
Can a Neural Network that only Memorizes the Dataset be

Undetectably Backdoored?

Matjaž Leonardis

Department of Computer Science
University of Texas at Austin

matjaz@cs.utexas.edu

Abstract

Recently, many schemes have been proposed for “backdooring” neural network models.
Apart from their relevance to computer security and AI safety they are also related to questions
about the limits of interpretability of machine learning models. Intuitively, interpretability of
machine learning models and detectability of backdoors should go hand in hand. In this work,
we present a very simple network that can perfectly perform a classification task on a given
dataset and analyze whether it can be undetectably backdoored. We show the network achieves
its classification effectiveness by “memorizing” the dataset, despite the fact the dataset contains
O(nd) parameters and the network can be described by only O(n + d) parameters. Moreover,
despite being fully interpretable we argue the network can still be undetectably backdoored,
unless one has full knowledge of the dataset. Even in cases where the backdoor can be detected
not much can be learned about the inputs the attacker can use to trigger it.

1 Introduction

In recent years, many schemes have been proposed for “backdooring” neural networks. Some of
these schemes have focused on “poisoning” the dataset and examining whether subsequent safety
training can remove the backdoors[6][3]. Others have focused on modifying the weights in the first
and final layers of the models to achieve surprising effects[10]. Still others have raised questions
about whether backdoors can be inserted in a way where their detection is as hard as breaking
known cryptographic protocols[5]. Proposals for how they could be used in the watermarking of
model outputs have also been made[1].

A mathematical definition that would unify all these schemes and attack models is yet to emerge,
however what they all share in common is that in at the end of the backdooring process the client
is in a possession of model that performs as expected and looks as though it was constructed in
the way it was supposed to while the attacker retains the ability to prompt the model on inputs
where the network behaves in surprising ways.[4]

Apart from being relevant to the security of machine learning models and AI safety, backdoors
also share an interesting connection with interpretability of machine learning models. Intuitively,
if we had full mechanistic ability to understand the models, this ability should also enable us to
detect the backdoors contained in them. Conversely, if backdoors can be inserted in a way where
they cannot be detected, that suggests a limit to our ability to interpret machine learning models.

It is this relationship that we aim to further explore in this paper. We present a very simple
neural network and examine the ways in which it can be backdoored. The network is perhaps the

1



simplest kind of network that can achieve perfect results (arbitrarily small error) on any training
set. It achieves this by “memorizing” the dataset in a way that uses fewer parameters than are
present in the dataset itself. Because of its simplicity, the network is interpretable and its outputs
on every input can be attributed to data points in the training dataset. (There are strong reasons
to believe that this might be possible even for the most advanced models.[9]) Surprisingly, the
network also generalizes well on classification tasks where nearest-neighbor approach achieves good
generalization. In spite of this, the network can be backdoored in a way that is undetectable unless
the client is in possession of the entire dataset. Even when the backdoor can be detected, nothing
can be learned about the inputs the attacker might use to active it (except for a range of values
the “hashes” of the attacker’s inputs would have to take). This, counterintuitively, suggests that
models easiest to undetectably backdoor are those that resemble a look-up table rather than those
that embody a more complex logic when processing their inputs.

2 The Model

Suppose we have a training dataset for some classification machine learning task. It consists of
n data points x1,x2, ...,xn each a d dimensional vector that is associated with a classification
c1, c2, ..., cn. The classifications take values from 1 to c, the total number of classes.

The model itself is a two-layer network. The network works like a typical neural network with
the added restriction that all of the neurons in the first layer apply an identical set of weights
w = (w1, w2, ..., wd) to the input (they differ only in their biases). The exact number of neurons in
the first layer m is variable and depends on the dataset we’re creating the network for. However
as we shall see m ≤ n. For the sake of simplicity we assume b1 ≤ b2 ≤ ... ≤ bm. Each neuron
in the last layer is associated with a set of m weights vi = (vi1, v

i
2, ..., v

i
m). It merely takes the

scalar product of its weights with the outputs of the preceding layer and doesn’t add any biases
nor apply any non-linearities. The remaining details of the network are unimportant but for the
sake of definiteness we assume that the non-linearity used in the first layer is the sigmoid function
and that the outputs of the final layer are combined using softmax to obtain probabilities for each
classification.

