
Published as a conference paper at ICLR 2023

STATISTICAL EFFICIENCY OF SCORE MATCHING:
THE VIEW FROM ISOPERIMETRY

Frederic Koehler
Stanford University
fkoehler@stanford.edu

Alexander Heckett
Carnegie Mellon University
aheckett@andrew.cmu.edu

Andrej Risteski
Carnegie Mellon University
aristesk@andrew.cmu.edu

ABSTRACT

Deep generative models parametrized up to a normalizing constant (e.g. energy-
based models) are difficult to train by maximizing the likelihood of the data be-
cause the likelihood and/or gradients thereof cannot be explicitly or efficiently
written down. Score matching is a training method, whereby instead of fitting
the likelihood log p(x) for the training data, we instead fit the score function
∇x log p(x) — obviating the need to evaluate the partition function. Though this
estimator is known to be consistent, its unclear whether (and when) its statistical
efficiency is comparable to that of maximum likelihood — which is known to be
(asymptotically) optimal. We initiate this line of inquiry in this paper, and show a
tight connection between statistical efficiency of score matching and the isoperi-
metric properties of the distribution being estimated — i.e. the Poincaré, log-
Sobolev and isoperimetric constant — quantities which govern the mixing time
of Markov processes like Langevin dynamics. Roughly, we show that the score
matching estimator is statistically comparable to the maximum likelihood when
the distribution has a small isoperimetric constant. Conversely, if the distribution
has a large isoperimetric constant — even for simple families of distributions like
exponential families with rich enough sufficient statistics — score matching will
be substantially less efficient than maximum likelihood. We suitably formalize
these results both in the finite sample regime, and in the asymptotic regime. Fi-
nally, we identify a direct parallel in the discrete setting, where we connect the
statistical properties of pseudolikelihood estimation with approximate tensoriza-
tion of entropy and the Glauber dynamics.

1 INTRODUCTION

Energy-based models (EBMs) are deep generative models parametrized up to a constant of
parametrization, namely p(x) ∝ exp(f(x)). The primary training challenge is the fact that eval-
uating the likelihood (and gradients thereof) requires evaluating the partition function of the model,
which is generally computationally intractable — even when using relatively sophisticated MCMC
techniques. The seminal paper of Song and Ermon (2019) circumvented this difficulty by instead
fitting the score function of the model, that is ∇x log p(x). Though not obvious how to evaluate this
loss from training samples only, Hyvärinen (2005) showed this can be done via integration by parts,
and the estimator is consistent (that is, converges to the correct value in the limit of infinite samples).

The maximum likelihood estimator is the de-facto choice for model-fitting for its well-known prop-
erty of being statistically optimal in the limit where the number of samples goes to infinity (Van der
Vaart, 2000). It is unclear how much worse score matching can be — thus, it’s unclear how much
statistical efficiency we sacrifice for the algorithmic convenience of avoiding partition functions. In
the seminal paper (Song and Ermon, 2019), it was conjectured that multimodality, as well as a low-
dimensional manifold structure may cause difficulties for score matching. Though the intuition for
this is natural: having poor estimates for the score in “low probability” regions of the distribution
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can “propagate” into bad estimates for the likelihood once the score vector field is “integrated” —
making this formal seems challenging.

We show that the right mathematical tools to formalize, and substantially generalize such intuitions
are functional analytic tools that characterize isoperimetric properties of the distribution in question.
Namely, we show three quantities, the Poincaré, log-Sobolev and isoperimetric constants (which are
all in turn very closely related, see Section 2), tightly characterize how much worse the efficiency of
score matching is compared to maximum likelihood. These quantities can be (equivalently) viewed
as: (1) characterizing the mixing time of Langevin dynamics — a stochastic differential equation
used to sample from a distribution p(x) ∝ exp(f(x)), given access to a gradient oracle for f ; (2)
characterizing “sparse cuts” in the distribution: that is sets S, for which the surface area of the
set S can be much smaller than the volume of S. Notably, multimodal distributions, with well-
separated, deep modes have very big log-Sobolev/Poincaré/isoperimetric constants (Gayrard et al.,
2004; 2005), as do distributions supported over manifold with negative curvature (Hsu, 2002) (like
hyperbolic manifolds). Since it is commonly thought that complex, high dimensional distribution
deep generative models are trained to learn do in fact exhibit multimodal and low-dimensional mani-
fold structure, our paper can be interpreted as showing that in many of these settings, score matching
may be substantially less statistically efficient than maximum likelihood. Thus, our results can be
thought of as a formal justification of the conjectured challenges for score matching in Song and
Ermon (2019), as well as a vast generalization of the set of “problem cases” for score matching.
This also shows that surprisingly, the same obstructions for efficient inference (i.e. drawing samples
from a trained model, which is usual done using Langevin dynamics for EBMs) are also an obstacle
for efficient learning using score matching.1 We roughly show the following results:

1. For finite number of samples n, we show that if we are trying to estimate a distribution from a
class with Rademacher complexity bounded by Rn, as well as a log-Sobolev constant bounded
by CLS , achieving score matching loss at most ϵ implies that we have learned a distribution that’s
no more than ϵCLSRn away from the data distribution in KL divergence. The main tool for this
is showing that the score matching objective is at most a multiplicative factor of CLS away from
the KL divergence to the data distribution.

2. In the asymptotic limit (i.e. as the number of samples n → ∞), we focus on the special case
of estimating the parameters θ of a probability distribution of an exponential family {pθ(x) ∝
exp(⟨θ, F (x)⟩) for some sufficient statistics F using score matching. If the distribution pθ we
are estimating has Poincaré constant bounded by CP have asymptotic efficiency that differs by at
most a factor of CP . Conversely, we show that if the family of sufficient statistics is sufficiently
rich, and the distribution pθ we are estimating has isoperimetric constant lower bounded by CIS ,
then the score matching loss is less efficient than the MLE estimator by at least a factor of CIS .

3. Based on our new conceptual framework, we identify a precise analogy between score matching
in the continuous setting and pseudolikelihood methods in the discrete (and continuous) setting.
This connection is made by replacing the Langevin dynamics with its natural analogue — the
Glauber dynamics (Gibbs sampler). We show that the approximation tensorization of entropy
inequality (Marton, 2013; Caputo et al., 2015), which guarantees rapid mixing of the Glauber
dynamics, allows us to obtain finite-sample bounds for learning distributions in KL via pseudo-
likelihood in an identical way to the log-Sobolev inequality for score matching. A variant of this
connection is also made for the related ratio matching estimator of Hyvärinen (2007).

4. In Section 7, we perform several simulations which illustrate the close connection between
isoperimetry and the performance of score matching. We give examples both when fitting the
parameters of an exponential family and when the score function is fit using a neural network.

2 PRELIMINARIES

Definition 1 (Score matching). Given a smooth ground truth distribution p with sufficient decay at
infinity and a smooth distribution q, the score matching loss (at the population level) is defined to be

Jp(q) :=
1

2
EX∼p[∥∇ log p(X)−∇ log q(X)∥2]+Kp = EX∼p

[
Tr∇2 log q +

1

2
∥∇ log q∥2

]
(1)

1Note, there is another popular variant of score matching called denoising score matching, in which the data
distribution is convolved with a Gaussian. This will not be the focus of this paper.
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where Kp is a constant independent of q. The last equality is due to Hyvärinen (2005). Given
samples from p, the training loss Ĵp(q) is defined by replacing the rightmost expectation with the
average over data.

Functional and Isoperimetric Inequalities. Let q(x) be a smooth probability density over Rd.
A key role in this work is played by the log-Sobolev, Poincaré, and isoperimetric constants of q —
closely related geometric quantities, connected to the mixing of the Langevin dynamics, which have
been deeply studied in probability theory and geometric and functional analysis (see e.g. (Gross,
1975; Ledoux, 2000; Bakry et al., 2014)). We discuss the background in more detail in Appendix A.
Definition 2. The log-Sobolev constant CLS(q) ≥ 0 is the smallest constant so that for any smooth
probability density p, we have

KL(p, q) ≤ CLS(q)I(p | q) (2)
where KL(p, q) = EX∼p[log(p(X)/q(X))] is the Kullback-Leibler divergence or relative entropy

and the relative Fisher information I(p | q) is defined 2 as I(p | q) := Eq

〈
∇ log p

q ,∇
p
q

〉
.

The log-Sobolev inequality is equivalent to exponential ergodicity of the Langevin dynamics for q, a
canonical Markov process which preserves and is used for sampling q, described by the Stochastic
Differential Equation dXt = −∇ log q(Xt) dt+

√
2 dBt. The log-Sobolev constant can be bounded

for log-concave distributions: if P is α-strongly log concave, then CLS ≤ 1/2α by Bakry-Emery
theory (Bakry et al., 2014). See Appendix A for details.

For a class of distributions P , we can also define the restricted log-Sobolev constant CLS(q,P) to
be the smallest constant such that (2) holds under the additional restriction that p ∈ P — see e.g.
Anari et al. (2021b). For P an infinitesimal neighborhood of p, the restricted log-Sobolev constant
of q becomes half of the Poincaré constant or inverse spectral gap CP (q):
Definition 3. The Poincaré constant CP (q) ≥ 0 is the smallest constant so that that for all smooth
functions f : Rd → R,

Varq(f) ≤ CP (q)Eq∥∇f∥2. (3)
It is related to the log-Sobolev constant by CP ≤ 2CLS (Lemma 3.28 of Van Handel (2014)).

