list the datasets
used for downstream training and evaluation in this work.

• ImageNet (ILSVRC2012) (Deng et al., 2009) with 1000 classes and 1281167 training ex-
amples.
• ImageNet-C (Hendrycks & Dietterich, 2019), an ImageNet test set constructed by applying

15 different corruptions at 5 levels of intensity to the original ImageNet test set. (We report
the mean performance over the different corruptions and intensities.)
• ImageNet-A (Hendrycks et al., 2019), an ImageNet test set constructed by collecting new

data and keeping only those images which a ResNet-50 classified incorrectly.
• ImageNet-V2 (Recht et al., 2019), an ImageNet test set independently collected using the

same methodology as the original ImageNet dataset.
• Cifar10 (Krizhevsky, 2009) with 10 classes and 50000 training examples.
• Cifar10-C (Hendrycks & Dietterich, 2019), a Cifar10 test set constructed by applying 15

different corruptions at 5 levels of intensity to the original Cifar10 test set. (We report the
mean performance over the different corruptions and intensities.)
• Cifar100 (Krizhevsky, 2009) with 100 classes and training 50000 examples.
• Oxford Flowers 102 (Nilsback & Zisserman, 2008) with 102 classes and 1020 training

examples.
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Table 7: Comparison of two approaches, “joint” and “disjoint”, to compute the linear few-shot
evaluation in the case of ensembles. For the ViT families S/32, B/32 and L/32, the mean error across
datasets is averaged over 8 replications and over all the ensemble models of size 2 and 4.

MODEL SIZE METHOD MEAN ERROR ACROSS DATASETS
1 SHOT 5 SHOTS 10 SHOTS 25 SHOTS

S/32 disjoint 51.01 ± 0.43 32.80 ± 0.34 26.33 ± 0.26 20.97 ± 0.18

joint 51.12 ± 0.42 32.81 ± 0.30 26.30 ± 0.24 20.77 ± 0.17

B/32 disjoint 42.43 ± 0.41 25.49 ± 0.21 20.30 ± 0.15 15.98 ± 0.11

joint 42.59 ± 0.40 25.74 ± 0.18 20.54 ± 0.13 16.06 ± 0.10

L/32 disjoint 36.41 ± 0.31 21.49 ± 0.15 17.13 ± 0.12 13.56 ± 0.10

joint 36.48 ± 0.30 21.66 ± 0.13 17.34 ± 0.10 13.56 ± 0.08

• Oxford-IIIT pet (Parkhi et al., 2012) with 37 classes and 3680 training examples.

• SVHN (Netzer et al., 2011) with 10 classes.

• Places365 (Zhou et al., 2017) with 365 classes.

• Describable Textures Dataset (DTD) (Cimpoi et al., 2014) with 47 classes.

B.6 ABLATION DETAILS

B.6.1 STATIC VERSUS ADAPTIVE ABLATION DETAILS

The setup for the experiments in Figures 2 and 8 differs slightly the other experiments in this paper.
Specifically, while for all other experiments we used upstream V-MoE checkpoints with (K,E) =
(2, 32), for these experiments we matched the upstream and downstream checkpoints. We did this
to avoid a checkpoint mismatch as a potential confounder in our results.

B.6.2 FEATURE-LEVEL VERSUS PREDICTION-LEVEL ENSEMBLING ABLATION DETAILS

The “Naive Multi-Head” method presented in Section 3.2 was trained in almost the same manner as
the vanilla V-MoE, the only difference being the handling of multiple predictions. This was accom-
plished by using the average ensemble member cross entropy as described for pBE in Appendix D.

On the other hand, in order to compute the evaluation metrics presented in Table 2, we first averaged
predictions of the model and then used the average prediction when calculating each metric.

C COMPATIBILITY AND ADAPTATION OF THE UPSTREAM CHECKPOINTS

Throughout the paper, we make the assumption that we can start from existing checkpoints of ViT
and V-MoE models (trained on JFT-300M; see Appendix B.1). We next describe how we can use
those checkpoints for the fine-tuning of the extensions of ViT and V-MoE that we consider in this
paper.

In all our experiments that involve V-MoEs, we consider checkpoints with K = 2 and E = 32,
which is the canonical setting advocated by Riquelme et al. (2021).

C.1 PARTITIONED BATCH ENSEMBLES (PBE)

In the case of pBE, the set of parameters is identical to that of a V-MoE model. In particular, neither
the tiled representation nor the partitioning of the experts transforms the set of parameters.

To deal with the fact that the single routing function gateK(W ·) of a V-MoE becomes separate
routing functions {gateK(Wm·)}Mm=1, one for each part of the partition, we simply slice row-wise
W ∈ RE×D into the M matricesWm ∈ R(E/M)×D.

18



Under review as a conference paper at ICLR 2022

C.2 BATCH ENSEMBLES (BE)

We train BE starting from ViT checkpoints, which requires to introduce downstream-specific pa-
rameters. Following the design of V-MoEs, we place the batch-ensemble layers in the MLP layers
of the Transformer.

Let us consider a dense layer in one of those MLPs, with parameters U ∈ RD×L, in absence
of bias term. In BE, the parametrization of each ensemble member has the following structure
Um = U ◦(rms

>
m) where {rm}Mm=1 and {sm}Mm=1 are respectivelyD- and L-dimensional vectors.

A standard ViT checkpoint provides pre-trained parameters forU . We then introduce {rm}Mm=1 and
{sm}Mm=1 at fine-tuning time, following the random initialization schemes proposed in Wen et al.
(2019); see details in the hyperparameter sweep for BE in Appendix F.1.

C.3 MIMO

We train MIMO models from V-MoE checkpoints. The only required modifications are to the input
and output parameters of the checkpoints. The linear input embedding must be modified to be
compatible with input images containing M times as more channels, as required by the multiple-
input structure of MIMO. Similarly, the final dense layer in the classification head must be modified
to have M times more output units, following the multiple-output structure in MIMO.

Concretely, the embedding weight Win ∈ RH×W×3×D is replicated in the third (channel) di-
mension, resulting in WMIMO,in ∈ RH×W×3·M×D, where H and W are the height and width
of the convolution and D is the hidden dimension of the ViT family (specified in Table 4). The
output layer weight Wout ∈ RD×C is replicated in the second (output) dimension, resulting in
WMIMO,out ∈ RH×C·M , where C is the number of classes. The output layer bias bout ∈ RC

is replicated resulting in bMIMO,out ∈ RC×M . Finally, in order to preserve the magnitude of the
activation for these layers,WMIMO,in andWMIMO,out are scaled by 1/M .

D IMPLEMENTATION DETAILS OF PBE

We provide details about the training loss and the regularizer used by pBE.

D.1 TRAINING LOSS

Since pBE outputs M predictions {f(x;θm)}Mm=1 for a given input x, we need to adapt the choice
of the training loss L accordingly. Following the literature on efficient ensembles (Wen et al., 2019;
Dusenberry et al., 2020a; Wenzel et al., 2020), we choose the average ensemble-member cross
entropy

L(y,x;θ) =
1

M

M∑
m=1

cross-entropy(y, f(x;θm))

instead of other alternatives such as the ensemble cross-entropy

cross-entropy
(
y,

1

M

M∑
m=1

f(x;θm)
)

that was observed to generalize worse (Dusenberry et al., 2020a).

D.2 AUXILIARY LOSSES

Inspired by previous applications of sparse MoEs in NLP (Shazeer et al., 2017), Riquelme et al.
(2021) employ regularizers, also referred to as auxiliary losses, to guarantee a balanced usage of
the E experts. Two auxiliary losses—the importance and load losses, see Appendix A in Riquelme
et al. (2021) for their formal definitions—are averaged together to form the final regularization term
that we denote by Ω.

As a reminder, let us recall the notation of the routing function

h ∈ RD 7→ gateK(Wh) = topK(softmax(Wh+ σε)) ∈ RE ,
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with W ∈ RE×D and ε ∼ N (0, I). Consider a batch of B inputs {hi}Bi=1 that we represent by
H ∈ RB×D. Finally, let us define

A = HW> + σεB×E ∈ RB×E ,

where we emphasise that εB×E is a matrix of Gaussian noise entries in RB×E . The regularization
term Ω used by Riquelme et al. (2021) can be seen as a function that depends onA andHW>.

In the context of partitioned batch ensemble, the set of E experts is partitioned into M groups of
E/M experts, whose partition is denoted by ∪Mm=1Em; see Section 4.1. With the introduction of the
M routing functions {gateK(Wm·)}Mm=1 with each Wm ∈ R(E/M)×D, the matrix A becomes
accordingly partitioned into {Am}Mm=1 where eachAm ∈ RB×(E/M).

Since we want to enforce a balanced usage of the E/M experts in each part Em of the partition, we
thus redefine the regularization as the average regularization separately applied to each part of the
partition

Ωpartition(A,HW>) =
1

M

M∑
m=1

Ω(Am,HW
>
m ).

We found this option to work better in practice. To guarantee a fair comparison, we also applied
Ωpartition to the “Only partitioning” model in the ablation study of Section 4.2.1.

Following Riquelme et al. (2021), the regularization parameter controlling the strength of Ωpartition
was set to 0.1 throughout the experiments.

E PBE AND V-MOE RELATIVE IMPROVEMENTS PER VIT FAMILY

In Section 5 we claim that pBE performs best at the largest scale. In this section we motivate that
claim in more detail. Specifically, we consider two metrics of improvement in performance. Firstly,
we consider the percentage improvement in NLL for both pBE and V-MoE versus vanilla ViT.
Secondly, we consider a normalised version of this improvement. We consider this second metric
to take into account the “difficulty” in further improving the NLL of larger ViT family models.
Intuitively, the larger the ViT family, the better the corresponding NLL will be, and the more difficult
it will be to improve on that NLL.

The normalisation we apply is based on the gradient of the NLL with respect to FLOPs. Indeed, this
gradient captures the typical variation of NLL at a particular amount of FLOPs. The ratio of this
gradient at the FLOPs values (i.e., the instantaneous change in NLL at those FLOPs values) for two
ViT families is a measure of the relative difficulty in increasing the NLL. Thus, we can use this ratio
to normalise our results. To be more concrete, let us define the mapping

NLL = ϕ(FLOPs) and its derivative ϕ′(FLOPs) =
dϕ(FLOPs)

dFLOPs
.

We estimate ϕ and its gradient by fitting a linear model to the (NLL,FLOPs) pairs for each
ViT family, using the data of the standard ViT models we trained. We use feature expansion
[1.0, log(FLOPs), log(FLOPs)2, log(FLOPs)3] and solve for the parameters of the linear model
via ordinary least squares. We determine the gradient of this function at each FLOPs value using
automatic differentiation in JAX (Bradbury et al., 2018). See Figure 7 for the resulting fit and an
indication of the gradients.

The normalised values are calculated as:

Normalised improvement(v) = improvement(v)× ϕ′(FLOPs H/14)

ϕ′(FLOPsv)
, (4)

where v is one of the ViT families, i.e., S/32, B/32, L/32, L/16, or H/14. Note that this normalisation
leaves the improvement for H/14 the same. We tried to normalize with respect to other choices of
ViT family, different from H/14. Our conclusions are robust, in the sense that both the ordering and
the monotonic behavior with respect to scale are preserved. Using the ratio for normalisation also
has the advantage that the normalisation is less sensitive to the particular parameterisation of ϕ.

Table 8 shows both the difficulty-normalised and original improvements (without normalisation).
Looking first at the original improvements, we can see that while both pBE and V-MoE have smaller
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Figure 7: Estimated ϕ compared to the ImageNet NLL values for our ViT models. We also include
the tangent at the points corresponding to each ViT model to indicate the gradients at those points.

Table 8: Percentage improvements in NLL for pBE with (K,M) = (1, 2) and V-MoE with K = 1
vs. ViT for families of increasing size. The top two rows show normalised improvements, see (4),
which take into consideration the increased difficulty of improving NLL for larger ViT families
whose performance is beginning to saturate. The bottom two rows are the original percentage im-
provements without normalisation.

S/32 B/32 L/32 L/16 H/14

Normalised pBE vs. ViT 0.02% 0.08% 0.22% 2.21% 4.27%
V-MoE vs. ViT 0.01% 0.06% -0.03% 0.84% 0.02%

Not normalised pBE vs. ViT 9.82% 9.53% 3.76% 5.38% 4.27%
V-MoE vs. ViT 7.98% 6.62% -0.60% 2.05% 0.02%

improvements over ViT for larger families, pBE’s improvements decrease more slowly. Further-
more, by comparing the normalised improvements we see that pBE’s improvements actually grow
monotonically when taking difficulty into account. This is not the case for V-MoE.

F EFFICIENT ENSEMBLE COMPARISONS

In this section, we compare partitioned batch ensembles (pBE) to several popular efficient ensemble
approaches, namely MIMO (Havasi et al., 2020), batch ensemble (BE) (Wen et al., 2019), and MC
Dropout (Gal & Ghahramani, 2016).