Figure 1: Basic two-layer network model achieving dataset memorization. The values in this
example are d = 9, c = 3,m = 6. The values in the first layer represent the components of a single
data point, not multiple datapoints

Formally, the outputs of the neurons in the first layer l11, l
1
2, ..., l

1
m are given by:

l1i = σ(w · x+ bi)

2



Denoting by l1 = (l11, l
1
2, ..., l

1
m) the combined outputs of the first layer, the outputs of the second

layer are given by:

l2i = vi · l1

Finally, the probability that the given input has classification i is denoted by pi and is given by:

pi =
el

2
i∑c

j=1 e
l2j

We shall show how to construct such a network for a given dataset in Section 4. However, there
are already reasons to find it surprising that this type of network can achieve a perfect score on a
given dataset. Intuitively, one might think that a network that is capable of scoring perfectly on
the dataset would have to “memorize” it. Yet, the dataset consists of O(nd) parameters, yet this
network can be effectively described by merely O(n + d) parameters. Although strictly speaking
the network contains m(d + c + 1) parameters it can be effectively described using only d + 2m
parameters. We need to remember the d parameters that represent w, a further m parameters for
the biases of the neurons in the first layer and as we shall see a further m classification values to
construct the weights in the final layer. This is so despite the fact that no structural assumptions
on the nature of the dataset have been made.

How can “memorization” with so few parameters be achieved? As we shall see, the way this
is done is key to allowing us to undetectibly backdoor the network. If the network was just a
straightforward memorization of the dataset one would expect to be able to recover the entire
dataset from the network and thereby also detect any backdoors that might have been added.
Instead, as we shall see there is no way to recover the data points x1,x2, ...,xn that were used to
construct the model, although the model still correctly classifies them when presented with one.

To explain the model we first explain how the relevant representation of the dataset can be
obtained outside the neural network context and then explain how it is embodied in this specific
neural network. We then explain why this network can also generalize well and finally analyse how
to backdoor it.

3 How Does the Network “Memorize” the Dataset?

Suppose we have a dictionary: a large set of key-value pairs. It is useful to imagine the key sizes
as large, while the set of possible values that can be associated with them as being small. This
is also a feature of many machine learning classification tasks, where the key might be an image
consisting of millions of pixels that is then classified in one of a few thousand categories.

3



Figure 2: A dictionary

One could store this dictionary in memory by storing both keys and values, perhaps with
additional tree-like indices. However for many applications we might never need to check which
keys are present in the dictionary, merely returning the right value when presented with a key.
This is the case with machine learning classifiers. One needn’t be able to reproduce the images the
classifier was trained on, merely to correctly classify them if presented with them again. So instead
of the storing the keys we can apply some hash function to them and only store the hashes of the
keys together with the values associated with them.

To find the value associated with a candidate key, we compute its hash and check if it is present
in our list to find the relevant value.

Figure 3: A dictionary where we store the hashes of the keys

But we can go a step further - because the number of possible values that can be associated
with each key is small, we don’t even need to remember all the hashes. Rather, we can sort the
hashes to obtain a sorted list of hashes H1, H2, ...,HN . Suppose now that hashes Hi and Hi+1

are the first pair of consecutive hashes associated with different values. We remember some value
Hi < H∗

1 < Hi+1 that is the be taken as a signal that hash values higher than H∗
1 are no longer to

be associated with the value associated with Hi but with the value of Hi+1 instead. We compute

4



all such “division points” for every pair of consecutive hashes associated with different values. In
doing so we obtain a sequence of values H∗

1 < H∗
2 < ... < H∗

m.