Both of these inequalities measure the isoperimetric properties of q from the perspective of func-
tions; they are closely related to the isoperimetric constant:
Definition 4. The isoperimetric constant CIS(q) is the smallest constant, s.t. for every set S,

min

{∫
S

q(x)dx,

∫
SC

q(x)dx

}
≤ CIS(q) lim inf

ϵ→0

∫
Sϵ
q(x)dx−

∫
S
q(x)dx

ϵ
. (4)

where Sϵ = {x : d(x, S) ≤ ϵ} and d(x, S) denotes the (Euclidean) distance of x from the set S.
The isoperimetric constant is related to the Poincaré constant by CP ≤ 4C2

IS (Proposition 8.5.2 of
Bakry et al. (2014)). Assuming S is chosen so

∫
S
q(x)dx < 1/2, the left hand side can be interpreted

as the volume and the right hand side as the surface area of S with respect to q.
Mollifiers We recall the definition of one of the standard mollifiers/bump functions, as used in e.g.
Hörmander (2015). Mollifiers are smooth functions useful for approximating non-smooth functions:
convolving a function with a mollifier makes it “smoother”, in the sense of the existence and size
of the derivatives. Precisely, define the (infinitely differentiable) function ψ : Rd → R as ψ(y) =
1
Gd
e−1/(1−|y|2) for |y| < 1 and ψ(y) = 0 for |y| ≥ 1, where Gd :=

∫
e−1/(1−|y|2)dy. For γ > 0,

we also define a “sharpening” of ψ, namely ψγ(y) = γ−dψ(y/γ) so that
∫
ψγ = 1.

Notation. For a random vector X , ΣX := E[XXT ]− E[X]E[X]T denotes its covariance matrix.

3 LEARNING DISTRIBUTIONS FROM SCORES: NONASYMPTOTIC THEORY

Though consistency of the score matching estimator was proven in Hyvärinen (2005), it is unclear
what one can conclude about the proximity of the learned distribution from a finite number of sam-
ples. Precisely, we would like a guarantee that shows that if the training loss (i.e. empirical estimate

2There are several alternatives formulas for I(p | q), see Remark 3.26 of Van Handel (2014).
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of (1)) is small, the learned distribution is close to the ground truth distribution (e.g. in the KL
divergence sense). However, this is not always true! We will see an illustrative example where this
is not true in Section 7 and also establish a general negative result in Section 4.

Our first new observation is that understanding the multiplicative gap between the KL divergence and
the score matching test loss is equivalent to understanding log-Sobolev constants. Based on this, we
prove (Theorem 1) that minimizing the training loss does learn the true distribution, assuming that
the class of distributions we are learning have bounded complexity and small log-Sobolev constant.
First, we formalize the connection to the log-Sobolev constant:

Proposition 1. The log-Sobolev inequality for q is equivalent to the following inequality over all
smooth probability densities p:

KL(p, q) ≤ 2CLS(q)(Jp(q)− Jp(p)). (5)

More generally, for a class of distribution p ∈ P the restricted log-Sobolev constant is the smallest
constant such that KL(p, q) ≤ CLS(q,P)(Jp(q)− Jp(p)) for all distributions p.

Proof. This follows from the following equivalent form for the relative Fisher information (Shao
et al., 2019; Vempala and Wibisono, 2019)

I(p | q) = Eq⟨∇
p

q
,∇ log

p

q
⟩

= Ep⟨
q

p
∇p

q
,∇ log

p

q
⟩ = Ep⟨∇ log

p

q
,∇ log

p

q
⟩ = Ep∥∇ log p−∇ log q∥2. (6)

Using this and (1) the log-Sobolev inequality can be rewritten as KL(p, q) ≤ CLS(Jp(q)− Jp(p))
which proves the first claim, and the same argument shows the second claim.

Remark 1 (Interpretation of Score Matching). The left hand side of (5) is KL(p, q) = Ep[log p]−
Ep[log q]. The first term is independent of q and the second term is the likelihood, the objective
for Maximum Likelihood Estimation. So (5) shows that the score matching objective is a relaxation
(within a multiplicative factor of CLS(q)) of maximum-likelihood via the log-Sobolev inequality. We
discuss connections to other proposed interpretations in Appendix B.

Remark 2. Interestingly, the log-Sobolev constant which appears in the bound is that of q and not
p the ground truth distribution. This is useful because q is known to the learner whereas p is only
indirectly observed. If q is actually close to p, the log-Sobolev constants are comparable due to the
Holley-Stroock perturbation principle (Proposition 5.1.6 of Bakry et al. (2014)).

To our knowledge, we are the first to point out the useful connection of the score matching loss with
the log-Sobolev inequality. Because log-Sobolev constants have been well-studied, this observation
has many nice consequences which would otherwise be difficult to prove. Combining Proposition 1,
bounds on log-Sobolev constants from the literature, and generalization theory gives us finite-sample
guarantees for learning distributions in KL divergence via score matching. 3

Theorem 1. Suppose that P is a class of probability distributions containing p and define
CLS(P,P) := supq∈P CLS(q,P) ≤ supq∈P CLS(q) to be the worst-case (restricted) log-Sobolev
constant in the class of distributions. Let

Rn := EX1,...,Xn,ϵ1,...,ϵn sup
q∈P

1

n

n∑
i=1

ϵi

[
Tr∇2 log q(Xi) +

1

2
∥∇ log q(Xi)∥2

]
be the expected Rademacher complexity of the class given n samples X1, . . . , Xn ∼ p i.i.d. and in-
dependent ϵ1, . . . , ϵn ∼ Uni{±1} i.i.d. Rademacher random variables. Let p̂ be the score matching
estimator from n samples, i.e. p̂ = argminq∈P Ĵp(q). Then

EKL(p, p̂) ≤ 4CLS(P,P)Rn.

In particular, if CLS(P,P) <∞ then limn→∞ EKL(p, p̂) = 0 as long as limn→∞ Rn = 0.
3We use the simplest version of Rademacher complexity bounds to illustrate our techniques. Standard liter-

ature, e.g. Shalev-Shwartz and Ben-David (2014); Bartlett et al. (2005) contains more sophisticated versions,
and our techniques readily generalize.
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Proof. By the standard symmetrization argument (Theorem 26.3 of Shalev-Shwartz and Ben-
David (2014)) we have EJp(p̂) − Jp(p) ≤ 2Rn, so by Proposition 1 we have EKL(p, p̂) ≤
2ECLS(P)(Jp(p̂)− Jp(p)) ≤ 4CLS(P)Rn.

Example 1. Suppose we are fitting an isotropic Gaussian in d dimensions with unknown mean
µ∗ satisfying ∥µ∗∥ ≤ R. The class of distributions P is qµ with ∥µ∥ ≤ R of the form qµ(x) ∝
exp

(
−∥x− µ∥2/2

)
so the expected Rademacher complexity can be upper bounded as so:

Rn = E sup
µ

1

n

n∑
i=1

ϵi

[
−d/2 + 1

2
∥Xi − µ∥2

]

= E sup
µ

〈
1

n

n∑
i=1

ϵiXi, µ

〉
= RE

∥∥∥∥∥ 1n
n∑

i=1

ϵiXi

∥∥∥∥∥ ≤ R

√√√√E

∥∥∥∥∥ 1n
n∑

i=1

ϵiXi

∥∥∥∥∥
2

= R

√
R2 + d

n

where the inequality is Jensen’s inequality and in the last step we expanded the square and used
that Eϵiϵj = 1(i = j) and E∥Xi∥2 ≤ R2 + d. Recall that the standard Gaussian distribution is 1-

strongly log concave so CLS ≤ 1/2. Hence we have the concrete bound EKL(p, p̂) ≤ 2R
√

R2+d
n .

4 STATISTICAL COST OF SCORE MATCHING: ASYMPTOTIC RESULTS

In this section, we compare the asymptotic efficiency of the score matching estimator in exponential
families to the effiency of the maximum likelihood estimator. Because we are considering asymp-
totics, we might expect (recall the discussion in Section 2) that the relevant functional inequality
will be the local version of the log-Sobolev inequality around the true distribution p, which is the
Poincaré inequality for p. Our results will show precisely how this occurs and characterize the
situations where score matching is substantially less statistically efficient than maximum likelihood.
Setup. In this section, we will focus on distributions from exponential families. We will consider
estimating the parameters of an exponential family using two estimators, the classical maximum
likelihood estimator (MLE), and the score matching estimator; we will use that the score matching
estimator argminθ′ Ĵp(pθ′) admits a closed-form formula in this setting.

Definition 5 (Exponential family). For sufficient statistics F : Rd → Rm, the exponential family of
distributions associated with F is {pθ(x) ∝ exp (⟨θ, F (x)⟩) |θ ∈ Θ ⊆ Rm}.
Definition 6 (MLE, Van der Vaart (2000)). Given i.i.d. samples x1, . . . , xn ∼ pθ, the maximum
likelihood estimator is θ̂MLE = argmaxθ′∈Θ Ê [log pθ′(X)], where Ê denotes the expectation over

the samples. As n → ∞ and under appropriate regularity conditions, we have
√
n
(
θ̂MLE − θ

)
→

N (0,ΓMLE), where ΓMLE := Σ−1
F and ΣF is known as the Fisher information matrix.

Proposition 2 (Score matching estimator, Equation (34) of Hyvärinen (2007)). Given i.i.d. samples
x1, . . . , xn ∼ pθ, the score matching estimator equals θ̂SM = −Ê[(JF )X(JF )TX ]−1Ê∆F , where
(JF )X : m×d is the Jacobian of F at the pointX , ∆f =

∑
i ∂

2
i f is the Laplacian and it is applied

coordinate wise to the vector-valued function F .