Table 9 reports the ImageNet performance of those different techniques, when all models are based
on a ViT-B/32 architecture. We start by highlighting the most salient conclusions of the experiment
and defer to the next subsections the descriptions of the different competing techniques.

We make the following observations:

• BE built upon ViT improves the performance of ViT in terms of NLL, classification er-
ror and ECE. However, the resulting increase in FLOPs makes BE a less viable option
compared to pBE.

• MC dropout V-MoE is on par with standard V-MoE in terms of NLL and classification
error, while it improves the ECE. For all values of K, we observe that the performance
tends to improve as the number of samples, i.e., M , increases. However, already for M in
{2, 4}, the resulting increase in FLOPs makes MC dropout V-MoE a less favorable option
compared to pBE.

• Perhaps surprisingly (see detailed investigations in Appendix F.3), MIMO V-MoE does not
lead to improvements compared with V-MoE. In fact, for higher ensembles sizes, MIMO
V-MoE results in worse performance than standard V-MoE. Moreover, increasing the batch
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Table 9: ImageNet performance of different efficient ensemble approaches. The table reports the
means ± standard errors over 8 replications. All models have a ViT-B/32 architecture. K stands for
the sparsity in V-MoEs,M denotes the ensemble size while “BR” corresponds to the batch repetition
in MIMO (Havasi et al., 2020).

K M NLL ERROR ECE KL GFLOPS

ViT – – 0.688 ± 0.003 18.65 ± 0.08 0.022 ± 0.000 – 72.5

BE ViT – 2 0.682 ± 0.003 18.47 ± 0.05 0.021 ± 0.000 0.040 ± 0.001 94.8
– 4 0.675 ± 0.003 18.40 ± 0.09 0.017 ± 0.000 0.035 ± 0.001 132.1

V-MoE

1 – 0.642 ± 0.002 16.90 ± 0.05 0.029 ± 0.001 – 73.5
2 – 0.638 ± 0.001 16.76 ± 0.05 0.033 ± 0.001 – 84.7
4 – 0.636 ± 0.001 16.70 ± 0.04 0.034 ± 0.001 – 107.0
8 – 0.635 ± 0.002 16.72 ± 0.06 0.028 ± 0.001 – 151.7

MC dropout V-MoE

1 2 0.648 ± 0.002 17.10 ± 0.05 0.019 ± 0.001 0.046 ± 0.000 95.9
1 4 0.641 ± 0.002 16.96 ± 0.05 0.017 ± 0.001 0.046 ± 0.001 138.4
2 2 0.642 ± 0.002 16.94 ± 0.04 0.021 ± 0.001 0.046 ± 0.001 119.6
2 4 0.634 ± 0.001 16.80 ± 0.03 0.020 ± 0.000 0.046 ± 0.001 183.5
4 2 0.639 ± 0.002 16.91 ± 0.06 0.022 ± 0.001 0.045 ± 0.001 164.0

MIMO V-MoE (BR=1) 2 2 0.636 ± 0.002 16.97 ± 0.04 0.028 ± 0.001 0.000 ± 0.000 90.2
2 4 0.672 ± 0.001 17.72 ± 0.04 0.037 ± 0.000 0.001 ± 0.000 92.8

MIMO V-MoE (BR=2) 2 2 0.638 ± 0.001 17.14 ± 0.03 0.031 ± 0.000 0.001 ± 0.000 180.3
2 4 0.665 ± 0.002 17.38 ± 0.04 0.038 ± 0.000 0.000 ± 0.000 185.4

pBE

1 2 0.622 ± 0.001 16.70 ± 0.03 0.018 ± 0.000 0.217 ± 0.003 94.5
1 4 0.624 ± 0.001 16.99 ± 0.03 0.013 ± 0.000 0.164 ± 0.001 136.3
2 2 0.612 ± 0.001 16.49 ± 0.02 0.013 ± 0.000 0.198 ± 0.003 116.8
2 4 0.620 ± 0.001 16.86 ± 0.02 0.015 ± 0.000 0.170 ± 0.001 181.0
4 2 0.611 ± 0.001 16.45 ± 0.03 0.014 ± 0.000 0.193 ± 0.003 161.4

repetition parameter of MIMO (“BR” in Table 9) further worsens the results. Interestingly,
we can see that MIMO does not manage to produce diverse predictions, as illustrated by
the small values of KL.

• pBE offers the best performance vs. FLOPs trade-offs, e.g., when looking at (K,M) =
(1, 2) and (K,M) = (2, 2). We notably observe that the diversity of the predictions in
pBE is orders of magnitude larger than that of the other ensemble approaches.

We briefly recall the optimization explained in Section 4.1 to save redundant computations: In
the “last-n” setting of Riquelme et al. (2021), it is sufficient to tile the representations only when
entering the first MoE layer/dropout layer/batch-ensemble layer for respectively pBE/MC dropout
V-MoE/BE. We apply this optimization to all the efficient ensemble methods.

F.1 BATCH ENSEMBLES

Following the design of V-MoEs, we place the batch-ensemble layers in the MLP layers of the
Transformer, following the “last-n” setting of Riquelme et al. (2021); see Section 2.1.

The vectors of the rank-1 parametrization introduced at fine-tuning time (see Appendix C) need to
be initialized and optimized. Following the recommendation from Wen et al. (2019), we consider
the following hyperparameters in addition to the common sweep described in Table 5:

• Initialization: Either a random sign vector with entries in {−1, 1} independently drawn
with probability 1

2 or a random Gaussian vector with entries independently drawn from
N (1, 0.5).

• Learning-rate scale factor: The vectors of the rank-1 parametrization are updated with a
learning rate scaled by a factor in {0.5, 1, 2}.
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F.2 MC DROPOUT V-MOES

For MC dropout V-MoE, we take the available fine-tuned V-MoEs and enable dropout at prediction
time. Indeed, as described in Table 5, all V-MoE models already have a 0.1 dropout rate in the
experts.

F.3 MIMO V-MOES

Following Havasi et al. (2020) we consider two MIMO-specific hyperparameters, in addition to the
hyperparameters listed in Table 5:

• Input replication probability: {0.5, 0.625, 0.75}
• Batch repetitions: {1, 2}

Our preliminary investigations also considered lower input repetition probabilities and higher batch
repetitions. However, lower input repetition probabilities tended to result in poorer performance.
While higher batch repetitions did help to some extent, the additional computational cost made it
impractical.

Given the surprising result that an ensemble size of M = 2 provides no performance improvement
over the standard V-MoE and that increasing M further provides worse performance, there seems to
be some incompatibility between MIMO and V-MoE. In fact, our investigations revealed that ViT
is the source of the problems since applying MIMO to vanilla ViT without experts resulted in the
same trends as for V-MoE. Thus we hypothesise that the differences between ViT and ResNet—the
architecture to which MIMO was originally applied by Havasi et al. (2020)—are responsible for
MIMO’s poor performance when applied to ViT.

Difference 1: Class token. One of the differences between ViT and ResNet is that ViT makes
use of a special learnable class token to classify an image (see Dosovitskiy et al. (2021) for details).
ResNet on the other hand makes use of the representation from an entire image for classification.
We tried two strategies to mitigate this difference:

1. We applied the global average pooling (GAP) and multi-head attention pooling (MAP)
classification strategies introduced in Dosovitskiy et al. (2021) and Zhai et al. (2021), re-
spectively. In short, both of these methods make use of all the tokens from an image for
classification. However, neither of these strategies made a significant difference to the rel-
ative performance of MIMO and ViT. In fact, the choice of classification method was the
least impactful hyperparameter in our sweep.

2. Rather than learning a single class token, we learnt M class tokens. This strategy resulted
in MIMO with M = 2 outperforming ViT. However, for M > 2 the improvement was
small enough that ViT still outperformed MIMO.

Difference 2: Attention. The other major difference between ViT and ResNet is the building
block for each model. While ResNets are primarily composed of convolution operations, ViT makes
heavy used of attention. We hypothesised that attention is less suited to separating the information
for M input images stored in the channel dimension of a single image. We tried two strategies to
mitigate this potential issue:

1. We applied the hybrid architecture, described in Dosovitskiy et al. (2021), in which the
input sequence to ViT is formed by CNN feature maps. We used ResNet14 and ResNet50.
In both cases, we found that strategy boosted the performance of ViT and MIMO equally.

2. Rather than concatenating images in the channel dimension, we concatenated them in the
width dimension, resulting in 3 times as many patches for ViT to process. This strategy
was successful in the sense that the MIMO performance for M > 2 improved significantly.
However, the significant additional computational cost made it an infeasible solution.

Our findings suggest that MIMO and ViT are indeed somewhat incompatible. Unfortunately, none
of our proposed solutions to this problem provided high enough predictive performance increases
(or indeed low enough computational cost increases in some cases) to warrant immediate further
investigation.
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G UPSTREAM & DOWNSTREAM VERSUS DOWNSTREAM-ONLY ENSEMBLES

In Section 5, and Appendix H include downstream deep ensembles (down-DE) of V-MoE, and in
some cases ViT, as a baseline. This choice was motivated by the fact that like ViT, V-MoE, and pBE,
down-DE requires a only a single upstream checkpoint, which all of the methods more comparable.
However, it is clear that using different upstream checkpoints and then further fine-tuning each of
these with different random seeds to construct an upstream deep ensemble (up-DE) would result in
more varied ensemble members and as a result, a better performing ensemble. This idea has recently
been explored by Mustafa et al. (2020).

Thus, for completeness, we also investigate the effects of upstream ensembling on V-MoE. Table 10
compares the performance of upstream and downstream V-MoE (K = 1) ensembles of sizesM = 2
and M = 4. Across the range of metrics, for both ImageNet and ImageNet-C, for all ViT families,
and for both values of M , we see that up-DE outperforms down-DE. In fact, up-DE with M = 2
is very often better than or equal to down-DE with M = 4. This is especially true for the diversity
metrics, which indicates that diversity is indeed the driver for improved performance in up-DE. Not
shown in the table is the very large computational cost associated with training upstream ensembles.
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Table 10: Comparison of upstream and downstream ensembles of V-MoE with (K = 1).

IMAGENET IMAGENET-C
M NLL ↓ ERROR ↓ ECE ↓ KL ↑ COS. SIM. ↓ NORM. DIS. ↑ NLL ↓ ERROR ↓ ECE ↓ KL ↑ COS. SIM. ↓ NORM. DIS. ↑

H/14

down-DE 2 0.403 ± 0.000 11.35 ± 0.05 0.018 ± 0.001 0.079 ± 0.003 0.974 ± 0.001 0.488 ± 0.006 0.871 ± 0.012 21.37 ± 0.20 0.021 ± 0.001 0.218 ± 0.002 0.925 ± 0.001 0.628 ± 0.003

up-DE 2 0.391 ± 0.000 11.12 ± 0.10 0.016 ± 0.001 0.126 ± 0.008 0.963 ± 0.002 0.625 ± 0.012 0.839 ± 0.011 20.66 ± 0.22 0.022 ± 0.000 0.355 ± 0.007 0.892 ± 0.002 0.809 ± 0.006

down-DE 4 0.392 ± 0.000 11.20 ± 0.000 0.014 ± 0.000 0.083 ± 0.000 0.973 ± 0.000 0.509 ± 0.000 0.851 ± 0.000 20.97 ± 0.000 0.021 ± 0.000 0.221 ± 0.000 0.923 ± 0.000 0.650 ± 0.000

up-DE 4 0.375 ± 0.000 10.66 ± 0.000 0.013 ± 0.000 0.129 ± 0.000 0.963 ± 0.000 0.652 ± 0.000 0.792 ± 0.000 19.61 ± 0.000 0.032 ± 0.000 0.361 ± 0.000 0.892 ± 0.000 0.850 ± 0.000

L/16

down-DE 2 0.450 ± 0.002 12.62 ± 0.04 0.016 ± 0.000 0.061 ± 0.001 0.979 ± 0.000 0.419 ± 0.002 1.010 ± 0.006 24.43 ± 0.12 0.021 ± 0.000 0.168 ± 0.002 0.936 ± 0.001 0.539 ± 0.003

up-DE 2 0.434 ± 0.000 12.23 ± 0.04 0.014 ± 0.000 0.118 ± 0.001 0.964 ± 0.000 0.584 ± 0.001 0.961 ± 0.001 23.46 ± 0.03 0.023 ± 0.000 0.342 ± 0.001 0.890 ± 0.000 0.766 ± 0.001

down-DE 4 0.440 ± 0.002 12.39 ± 0.06 0.015 ± 0.000 0.061 ± 0.001 0.979 ± 0.000 0.425 ± 0.002 0.983 ± 0.006 23.95 ± 0.12 0.020 ± 0.000 0.166 ± 0.001 0.937 ± 0.000 0.547 ± 0.002

up-DE 4 0.418 ± 0.000 11.86 ± 0.01 0.013 ± 0.000 0.118 ± 0.000 0.964 ± 0.000 0.603 ± 0.001 0.916 ± 0.001 22.45 ± 0.02 0.034 ± 0.000 0.341 ± 0.000 0.890 ± 0.000 0.800 ± 0.001