Figure 4: Simplified representation of range-based classification

To find the value associated with a given key we compute its hash value H and then find the
largest number in our sequence H∗

i such that H∗
i < H. The value associated with that transition

is the value associated with our key.
Note also that we have in effect “generalized” our dictionary. If presented with a key that was

not originally present in the dictionary this procedure will return a value for it. The value returned
will match the value of one of the two keys in the original dataset that neighbor the given one in
hash values.

This is how the dataset ends up being represented in the neural network. The network will then
contain the representation of the hash function and the number of division points will correspond
to the number of neurons in the first layer. We turn to exact construction next.

4 Constructing the Network: Slicing the Dataset

One further geometric analogy might be useful for understanding how this model is obtained. The
dataset can be imagined as a cloud of points somewhere in a high-dimensional space.

Figure 5: Data Cloud

5



We start with a hyperplane, with all of the points on one side of it at the beginning. We will
be slicing the dataset by making cuts parallel to this plane. We can always pick a plane such that
no two points belonging to two different classes are ever on the same plane parallel to the initially
chosen one. Moreover, we can always cut the cloud of points ensuring that only points belonging
to the same class are ever in the same slice. The following diagram illustrates this idea:

Figure 6: Geometric slicing analogy: hyperplanes intersecting data cloud

The way we move from this representation to the neural network model is as follows. The
perpendicular direction to the hyperplane corresponds to w, the weights of the neurons in the first
layer. The biases b1, b2, ..., bm of those neurons correspond to the division points where the cuts we
have made intersect with the perpendicular line. The projections of the points on the same line
x1 ·w,x2 ·w, ...,xn ·w are the “hashes” of individual data points in the spirit of the discussion from
the previous section. This diagram illustrates this idea:

Figure 7: Projection of data points onto a shared direction vector

6



Here is how we compute all of the weights and biases in the first layer. Starting with the
dataset x1,x2, ...,xn we pick any vector of weights w, ensuring only that xi · w ̸= xj · w whenever
the classifications associated with xi and xj are different. An infinite number of vectors w meets
this condition and can be found even with random sampling.

Next, we compute the values x1 · w,x2 · w, ...,xn · w and sort them, obtaining a list h1 < h2 <
... < hn. For all i where the classifications associated with hi and hi+1 are different we add a neuron
to the first layer with weights w and a bias b such that hi < b < hi+1. Any bias satisfying this
constraint works, though b = hi+hi+1

2 is perhaps the natural choice. This completes the construction
of the first layer.

If we compare this construction with the more general description from the previous section it
is clear that the data points play the role of keys, their classifications the role of values, the scalar
product with the weights ·w the role of the hash function and the biases of the neurons in the first
layer the role of division points.

To sum up the comparison of the two pictures in a table:

Table 1: Comparison of the two pictures

General picture Neural network picture

Keys Data points (xi)
Values Classifications (ci)

Hash function Scalar product with weights of neurons in the first layer (w)
Hashes of keys Products xi · w

Transition hash values Biases of the neurons in the first layer (bi)

Next we determine the weights in the final layer. For every data point the activations of neurons
in the first layer take approximately the following form 111111...1110000. . . 000. In words, it is some
sequence of activations very close to 1 followed by a sequence of activations very close to 0. They
can be made to come arbitrarily close to this sequence by scaling the weights and biases of the first
layer by a factor with no effect on the geometry of the overall construction. If a point is located in
a particular “slice” then the neurons associated with all of the preceding slices will activate while
the neurons associated with the upcoming slices will not activate. For each neurons in the last layer
there are some slices that ought to be classified as belonging to it and the remaining ones which
are not. Accordingly we want the output of the neuron to be high when the point is located in the
former and we want the output value of the neuron to be very low (highly negative) for the latter.
The final weights associated with this particular neuron can be determined by solving a system
of equations where L is a large positive value and s is a small (highly negative) value. Since this
system is not singular such values can always be found.