4.1 ASYMPTOTIC NORMALITY

Next, we prove asymptotic normality of the score matching estimator and give a formula for the
limiting renormalized covariance matrix ΓSM.4 Since the MLE also satisfies asymptotic normality
with an explicit covariance matrix, we can then proceed in the next sections to compare their relative
efficiency (as in e.g. Section 8.2 of Van der Vaart (2000)) by comparing the asymptotic covariances
ΓSM and ΓMLE. The proof of the following result is in Appendix C.
Proposition 3 (Asymptotic normality). As n → ∞, and assuming sufficient smoothness and de-
cay conditions so that score matching is consistent (see Hyvärinen (2005)) we have the following
convergence in distribution:

√
n(θ̂SM − θ) → N(0,ΓSM), where

ΓSM := E[(JF )X(JF )TX ]−1Σ(JF )X(JF )TXθ+∆FE[(JF )X(JF )TX ]−1. (7)

4Asymptotic normality was proved in Corollary 1 of Song et al. (2020) — we reprove it because in the
context of exponential families, we will show and use a much simpler expression for the limiting covariance.
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4.2 STATISTICAL EFFICIENCY OF SCORE MATCHING UNDER A POINCARÉ INEQUALITY

Our first result will show that if we are estimating a distribution with a small Poincaré constant
(and some relatively mild smoothness assumptions), the statistical efficiency of the score matching
estimator is not much worse than the maximum likelihood estimator.

Theorem 2 (Efficiency under a Poincaré inequality). Suppose the distribution pθ satisfies a Poincaré
inequality with constant CP . Then we have

∥ΓSM∥OP ≤ 2C2
P ∥ΓMLE∥2OP

(
∥θ∥2E∥(JF )X∥4OP + E∥∆F∥22

)
.

More generally, the same bound holds assuming only the following restricted version of the Poincaré
inequality: for any w, Var(⟨w,F (x)⟩) ≤ CPE∥∇⟨w,F (x)⟩∥22.

Remark 3. To interpret the terms in the bound, the quantities Epθ
∥(JF )X∥4OP and E∥∆F∥22

can be seen as a measure of the smoothness of the sufficient statistics F , and ∥θ∥ as a bound
on the radius of parameters for the exponential family. In Section 7 we will give an example to
show bounded smoothness is indeed necessary for score matching to be efficient. A direct con-
sequence of this result (see Appendix D) is that with 99% probability and for sufficiently large n,

n∥θ− θ̂SM∥2 ≤
(
nE∥θ − θ̂MLE∥2

)2
·O
(
C2

Pm
(
∥θ∥2E∥(JF )X∥4OP + E∥∆F∥22

))
. So if the the dis-

tribution is smooth and Poincaré, score matching achieves small ℓ2 error provided MLE does. We
illustrate Theorem 2 for a natural example of a bimodal distribution in Example 3 of Appendix G.

The proof of Theorem 2 is in Appendix D, and the main lemma to prove the theorem is the following:

Lemma 1. E[(JF )X(JF )TX ]−1 ⪯ CPΣ
−1
F where CP is the Poincaré constant of pθ.

Proof. For any vector w ∈ Rm, we have by the Poincaré inequality that

CP ⟨w,E[(JF )X(JF )TX ]w⟩ = CPE∥∇x⟨w,F (x)⟩|X∥22 ≥ Var(⟨w,F (x)⟩) = ⟨w,ΣFw⟩

This shows CPE[(JF )X(JF )TX ] ⪰ ΣF and inverting both sides gives the result.

4.3 STATISTICAL EFFICIENCY LOWER BOUNDS FROM SPARSE CUTS

In this section, we prove a converse to Theorem 2: whereas a small (restricted) Poincaré constant
upper bounds the variance of the score matching estimator, if the Poincaré constant of our target dis-
tribution is large and we have sufficiently rich sufficient statistics, score matching will be extremely
inefficient compared to the MLE. In fact, we will be able to do so by taking an arbitrary family of
sufficient statistics, and adding a single sufficient statistic ! Informally, we’ll show the following:

Consider estimating a distribution pθ in an exponential family with isoperimetric constant CIS .
Then, pθ can be viewed as a member of an enlarged exponential family with one more (O∂S(1)-
Lipschitz) sufficient statistic, such that score matching has asymptotic relative efficiency Ω∂S(CIS)
compared to the MLE, where ∂S denotes the boundary of the isoperimetric cut of pθ and Ω∂S

indicates a constant depending only on the geometry of the manifold ∂S.

As noted in Section 2, a large Poincaré constant implies a large isoperimetric constant — so we focus
on showing that the score matching estimator is inefficient when there is a set S which is a “sparse
cut”. Our proof uses differential geometry, so our final result will depend on standard geometric
properties of the boundary ∂S (in terms of how small γ is, see Appendix E for more discussion, a
proof sketch, as well as the full proof). We now give the formal statement.

Theorem 3 (Inefficiency of score matching in the presence of sparse cuts). There exists an absolute
constant c > 0 so that the following is true. Suppose S is a set with smooth and compact boundary
∂S, and suppose that pθ∗

1
is an element of an exponential family with sufficient statistic F1 and

parameterized by elements of Θ1. Define an additional sufficient statistic F2 = 1S ∗ ψγ so that the
enlarged exponential family contains distributions with θ1 ∈ Θ1, θ2 ∈ R of the form

p(θ1,θ2)(x) ∝ exp(⟨θ1, F1(x)⟩+ θ2F2(x))

and consider the MLE and score matching estimators in this exponential family with ground truth
p(θ∗

1 ,0)
. Suppose that 1S is not an affine function of F1, and so there exists some δ1 > 0 such that
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supw1
Cov

(
⟨w1,F1⟩√

Var(⟨w1,F1⟩)
, 1S√

Var(1S)

)2

≤ 1 − δ1. Then for all γ sufficiently small in terms of S,

there exists a vectorw such that the asymptotic relative (in)efficiency of the score matching estimator
compared to the MLE for estimating ⟨w, θ⟩ admits the following lower bound

⟨w,ΓSMw⟩
⟨w,ΓMLEw⟩

≥ c′

γ

min{Pr(X ∈ S),Pr(X /∈ S)}∫
x∈∂S

p(x)dx

provided c′ := cd
1−
(
√
1−δ1+2

√
γ
∫
x∈∂S p(x)dx

Pr(X∈S)(1−Pr(X∈S))

)2

1+∥ΣF1
∥OP

> 0.

Remark 4. If we choose S to be the set achieving the worst isoperimetric constant, then the right
hand side of the bound is simply c′

γ CIS . (See the appendix for details.) Finally, we observe that
although c′ is exponentially small in d, the bound is still useful in high dimensions because in the
bad cases of interest CIS is often exponentially large in d. For example, this is the case for a mixture
of standard Gaussians with Ω(

√
d) separation between the means (see e.g. Chen et al. (2021a)).

Remark 5. The assumption δ1 > 0 is a quantitative way of saying that the function 1S , the cut
we are using to define the new sufficient statistic F2, is not already a linear combination of the
existing sufficient statistics. The assumptions will always holds with some δ1 ≥ 0 by the Cauchy-
Schwarz inequality. The equality case is when 1S is an affine function of ⟨w1, F1⟩ — if such a linear
dependence exists, the parameterization is degenerate and the coefficient of F2 is not identifiable.
Example 2. A concrete example in one dimension with a single sufficient statistic is

F1(x) = − 1

8a2
(x− a)2(x+ a)2 = −x4/8a2 + x2/4− a2/8

and θ = (1, 0) for a parameter a > 1 to be taken large. This looks similar to a mixture of standard
Gaussians centered at −a and a. Specializing Theorem 3 to this case, we get:
Corollary 1. There exists absolute constants γ0 > 0 and c > 0 so that the following is true.
Suppose that a > 1, θ = (1, 0), and expanded exponential family {pθ′}θ′ with pθ′(x) ∝
exp (⟨θ′, (F1(x), F2(x))⟩) and new sufficient statistic F2 is the output of Theorem 3 applied to F1,
S = {x : x > 0}, and γ = γ0. Then there exists w so that the relative (in)efficiency of estimating
⟨w, θ⟩ is lower bounded as

⟨w,ΓSMw⟩
⟨w,ΓMLEw⟩

≥ c ea
2/8.

5 DISCRETE ANALOGUES: PSEUDOLIKELIHOOD, GLAUBER DYNAMICS,
AND APPROXIMATE TENSORIZATION

Several authors have proposed variants of score matching for discrete probability distributions, e.g.
Lyu (2009); Shao et al. (2019); Hyvärinen (2007). Furthermore, Hyvärinen (2006; 2007) pointed out
some connections between pseudolikelihood methods (a classic alternative to maximum likelihood
in statistics Besag (1975; 1977)), Glauber dynamics (a.k.a. Gibbs sampler, see Appendix F for
the definition), and score matching. Finally, just like the log-Sobolev inequality controls the rapid
mixing of Langevin dynamics, there are functional inequalities (Gross, 1975; Bobkov and Tetali,
2006) which bound the mixing time of Glauber dynamics. Thus, we ask: Is there a discrete analogue
of the relationship between score matching and the log-Sobolev inequality?