L/32

down-DE 2 0.533 ± 0.002 14.55 ± 0.04 0.025 ± 0.001 0.092 ± 0.001 0.969 ± 0.000 0.479 ± 0.004 1.184 ± 0.003 27.98 ± 0.04 0.029 ± 0.000 0.199 ± 0.002 0.925 ± 0.001 0.556 ± 0.002

up-DE 2 0.511 ± 0.001 14.07 ± 0.02 0.019 ± 0.000 0.191 ± 0.001 0.945 ± 0.000 0.694 ± 0.005 1.133 ± 0.002 26.97 ± 0.04 0.022 ± 0.000 0.449 ± 0.005 0.861 ± 0.001 0.820 ± 0.003

down-DE 4 0.518 ± 0.002 14.29 ± 0.03 0.022 ± 0.000 0.092 ± 0.001 0.969 ± 0.000 0.487 ± 0.003 1.154 ± 0.004 27.47 ± 0.05 0.023 ± 0.000 0.199 ± 0.002 0.925 ± 0.001 0.567 ± 0.002

up-DE 4 0.486 ± 0.000 13.52 ± 0.02 0.016 ± 0.000 0.190 ± 0.001 0.946 ± 0.000 0.722 ± 0.001 1.073 ± 0.001 25.74 ± 0.02 0.030 ± 0.000 0.446 ± 0.001 0.862 ± 0.000 0.857 ± 0.000

B/16

down-DE 2 0.519 ± 0.002 14.09 ± 0.02 0.021 ± 0.001 0.048 ± 0.000 0.982 ± 0.000 0.351 ± 0.002 1.316 ± 0.008 30.02 ± 0.18 0.030 ± 0.000 0.132 ± 0.001 0.943 ± 0.000 0.448 ± 0.002

up-DE 2 0.489 ± 0.001 13.40 ± 0.03 0.015 ± 0.000 0.169 ± 0.002 0.951 ± 0.000 0.668 ± 0.004 1.231 ± 0.004 28.41 ± 0.09 0.023 ± 0.000 0.481 ± 0.006 0.845 ± 0.001 0.838 ± 0.003

down-DE 4 0.511 ± 0.002 13.95 ± 0.01 0.019 ± 0.001 0.048 ± 0.000 0.982 ± 0.000 0.354 ± 0.002 1.293 ± 0.008 29.67 ± 0.18 0.026 ± 0.000 0.132 ± 0.001 0.943 ± 0.000 0.453 ± 0.002

up-DE 4 0.468 ± 0.000 12.89 ± 0.03 0.016 ± 0.000 0.168 ± 0.000 0.951 ± 0.000 0.690 ± 0.001 1.166 ± 0.002 27.08 ± 0.05 0.037 ± 0.000 0.479 ± 0.001 0.846 ± 0.000 0.879 ± 0.001

B/32

down-DE 2 0.620 ± 0.001 16.44 ± 0.04 0.023 ± 0.000 0.073 ± 0.001 0.973 ± 0.000 0.414 ± 0.002 1.510 ± 0.005 33.79 ± 0.08 0.032 ± 0.000 0.175 ± 0.001 0.925 ± 0.000 0.498 ± 0.002

up-DE 2 0.588 ± 0.001 15.74 ± 0.05 0.017 ± 0.001 0.214 ± 0.001 0.937 ± 0.000 0.709 ± 0.001 1.430 ± 0.003 32.37 ± 0.05 0.022 ± 0.000 0.537 ± 0.002 0.824 ± 0.001 0.844 ± 0.002

down-DE 4 0.607 ± 0.000 16.17 ± 0.02 0.021 ± 0.001 0.073 ± 0.000 0.973 ± 0.000 0.418 ± 0.005 1.483 ± 0.008 33.36 ± 0.13 0.027 ± 0.000 0.174 ± 0.001 0.926 ± 0.001 0.504 ± 0.002

up-DE 4 0.561 ± 0.001 15.10 ± 0.03 0.020 ± 0.000 0.214 ± 0.001 0.937 ± 0.000 0.739 ± 0.001 1.357 ± 0.002 30.92 ± 0.03 0.036 ± 0.000 0.537 ± 0.001 0.824 ± 0.000 0.884 ± 0.001

S/32

down-DE 2 0.807 ± 0.003 20.90 ± 0.10 0.018 ± 0.001 0.102 ± 0.001 0.962 ± 0.000 0.458 ± 0.003 2.106 ± 0.010 44.52 ± 0.18 0.038 ± 0.001 0.223 ± 0.003 0.900 ± 0.001 0.521 ± 0.002

up-DE 2 0.763 ± 0.001 19.85 ± 0.04 0.016 ± 0.000 0.305 ± 0.002 0.911 ± 0.000 0.773 ± 0.002 2.004 ± 0.004 42.92 ± 0.08 0.025 ± 0.000 0.683 ± 0.003 0.767 ± 0.001 0.856 ± 0.002

down-DE 4 0.795 ± 0.003 20.66 ± 0.13 0.015 ± 0.001 0.102 ± 0.002 0.962 ± 0.001 0.462 ± 0.004 2.076 ± 0.012 44.16 ± 0.21 0.031 ± 0.000 0.222 ± 0.003 0.900 ± 0.001 0.526 ± 0.003

up-DE 4 0.728 ± 0.001 19.06 ± 0.04 0.025 ± 0.000 0.304 ± 0.001 0.911 ± 0.000 0.808 ± 0.002 1.914 ± 0.003 41.38 ± 0.05 0.034 ± 0.000 0.682 ± 0.003 0.767 ± 0.001 0.891 ± 0.002
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H ADDITIONAL EXPERIMENTAL RESULTS

In this section we expand on various experiments presented in sections 3 and 5. In experiments
considering multiple ViT families we also include B/16 which was excluded from the main text for
clarity.

H.1 STATIC VERSUS ADAPTIVE COMBINATION

Here we continue the investigation into static versus adaptive combination from Section 3.1.

Individual gains with respect to E,K and M . Figure 8 shows the effect of increasing the the
various ‘ensemble size’ parameters for a deep ensemble of V-MoEs. In particular, we investigate the
static combination axisM (the number of ensemble members), as well as the two adaptive axes—K
(the number of experts chosen per patch) and E (the total number of experts).

When investigating the effect ofK, we fixE = 32 and average overM ∈ {1, .., 8}. Similarly, when
investigating M , we fix E = 32 and average over K ∈ {1, .., 8}. When investigating the effect of
E we fix K = 2 and average over M ∈ {1, .., 8}. As a result of this procedure the exact values of
the curves are not directly comparable. However, we can still examine the relative trends.

Specifically, we note that while the variation in K and M curves is roughly of the same size, the
variation in the E curve is smaller. We also note that there is very little variation beyond E = 8
(note the difference in the scales of the axes for the curves). These observations motivate the design
of pBE, where we split the sub-models along the E axis, in order to better take advantage of the
experts.

1 2 3 4 5 6 7 8
K/M

0.76

0.78

0.80

0.82

0.84

N
LL

NLL vs. 'ensemble size'

K
M
E

4 8 16 32
E

Figure 8: Comparison for the impact on ImageNet NLL of variations in K, E and M . The underly-
ing model is ViT-S/32.

Extended Results for the Cumulative Effects of Static and Adaptive Combination. In Fig-
ure 9 we extend the ImageNet NLL results, presented in Figure 3, to a range of other datasets and
performance metrics. We see that in most cases, the trends are the same as before. That is, (static)
ensembling tends to improve the performance of ViT and V-MoE equally. The two exceptions are
ECE and OOD detection for ViT-S/32 where we see that larger ensemble sizes can result in de-
creased performance. These results indicate that the for small ViT models, larger ensembles can
have slightly lower quality uncertainty estimates. The trend for ImageNet-C performance is also not
as consistent with ensembling sometimes helping ViT or V-MoE less (as indicated by the changes
in ordering on the y-axis).
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Figure 9: Extended results for Figure 3 to a selection of other tasks and metrics. We see that in most
cases, ensembles tend to help ViT and V-MoE equally.
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H.2 EXTENDED RESULTS FOR FEW-SHOT LEARNING

In Figure 10, we extend the few-shot learning results of Figure 4 to also include 1, 5, and 25-shot.
Additionally, we show results for the weighted aggregation strategy mentioned in Appendix B.4.

We confirm the result that few-shot performance for pBE gets better, relative to the other baselines,
with larger ViT families. Additionally, we see that pBE performance seems to get better, again
relative to the other baselines, with more shots. This phenomenon can most easily be noticed by
comparing the results for S/32 across the different numbers of shots. Finally, we see that the trends
with and without the weighted mean are the same.
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Figure 10: Extended few-shot results from Figure 4 with an additional aggregation method and
numbers of shots.

H.3 EXTENDED RESULTS FOR OOD DETECTION

Here we extended the OOD results of Figure 5. Specifically, we add Cifar100 as an in-distribution
dataset and Describable Textures Dataset (DTD) (Cimpoi et al., 2014) as an OOD dataset. We also
add area under the receiver operating characteristic (AUC (ROC)) and area under the precision-recall
curve (AUC (PR)) as metrics. Figures 11 and 12 contain the results with Cifar10 and Cifar100 as
the in-distribution datasets, respectively.

As in Figure 5, we see that pBE performs better (relative to the other baselines) for larger ViT
families. Furthermore, pBE seems to perform better in near OOD detection (i.e. Cifar10 versus
Cifar100, and vice versa) than far OOD detection. Finally, we see that these trends are consistent
across ODD metrics.
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Figure 11: Extended OOD detection the results from Figure 5 with an additional OOD dataset and
more metrics.
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Figure 12: Extended OOD detection the results from Figure 5 with Cifar100 as the in-distribution
dataset, an additional OOD dataset, and more metrics.
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H.4 EXTENDED RESULTS FOR IMAGENET

In this section we extend the results for ImageNet and the corrupted variants presented in Figures 4,
5 and 6. In addition to NLL (and ECE for standard ImageNet), Figure 13 provides classification
error and ECE for all ImageNet variants.

Most of the trends observed in Section 5 remain true:

• pBE tends to be Pareto efficient in the presence of distribution shift.
• For smaller ViT families, V-MoE outperforms ViT in the presence of distribution shift.
• pBE improves ECE over ViT and V-MoE.
• pBE improves classification performance.
• ViT consistently provides better ECE than V-MoE.

However, there are some exceptions:

• ImageNet-A classification error. All models (including pBE) under-perform relative to
ViT-S/32 and ViT-H/14.
• ECE for ImageNet-C, ImageNet-A, and ImageNet-V2. Interestingly for the non-

standard ImageNet variants, and in particular for ImageNet-A, there is a strong correlation
between lower ECE and larger ViT families.

H.5 ADDITIONAL CIFAR10, CIFAR100, FLOWERS, AND PETS RESULTS

Here we extend the results for ImageNet and the corrupted variants presented in Figures 4, 5 and 6
to 4 additional datasets. Figures 14, 15, 16 and 17 provide results for Cifar10, Cifar100, Oxford
Flowers 102, and Oxford IIIT Pet, respectively. As in Appendix H.4, we find that the results are
similar to those in Section 5.

Compared to ImageNet, for Cifar10, Cifar10-C, and Cifar100, pBE seems to perform even better
relative to the other baselines. Note, for example, that pBE is Pareto efficient (even for S/32) in
the cases of Cifar10-C and Cifar100 NLL. As in Appendix H.4, we see that the ECE has a stronger
downward trend with respect to increased ViT family size for shifted test data.

For Flowers and Pets, where we only have results for smaller ViT families, pBE seems to under
perform. However, the performance for L/32 is better than for S/32 and B/32 which suggests that the
results for these datasets are consistent with the other datasets presented in this work and, therefore,
that we should expect pBE’s predictive performance to keep improving with larger models.

H.6 PBE AND V-MOE WITH LARGER VALUES OF K AND M

Figure 18 and Figure 19 show the effect of varying K on pBE and V-MoE, and the effect of varying
M on pBE, respectively. We make the following observations:

• In almost all cases, increasing K or M does not result in Pareto efficient models.
• For V-MoE, increasing K seems to help in most cases, except for ECE performance where

it usually hurts.
• For pBE, going from K = 1 to K = 2 seems to help in most cases but going from K = 2

to K = 4 usually hurts. Going from K = 1 to K = 4 still helps but to a lesser extent than
from K = 1 to K = 2.
• For pBE, increasing M either doesn’t make a consistent and significant difference or hurts

(e.g. in OOD detection).