1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

 · vi =


L
s
L
...
s



Solving this system for each output node ensures correct classifications on the given dataset. The
output of the neuron associated with the right classification will be very high while the outputs
of the remaining ones will be very low. It can be immediately verified this model can achieve

7



arbitrarily small error on the dataset by appropriately scaling the weights of the model and the
values L and s.

5 Can this Type of Network also Generalize well?

Despite the fact that the network is only designed to perform well on the given dataset, experiments
show that it also generalizes well on some machine learning problems. For example, in the classifi-
cation problems involving only two classes of images of digits this network achieves 90% accuracy
on the test dataset after sampling through 10, 000 possible choices fo w.

This would be surprising if the hash function used by the network were cryptographically
secure. But the hash function ·w is what is in the literature[2][7][8] referred to as a locality-sensitive
hash function. The difference in the hash values of two data points is bounded by their distance.
Moreover, if two items are very far apart there is only a small chance that their hashes will be close
to each other.

For many machine learning tasks the most effective technique is the so-called nearest-neighbor
classification. For a given candidate input we look for the most similar items in the training set
and classify the candidate based on items most similar to it (the notion of similarity is left open
and is defined on a case by case basis).

Given an image of a digit, for example, we might look for the most similar already classified
image to it. If that image is a 7, say, then we classify the incoming image as also being a 7.

The nearest-neighbor approach achieves a 97% accuracy on the full MNIST digit classification
dataset. The usual challenge is scaling nearest-neighbor to large datasets so that we don’t need to
compute the level of similarity with every item in the dataset whenever we make a query. Locality-
sensitive hash functions are useful for narrowing the search. In effect what this network does is
classify the inputs based on similarity defined by a single locality-sensitive hash function.

The full analysis of generalization behavior of this network is beyond the scope of this paper
and is an open problem.

6 Backdooring the Network

Here we examine both the construction of the backdoor and analyze its subsequent detectability.
A fully rigorous analysis is difficult because one needs to make additional assumptions about the
structure of the dataset and remains a subject for future work.

Let’s suppose that there is some target input x∗, outside of the dataset that we wish to classify
in an incorrect way. A useful way of imagining this is to think of x∗ as an image of a digit for
which many similar digits are present in the dataset that are correctly classified. This ensures that
a properly constructed model would almost surely classify it correctly.

There are now several ways of backdooring this model. We might simply add our backdoored
input to the rest of the inputs we have and construct the network as if it was just another training
example. We can also compute the division points as we would normally and then modify them by
including additional points to backdoor the model.

Let us refer to the scalar product b∗ = w · x∗ and examine the various cases. The hash b∗

will generally be located between two division points bi < b∗ < bi+1 that correspond to a certain
classification. If the intervals that precede bi or follow bi+1 are the desired classification for our
backdoored input we can tweak either of them, by making either bi or bi+1 equal to b∗. However
that might corrupt a substantial number of outputs including those in the dataset. The alternative
is to insert two new division points b∗1 = b∗ − ϵ and b∗2 = b+ ϵ where we can make ϵ > 0 as small as

8



we wish. This will insure that the backdoor works while the only inputs where the network behaves
differently are those with hashes very close to those of b - the behavior of the network will change
on a negligibly small fraction of the inputs. We will need to subsequently recompute the final layer.

We now turn to the question of whether such a backdoor can be detected. Because the behavior
of the network will change on only a small fraction of the inputs, trying to detect it in a black-box
fashion will tend to be infeasible. In the context of white-box testing the client is in effect dealing
with a large number of meaningless division points and the hash function that is being used. The
division points don’t themselves correspond to meaningful inputs nor can meaningful inputs be
constructed from them. What the client can do is try validating the various ranges. Of particular
interest are those that are very short, but experiments show short ranges routinely arise even in
non-backdoored models. Client testing can only vindicate a range but can’t show that a given
range corresponds to a backdoor.The client could remove unvalidated ranges but in doing so risks
severely diminishing the performance of the model.