The answer is yes. To explain further, we need a key concept recently introduced by Marton (2013;
2015) and Caputo et al. (2015): if (Ω1,F1), . . . (Ωd,Fd) are arbitrary measure spaces, we say a
distribution q on

⊗d
i=1 Ωi satisfies approximation tensorization of entropy with constant CAT (q) if

KL(p, q) ≤ CAT (q)

d∑
i=1

EX∼i∼p∼i
[KL(p(Xi | X∼i), q(Xi | X∼i))]. (8)

This inequality is sandwiched between two discrete versions of the log-Sobolev inequality (Propo-
sition 1.1 of Caputo et al. (2015)): it is weaker than the standard discrete version of the log-Sobolev
inequality (Diaconis and Saloff-Coste, 1996) and stronger than the Modified Log-Sobolev Inequality
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(Bobkov and Tetali, 2006) which characterizes exponential ergodicity of the Glauber dynamics.We
define a restricted version CAT (q,P) analogously to the restricted log-Sobolev constant.

Finally, we recall the pseudolikelihood objective (Besag, 1975) based on entrywise conditional prob-
abilities: Lp(q) :=

∑d
i=1 EX∼p[log q(Xi | X∼i)]. With these definition in place, we can show that

just as matching objective is a relaxation of maximum likelihood through the log-Sobolev inequality,
pseudolikelihood is a relaxation through approximate tensorization of entropy:

Proposition 4. We have KL(p, q) ≤ CAT (q)(Lp(p)− Lp(q)) and more generally for any class P
containing p, we have KL(p, q) ≤ CAT (q,P)(Lp(p)− Lp(q)).

Proof. Observe that Lp(p) − Lp(q) =
∑d

i=1 EX∼i|p∼i
[KL(p(Xi | X∼i), q(Xi | X∼i))], so the

result follows by expanding the definition.

Remark 6. Pseudolikelihood methods (and variants like node-wise regression) are one of the dom-
inant approaches to fitting fully-observed graphical models, e.g. (Wu et al., 2019; Lokhov et al.,
2018; Klivans and Meka, 2017; Kelner et al., 2020). Like score matching, pseudolikelihood meth-
ods do not require computing normalizing constants which can be slow or computationally hard
(e.g. Sly and Sun (2012)). Pseudolikelihood is applicable in both discrete and continuous settings,
as is our connection with approximate tensorization. An analogous version of Theorem 1 holds
by the same argument (Theorem 5 in Appendix F) and guarantees learning in KL when q satisfies
approximate tensorization (e.g. under Dobrushin’s uniqueness threshold (Marton, 2015)).

Remark 7. (Hyvärinen, 2007) proposed a version of score matching for distributions on the hyper-
cube {±1}d and observed that the resulting method (“ratio matching”) bears similarity to pseudo-
likelihood. A similar calculation as the proof of Proposition 4 allows us to arrive at ratio matching
based on a strengthening of approximate tensorization studied in (Marton, 2015). Our derivation
seems more conceptual than the original derivation, explains the similarity to pseudolikelihood, and
establishes some useful connections. For space reasons, this is included in Appendix F.2.

6 RELATED WORK

Score matching was originally introduced by Hyvärinen (2005), who also proved that the estimator
is asymptotically consistent. In (Hyvärinen, 2007), the authors propose estimators that are defined
over bounded domains. (Song and Ermon, 2019) scaled the techniques to neurally parameterized
energy-based models, leveraging score matching versions like denoising score matching Vincent
(2011), which involves an annealing strategy by convolving the data distribution with Gaussians
of different variances, and sliced score matching (Song et al., 2020). The authors conjectured that
annealing helps with multimodality and low-dimensional manifold structure in the data distribution
— and our paper can be seen as formalizing this conjecture.

The connection between score matching objective and the relative Fisher information in (6) was
previously observed in (Shao et al., 2019; Nielsen, 2021). We also remark that since I(p|q) =
− d

dt KL(pt, q) |t=0 for pt the output of Langevin dynamics at time t, score matching can be inter-
preted as finding a q to minimize the contraction of the Langevin dynamics for q started at p. Previ-
ously, (Lyu, 2009) observed that the score matching objective can be interpreted as the infinitesimal
change in KL divergence as we add Gaussian noise — see Appendix B for an explanation why
these two quantities are equal. In the discrete setting, it was recently observed that approximate ten-
sorization has applications to identity testing of distributions in the “coordinate oracle” query model
(Blanca et al., 2022), which is another application of approximate tensorization outside of sampling
otherwise unrelated to our result. Finally, (Block et al., 2020; Lee et al., 2022) show guarantees on
running Langevin dynamics, given estimates on ∇ log p that are only ϵ-correct in the L2(p) sense.
They show that when the Langevin dynamics are run for some moderate amount of time, the drift
between the true Langevin dynamics (using ∇ log p exactly) and the noisy estimates can be bounded.

7 SIMULATIONS

Exponential family experiments. Fitting a bimodal distribution with and without a statistic
approximating a cut. First, we show the result of fitting a bimodal distribution (as in Example 2)
from an exponential family. In Figure 1, the difference of the two sufficient statistics we consider

8
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corresponds to the cut statistic used in our negative result (Theorem 3). As predicted (Corollary 1)
score matching performs poorly compared to the MLE as the distance between modes grows.

Figure 1: Statistical efficiency of score matching
vs MLE for fitting the distribution with ground
truth parameters (θ0, θ1) = (1, 0) of the form
pθ(x) ∝ eθ0(x

2−x4/(2a2))+θ1(x
2−x4/(2a2)+erf(x))

as we vary the offset a between 1 and 7 and train
with fixed number of samples (106). We see score
matching (red) performs very poorly compared to
the MLE (blue) as the offset (distance between
modes) grows, by plotting the log of the Euclidean
distance to the true parameter for both estimators.

In Appendix G, we show that when the second
sufficient statistic (which is correlated with a
sparse cut in the distribution) is removed, score
matching performs nearly as well as MLE. This
is what our theory predicts (since the cut statis-
tic is removed) and illustrates the use of re-
stricted functional inequalities (in Theorem 2,
the restricted Poincaré inequality explains what
happens here — see the appendix).

Fitting a unimodal but not smooth distribution.
For space reasons this is left to Appendix G —
we demonstrate that, even if the distribution is
unimodal, the performance of score matching
degrades as the sufficient statistics become less
smooth. Hence the dependence on smoothness
in our results, e.g. Theorem 2, is really required.

Fitting a mixture of Gaussians with a one-
layer network. We also show that empirically,
our results are robust even beyond exponen-
tial families. In Figure 2 we show the results
of fitting a mixture of two Gaussians via score
matching5 , where the score function is param-
eterized as a one hidden-layer network with tanh activations. We see that the predictions of our
theory persist: the distribution is learned successfully when the two modes are close and is not when
the modes are far. This matches our expectations, since the Poincaré, log-Sobolev, and isoperimet-
ric constants blow up exponentially in the distance between the two modes (see e.g. Chen et al.
(2021a)) and the neural network is capable of detecting the cut between the two modes. We discuss
the interpretation of this result more in the appendix.

Figure 2: Training a single hidden-layer network to score match a mixture of Gaussians (ground
truth green, score matching output blue) succeeds at learning the distribution when the modes are
close (left, small isoperimetric constant), but not when they are distant (right, large isoperimetric
constant) in which case it weighs the modes incorrectly.

8 CONCLUSION

In this paper, we initiate the study of the statistical efficiency of score matching, and identified a
close connection to functional inequalities which characterize the ergodicity of Langevin dynamics.
For future work, it would be interesting to characterize formally the improvements conferred by
annealing strategies like (Song and Ermon, 2019), like it has been done in the setting of sampling
using Langevin dynamics (Lee et al., 2018).

5We note that this experiment is similar in flavor to plots in (Figure 2) in Song and Ermon (2019), where
they show that the score is estimated poorly near the low-probability regions of a mixture of Gaussians. In our
plots, we numerically integrate the estimates of the score to produce the pdf of the estimated distribution.
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A FURTHER BACKGROUND

Correspondence between functional inequalities and exponential ergodicity. If pt is the dis-
tribution of the continuous-time Langevin Dynamics6 for q started from X0 ∼ p, then I(p | q) =
− d

dt KL(pt, q) |t=0 and so by integrating KL(pt, q) ≤ e−t/CLS KL(p, q). This holding for any
p and t is an equivalent characterization of the log-Sobolev constant (Theorem 3.20 of Van Han-
del (2014)). Similarly, the Poincaré inequality implies exponential ergodicity for the χ2-divergence
χ2(pt, q) ≤ e−2t/CPχ2(p, q), and this holding for every p and t is an equivalent characterization of
the Poincaré constant (Theorem 2.18 of Van Handel (2014)).

We can equivalently view the Langevin dynamics in a functional-analytic way through its definition
as a Markov semigroup, which is equivalent to the SDE definition via the Fokker-Planck equation
(Van Handel, 2014; Bakry et al., 2014). From this perspective, we can write pt = qHt

p
q where Ht

is the Langevin semigroup for q, so Ht = etL with generator

Lf = ⟨∇ log q,∇f⟩+∆f.

In this case, the Poincaré constant has a direct interpretation in terms of the inverse spectral gap of
L, i.e. the inverse of the gap between its two largest eigenvalues.

Further remarks. A strengthened isoperimetric inequality (Bobkov inequality) upper bounds the
log-Sobolev constant, see Ledoux (2000); Bobkov (1997).