These conclusions should, however, be considered with caution. Recall that the upstream check-
points used for fine-tuning all V-MoE and pBE models in this work are V-MoE models with K = 2.
Thus, the results in this experiment are confounded by upstream and downstream checkpoint mis-
match for all pBE models and all V-MoE models with K 6= 2. For example, we hypothesise that it
is more difficult to train downstream pBE models with larger values of M from upstream V-MoE
models because in each partition some common expert specialisations will need to be duplicated.
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Figure 13: Extended results from Figures 4, 5 and 6 with additional metrics.
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Figure 14: Results for Cifar10 and Cifar10-C.
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Figure 15: Results for Cifar100.
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Figure 16: Results for Oxford Flowers 102.
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Figure 17: Results for Oxford IIIT Pet.
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Figure 18: Results for V-MoE with K ∈ {1, 2, 4, 8} and pBE with K ∈ {1, 2, 4}. Models with
larger values of K have larger FLOPs.
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Figure 19: Results for pBE with M = 4 and K ∈ {1, 2}.
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H.7 FLOPS NUMBERS

Table 11 provides the downstream training FLOPs for various pBE, V-MoE, and ViT configura-
tions. These numbers correspond to the x-values of the points in the figures presented in Section 5
and Appendix H. Table 12 provides the percentage difference in FLOPs between the pBE, V-MoE
and down-DE models most commonly used in this work. Note that the percentage differences for
H/14 do not follow the trend of the other sizes, e.g. that the percentage difference between pBE and
V-MoE gets smaller for larger sizes, due to the fact that for H/15 we use a last-5 configuration rather
than the last-2 configuration used for the other ViT families.

Table 11: Downstream training GFLOPs for the various pBE, V-MoE, and ViT baselines used in
this work.

K M S/32 B/32 B/16 L/32 L/16 H/14

pBE 1 2 32.71 94.51 403.92 287.14 1210.91 3967.77
pBE 1 4 51.65 136.35 — 360.62 — —
pBE 2 2 42.69 116.79 492.62 326.41 1367.99 —
pBE 2 4 71.65 181.00 — 439.89 — —
pBE 4 2 62.68 161.44 — 405.67 — —

ViT - 1 22.32 72.46 310.67 252.61 1069.53 2962.57
ViT - 2 44.63 144.93 621.34 505.22 2139.06 5925.13
ViT - 4 89.26 289.86 1242.68 1010.45 4278.13 11850.27

V-MoE 1 1 23.22 73.55 313.95 249.70 1055.14 3008.02
V-MoE 1 2 46.44 147.10 627.89 499.39 2110.29 6016.04
V-MoE 1 4 92.87 294.19 1255.79 998.78 4220.58 12032.08
V-MoE 2 1 28.23 84.74 358.70 269.51 1134.41 3436.74
V-MoE 4 1 38.20 107.01 447.39 308.96 1291.49 —
V-MoE 8 1 58.20 151.67 — 388.05 — —

Table 12: Percentage difference in downstream training FLOPs for pBE with (K,M) = (1, 2)
compared with V-MoE with K = 1 and an ensemble of two such V-MoE members.

S/32 B/32 B/16 L/32 L/16 H/14

pBE vs. V-MoE 40.88 28.51 28.66 14.99 14.76 31.91
pBE vs. down-DE -29.56 -35.75 -35.67 -42.50 -42.62 -34.05

H.8 AUXILIARY TABLES WITH STANDARD ERRORS.

The tables in this section provide the mean values and corresponding standard errors for many of
the results depicted in figures throughout Section 5 and Appendix H.
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Table 13: ImageNet comparison of V-MoE, downstream ensembles there-of, and pBE with 2 experts per input in each case.

IMAGENET IMAGENET-C IMAGENET-A IMAGENET-V2 DOWNSTREAM
K M NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ ∆FLOPS (%) ↓

H/14
pBE 1 2 0.408 ± 0.001 11.63 ± 0.05 0.012 ± 0.000 0.865 ± 0.010 21.46 ± 0.16 0.018 ± 0.000 2.276 ± 0.042 49.09 ± 0.78 0.101 ± 0.003 0.745 ± 0.001 19.50 ± 0.08 0.035 ± 0.001 15.45

down-DE 1 2 0.403 ± 0.000 11.35 ± 0.05 0.018 ± 0.001 0.871 ± 0.012 21.37 ± 0.20 0.021 ± 0.001 2.273 ± 0.049 47.93 ± 0.93 0.108 ± 0.001 0.758 ± 0.003 19.28 ± 0.17 0.044 ± 0.001 75.05
V-MoE 2 1 0.428 ± 0.003 11.89 ± 0.13 0.030 ± 0.001 0.934 ± 0.013 22.41 ± 0.20 0.038 ± 0.001 2.517 ± 0.063 50.34 ± 1.12 0.167 ± 0.003 0.811 ± 0.005 20.25 ± 0.13 0.065 ± 0.001 —

L/16
pBE 1 2 0.448 ± 0.001 12.60 ± 0.03 0.020 ± 0.000 1.023 ± 0.005 24.89 ± 0.11 0.024 ± 0.000 2.836 ± 0.015 57.97 ± 0.21 0.160 ± 0.001 0.838 ± 0.002 21.30 ± 0.07 0.051 ± 0.001 6.74

down-DE 1 2 0.450 ± 0.002 12.62 ± 0.04 0.016 ± 0.000 1.010 ± 0.006 24.43 ± 0.12 0.021 ± 0.000 2.796 ± 0.016 57.06 ± 0.32 0.136 ± 0.000 0.818 ± 0.003 21.06 ± 0.11 0.044 ± 0.001 86.03
V-MoE 2 1 0.464 ± 0.001 12.88 ± 0.04 0.025 ± 0.000 1.058 ± 0.004 25.27 ± 0.08 0.034 ± 0.000 2.945 ± 0.016 57.85 ± 0.28 0.178 ± 0.001 0.848 ± 0.002 21.33 ± 0.03 0.057 ± 0.001 —

L/32
pBE 1 2 0.535 ± 0.001 14.70 ± 0.03 0.027 ± 0.000 1.193 ± 0.003 28.28 ± 0.05 0.032 ± 0.000 4.170 ± 0.010 74.73 ± 0.09 0.266 ± 0.002 0.989 ± 0.002 24.62 ± 0.08 0.063 ± 0.001 6.54

down-DE 1 2 0.533 ± 0.002 14.55 ± 0.04 0.025 ± 0.001 1.184 ± 0.003 27.98 ± 0.04 0.029 ± 0.000 4.139 ± 0.017 74.29 ± 0.21 0.254 ± 0.003 0.982 ± 0.002 24.42 ± 0.08 0.061 ± 0.002 85.29
V-MoE 2 1 0.563 ± 0.001 15.05 ± 0.03 0.039 ± 0.000 1.261 ± 0.005 29.12 ± 0.07 0.052 ± 0.000 4.394 ± 0.014 75.39 ± 0.17 0.301 ± 0.002 1.046 ± 0.002 25.22 ± 0.06 0.083 ± 0.001 —

B/16
pBE 1 2 0.519 ± 0.001 14.26 ± 0.03 0.020 ± 0.000 1.352 ± 0.005 31.20 ± 0.09 0.022 ± 0.000 3.835 ± 0.019 72.25 ± 0.22 0.223 ± 0.002 0.974 ± 0.002 24.10 ± 0.10 0.051 ± 0.001 12.61

down-DE 1 2 0.519 ± 0.002 14.09 ± 0.02 0.021 ± 0.001 1.316 ± 0.008 30.02 ± 0.18 0.030 ± 0.000 3.618 ± 0.013 66.99 ± 0.28 0.203 ± 0.002 0.945 ± 0.003 23.39 ± 0.09 0.054 ± 0.001 75.05
V-MoE 2 1 0.533 ± 0.001 14.60 ± 0.04 0.022 ± 0.000 1.372 ± 0.005 31.27 ± 0.11 0.034 ± 0.000 3.875 ± 0.016 70.79 ± 0.30 0.235 ± 0.002 0.959 ± 0.003 24.09 ± 0.11 0.056 ± 0.001 —

B/32
pBE 1 2 0.622 ± 0.001 16.70 ± 0.03 0.018 ± 0.000 1.532 ± 0.005 34.73 ± 0.08 0.022 ± 0.000 5.080 ± 0.013 84.91 ± 0.09 0.301 ± 0.001 1.143 ± 0.002 27.97 ± 0.10 0.055 ± 0.001 11.54

down-DE 1 2 0.620 ± 0.001 16.44 ± 0.04 0.023 ± 0.000 1.510 ± 0.005 33.79 ± 0.08 0.032 ± 0.000 4.891 ± 0.014 81.98 ± 0.18 0.284 ± 0.002 1.116 ± 0.002 27.24 ± 0.08 0.061 ± 0.000 73.59
V-MoE 2 1 0.638 ± 0.001 16.76 ± 0.05 0.033 ± 0.001 1.562 ± 0.004 34.40 ± 0.06 0.050 ± 0.001 5.032 ± 0.014 81.71 ± 0.11 0.317 ± 0.002 1.150 ± 0.002 27.50 ± 0.08 0.076 ± 0.001 —

S/32
pBE 1 2 0.818 ± 0.002 21.18 ± 0.04 0.015 ± 0.000 2.169 ± 0.008 45.79 ± 0.10 0.030 ± 0.000 6.419 ± 0.011 93.98 ± 0.09 0.345 ± 0.001 1.437 ± 0.002 34.03 ± 0.05 0.054 ± 0.001 15.88

down-DE 1 2 0.807 ± 0.003 20.90 ± 0.10 0.018 ± 0.001 2.106 ± 0.010 44.52 ± 0.18 0.038 ± 0.001 6.063 ± 0.007 92.33 ± 0.07 0.335 ± 0.001 1.393 ± 0.003 33.29 ± 0.10 0.062 ± 0.002 64.50
V-MoE 2 1 0.829 ± 0.002 21.09 ± 0.08 0.035 ± 0.001 2.162 ± 0.007 44.95 ± 0.12 0.066 ± 0.001 6.227 ± 0.015 92.09 ± 0.12 0.373 ± 0.001 1.437 ± 0.002 33.42 ± 0.08 0.086 ± 0.001 —

Table 14: ImageNet comparison of V-MoE, downstream ensembles there-of, and pBE with 4 experts per input in each case.

IMAGENET IMAGENET-C IMAGENET-A IMAGENET-V2 DOWNSTREAM
K M NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ ∆FLOPS (%) ↓

L/16
pBE 2 2 0.451 ± 0.001 12.61 ± 0.04 0.023 ± 0.000 1.028 ± 0.003 24.90 ± 0.07 0.028 ± 0.000 2.886 ± 0.016 58.26 ± 0.24 0.171 ± 0.002 0.849 ± 0.002 21.40 ± 0.11 0.055 ± 0.001 5.92

down-DE 1 4 0.440 ± 0.002 12.39 ± 0.06 0.015 ± 0.000 0.983 ± 0.006 23.95 ± 0.12 0.020 ± 0.000 2.712 ± 0.015 56.36 ± 0.36 0.120 ± 0.002 0.803 ± 0.002 20.83 ± 0.10 0.039 ± 0.001 226.80
V-MoE 4 1 0.465 ± 0.001 12.86 ± 0.05 0.026 ± 0.000 1.060 ± 0.005 25.28 ± 0.09 0.035 ± 0.000 2.976 ± 0.022 58.26 ± 0.29 0.186 ± 0.002 0.856 ± 0.002 21.53 ± 0.07 0.060 ± 0.001 —

L/32
pBE 2 2 0.529 ± 0.001 14.63 ± 0.02 0.019 ± 0.000 1.188 ± 0.004 28.23 ± 0.07 0.025 ± 0.000 4.095 ± 0.015 74.38 ± 0.14 0.253 ± 0.002 0.962 ± 0.001 24.41 ± 0.04 0.055 ± 0.001 5.65

down-DE 1 4 0.518 ± 0.002 14.29 ± 0.03 0.022 ± 0.000 1.154 ± 0.004 27.47 ± 0.05 0.023 ± 0.000 4.033 ± 0.016 73.79 ± 0.13 0.237 ± 0.002 0.959 ± 0.002 24.03 ± 0.04 0.054 ± 0.001 223.27
V-MoE 4 1 0.566 ± 0.002 15.08 ± 0.04 0.041 ± 0.000 1.267 ± 0.003 29.19 ± 0.05 0.053 ± 0.000 4.428 ± 0.017 75.52 ± 0.06 0.306 ± 0.001 1.050 ± 0.003 25.21 ± 0.05 0.084 ± 0.000 —

B/16
pBE 2 2 0.510 ± 0.001 14.13 ± 0.02 0.016 ± 0.000 1.328 ± 0.006 30.81 ± 0.11 0.020 ± 0.000 3.743 ± 0.011 71.12 ± 0.16 0.211 ± 0.002 0.945 ± 0.002 23.75 ± 0.03 0.044 ± 0.001 10.11

down-DE 1 4 0.511 ± 0.002 13.95 ± 0.01 0.019 ± 0.001 1.293 ± 0.008 29.67 ± 0.18 0.026 ± 0.000 3.544 ± 0.015 66.49 ± 0.27 0.190 ± 0.002 0.930 ± 0.003 23.17 ± 0.06 0.050 ± 0.001 180.69
V-MoE 4 1 0.532 ± 0.002 14.21 ± 0.04 0.029 ± 0.001 1.350 ± 0.005 30.44 ± 0.11 0.046 ± 0.001 3.726 ± 0.014 66.88 ± 0.15 0.238 ± 0.002 0.973 ± 0.003 23.69 ± 0.10 0.069 ± 0.001 —