Finally we consider if the client has access both to the full model as well as the dataset the
model was supposed to be constructed from. If the model is assumed to have a single backdoor
then so long as the client is missing as few as three inputs it is conceivable that any range that
hasn’t been accounted for is the result of the missing data points. Depending on what restrictions
have been made on the way division points have been inserted missing as few as a single input
could make the backdoor remain plausibly to be a valid range.

If the client has access to the full dataset then he can detect the presence of the backdoor
(ranges without any inputs from the training set). However he can’t detect what the triggering
input x∗ is. He only learns the range [b∗ − ϵ, b∗ + ϵ] from which x∗ can’t be directly reconstructed.
Additional knowledge about the structure of the dataset could reveal more information about x∗

but it depends on the specifics of the machine learning task.

7 Conclusion

Although the model is simple it highlights many of the important considerations for thinking about
backdoors and AI safety in more complex models.

Firstly, many neural network models beyond this simple model can be thought of as being
approximations of the Voroni diagram that nearest neighbor classification would produce and can
be analyzed in similar ways. For example one might approach backdooring two layer models
where no restrictions exist on the weights of the neurons in the first layer in a similar way. A
similar analysis could also be done on models that involve embedding spaces. It indicates that
when exploring the backdooring of more complex models attention should turn to their special
architectural features where it has presently not been.

Secondly, it shows that while many papers that consider detecting and defending against back-
doors focus on black-box testing or alternatively white-box scrutinizing of the weights of the model
the most useful tool in defense against backdoors is actually the knowledge of the training set.
That might be known to the user but in the case of most models in use today remains obscure
(even the types of datasets that were used in supervised fine-tuning remain largely obscure, even
for open-source models). A useful direction for exploration might be what is the least amount
of information that needs to be provided about the dataset that could be useful in finding the
backdoors as well as help in assessing the models’ capabilities.

Finally, it shows that the presence of backdoors can be useful guide to understanding the
nature of knowledge embodied in the model. While it may at first seem counterintuitive, models
that embody general principles should be harder to undetectably backdoor than those that resemble

9



a hashed version of the training set. Newton’s laws are harder to backdoor than a look-up table
with thousands of entries. It shows that the most interesting questions surrounding backdoors and
their detectability and removability only make sense in the context of models that embody some
kind of deeper knowledge.

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring, 2018.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, January 2008.

[3] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks
on deep learning systems using data poisoning, 2017.

[4] Paul Christiano, Jacob Hilton, Victor Lecomte, and Mark Xu. Backdoor defense, learnability
and obfuscation. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2025.

[5] Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and Or Zamir. Planting unde-
tectable backdoors in machine learning models, 2024.

[6] Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid,
Tamera Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, Adam Jermyn, Amanda
Askell, Ansh Radhakrishnan, Cem Anil, David Duvenaud, Deep Ganguli, Fazl Barez, Jack
Clark, Kamal Ndousse, Kshitij Sachan, Michael Sellitto, Mrinank Sharma, Nova DasSarma,
Roger Grosse, Shauna Kravec, Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner,
Holden Karnofsky, Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, Sören
Mindermann, Ryan Greenblatt, Buck Shlegeris, Nicholas Schiefer, and Ethan Perez. Sleeper
agents: Training deceptive llms that persist through safety training, 2024.

[7] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, page 604–613, New York, NY, USA, 1998. Association for Computing
Machinery.

[8] Anand. Rajaraman and Jeffrey D. Ullman. Mining of massive datasets. Cambridge University
Press, New York, N.Y., 2012.

[9] Sheng-Yu Wang, Aaron Hertzmann, Alexei A. Efros, Jun-Yan Zhu, and Richard Zhang. Data
attribution for text-to-image models by unlearning synthesized images, 2025.

[10] Irad Zehavi, Roee Nitzan, and Adi Shamir. Facial misrecognition systems: Simple weight
manipulations force dnns to err only on specific persons, 2024.

10


	Introduction
	The Model
	How Does the Network “Memorize” the Dataset?
	Constructing the Network: Slicing the Dataset
	Can this Type of Network also Generalize well?
	Backdooring the Network
	Conclusion