6See e.g. Vempala and Wibisono (2019) for more background and the connection to the discrete time dy-
namics.
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Facts about the mollifier ψ. We will use the basic estimate 8−dBd < Gd < Bd where Bd is the
volume of the unit ball in Rd, which follows from the fact that e−1/(1−|y|2) ≥ 1/4 for ∥y∥ ≤ 1/2

and e−1/(1−|y|2) ≤ 1 everywhere. It is infinitely differentiable and its gradient is

∇yψ(y) = −(2/Gd)e
−1/(1−∥y∥2) y

(1− ∥y∥2)2
=

−2y

(1− ∥y∥2)2
ψ(y)

It is straightforward to check that supy ∥∇yψ(y)∥ < 1/Gd. For γ > 0, we’ll also define a “sharp-
ening” of ψ, namely ψγ(y) = γ−dψ(y/γ) so that

∫
ψγ = 1 and (by chain rule)

∇yψγ(y) = γ−d−1(∇ψ)(y/γ) = −2y/γ2

(1− ∥y/γ∥2)
ψγ(y/γ)

so in particular ∥∇yψγ∥2 ≤ γ−d−1/Gd.

Reach and Condition Number of a Manifold. For a smooth submanifold M of Euclidean space,
the reach τM is the smallest radius r so that every point with distance at most r to the manifold
M has a unique nearest point on M (Federer, 1959); the reach is guaranteed to be positive for
compact manifolds. The reach has a few equivalent characterizations (see e.g. Niyogi et al. (2008));
a common terminology is that the condition number of a manifold is 1/τM.

B RECOVERING LYU’S INTERPRETATION OF SCORE MATCHING

As mentioned, the connection between score matching objective and the relative Fisher information
was previously observed, for example in (Shao et al., 2019; Nielsen, 2021). We also remark that if we
use the fact I(p|q) = − d

dt KL(pt, q) |t=0, the score matching objective has a natural interpretation
in terms of select q to minimize the contraction of the Langevin dynamics for q started at p. On the
other hand, Lyu (2009) previously observed that the score matching objective can be interpreted as
the infinitesimal change in KL divergence between p and q as we add noise to both of them. We now
explain why these two quantities are equal by giving a proof of their equality (which is shorter than
the one you get by going through the proof in Lyu (2009)).

Before giving the formal proof, we give some intuition for why the statement should be true. The
Langevin dynamics approximately adds a noise of size N(0, 2t) and subtracts a gradient step along
∇ log q, and this dynamics preserves q. For small t, the gradient step is essentially reversible and
preserves the KL. So heuristically, reversing the gradient step gives KL(pt, q) ≈ KL(N(0, 2t) ∗
p,N(0, 2t) ∗ q). We now give the formal proof.
Lemma 2. Assuming smooth probability densities p(x) and q(x) decay sufficiently fast at infinity,

d

dt
KL(pt, q)

∣∣∣
t=0

=
d

dt
KL(p ∗N(0, 2t), q ∗N(0, 2t))

∣∣∣
t=0

where ∗ denotes convolution.

Proof. Recalling from Appendix A that Ht = etL we have that d
dt

pt

q = d
dtHt

p
q = Lp

q . Since
KL(pt, q) = Eq[

pt

q log pt

q ] and d
dx [x log x] = log x+ 1, it follows by the chain rule that

d

dt
KL(pt, q) = Eq

[(
log

p

q
+ 1

)
L
p

q

]
= Eq

[(
log

p

q
+ 1

)(
⟨∇ log q,∇p

q
⟩+∆

p

q

)]
= Eq

[(
log

p

q
+ 1

)(
−⟨∇ log q,∇p

q
⟩+ ∆p

q
− p∆q

q2

)]
where in the last step we used the quotient rule ∆p

q = ∆p
q − 2

〈
∇ log q,∇p

q

〉
− p∆q

q2 . On the other

hand, by using the Fokker-Planck equation ∂
∂t (p ∗ N(0, 2t)) = ∆p (Lemma 2 of Lyu (2009)) and

the chain rule we have
d

dt
KL(p ∗N(0, 2t), q ∗N(0, 2t)) =

d

dt

∫
(q ∗N(0, 2t))

p ∗N(0, 2t)

q ∗N(0, 2t)
log

p ∗N(0, 2t)

q ∗N(0, 2t)
dx

=

∫
(∆q)

p

q
log

p

q
dx+ Eq

[(
log

p

q
+ 1

)(
∆p

q
− p∆q

q2

)]
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Since by the chain rule and integration by parts we have

Eq

[(
log

p

q
+ 1

)〈
∇ log q,∇p

q

〉]
=

∫ [〈
∇q,∇p

q
log

p

q

〉]
dx = −

∫
(∆q)

p

q
log

p

q
dx,

we see that the two derivatives are indeed equal.

C PROOF OF PROPOSITION 3

Proof. From Hyvärinen (2005), we have consistency of score matching (Theorem 2) and in partic-
ular the formula

θ = −E[(JF )X(JF )TX ]−1E∆F. (9)
We now compute the limiting distribution of the estimator as the number of samples n → ∞. We
will need to use some standard results from probability theory such as Slutsky’s theorem and the
central limit theorem, see e.g. Van der Vaart (2000) or Durrett (2019) for references. To minimize
ambiguity, let Ên denote the empirical expectation over n i.i.d. samples samples and let θ̂n denote
the score matching estimator θ̂SM from n samples. Define δn,1 and δn,2 by the equations

Ên[(JF )X(JF )TX ] = E[(JF )X(JF )TX ] + δn,1/
√
n

and
Ên∆F = E∆f + δn,2/

√
n.

By the central limit theorem, δn = (δn,1, δn,2) converges in distribution to a multivariate Gaussian
(with a covariance matrix that we won’t need explicitly) as n→ ∞. From the definition

θ̂n = −Ên[(JF )X(JF )TX ]−1Ê∆F

= −[E[(JF )X(JF )TX ]−1Ên[(JF )X(JF )TX ]]−1E[(JF )X(JF )TX ]−1Ê∆F

and we now simplify the expression on the right hand side. By applying (9) we have

E[(JF )X(JF )TX ]−1Ên∆F = E[(JF )X(JF )TX ]−1(E∆F + δn,2/
√
n)

= −θ + E[(JF )X(JF )TX ]−1δn,2/
√
n

Since
E[(JF )X(JF )TX ]−1Ên[(JF )X(JF )TX ] = I + E[(JF )X(JF )TX ]−1δn,1/

√
n

and (I +X)−1 = I −X +X2 − · · · we have by applying Slutsky’s theorem that

E[(JF )X(JF )TX ]−1Ên[(JF )X(JF )TX ]]−1 = I − E[(JF )X(JF )TX ]−1δn,1/
√
n+OP (1/n)

where we use the standard notation Yn = OP (1/n) to indicate that nYn/f(n) → 0 in probability
for any function f with f(n) → ∞. Hence

θ̂SM = −[E[(JF )X(JF )TX ]−1Ên[(JF )X(JF )TX ]]−1E[(JF )X(JF )TX ]−1Ên∆F

= −
[
I − E[(JF )X(JF )TX ]−1δn,1/

√
n+OP (1/n)

]
(−θ + E[(JF )X(JF )TX ]−1δn,2/

√
n)

and applying Slutsky’s theorem again, we find
√
n(θ̂n − θ) = E[(JF )X(JF )TX ]−1(−δn,1θ − δn,2) +OP (1/

√
n)

From the definition, we know

1√
n
(δn,1θ − δn,2) = Ên[−(JF )X(JF )TXθ −∆F ]− E[−(JF )X(JF )TXθ −∆F ]

so altogether by the central limit theorem, we have
√
n(θ̂ − θ) → N

(
0,E[(JF )X(JF )TX ]−1Σ(JF )X(JF )TXθ+∆FE[(JF )X(JF )TX ]−1

)
as claimed.
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D PROOF OF THEOREM 2

First, we will need the following helper lemma:

Lemma 3. For any random vectors A,B we have ΣA+B ⪯ 2ΣA + 2ΣB .

Proof. For any vector w we have

Var(⟨w,A+B⟩) = Var(⟨w,A⟩) + 2Cov(⟨w,A⟩⟨w,B⟩) + Var(⟨w,B⟩)

≤ Var(⟨w,A⟩) + 2
√
Var(⟨w,A⟩)Var(⟨w,B⟩) + Var(⟨w,B⟩)

≤ 2Var(⟨w,A⟩) + 2Var(⟨w,B⟩)

where the first inequality is Cauchy-Schwarz for variance and the second is ab ≤ a2/2 + b2/2. We
proved for this for every vector which proves the PSD inequality.

With this in mind, we can proceed to the proof of Theorem 2:

Proof of Theorem 2. Recall from Proposition 3 that

ΓSM := E[(JF )X(JF )TX ]−1Σ(JF )X(JF )TXθ+∆FE[(JF )X(JF )TX ]−1.

By Lemma 1 and submultiplicativity of the operator norm, we have

∥E[(JF )X(JF )TX ]−1Σ(JF )X(JF )TXθ+∆FE[(JF )X(JF )TX ]−1∥OP

≤ C2
P ∥Σ−1

F ∥2OP ∥Σ(JF )X(JF )TXθ+∆F ∥OP .

We will finally bound the two operator norms on the right hand side. By Lemma 3, we have

Σ(JF )X(JF )TXθ+∆F ⪯ 2Σ(JF )X(JF )TXθ + 2Σ∆F

Furthermore, we have

∥Σ(JF )X(JF )TXθ∥OP ≤ ∥E[(JF )X(JF )TXθθ
T (JF )X(JF )TX ]∥OP ≤ E∥(JF )X∥4OP ∥θ∥2

and
∥Σ∆F ∥OP ≤ ∥E(∆F )(∆F )T ∥OP ≤ TrE(∆F )(∆F )T ≤ E∥∆F∥22

which implies the statement of the theorem.

Supporting details for remark after Theorem 2. Since
√
n(θ − θ̂SM) → N(0,ΓSM) by Propo-

sition 3, for all sufficiently large n it follows from Markov’s inequality that with probability at least
99%,

n∥θ − θ̂SM∥2 = O(EZ∼N(0,ΓSM)∥Z∥2) = O(Tr ΓSM) = O(m∥ΓSM∥OP ).