B/32
pBE 2 2 0.612 ± 0.001 16.49 ± 0.02 0.013 ± 0.000 1.491 ± 0.003 33.85 ± 0.05 0.019 ± 0.000 4.872 ± 0.007 82.80 ± 0.08 0.275 ± 0.001 1.099 ± 0.003 27.36 ± 0.10 0.045 ± 0.001 9.14

down-DE 1 4 0.607 ± 0.000 16.17 ± 0.02 0.021 ± 0.001 1.483 ± 0.008 33.36 ± 0.13 0.027 ± 0.000 4.787 ± 0.011 82.11 ± 0.07 0.276 ± 0.000 1.099 ± 0.003 26.98 ± 0.01 0.055 ± 0.002 174.91
V-MoE 4 1 0.636 ± 0.001 16.70 ± 0.04 0.034 ± 0.001 1.555 ± 0.003 34.33 ± 0.05 0.051 ± 0.001 5.031 ± 0.013 81.62 ± 0.13 0.322 ± 0.002 1.150 ± 0.003 27.49 ± 0.10 0.079 ± 0.002 —

S/32
pBE 2 2 0.805 ± 0.002 20.97 ± 0.05 0.013 ± 0.000 2.112 ± 0.007 45.05 ± 0.09 0.028 ± 0.000 6.283 ± 0.013 93.68 ± 0.09 0.342 ± 0.001 1.408 ± 0.003 33.71 ± 0.10 0.051 ± 0.001 11.73

down-DE 1 4 0.795 ± 0.003 20.66 ± 0.13 0.015 ± 0.001 2.076 ± 0.012 44.16 ± 0.21 0.031 ± 0.000 5.990 ± 0.011 92.25 ± 0.03 0.324 ± 0.001 1.372 ± 0.002 32.83 ± 0.13 0.054 ± 0.002 143.10
V-MoE 4 1 0.820 ± 0.002 20.97 ± 0.07 0.030 ± 0.001 2.133 ± 0.006 44.53 ± 0.12 0.060 ± 0.001 6.142 ± 0.014 91.62 ± 0.12 0.365 ± 0.002 1.417 ± 0.003 33.30 ± 0.12 0.081 ± 0.001 —
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Table 15: ImageNet comparison of V-MoE and ViT.

IMAGENET IMAGENET-C IMAGENET-A IMAGENET-V2
K M NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓

H/14 V-MoE 1 1 0.426 ± 0.002 11.81 ± 0.08 0.026 ± 0.000 0.932 ± 0.009 22.43 ± 0.16 0.033 ± 0.000 2.494 ± 0.057 50.22 ± 1.02 0.153 ± 0.004 0.806 ± 0.005 20.08 ± 0.13 0.059 ± 0.001

ViT - 1 0.426 ± 0.001 11.99 ± 0.05 0.023 ± 0.000 0.929 ± 0.004 22.45 ± 0.06 0.031 ± 0.000 2.332 ± 0.018 46.99 ± 0.21 0.149 ± 0.002 0.788 ± 0.004 20.08 ± 0.03 0.058 ± 0.001

L/16 V-MoE 1 1 0.464 ± 0.001 12.91 ± 0.04 0.022 ± 0.000 1.050 ± 0.004 25.19 ± 0.08 0.030 ± 0.000 2.914 ± 0.016 58.02 ± 0.33 0.167 ± 0.001 0.844 ± 0.003 21.42 ± 0.06 0.053 ± 0.001

ViT - 1 0.473 ± 0.004 13.37 ± 0.08 0.020 ± 0.000 1.114 ± 0.009 26.68 ± 0.17 0.032 ± 0.001 3.094 ± 0.042 60.92 ± 0.56 0.203 ± 0.004 0.864 ± 0.007 22.04 ± 0.17 0.055 ± 0.001

L/32 V-MoE 1 1 0.559 ± 0.001 15.10 ± 0.03 0.036 ± 0.001 1.246 ± 0.004 29.02 ± 0.07 0.046 ± 0.000 4.320 ± 0.013 75.25 ± 0.11 0.288 ± 0.002 1.032 ± 0.003 25.13 ± 0.09 0.077 ± 0.001

ViT - 1 0.556 ± 0.002 15.38 ± 0.05 0.025 ± 0.000 1.255 ± 0.009 29.57 ± 0.16 0.038 ± 0.000 4.286 ± 0.021 75.32 ± 0.30 0.287 ± 0.002 1.002 ± 0.004 25.32 ± 0.09 0.067 ± 0.001

B/16 V-MoE 1 1 0.533 ± 0.001 14.33 ± 0.04 0.026 ± 0.000 1.355 ± 0.005 30.59 ± 0.10 0.040 ± 0.000 3.727 ± 0.014 67.72 ± 0.16 0.222 ± 0.001 0.965 ± 0.003 23.63 ± 0.11 0.060 ± 0.001

ViT - 1 0.565 ± 0.003 15.70 ± 0.06 0.021 ± 0.001 1.515 ± 0.006 34.52 ± 0.10 0.042 ± 0.001 4.219 ± 0.032 75.85 ± 0.29 0.280 ± 0.003 1.020 ± 0.006 25.77 ± 0.12 0.061 ± 0.001

B/32 V-MoE 1 1 0.642 ± 0.002 16.90 ± 0.05 0.029 ± 0.001 1.568 ± 0.003 34.68 ± 0.05 0.045 ± 0.001 5.039 ± 0.009 82.49 ± 0.13 0.307 ± 0.002 1.151 ± 0.003 27.83 ± 0.10 0.071 ± 0.001

ViT - 1 0.688 ± 0.003 18.65 ± 0.08 0.022 ± 0.000 1.689 ± 0.005 38.02 ± 0.09 0.045 ± 0.000 5.358 ± 0.014 87.00 ± 0.12 0.342 ± 0.001 1.209 ± 0.005 29.89 ± 0.10 0.067 ± 0.001

S/32 V-MoE 1 1 0.834 ± 0.002 21.43 ± 0.08 0.029 ± 0.001 2.171 ± 0.005 45.44 ± 0.09 0.056 ± 0.001 6.199 ± 0.012 92.47 ± 0.11 0.355 ± 0.001 1.433 ± 0.002 33.84 ± 0.02 0.078 ± 0.001

ViT - 1 0.907 ± 0.003 23.69 ± 0.05 0.016 ± 0.000 2.309 ± 0.010 48.75 ± 0.13 0.055 ± 0.001 6.639 ± 0.014 94.66 ± 0.07 0.375 ± 0.001 1.529 ± 0.003 36.42 ± 0.08 0.066 ± 0.001
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Table 16: Cifar10 comparison of V-MoE, downstream ensembles there-of, and pBE with 2 experts
per input in each case.

CIFAR10 CIFAR10-C DOWNSTREAM
K M NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ ∆FLOPS (%) ↓

L/16
pBE 1 2 0.022 ± 0.000 0.55 ± 0.02 0.003 ± 0.000 0.198 ± 0.012 5.65 ± 0.20 0.027 ± 0.002 6.74

down-DE 1 2 0.026 ± 0.001 0.59 ± 0.04 0.004 ± 0.000 0.227 ± 0.011 6.18 ± 0.21 0.032 ± 0.003 86.02
V-MoE 2 1 0.028 ± 0.000 0.61 ± 0.01 0.004 ± 0.000 0.220 ± 0.012 6.17 ± 0.23 0.032 ± 0.003 —

L/32
pBE 1 2 0.026 ± 0.001 0.69 ± 0.03 0.003 ± 0.000 0.246 ± 0.008 7.01 ± 0.15 0.033 ± 0.002 6.54

down-DE 1 2 0.034 ± 0.001 0.81 ± 0.02 0.005 ± 0.000 0.252 ± 0.013 7.00 ± 0.26 0.032 ± 0.004 85.29
V-MoE 2 1 0.042 ± 0.001 0.90 ± 0.03 0.006 ± 0.000 0.325 ± 0.011 8.05 ± 0.17 0.048 ± 0.002 —

B/16
pBE 1 2 0.036 ± 0.001 0.84 ± 0.02 0.005 ± 0.000 0.295 ± 0.008 8.28 ± 0.15 0.038 ± 0.002 12.60

down-DE 1 2 0.030 ± 0.001 0.81 ± 0.04 0.003 ± 0.000 0.247 ± 0.005 7.60 ± 0.16 0.028 ± 0.001 75.05
V-MoE 2 1 0.040 ± 0.001 0.97 ± 0.02 0.006 ± 0.000 0.303 ± 0.008 8.08 ± 0.09 0.047 ± 0.002 —

B/32
pBE 1 2 0.041 ± 0.001 1.11 ± 0.03 0.004 ± 0.000 0.340 ± 0.010 10.01 ± 0.18 0.040 ± 0.003 11.53

down-DE 1 2 0.036 ± 0.000 1.07 ± 0.03 0.003 ± 0.000 0.345 ± 0.006 10.87 ± 0.13 0.042 ± 0.002 73.59
V-MoE 2 1 0.042 ± 0.001 1.11 ± 0.03 0.006 ± 0.000 0.405 ± 0.015 11.30 ± 0.24 0.063 ± 0.004 —

S/32
pBE 1 2 0.060 ± 0.001 1.92 ± 0.03 0.003 ± 0.000 0.476 ± 0.007 15.30 ± 0.17 0.049 ± 0.002 15.87

down-DE 1 2 0.056 ± 0.001 1.75 ± 0.03 0.005 ± 0.000 0.491 ± 0.004 15.42 ± 0.15 0.064 ± 0.001 64.49
V-MoE 2 1 0.058 ± 0.001 1.80 ± 0.03 0.007 ± 0.000 0.514 ± 0.006 15.48 ± 0.21 0.076 ± 0.002 —

Table 17: Cifar10 comparison of V-MoE, downstream ensembles there-of, and pBE with 4 experts
per input in each case.

CIFAR10 CIFAR10-C DOWNSTREAM
K M NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓ ∆FLOPS (%) ↓

L/16
pBE 2 2 0.026 ± 0.001 0.58 ± 0.02 0.003 ± 0.000 0.247 ± 0.016 6.56 ± 0.26 0.036 ± 0.003 5.92

down-DE 1 4 0.025 ± 0.001 0.57 ± 0.03 0.004 ± 0.000 0.219 ± 0.010 6.12 ± 0.19 0.030 ± 0.003 226.80
V-MoE 4 1 0.034 ± 0.001 0.75 ± 0.02 0.005 ± 0.000 0.278 ± 0.010 7.71 ± 0.19 0.043 ± 0.002 —

L/32
pBE 2 2 0.033 ± 0.001 0.80 ± 0.02 0.004 ± 0.000 0.242 ± 0.006 6.65 ± 0.12 0.031 ± 0.002 5.64

down-DE 1 4 0.030 ± 0.001 0.78 ± 0.02 0.004 ± 0.000 0.232 ± 0.012 6.74 ± 0.27 0.028 ± 0.003 223.27
V-MoE 4 1 0.035 ± 0.001 0.81 ± 0.02 0.005 ± 0.000 0.295 ± 0.009 7.63 ± 0.14 0.044 ± 0.002 —

B/16
pBE 2 2 0.034 ± 0.000 0.81 ± 0.02 0.004 ± 0.000 0.283 ± 0.006 8.06 ± 0.12 0.037 ± 0.002 10.11

down-DE 1 4 0.029 ± 0.000 0.80 ± 0.03 0.003 ± 0.000 0.242 ± 0.006 7.54 ± 0.16 0.026 ± 0.001 180.69
V-MoE 4 1 0.032 ± 0.001 0.79 ± 0.02 0.005 ± 0.000 0.266 ± 0.004 7.55 ± 0.10 0.040 ± 0.001 —

B/32
pBE 2 2 0.034 ± 0.001 1.00 ± 0.02 0.003 ± 0.000 0.306 ± 0.009 9.44 ± 0.23 0.037 ± 0.002 9.13

down-DE 1 4 0.035 ± 0.001 1.06 ± 0.04 0.003 ± 0.000 0.338 ± 0.005 10.77 ± 0.12 0.040 ± 0.002 174.91
V-MoE 4 1 0.042 ± 0.001 1.12 ± 0.02 0.006 ± 0.000 0.410 ± 0.017 11.29 ± 0.26 0.066 ± 0.004 —

S/32
pBE 2 2 0.058 ± 0.001 1.82 ± 0.01 0.004 ± 0.000 0.472 ± 0.007 15.01 ± 0.17 0.051 ± 0.002 11.73

down-DE 1 4 0.055 ± 0.001 1.76 ± 0.04 0.004 ± 0.000 0.486 ± 0.003 15.36 ± 0.13 0.061 ± 0.001 143.08
V-MoE 4 1 0.059 ± 0.001 1.80 ± 0.05 0.007 ± 0.000 0.536 ± 0.012 15.64 ± 0.27 0.084 ± 0.004 —

Table 18: Cifar10 comparison of V-MoE and ViT.