On the other hand, by Fatou’s lemma we have that

lim inf
n→∞

nE∥θ − θ̂MLE∥2 ≥ EZ∼N(0,ΓMLE)∥Z∥
2 = Tr(ΓMLE) ≥ ∥ΓMLE∥OP

where in the first expression θ̂MLE implicitly depends on n, the number of samples. Combining these
two observations with Theorem 2 and gives the inequality stated in the remark.

E PROOF OF THEOREM 3 AND APPLICATIONS

We restate Theorem 3 for the reader’s convenience and in a slightly more explicit form in terms of
the bounds on γ. Note that we use the concept of the reach τM of a manifold which was defined in
the preliminaries (Appendix A).
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Theorem 4 (Inefficiency of score matching in the presence of sparse cuts, Restatement of Theo-
rem 3). There exists an absolute constant c > 0 such that the following is true. Suppose that pθ∗

1

is an element of an exponential family with sufficient statistic F1 and parameterized by elements of
Θ1. Suppose S is a set with smooth and compact boundary ∂S. Let τ∂S > 0 denote the reach of ∂S
(see Appendix A) Suppose that 1S is not an affine function of F1, so there exists δ1 > 0 such that

sup
w1:Var(⟨w1,F1⟩)=1

Cov

(
⟨w1, F1⟩,

1S√
Var(1S)

)2

≤ 1− δ1. (10)

Suppose that γ > 0 satisfies γ < min
{

cd

(1+∥θ1∥) supx:d(x,∂S)≤γ ∥(JF1)x∥OP
, c τ∂S

d

}
and is small

enough so that 0 < δ := 1 −
(√

1− δ1 + 2
√

γ
∫
x∈∂S

p(x)dx

Pr(X∈S)(1−Pr(X∈S))

)2

. Define an additional suf-

ficient statistic F2 = 1S ∗ ψγ so that the enlarged exponential family contains distributions of the
form

p(θ1,θ2)(x) ∝ exp(⟨θ1, F1(x)⟩+ θ2F2(x))

and consider the MLE and score matching estimators in this exponential family with ground truth
p(θ∗

1 ,0)
.

Then the asymptotic renormalized covariance matrix ΓMLE of the MLE is bounded above as ΓMLE ⪯
1

1−δ

[
Σ−1

F1
0

0 1
Pr(X∈S)(1−Pr(X∈S))

]
and there there exists some w and corresponding asymptotic

variances σ2
SM(w), σ

2
MLE(w) so that

√
n⟨w, θ̂SM − θ⟩ → N(0, σ2

SM(w)),
√
n⟨w, θ̂MLE − θ⟩ → N(0, σ2

MLE(w))

and the relative (in)efficiency of the score matching estimator compared to the MLE for estimating
⟨w, θ⟩ admits the following lower bound

σ2
SM(w)

σ2
MLE(w)

≥ c′

γ

min{Pr(X ∈ S),Pr(X /∈ S)}∫
x∈∂S

p(x)dx

where c′ := δcd

1+∥ΣF1
∥OP

.

The proof will proceed in two parts: we will lower bound σ2
SM(w) and upper bound σ2

MLE(w). The
former part will proceed by proving a lower bound on the spectral norm of ΓSM (Subsection E.1) —
by picking a direction in which the quadratic form is large. The upper bound on σ2

MLE(w) (Subsec-
tion E.2) will proceed by relating the Fisher matrix for the augmented sufficient statistic (F1, F2)
with the Fisher matrix for the original sufficient statistic F1.

Supporting details for remarks after Theorem 3. If we choose S to be the worst set in the
isoperimetric inequaltiy, the term min{Pr(X∈S),Pr(X/∈S)}∫

x∈∂S
p(x)dx

in the bound is simply CIS . To see this,

observe that limϵ→0

∫
Sϵ

p(x)dx−
∫
S
p(x)dx

ϵ =
∫
x∈∂S

p(x)dx as a special case of Weyl’s tube formula
(Weyl, 1939; Gray, 2003).

E.1 LOWER BOUNDING THE SPECTRAL NORM OF ΓSM

We recall the new statistic F2, defined in terms of the mollifier ψ introduced in Section 2:

F2(x) := (1S ∗ ψγ)(x) =

∫
Rd

1S(y)ψγ(x− y)dy =

∫
S

ψγ(x− y)dy

and the new sufficient statistic is F (x) = (F1(x), F2(x)). We first show the following lower bound
on the largest eigenvalue of ΓSM, the renormalized limiting covariance of score matching:
Lemma 4 (Largest eigenvalue of ΓSM). The largest eigenvalue of K satisfies

λmax(ΓSM) ≥
8−dγ2

Pr[d(X, ∂S) ≤ γ]

EX|d(X,∂S)≤γ

(
(∇F2)

T
X(JF )TXθ +∆F2

)2
supd(x,∂S)≤γ ∥(JF )x∥2OP

. (11)
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Proof. We have

∇xF2(x) =

∫
S

∇xψγ(x− y)dy, ∇2
xF2(x) =

∫
S

∇2
xψγ(x− y)dy.

Defining
u := E[(JF )X(JF )TX ](0, 1) = E[(JF )X∇xF2(x)]

we have, by the variational characterization of eigenvalues of symmetric matrices, that

λmax (K) ≥
⟨u,E[(JF )X(JF )TX ]−1Σ(JF )X(JF )TXθ+∆FE[(JF )X(JF )TX ]−1u⟩

∥u∥22
. (12)

To upper bound the denominator we observe that if Bd is the volume of the unit ball,

∥∇xF2(x)∥2 =

∥∥∥∥∫
S

(∇ψγ)(x− y)dy

∥∥∥∥
2

(13)

≤ 1(d(x, ∂S) ≤ γ)γ−d−1vol(B(X, γ))/Gd (14)

≤ 8d1(d(x, ∂S) ≤ γ)γ−1 (15)

and so

∥u∥2 ≤ 8dγ−1 Pr[d(X, ∂S) ≤ γ] sup
d(x,∂S)∈[−γ,γ]

∥(JF )x∥OP

where we used the computation of the derivative of ψγ . To lower bound the numerator we have

⟨u,E[(JF )X(JF )TX ]−1Σ(JF )X(JF )TXθ+∆FE[(JF )X(JF )TX ]−1u⟩

= (0, 1)TΣ(JF )X(JF )TXθ+∆F (0, 1)

= E⟨(0, 1), (JF )X(JF )TXθ +∆F ⟩2 = E
(
(∇xF2)

T
X(JF )TXθ +∆F2

)2
.

The integrand is zero except when d(X, ∂S) ≤ γ so it equals

Pr[d(X, ∂S) ≤ γ]EX|d(X,∂S)∈[−γ,γ]

(
(∇F2)

T
X(JF )TXθ +∆F2

)2
and combining gives the result.

We now estimate the right hand side of (11) for small γ, using differential geometric techniques.
The main idea is that as we take γ smaller, we end up zooming into the manifold ∂S which locally
looks closer and closer to being flat. Differential-geometric quantities describing the manifold ap-
pear when we make this approximation rigorous. The most involved term to handle ends up to be
calculating the expectation EX|d(X,∂S)≤γ

(
(∇F2)

T
X(JF )TXθ +∆F2

)2
. To do this, we first argue

that the term with the Laplacian dominates as γ → 0, then by Stokes theorem, we end up integrat-
ing ⟨∇ψ, dN⟩ over intersections of S with small spheres of radius γ, where N is a normal to S.
Such quantities can be calculated by comparing to the “flat” manifold case — i.e. when N does
not change. How far away these quantities are (thus how small γ needs to be) depends on the cur-
vature of S (or more precisely, the condition number of the manifold). Lemma 6 makes rigorous
the statement that well-conditioned manifolds are locally flat and then Lemma 7, which is part of
the proof of Weyl’s tube formula (Gray, 2003; Weyl, 1939), lets us rigorously say that the tubular
neighborhood (that is, a thickening of the manifold) behaves similarly to the flat case.
Lemma 5. There exists an absolute constant c > 0 such that the following is true. For any γ > 0
satisfying

γ < min

{
cd

(1 + ∥θ1∥) supx:d(x,∂S)≤γ ∥(JF1)x∥OP
, c
τ∂S
d

}
for score matching on the extended family with m + 1 sufficient statistics and distribution pθ with
θ = (θ1, 0) we have

λmax(ΓSM) ≥
cd

γ
∫
∂S
p(x)dA
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Proof. In the denominator, we can observe by (15) that

∥(JF )x∥2OP ≤ ∥JF1∥2OP + ∥∇F2∥22 ≤ ∥JF1∥2OP + γ−2B2
d ≤ 2γ−2B2

d

where the last inequality holds assuming γ is sufficiently small that ∥JF1∥2OP ≤ γ−2B2
d .