CIFAR10 CIFAR10-C
K M NLL ↓ ERROR ↓ ECE ↓ NLL ↓ ERROR ↓ ECE ↓

L/16 V-MoE 1 1 0.029 ± 0.001 0.59 ± 0.02 0.004 ± 0.000 0.236 ± 0.011 6.25 ± 0.20 0.034 ± 0.002

ViT - 1 0.034 ± 0.001 0.69 ± 0.03 0.005 ± 0.000 0.325 ± 0.020 7.53 ± 0.40 0.050 ± 0.004

L/32 V-MoE 1 1 0.040 ± 0.001 0.86 ± 0.02 0.006 ± 0.000 0.290 ± 0.013 7.35 ± 0.22 0.043 ± 0.003

ViT - 1 0.030 ± 0.001 0.78 ± 0.02 0.005 ± 0.000 0.281 ± 0.010 7.28 ± 0.13 0.043 ± 0.002

B/16 V-MoE 1 1 0.030 ± 0.001 0.85 ± 0.02 0.003 ± 0.000 0.249 ± 0.004 7.53 ± 0.12 0.030 ± 0.001

ViT - 1 0.031 ± 0.001 0.87 ± 0.03 0.004 ± 0.000 0.293 ± 0.009 7.99 ± 0.15 0.043 ± 0.002

B/32 V-MoE 1 1 0.038 ± 0.000 1.14 ± 0.03 0.004 ± 0.000 0.359 ± 0.008 11.09 ± 0.17 0.046 ± 0.002

ViT - 1 0.050 ± 0.002 1.38 ± 0.04 0.007 ± 0.000 0.330 ± 0.010 8.97 ± 0.19 0.051 ± 0.002

S/32 V-MoE 1 1 0.059 ± 0.001 1.84 ± 0.02 0.006 ± 0.000 0.497 ± 0.007 15.53 ± 0.20 0.066 ± 0.002

ViT - 1 0.065 ± 0.001 2.08 ± 0.02 0.006 ± 0.000 0.518 ± 0.008 15.04 ± 0.24 0.072 ± 0.002
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Table 19: Cifar10 OOD comparison of V-MoE, downstream ensembles there-of, and pBE with 2 experts per input in each case.

CIFAR10 VS. CIFAR100 CIFAR10 VS. DTD CIFAR10 VS. PLACES365 CIFAR10 VS. SVHN
K M AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓

L/16
pBE 1 2 0.9905 ± 0.0003 0.9902 ± 0.0003 0.0313 ± 0.0010 0.9999 ± 0.0000 0.9993 ± 0.0000 0.0005 ± 0.0001 0.9103 ± 0.0068 0.9936 ± 0.0003 0.0294 ± 0.0013 0.9963 ± 0.0002 0.9978 ± 0.0001 0.0007 ± 0.0002

down-DE 1 2 0.9896 ± 0.0005 0.9896 ± 0.0005 0.0357 ± 0.0029 0.9999 ± 0.0000 0.9996 ± 0.0000 0.0001 ± 0.0001 0.9421 ± 0.0063 0.9959 ± 0.0003 0.0162 ± 0.0010 0.9968 ± 0.0002 0.9982 ± 0.0002 0.0007 ± 0.0002

V-MoE 2 1 0.9895 ± 0.0004 0.9890 ± 0.0003 0.0389 ± 0.0018 0.9998 ± 0.0000 0.9988 ± 0.0001 0.0011 ± 0.0001 0.7891 ± 0.0120 0.9887 ± 0.0004 0.0435 ± 0.0005 0.9966 ± 0.0001 0.9980 ± 0.0001 0.0005 ± 0.0001

L/32
pBE 1 2 0.9875 ± 0.0003 0.9873 ± 0.0002 0.0427 ± 0.0011 0.9998 ± 0.0000 0.9990 ± 0.0000 0.0011 ± 0.0002 0.9196 ± 0.0028 0.9934 ± 0.0002 0.0321 ± 0.0013 0.9950 ± 0.0002 0.9970 ± 0.0002 0.0012 ± 0.0001

down-DE 1 2 0.9852 ± 0.0005 0.9842 ± 0.0005 0.0571 ± 0.0016 0.9994 ± 0.0001 0.9966 ± 0.0004 0.0032 ± 0.0004 0.7388 ± 0.0165 0.9846 ± 0.0007 0.0561 ± 0.0019 0.9939 ± 0.0004 0.9960 ± 0.0003 0.0012 ± 0.0002

V-MoE 2 1 0.9839 ± 0.0007 0.9839 ± 0.0005 0.0589 ± 0.0020 0.9998 ± 0.0000 0.9987 ± 0.0001 0.0013 ± 0.0003 0.8967 ± 0.0056 0.9927 ± 0.0003 0.0346 ± 0.0012 0.9944 ± 0.0003 0.9965 ± 0.0002 0.0017 ± 0.0003

B/16
pBE 1 2 0.9823 ± 0.0003 0.9800 ± 0.0003 0.0846 ± 0.0026 0.9994 ± 0.0000 0.9967 ± 0.0002 0.0015 ± 0.0002 0.7661 ± 0.0121 0.9834 ± 0.0004 0.0602 ± 0.0010 0.9914 ± 0.0002 0.9942 ± 0.0002 0.0029 ± 0.0005

down-DE 1 2 0.9860 ± 0.0005 0.9859 ± 0.0004 0.0540 ± 0.0026 0.9999 ± 0.0000 0.9993 ± 0.0001 0.0009 ± 0.0002 0.8807 ± 0.0148 0.9922 ± 0.0005 0.0388 ± 0.0013 0.9951 ± 0.0003 0.9974 ± 0.0002 0.0027 ± 0.0005

V-MoE 2 1 0.9822 ± 0.0005 0.9809 ± 0.0005 0.0800 ± 0.0030 0.9994 ± 0.0000 0.9964 ± 0.0002 0.0023 ± 0.0003 0.7399 ± 0.0141 0.9841 ± 0.0006 0.0568 ± 0.0014 0.9925 ± 0.0004 0.9953 ± 0.0002 0.0037 ± 0.0009

B/32
pBE 1 2 0.9773 ± 0.0003 0.9738 ± 0.0004 0.1254 ± 0.0020 0.9992 ± 0.0000 0.9957 ± 0.0003 0.0038 ± 0.0006 0.7438 ± 0.0085 0.9794 ± 0.0006 0.0802 ± 0.0023 0.9881 ± 0.0001 0.9918 ± 0.0002 0.0071 ± 0.0004

down-DE 1 2 0.9820 ± 0.0003 0.9813 ± 0.0002 0.0810 ± 0.0033 0.9998 ± 0.0000 0.9989 ± 0.0001 0.0014 ± 0.0004 0.8567 ± 0.0099 0.9900 ± 0.0005 0.0514 ± 0.0017 0.9924 ± 0.0004 0.9957 ± 0.0003 0.0054 ± 0.0003

V-MoE 2 1 0.9798 ± 0.0004 0.9790 ± 0.0004 0.0875 ± 0.0020 0.9997 ± 0.0000 0.9986 ± 0.0001 0.0017 ± 0.0003 0.8725 ± 0.0074 0.9904 ± 0.0006 0.0482 ± 0.0019 0.9919 ± 0.0002 0.9952 ± 0.0002 0.0047 ± 0.0004

S/32
pBE 1 2 0.9617 ± 0.0003 0.9567 ± 0.0003 0.2629 ± 0.0040 0.9992 ± 0.0000 0.9956 ± 0.0002 0.0118 ± 0.0011 0.7431 ± 0.0070 0.9750 ± 0.0006 0.1270 ± 0.0036 0.9824 ± 0.0004 0.9899 ± 0.0003 0.0388 ± 0.0028

down-DE 1 2 0.9696 ± 0.0003 0.9669 ± 0.0005 0.1856 ± 0.0046 0.9996 ± 0.0000 0.9981 ± 0.0001 0.0037 ± 0.0002 0.8135 ± 0.0146 0.9845 ± 0.0007 0.0815 ± 0.0036 0.9879 ± 0.0004 0.9933 ± 0.0002 0.0164 ± 0.0019

V-MoE 2 1 0.9691 ± 0.0008 0.9667 ± 0.0009 0.1870 ± 0.0065 0.9996 ± 0.0000 0.9979 ± 0.0001 0.0043 ± 0.0006 0.8010 ± 0.0087 0.9839 ± 0.0007 0.0827 ± 0.0032 0.9873 ± 0.0005 0.9927 ± 0.0004 0.0192 ± 0.0016

Table 20: Cifar10 OOD comparison of ViT and V-MoE

CIFAR10 VS. CIFAR100 CIFAR10 VS. DTD CIFAR10 VS. PLACES365 CIFAR10 VS. SVHN
K M AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓

L/16 V-MoE 1 1 0.9891 ± 0.0004 0.9895 ± 0.0004 0.0379 ± 0.0022 0.9999 ± 0.0000 0.9997 ± 0.0000 0.0001 ± 0.0001 0.9400 ± 0.0057 0.9960 ± 0.0002 0.0162 ± 0.0013 0.9972 ± 0.0001 0.9984 ± 0.0001 0.0007 ± 0.0001

ViT - 1 0.9839 ± 0.0008 0.9845 ± 0.0007 0.0541 ± 0.0026 0.9996 ± 0.0000 0.9978 ± 0.0002 0.0018 ± 0.0004 0.7334 ± 0.0227 0.9857 ± 0.0010 0.0492 ± 0.0024 0.9947 ± 0.0003 0.9967 ± 0.0002 0.0022 ± 0.0003

L/32 V-MoE 1 1 0.9854 ± 0.0003 0.9850 ± 0.0003 0.0573 ± 0.0018 0.9996 ± 0.0000 0.9976 ± 0.0002 0.0030 ± 0.0003 0.7489 ± 0.0049 0.9862 ± 0.0003 0.0520 ± 0.0011 0.9946 ± 0.0003 0.9967 ± 0.0002 0.0015 ± 0.0003

ViT - 1 0.9842 ± 0.0005 0.9847 ± 0.0004 0.0551 ± 0.0018 0.9998 ± 0.0000 0.9987 ± 0.0001 0.0016 ± 0.0003 0.9164 ± 0.0046 0.9938 ± 0.0003 0.0279 ± 0.0015 0.9942 ± 0.0002 0.9966 ± 0.0001 0.0028 ± 0.0003

B/16 V-MoE 1 1 0.9856 ± 0.0004 0.9855 ± 0.0004 0.0554 ± 0.0025 0.9998 ± 0.0000 0.9992 ± 0.0001 0.0015 ± 0.0005 0.8598 ± 0.0191 0.9912 ± 0.0008 0.0413 ± 0.0028 0.9949 ± 0.0003 0.9972 ± 0.0002 0.0027 ± 0.0003

ViT - 1 0.9801 ± 0.0005 0.9798 ± 0.0004 0.0857 ± 0.0023 0.9996 ± 0.0000 0.9979 ± 0.0001 0.0046 ± 0.0007 0.8536 ± 0.0057 0.9895 ± 0.0003 0.0511 ± 0.0012 0.9926 ± 0.0002 0.9961 ± 0.0002 0.0048 ± 0.0003

B/32 V-MoE 1 1 0.9814 ± 0.0003 0.9806 ± 0.0003 0.0853 ± 0.0027 0.9998 ± 0.0000 0.9989 ± 0.0001 0.0017 ± 0.0005 0.8590 ± 0.0097 0.9902 ± 0.0005 0.0506 ± 0.0021 0.9923 ± 0.0003 0.9958 ± 0.0003 0.0061 ± 0.0005

ViT - 1 0.9752 ± 0.0005 0.9716 ± 0.0006 0.1485 ± 0.0040 0.9985 ± 0.0001 0.9915 ± 0.0004 0.0186 ± 0.0010 0.6507 ± 0.0056 0.9734 ± 0.0006 0.1021 ± 0.0037 0.9872 ± 0.0004 0.9920 ± 0.0003 0.0148 ± 0.0012

S/32 V-MoE 1 1 0.9685 ± 0.0008 0.9658 ± 0.0010 0.1922 ± 0.0056 0.9996 ± 0.0000 0.9977 ± 0.0002 0.0045 ± 0.0007 0.8092 ± 0.0105 0.9841 ± 0.0008 0.0821 ± 0.0032 0.9874 ± 0.0006 0.9929 ± 0.0004 0.0185 ± 0.0019

ViT - 1 0.9629 ± 0.0004 0.9588 ± 0.0004 0.2422 ± 0.0027 0.9993 ± 0.0000 0.9963 ± 0.0002 0.0134 ± 0.0013 0.7177 ± 0.0048 0.9775 ± 0.0003 0.1110 ± 0.0015 0.9807 ± 0.0003 0.9889 ± 0.0002 0.0426 ± 0.0013
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Table 21: Cifar100 OOD comparison of V-MoE, downstream ensembles there-of, and pBE with 2 experts per input in each case.