In the numerator we can observe

(∇xF2)
T
X(JF )TXθ +∆F2

=

∫
S

⟨(∇ψγ)((X − y)), (JF )TXθ⟩+ (∆ψγ)(X − y)dy

=

∫
S∩B(X,γ)

⟨(∇ψγ)((X − y)), (JF )TXθ⟩+ (∆ψγ)(X − y)dy

= γd
∫
B(0,1)∩(X−S)/γ

⟨(∇ψγ)(γu), (JF )
T
Xθ⟩+ (∆ψγ)(γu)du

=

∫
B(0,1)∩(X−S)/γ

γ−1⟨∇ψ(u), (JF )TXθ⟩+ γ−2(∆ψ)(u)du

=

∫
B(0,1)∩(X−S)/γ

γ−1⟨∇ψ(u), (JF )TXθ⟩+
∫
∂(B(0,1)∩(X−S)/γ)

γ−2⟨∇ψ, dN⟩

=

∫
B(0,1)∩(X−S)/γ

γ−1⟨∇ψ(u), (JF )TXθ⟩+
∫
B(0,1)∩(X−∂S)/γ

γ−2⟨∇ψ, dN⟩

where the second-to-last expression is a surface integral which we arrived at by applying the diver-
gence theorem, using that the Laplacian is the divergence of the gradient, and in the last step we
used that ψ and all of its derivatives vanish on the boundary of the unit sphere.

Using that θ = (θ1, 0) we have∣∣∣∣∣
∫
B(0,1)∩(X−S)/γ

γ−1⟨∇ψ(u), (JF )TXθ⟩

∣∣∣∣∣ ≤ γ−1

∫
B(0,1)

∥∇ψ(u)∥∥(JF1)X∥OP ∥θ∥ (16)

≤ 8dγ−1∥(JF1)X∥OP ∥θ∥. (17)

Let p be the point in ∂(X − S)/γ which is closest in Euclidean distance to the origin. Let n(q)
denote the unit normal vector at point q oriented outwards (Gauss map). Note that by first-order
optimality conditions for p, we must have n(p) = p/∥p∥. Since dN = n(q)dA where dA is the
surface area form, we have∫

B(0,1)∩(X−∂S)/γ

⟨∇ψ, dN⟩ =
∫
q∈B(0,1)∩(X−∂S)/γ

⟨∇ψ(q), n(p) + (n(q)− n(p))⟩dA

=

∫
q∈B(0,1)∩(X−∂S)/γ

−2ψ(q)

(1− ∥q∥2)2
⟨q, p

∥p∥
+ (n(q)− n(p))⟩dA.

We now show how to lower bounding the integral by showing ⟨q, p
∥p∥ + (n(q) − n(p))⟩ is lower

bounded.

Let c(t) be a minimal unit-speed geodesic on M := (X−∂S)/γ from p to q. Note that τM = τ∂S/γ
so if γ is very small, M is very well-conditioned. By the fundamental theorem of calculus, we have
that

⟨p, q⟩ = ⟨p, p⟩+
∫ 1

0

⟨p, c′(t)⟩dt = ⟨p, p⟩+
∫ 1

0

⟨ProjTc(t)
p, c′(t)⟩dt

where Tc(t) is the tangent space to M at the point c(t). Hence by the Cauchy-Schwarz inequality
we have

|⟨p, q⟩ ≥ ⟨p, p⟩ −
∫ 1

0

∥ProjTc(t)
p∥∥c′(t)∥dt.

By Proposition 6.3 of Niyogi et al. (2008), we have that for ϕt the angle between the tangent spaces
Tp and Tc(t) that

cosϕt ≥ 1− 1

τM
dM(p, c(t)) = 1− t

τM
dM(p, q). (18)
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Since sin2 ϕt + cos2 ϕt = 1 and p is orthogonal to the tangent space at Tp, it follows that

∥ProjTc(t)
p∥ ≤ ∥p∥| sinϕt| = ∥p∥

√
1− cos2 ϕt ≤ ∥p∥

√
(2t/τM)dM(p, q) + (t/τM)2dM(p, q)2

≤ ∥p∥
√

(2t/τM)dM(p, q) + ∥p∥(t/τM)dM(p, q)

hence∫ 1

0

∥ProjTc(t)
p∥∥c′(t)∥dt ≤ (2/3)∥p∥

√
(2/τM)dM(p, q)3/2 + ∥p∥(1/2τM)dM(p, q)2.

Since ∥p− q∥ ≤ 2, provided that τM > 16 we have by Proposition 6.3 of Niyogi et al. (2008) that

dM(p, q) ≤ τM(1−
√

1− 2∥p− q∥/τM) ≤ 4.

Combining, we have for some absolute constant C > 0 that

⟨p, q⟩ ≥ ⟨p, p⟩(1− C
√

1/τM − C/τM).

Also, we can compute

∥n(q)− n(p)∥ =
√

2− 2 cosϕ1 ≤
√

2

τM
dM(p, q) ≤

√
8

τM
so

|⟨q, n(q)− n(p)⟩⟩| ≤ ∥q∥∥n(q)− n(p)∥ ≤
√

8

τM
.

Hence provided τM > C ′ for some absolute constant C ′ > 0 and ∥p∥ > 0.1, we have∣∣∣∣∣
∫
q∈B(0,1)∩(X−∂S)/γ

−2ψ(q)

(1− ∥q∥2)2
⟨q, p

∥p∥
+ (n(q)− n(p))⟩dA

∣∣∣∣∣
≥
∫
q∈B(0,1)∩(X−∂S)/γ

ψ(q)

(1− ∥q∥2)2
∥p∥dA

using that the integrand on the left is always negative. We can further lower bound the integral by
considering the intersection of M with a ball of radius r := 1−∥p∥

2 centered at p. We have∫
q∈B(0,1)∩(X−∂S)/γ

ψ(q)

(1− ∥q∥2)2
∥p∥dA ≥

∫
q∈B(p,r)∩M

ψ(q)

(1− ∥q∥2)2
∥p∥dA

≥ ∥p∥(cos θ)kvol(Bk(p, r)) inf
q∈B(p,r)∩M

ψ(q)

(1− ∥q∥2)2

= ∥p∥(cos θ)krk inf
q∈B(p,r)∩M

Bkψ(q)

(1− ∥q∥2)2

where k = d − 1 is the dimension of M and θ = arcsin(r/2τ) and we applied Lemma 5.3 of
Niyogi et al. (2008). If ∥p∥ ∈ (0.1, 0.9) this is lower bounded by a constant Ck > 0 which is at
worst exponentially small in k.

Hence recalling (17) we have for any X with d(X, ∂S) ∈ (0.1γ, 0.9γ) and for γ sufficiently small
so that γ8k+1∥(JF1)X∥OP ∥θ∥ < Ck/4 for any such X , we have that(

(∇F2)
T
X(JF )TXθ +∆F2

)2 ≥ γ−4C ′
k

where C ′
k > 0 is a constant that is at worst exponentially small in k. Therefore

EX|d(X,∂S)∈[−γ,γ]

(
(∇F2)

T
X(JF )TXθ +∆F2

)2 ≥ γ−4C ′
k

Pr(d(X, ∂S) ∈ (0.1γ, 0.9γ))

Pr(d(X, ∂S) ≤ γ)
.

Combining these estimates, we have for some constantC ′′
k > 0 which is at worst exponentially small

in k and γ sufficiently small (to satisfy the conditions above, including the requirement τM > C ′′)
that

λmax(ΓSM) ≥ C ′′
k Pr(d(X, ∂S) ∈ (0.1γ, 0.9γ))

Pr(d(X, ∂S) ≤ γ)2
. (19)
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Observe that for any points x, y and θ = (θ1, 0) we have by the mean value theorem that

pθ(x)/pθ(y) = exp (⟨θ1, F1(x)− F1(y)) ≤ exp

(
∥θ∥ sup

θ∈[0,1]

∥(JF1)θx+(1−θ)y∥OP ∥x− y∥

)
.

(20)
so the log of the density is Lipschitz. This basically reduces estimating Pr(d(X, ∂S) ≤ γ) for small
γ to understanding the volume of tubes around ∂S, which can be done using the same ideas as the
proof of Weyl’s tube formula (Weyl, 1939; Gray, 2003).

Lemma 6 (Proposition 6.1 of Niyogi et al. (2008)). Let M be a smooth and compact submanifold
of dimension q in Rd. At a point p ∈ M letB : Tp×Tp → T⊥

p denote the second fundamental form,
and for a unit normal vector u, letLu be the linear operator defined so that ⟨u,B(v, w)⟩ = ⟨v, Luw⟩
(this matches the notation from Niyogi et al. (2008)). Then

∥Lu∥OP ≤ 1

τM
.

Lemma 7 (Lemma 3.14 of Gray (2003)). Let M be a smooth and compact submanifold of dimen-
sion q in Rd. Let expp denote the exponential map from the normal bundle at p. The Jacobian
determinant of the map

M× (−1/τM, 1/τM)× Sd−q−1 → Rd, (p, t, u) 7→ expp(tu)

is det(I − tLu).

We can compute

Pr(d(X, ∂S) ≤ r) =

∫
x:d(x,∂S)≤r

pθ(x)dx =

∫
p∈∂S

∫ r

0

∫
S0

det(I − tLu)pθ(expp(tu)) du dt dA

where in the second equality we performed a change of variables and obtained the result by applying
Lemma 7. We have

det(I − tLu) ∈ [(1− t/τ)k, (1 + t/τ)k]

and so applying (20) we find that if we define c := γ∥θ∥ supx:d(x,∂S)≤γ ∥(JF1)x∥OP which can be
made arbitrarily small by taking γ sufficiently small, then

Pr(d(X, ∂S) ≤ r) ∈ [2e−cγ(1− γ/τ)kV, 2ecγ(1 + γ/τ)kV ] (21)

where
V :=

∫
∂S

p(x)dA.

Note that (1 + γ/τ)k ≤ ekγ/τ and (1 − γ/τ)k ≥ exp(−O(γk/τ)) provided that γ/τ = O(1/k).
Since Pr(d(X, ∂S) ∈ (0.1γ, 0.9γ)) = Pr(d(X, ∂S) < 0.9γ) − Pr(d(X, ∂S) ≤ 0.1γ) and the
distribution we consider has a density, by combining (21) and (19) we find that for γ sufficiently
small we have

λmax(ΓSM) ≥ C ′′′
k

1

γ
∫
∂S
p(x)dA

where C ′′′
k is at worst exponentially small in k.