CIFAR100 VS. CIFAR10 CIFAR100 VS. DTD CIFAR100 VS. PLACES365 CIFAR100 VS. SVHN
K M AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓

L/16
pBE 1 2 0.9507 ± 0.0012 0.9490 ± 0.0011 0.2889 ± 0.0058 0.9969 ± 0.0001 0.9847 ± 0.0002 0.0862 ± 0.0010 0.7281 ± 0.0023 0.9542 ± 0.0007 0.2969 ± 0.0036 0.9011 ± 0.0057 0.9482 ± 0.0024 0.3071 ± 0.0093

down-DE 1 2 0.9455 ± 0.0013 0.9481 ± 0.0019 0.2692 ± 0.0093 0.9975 ± 0.0000 0.9881 ± 0.0002 0.0665 ± 0.0035 0.7619 ± 0.0065 0.9664 ± 0.0012 0.2158 ± 0.0071 0.9071 ± 0.0027 0.9507 ± 0.0016 0.2932 ± 0.0144

V-MoE 2 1 0.9391 ± 0.0014 0.9443 ± 0.0015 0.2901 ± 0.0076 0.9977 ± 0.0000 0.9887 ± 0.0002 0.0674 ± 0.0017 0.7773 ± 0.0054 0.9680 ± 0.0009 0.2150 ± 0.0041 0.9002 ± 0.0045 0.9461 ± 0.0024 0.3223 ± 0.0124

L/32
pBE 1 2 0.9423 ± 0.0003 0.9379 ± 0.0006 0.3591 ± 0.0058 0.9958 ± 0.0001 0.9792 ± 0.0004 0.1165 ± 0.0028 0.6653 ± 0.0037 0.9394 ± 0.0011 0.3670 ± 0.0051 0.8848 ± 0.0061 0.9398 ± 0.0026 0.3428 ± 0.0080

down-DE 1 2 0.9380 ± 0.0029 0.9387 ± 0.0015 0.3362 ± 0.0042 0.9958 ± 0.0001 0.9796 ± 0.0004 0.1176 ± 0.0015 0.6710 ± 0.0088 0.9436 ± 0.0019 0.3465 ± 0.0093 0.8877 ± 0.0081 0.9460 ± 0.0027 0.3033 ± 0.0077

V-MoE 2 1 0.9275 ± 0.0041 0.9330 ± 0.0020 0.3604 ± 0.0052 0.9958 ± 0.0001 0.9790 ± 0.0005 0.1306 ± 0.0029 0.6773 ± 0.0075 0.9445 ± 0.0017 0.3489 ± 0.0089 0.8767 ± 0.0075 0.9393 ± 0.0020 0.3404 ± 0.0069

B/16
pBE 1 2 0.9200 ± 0.0008 0.9121 ± 0.0010 0.4656 ± 0.0071 0.9938 ± 0.0002 0.9710 ± 0.0011 0.1542 ± 0.0063 0.5475 ± 0.0076 0.9102 ± 0.0014 0.4653 ± 0.0052 0.8730 ± 0.0056 0.9319 ± 0.0025 0.3699 ± 0.0090

down-DE 1 2 0.9242 ± 0.0016 0.9275 ± 0.0013 0.3506 ± 0.0070 0.9952 ± 0.0003 0.9777 ± 0.0011 0.1144 ± 0.0052 0.6023 ± 0.0101 0.9343 ± 0.0015 0.3577 ± 0.0049 0.8726 ± 0.0049 0.9340 ± 0.0027 0.3526 ± 0.0124

V-MoE 2 1 0.9159 ± 0.0019 0.9211 ± 0.0015 0.3729 ± 0.0053 0.9950 ± 0.0002 0.9768 ± 0.0008 0.1193 ± 0.0038 0.6029 ± 0.0066 0.9331 ± 0.0008 0.3682 ± 0.0029 0.8704 ± 0.0038 0.9283 ± 0.0020 0.3915 ± 0.0076

B/32
pBE 1 2 0.9075 ± 0.0012 0.8945 ± 0.0015 0.5358 ± 0.0063 0.9906 ± 0.0004 0.9554 ± 0.0019 0.2481 ± 0.0101 0.4355 ± 0.0071 0.8811 ± 0.0014 0.5465 ± 0.0043 0.8583 ± 0.0040 0.9221 ± 0.0024 0.4051 ± 0.0100

down-DE 1 2 0.9188 ± 0.0021 0.9158 ± 0.0014 0.4248 ± 0.0077 0.9942 ± 0.0003 0.9719 ± 0.0014 0.1517 ± 0.0090 0.5525 ± 0.0096 0.9176 ± 0.0022 0.4276 ± 0.0085 0.8756 ± 0.0083 0.9292 ± 0.0033 0.3959 ± 0.0083

V-MoE 2 1 0.9192 ± 0.0014 0.9151 ± 0.0012 0.4444 ± 0.0060 0.9913 ± 0.0002 0.9580 ± 0.0008 0.2481 ± 0.0064 0.4449 ± 0.0100 0.8969 ± 0.0009 0.5230 ± 0.0027 0.8641 ± 0.0073 0.9252 ± 0.0028 0.4249 ± 0.0080

S/32
pBE 1 2 0.8677 ± 0.0016 0.8528 ± 0.0017 0.6086 ± 0.0049 0.9878 ± 0.0007 0.9430 ± 0.0026 0.2677 ± 0.0084 0.3628 ± 0.0072 0.8519 ± 0.0026 0.5716 ± 0.0074 0.8279 ± 0.0037 0.9004 ± 0.0024 0.4543 ± 0.0098

down-DE 1 2 0.8697 ± 0.0019 0.8651 ± 0.0024 0.5203 ± 0.0095 0.9892 ± 0.0005 0.9532 ± 0.0023 0.1909 ± 0.0086 0.4185 ± 0.0063 0.8814 ± 0.0020 0.4657 ± 0.0078 0.8162 ± 0.0045 0.8912 ± 0.0026 0.4835 ± 0.0066

V-MoE 2 1 0.8687 ± 0.0011 0.8663 ± 0.0012 0.5206 ± 0.0061 0.9894 ± 0.0004 0.9523 ± 0.0018 0.2076 ± 0.0075 0.4129 ± 0.0082 0.8752 ± 0.0026 0.5039 ± 0.0072 0.8133 ± 0.0029 0.8882 ± 0.0020 0.5031 ± 0.0058

Table 22: Cifar100 OOD comparison of V-MoE and ViT

CIFAR100 VS. CIFAR10 CIFAR100 VS. DTD CIFAR100 VS. PLACES365 CIFAR100 VS. SVHN
K M AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓ AUC (PR) ↑ AUC (ROC) ↑ FPR@95 ↓

L/16 V-MoE 1 1 0.9454 ± 0.0013 0.9481 ± 0.0015 0.2682 ± 0.0073 0.9976 ± 0.0000 0.9882 ± 0.0002 0.0658 ± 0.0024 0.7631 ± 0.0043 0.9667 ± 0.0007 0.2141 ± 0.0040 0.9115 ± 0.0035 0.9533 ± 0.0020 0.2794 ± 0.0123

ViT - 1 0.9411 ± 0.0019 0.9449 ± 0.0012 0.2734 ± 0.0062 0.9970 ± 0.0001 0.9854 ± 0.0006 0.0853 ± 0.0039 0.7552 ± 0.0118 0.9608 ± 0.0017 0.2566 ± 0.0066 0.8697 ± 0.0033 0.9326 ± 0.0016 0.3690 ± 0.0058

L/32 V-MoE 1 1 0.9358 ± 0.0028 0.9368 ± 0.0018 0.3431 ± 0.0052 0.9961 ± 0.0001 0.9806 ± 0.0004 0.1148 ± 0.0022 0.6757 ± 0.0080 0.9461 ± 0.0016 0.3308 ± 0.0081 0.8863 ± 0.0093 0.9459 ± 0.0025 0.3063 ± 0.0123

ViT - 1 0.9285 ± 0.0020 0.9323 ± 0.0016 0.3201 ± 0.0068 0.9967 ± 0.0001 0.9838 ± 0.0006 0.0911 ± 0.0036 0.7541 ± 0.0066 0.9634 ± 0.0014 0.2292 ± 0.0068 0.8495 ± 0.0068 0.9234 ± 0.0035 0.3949 ± 0.0137

B/16 V-MoE 1 1 0.9206 ± 0.0015 0.9241 ± 0.0014 0.3572 ± 0.0061 0.9951 ± 0.0002 0.9776 ± 0.0007 0.1094 ± 0.0034 0.5924 ± 0.0076 0.9334 ± 0.0012 0.3532 ± 0.0035 0.8720 ± 0.0048 0.9309 ± 0.0023 0.3705 ± 0.0122

ViT - 1 0.9177 ± 0.0013 0.9171 ± 0.0014 0.3925 ± 0.0069 0.9906 ± 0.0003 0.9571 ± 0.0012 0.2199 ± 0.0059 0.4913 ± 0.0088 0.8980 ± 0.0024 0.4927 ± 0.0079 0.8525 ± 0.0045 0.9204 ± 0.0022 0.4226 ± 0.0065

B/32 V-MoE 1 1 0.9166 ± 0.0017 0.9145 ± 0.0012 0.4211 ± 0.0048 0.9940 ± 0.0002 0.9714 ± 0.0009 0.1562 ± 0.0068 0.5433 ± 0.0089 0.9178 ± 0.0016 0.4258 ± 0.0049 0.8730 ± 0.0071 0.9276 ± 0.0033 0.4026 ± 0.0100

ViT - 1 0.9038 ± 0.0022 0.9044 ± 0.0018 0.4180 ± 0.0061 0.9927 ± 0.0002 0.9663 ± 0.0008 0.1631 ± 0.0055 0.5306 ± 0.0046 0.9112 ± 0.0015 0.4176 ± 0.0062 0.8379 ± 0.0029 0.9116 ± 0.0014 0.4328 ± 0.0062

S/32 V-MoE 1 1 0.8678 ± 0.0012 0.8631 ± 0.0015 0.5281 ± 0.0050 0.9893 ± 0.0007 0.9524 ± 0.0031 0.1978 ± 0.0129 0.4024 ± 0.0091 0.8778 ± 0.0029 0.4763 ± 0.0085 0.8224 ± 0.0058 0.8945 ± 0.0034 0.4729 ± 0.0098

ViT - 1 0.8644 ± 0.0018 0.8541 ± 0.0020 0.5716 ± 0.0061 0.9836 ± 0.0007 0.9287 ± 0.0026 0.2976 ± 0.0082 0.3149 ± 0.0031 0.8349 ± 0.0024 0.5982 ± 0.0061 0.8088 ± 0.0051 0.8894 ± 0.0029 0.4888 ± 0.0084
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Table 23: Few-shot comparison of pBE, V-MoE and ensembles thereof.

MEAN ACROSS DATASETS WEIGHTED MEAN ACROSS DATASETS DOWNSTREAM
K M 1-SHOT ERROR ↓ 5-SHOT ERROR ↓ 10-SHOT ERROR ↓ 25-SHOT ERROR ↓ 1-SHOT ERROR ↓ 5-SHOT ERROR ↓ 10-SHOT ERROR ↓ 25-SHOT ERROR ↓ ∆FLOPS (%) ↓

H/14
pBE 1 2 31.47 ± 0.72 17.87 ± 0.32 14.29 ± 0.22 10.64 ± 0.25 78.51 ± 0.24 80.65 ± 0.08 81.28 ± 0.05 81.51 ± 0.06 15.45

down-DE 1 2 30.84 ± 0.42 17.77 ± 0.51 14.43 ± 0.03 11.06 ± 0.40 78.36 ± 0.20 80.63 ± 0.14 81.31 ± 0.02 81.60 ± 0.09 75.05
V-MoE 2 1 32.47 ± 0.55 18.77 ± 0.41 15.19 ± 0.27 12.09 ± 0.38 78.93 ± 0.20 80.89 ± 0.11 81.48 ± 0.07 81.83 ± 0.09 —

L/16
pBE 1 2 34.08 ± 0.21 19.57 ± 0.16 15.21 ± 0.14 11.75 ± 0.11 79.50 ± 0.07 81.09 ± 0.04 81.48 ± 0.03 81.76 ± 0.02 6.74

down-DE 1 2 32.98 ± 0.42 19.65 ± 0.16 15.44 ± 0.16 11.92 ± 0.14 79.09 ± 0.13 81.10 ± 0.04 81.54 ± 0.04 81.79 ± 0.03 86.03
V-MoE 2 1 33.98 ± 0.28 20.42 ± 0.12 16.20 ± 0.08 12.73 ± 0.13 79.50 ± 0.10 81.30 ± 0.03 81.72 ± 0.02 81.97 ± 0.03 —

L/32
pBE 1 2 36.71 ± 0.20 22.14 ± 0.16 17.79 ± 0.05 13.97 ± 0.09 80.51 ± 0.07 81.77 ± 0.04 82.11 ± 0.01 82.26 ± 0.02 6.54

down-DE 1 2 36.15 ± 0.28 22.18 ± 0.15 17.81 ± 0.14 14.00 ± 0.12 80.45 ± 0.13 81.79 ± 0.04 82.13 ± 0.03 82.27 ± 0.03 85.29
V-MoE 2 1 36.56 ± 0.34 23.00 ± 0.12 18.86 ± 0.07 15.02 ± 0.16 80.56 ± 0.13 82.00 ± 0.03 82.37 ± 0.02 82.50 ± 0.03 —

B/16
pBE 1 2 38.60 ± 0.38 21.93 ± 0.17 17.43 ± 0.13 13.62 ± 0.08 81.14 ± 0.11 81.74 ± 0.04 82.05 ± 0.03 82.19 ± 0.02 12.61

down-DE 1 2 38.96 ± 0.36 23.36 ± 0.23 18.99 ± 0.12 14.84 ± 0.11 81.39 ± 0.10 82.09 ± 0.06 82.40 ± 0.03 82.46 ± 0.02 75.05
V-MoE 2 1 37.76 ± 0.15 23.16 ± 0.09 18.79 ± 0.14 14.94 ± 0.16 80.97 ± 0.05 82.04 ± 0.02 82.36 ± 0.03 82.48 ± 0.04 —

B/32
pBE 1 2 43.39 ± 0.33 26.51 ± 0.11 21.18 ± 0.17 16.82 ± 0.09 82.86 ± 0.11 82.91 ± 0.03 82.93 ± 0.04 82.90 ± 0.02 11.54

down-DE 1 2 41.09 ± 0.31 26.48 ± 0.24 21.61 ± 0.22 17.20 ± 0.13 82.24 ± 0.13 82.89 ± 0.06 83.03 ± 0.05 82.99 ± 0.03 73.59
V-MoE 2 1 42.50 ± 0.28 27.44 ± 0.19 22.73 ± 0.19 18.60 ± 0.19 82.66 ± 0.08 83.16 ± 0.05 83.29 ± 0.05 83.29 ± 0.04 —

S/32
pBE 1 2 52.91 ± 0.27 34.28 ± 0.19 27.54 ± 0.18 21.85 ± 0.11 85.89 ± 0.08 84.81 ± 0.04 84.39 ± 0.04 84.01 ± 0.02 15.88

down-DE 1 2 48.27 ± 0.21 32.19 ± 0.22 26.55 ± 0.10 21.95 ± 0.20 84.62 ± 0.06 84.35 ± 0.05 84.19 ± 0.03 84.04 ± 0.05 64.50
V-MoE 2 1 49.37 ± 0.19 33.51 ± 0.17 28.00 ± 0.14 23.25 ± 0.15 85.04 ± 0.06 84.69 ± 0.04 84.54 ± 0.03 84.33 ± 0.03 —

Table 24: Few-shot comparison of V-MoE and ViT.

MEAN ACROSS DATASETS WEIGHTED MEAN ACROSS DATASETS
K M 1-SHOT ERROR ↓ 5-SHOT ERROR ↓ 10-SHOT ERROR ↓ 25-SHOT ERROR ↓ 1-SHOT ERROR ↓ 5-SHOT ERROR ↓ 10-SHOT ERROR ↓ 25-SHOT ERROR ↓

H/14 V-MoE 1 1 33.04 ± 0.32 19.23 ± 0.35 15.63 ± 0.25 12.06 ± 0.36 79.05 ± 0.12 81.00 ± 0.09 81.59 ± 0.06 81.82 ± 0.08

ViT - 1 35.78 ± 0.41 20.61 ± 0.15 16.78 ± 0.12 13.62 ± 0.24 79.97 ± 0.16 81.37 ± 0.04 81.87 ± 0.03 82.16 ± 0.05

L/16 V-MoE 1 1 34.15 ± 0.27 20.32 ± 0.12 16.14 ± 0.12 12.71 ± 0.15 79.54 ± 0.08 81.27 ± 0.03 81.71 ± 0.03 81.97 ± 0.03

ViT - 1 36.52 ± 0.20 21.79 ± 0.12 17.51 ± 0.08 14.07 ± 0.14 80.38 ± 0.05 81.67 ± 0.03 82.03 ± 0.02 82.27 ± 0.03

L/32 V-MoE 1 1 36.83 ± 0.27 23.05 ± 0.08 18.78 ± 0.11 14.95 ± 0.07 80.67 ± 0.10 82.01 ± 0.02 82.35 ± 0.02 82.48 ± 0.02

ViT - 1 38.22 ± 0.31 23.97 ± 0.14 19.56 ± 0.13 15.75 ± 0.14 81.10 ± 0.10 82.25 ± 0.04 82.53 ± 0.03 82.65 ± 0.03

B/16 V-MoE 1 1 39.22 ± 0.27 24.42 ± 0.13 20.01 ± 0.11 15.94 ± 0.18 81.47 ± 0.08 82.36 ± 0.04 82.64 ± 0.03 82.70 ± 0.04

ViT - 1 41.29 ± 0.14 25.03 ± 0.10 20.08 ± 0.10 15.87 ± 0.17 82.16 ± 0.04 82.51 ± 0.03 82.65 ± 0.02 82.68 ± 0.04

B/32 V-MoE 1 1 42.37 ± 0.31 27.60 ± 0.20 22.89 ± 0.19 18.46 ± 0.10 82.64 ± 0.11 83.19 ± 0.05 83.33 ± 0.05 83.26 ± 0.02

ViT - 1 44.60 ± 0.22 28.20 ± 0.17 22.97 ± 0.12 18.86 ± 0.15 83.35 ± 0.08 83.35 ± 0.04 83.35 ± 0.03 83.35 ± 0.03

S/32 V-MoE 1 1 49.60 ± 0.28 33.34 ± 0.13 27.88 ± 0.11 23.30 ± 0.18 85.09 ± 0.08 84.64 ± 0.03 84.50 ± 0.03 84.33 ± 0.04

ViT - 1 54.16 ± 0.16 36.25 ± 0.18 29.88 ± 0.17 24.42 ± 0.13 86.32 ± 0.05 85.26 ± 0.04 84.90 ± 0.04 84.54 ± 0.03
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I FROM BATCH ENSEMBLES TO SPARSE MOES

Wen et al. (2019) have shown that, given a batch of B inputsX ∈ RB×P , a single forward pass can
efficiently compute the predictions of all the ensemble members {f(X;θm)}Mm=1. By appropriately
tiling the inputs of the network Xtiled ∈ R(M ·B)×P by a factor M , each internal operation per
ensemble member can then be vectorized.

We take the previous example of a dense layer with parametersU ∈ RD×L and we assume the layer
receives the tiled inputs {Hm}Mm=1 where Hm ∈ RB×D. We need to compute for each ensemble
memberHmUm = Hm[U ◦ (rms

>
m)]. Denoting by hi,m ∈ RD the i-th input inHm, we have

h>i,mUm =

E∑
e=1

ge(hi,m) · experte(hi,m) with M = E,

{
ge(hi,m) = 1 if e = m,

ge(hi,m) = 0 otherwise
(5)

and experte(z) = z>[U ◦ (res
>
e )]. Although (5) may appear as a convoluted way of writing

the operations in batch ensembles, it unveils a connection with (1). Indeed, operations in batch
ensembles can be seen as a specific sparse MoE, e.g., with binary routing weights depending only
on the position in the tiled inputs. While Wen et al. (2019) primarily tiled the inputs for the sake of
efficiency, it also induces some form of conditional computation, an insight that we exploit here.

J NEW RESULTS FOR THE REBUTTAL

J.1 NEW RESULTS FOR THE FEATURE-LEVEL VERSUS PREDICTION-LEVEL ABLATION

Table 25 shows our updated and expanded results for the feature-level versus prediction-level ab-
lation, described in Section 3.2. The original conclusion—i.e., ensembling at the prediction level
is helpful for calibration but that the naive multi-head approach provides worse error, NLL, and
diversity—seems to hold for the K = 8 case.

Note that the results for K = 2 and K = 4 differ slightly from the original version in Table 2 due to
a change in experimental setup. In the original version, we matched K for the up- and downstream
models in the multi-head case (i.e., the pretrained and fine-tuned models both use either K = 2
or K = 4). We did this to be as fair as possible to the multi-head model. While it is known,
from Riquelme et al. (2021), that V-MoE models are fairly robust to the choice of upstream model
(e.g., KUPSTREAM can be set to 2 and we can just change KDOWNSTREAM, which is the approach we take
throughout our paper–see Appendix C), this was not known for the multi-head model. Unfortunately,
due to time constraints we are unable to train an upstream model with K = 8. Thus, for the updated
results we have opted for a single upstream model with K = 2 in all cases. As a side observation,
we can notably observe that the multi-head variant is more sensitive than V-MoE to the choice of
the upstream model, e.g., the performance worsens from (KUPSTREAM,KDOWNSTREAM) = (4, 4) to
(KUPSTREAM,KDOWNSTREAM) = (2, 4).

Table 25: New feature-level vs. prediction-level ensembling ablation results. ImageNet performance
of V-MoE and a naive multi-head variant (means ± standard errors over 8 replications). All models
have a ViT-B/32 architecture. For the multi-head variant the last MoE layer is modified as in (2)

K NLL ↓ ERROR ↓ ECE ↓ KL ↑
V-MoE 2 0.638 ± 0.001 16.76 ± 0.05 0.033 ± 0.001 —

Naive Multi-head 2 0.636 ± 0.001 17.16 ± 0.02 0.024 ± 0.000 0.032 ± 0.001

V-MoE 4 0.636 ± 0.001 16.70 ± 0.04 0.034 ± 0.001 —
Naive Multi-head 4 0.645 ± 0.001 17.39 ± 0.04 0.021 ± 0.000 0.011 ± 0.001

V-MoE 8 0.635 ± 0.002 16.72 ± 0.06 0.028 ± 0.001 —
Naive Multi-head 8 0.650 ± 0.001 17.50 ± 0.03 0.021 ± 0.000 0.005 ± 0.000

J.2 NEW RESULTS FOR THE STATIC VERSUS ADAPTIVE ABLATION

Figure 20 repeats the experiment of Figure 2a with two new random seeds. The new results show
a smoother improvement in LL as K increases. In particular, we see that there is nothing special
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about K = 5 or K = 6. This indicates that the anomalous drop at K = 6 in the original results was
simply due to noise in the training of the upstream model. We note that, like Riquelme et al. (2021),
we have observed that training noise is more pronounced in the smallest (i.e., S/32) models.

1 2 3 4 5 6 7 8

K
1

2
3

4
5

6
7

8
M

0.84
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0.80

0.78

0.76

Figure 20: Replication of Figure 2a, averaged over two new random seeds, showing the effect on LL
of increasing static (M ) and adaptive (K) ensembling. ImageNet performance for ViT-S/32 models.
Yellow indicates better performance; purple indicates worse performance.

J.3 NEW LOAD BALANCING ABLATION

Figure 21 shows a new experiment exploring the effect of the load balancing loss on diversity and
predictive performance. We see that for both V-MoE and pBE the predictive performance, as mea-
sured by NLL, Error, and ECE are largely insensitive to the strength of the load balancing loss.
Similarly, the diversity of the predictions of pBE—as measured by the KL—mildly depends on that
regularization. Only when the load balancing loss strength becomes excessively large (4 orders
of magnitude larger than standard values) do all the performance metrics plummet. This hyperpa-
rameter does not allow us to increase the diversity and thereby the predictive performance of our
models.

J.4 NEW EXPERT INITIALIZATION ABLATION

Figure 22 shows a new experiment exploring the influence of the initialization of the experts. In
particular, we add Gaussian noise with varying standard deviations to the initial weights of the ex-
pert MLPs. We notably show that more diverse initializations (larger standard deviations) do not
translate to any clear performance gain. Note that this new experiment takes place upstream, since
downstream the experts are already initialized (we just fine-tune them from the upstream check-
point).

J.5 NEW PARAMETER COUNTS TABLE

Table 26 compares the parameter counts for ViT and V-MoE/pBE models in each ViT family.

S/32 B/32 B/16 L/32 L16 H/14

ViT 36.5M 102.1M 100.5M 325.3M 323.1M 655.8M
V-MoE/pBE 166.7M 395.0M 393.3M 845.8M 843.6M 2688.6M

Table 26: Parameter counts for ViT vs V-MoE and pBE.

45



Under review as a conference paper at ICLR 2022

log10( )
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
LL

 (l
ow

er
 is

 b
et

te
r)

V-MoE (K=2)
V-MoE (K=4)
pBE (K=1, M=2)
pBE (K=2, M=2)

log10( )
16

17

18

19

20

21

22

23

24

Er
ro

r (
lo

w
er

 is
 b

et
te

r)

4 2 0 2

log10( )

0.01

0.02

0.03

0.04

0.05

0.06

EC
E 

(lo
w

er
 is

 b
et

te
r)

4 2 0 2

log10( )

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

K
L 

(h
ig

he
r i

s b
et

te
r)

Figure 21: The effect of λ, which controls the strength of the load balancing loss as described in
appendix A of Riquelme et al. (2021), on NLL, Error, ECE and diversity, for pBE and V-MoE. The
resuls are averaged over three random seeds. All models have a ViT-B/32 architecture.
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Figure 22: The influence of the noise standard deviation of the expert MLPs’ initial random weights.
The models are trained on JFT-300M and we measure the ImageNet few-shot Error as in Riquelme
et al. (2021). Results are for a single random seed.
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