E.2 RELATING FISHER MATRICES OF AUGMENTED AND ORIGINAL SUFFICIENT STATISTICS

Next, we show that adding the extra sufficient statistic F2 has a comparatively minor effect on the
efficiency of MLE. Intuitively, to be able to estimate the coefficient of F2 correctly we just need:
(1) the variance of F2 is large, so that a nonzero coefficient of F2 can be observed from samples
(e.g. when F2 encodes the cut S, the coefficient can be estimated by looking at the relative weight
between S and SC), and (2) there is no redundancy in the sufficient statistics, e.g. F2 ̸= F1 since
otherwise different coefficients can encode the same distribution. The proof of this uses that the
inverse covariance of the MLE has a simple explicit form (the Fisher information, which is the
covariance matrix of (F1, F2)), and conditions (1) and (2) naturally appear when we use this fact.

Quantitatively, we show:
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Lemma 8. Suppose that F = (F1, F2) is a random vector valued in Rm+1 with F1 valued in Rm

and F2 valued in R. Suppose that F2 is not in the affine of linear combinations of the coordinates of
F1, i.e. for all w1 ∈ Rm there exists δ > 0 such that

Cov(⟨w1, F1⟩, F2)
2 ≤ δVar(⟨w1, F1⟩)Var(F2).

Then we have the lower bound

ΣF ⪰ (1− δ)

[
ΣF1

0
0 Var(F2)

]
in the standard PSD (positive semidefinite) order.

Proof. To show a lower bound on

ΣF =

[
ΣF1

ΣF1F2

ΣF2F1
ΣF2

]
observe that

⟨w,ΣFw⟩ = ⟨w1,ΣF1w1⟩+ 2w2⟨w1,ΣF1F2⟩+ w2
2ΣF2

so under the assumption we have by the AM-GM inequality that

⟨w,ΣFw⟩ ≥ (1− δ)[⟨w1,ΣF1w1⟩+ w2
2ΣF2 ]

and hence ΣF is lower bounded in the PSD order as long as ΣF1
is and ΣF2

is.

The lower bound on Var(F2) is guaranteed when F2 corresponds to a cut with large mass on both
sides since the variance of F2 is lower bounded by its variance conditioned on being away from the
boundary of S.

E.3 PUTTING TOGETHER

Finally, given Lemma 5 and 8, we can complete the proof of Theorem 3.

Proof of Theorem 3. Define ρ = Pr(X ∈ S) for the purpose of this proof. Observe that by (21)

Var(1S − F2) ≤ E(1S − F2)
2 ≤ Pr(d(X, ∂S) ≤ γ) ≤ 4γV

where V =
∫
∂S
p(x)dA. We have that

Cov(⟨w1, F1⟩, F2) = Cov(⟨w1, F1⟩, 1S) + Cov(⟨w1, F1⟩, F2 − 1S)

so if w1 is arbitrary and normalized so that Var(⟨w1, F1⟩) = 1 then we have

|Cov(⟨w1, F1⟩, F2)| ≤
√

1− δ1
√
Var(1S) +

√
Var(F2 − 1S)

≤

(√
1− δ1 + 2

√
γV

ρ(1− ρ)

)√
Var(1S).

Therefore provided δ > 0 we have

Σ−1
F ⪯ 1

δ

[
Σ−1

F1
0

0 Var(F2)
−1

]
.

On the other hand, by Lemma 5 we have

λmax(ΓSM) ≥ cd

γV
.

Hence there exists some w such that

σ2
SM(w)

σ2
MLE(w)

≥ δcd

max{∥Σ−1
F1

∥OP , 1/ρ(1− ρ)}
1

γV
≥ δcd

1 + ρ(1− ρ)∥Σ−1
F1

∥OP

ρ(1− ρ)

γV
.

Using that min{ρ, 1− ρ}/2 ≤ ρ(1− ρ) ≤ 1/4 and dividing c by two gives the result.
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E.4 MULTIMODAL EXAMPLE: PROOF OF COROLLARY 1

Proof of Corollary 1. First observe that∫ ∞

−∞
e−F1(x)dx = 2

∫ ∞

0

e−(1/8)(x−a)2(x/a+1)2dx ≤ 2

∫ ∞

−∞
e−(1/8)(x−a)2dx

= 2

∫ ∞

−∞
e−(x2/8)dx =: C

where C is a positive constant independent of a. Using that F1(x) = (1/8)(x − a)2(x/a + 1)2 it
then follows that

Pr(X ∈ [a− 1, a+ 1]) =

∫ a+1

a−1
e−F1(x)dx∫∞

−∞ e−F1(x)dx
≥ e−(1/8)(x/a+1)2

C
≥ C ′ > 0

where C ′ is a positive constant independent of a. From this, we see by the law of total variance that
Var(F1) ≥ Var(F1 | X ∈ [a − 1, a + 1]) Pr(X ∈ [a − 1, a + 1]) ≥ C ′′ > 0 where C ′′ > 0 is
another positive constant independent of a. Hence ∥Σ−1

F1
∥OP = O(1) independent of a. Also, if we

define S = {x : x > 0} then
Cov(F1(x), 1S) = 0

becuase F1(x) is even, 1S is odd and the distribution is symmetric about zero. So we can take δ1 = 1
in the statement of Theorem 3.

Therefore, applying Theorem 3 to S and using that F1(0) = −a2/8, we therefore get for γ smaller
than an absolute constant, that the inefficiency is lower bounded by Ω(ea

2/8/γ). By taking γ equal
to a fixed constant we get the result.

In Section 7, we perform simulations which show the performance of score matching indeed de-
grades exponentially as a beomes large.

F DISCRETE ANALOGUES OF SCORE MATCHING

Glauber dynamics. The Glauber dynamics or Gibbs sampler is the standard sampler for discrete
spin systems — it repeatedly selects a random coordinate and then resamples the spin Xi there
conditional on all of the other ones (i.e. conditional on X∼i). See e.g. Levin and Peres (2017). This
is the standard sampler for discrete systems, but it also applies and has been extensively studied
for continuous ones (see e.g. Marton (2013)). Exponential ergodicity of the Glauber dynamics is
equivalent to the Modified Log-Sobolev Inequality (MLSI) — in most cases where the MLSI is
known, approximate tensorization of entropy is also, e.g. Chen et al. (2021b); Anari et al. (2021a);
Marton (2015); Caputo et al. (2015).

F.1 FINITE SAMPLE BOUNDS

We state explicitly the analogue of Theorem 1 for pseudolikelihood, which follows from the same
proof by replacing Proposition 1 with Proposition 4.
Theorem 5. Suppose that P is a class of probability distributions containing p and define
CAT (P,P) := supq∈P CAT (q,P) ≤ supq∈P CAT (q) to be the worst-case (restricted) approxi-
mate tensorization constant in the class of distributions. Let

Rn := EX1,...,Xn,ϵ1,...,ϵn sup
q∈P

1

n

n∑
i=1

ϵi

 d∑
j=1

log q((Xi)j | (Xi)∼j)


be the expected Rademacher complexity of the class given n samples X1, . . . , Xn ∼ p i.i.d. and
independent ϵ1, . . . , ϵn ∼ Uni{±1} i.i.d. Rademacher random variables. Let p̂ be the pseudolikeli-
hood estimator from n samples, i.e. p̂ = argminq∈P L̂p(q). Then

EKL(p, p̂) ≤ 2CAT (P,P)Rn.

In particular, if CAT <∞ then limn→∞ EKL(p, p̂) = 0 as long as limn→∞ Rn = 0.
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F.2 RATIO MATCHING AND APPROXIMATE TENSORIZATION

Marton (2015) studied a strengthened version of approximate tensorization of the form

KL(p, q) ≤ CAT2(q)

d∑
i=1

EX∼i∼p∼i
TV2(p(Xi | X∼i), q(Xi | X∼i)) (22)

where TV denotes the total variation distance (see Cover (1999)). (This is known to hold for a
class of distributions q satisfying a version of Dobrushin’s condition and marginal bounds (Marton,
2015).) This inequality is stronger than the standard approximate tensorization because of Pinsker’s
inequality TV2(P,Q) ≲ KL(P,Q) (Cover, 1999). In the case of distributions on the hypercube,
we have

TV2(p(Xi | X∼i), q(Xi | X∼i))

= |p(Xi = +1 | X∼i)− q(Xi = +1 | X∼i)|2

= EXi∼pXi|X∼i
|1(Xi = +1)− q(Xi = +1 | X∼i)|2

− EXi∼pXi|X∼i
|1(Xi = +1)− p(Xi = +1 | X∼i)|2

where in the last step we used the Pythagorean theorem applied to the pXi|X∼i
-orthogonal decom-

position

1(Xi = +1)− q(Xi = +1 | X∼i) = [1(Xi = +1)− p(Xi = +1 | X∼i)]

+ [p(Xi = +1 | X∼i)− q(Xi = +1 | X∼i)]

Hence, there exists a constant K ′
p not depending on q such that

d∑
i=1

EX∼i∼p∼i
TV2(p(Xi | X∼i), q(Xi | X∼i)) = Kp +Mp(q) (23)

where we define the ratio matching objective function to be

Mp(q) :=

d∑
i=1

EX∼p|1(Xi = +1)− q(Xi = +1 | X∼i)|2 (24)

This objective is now straightforward to estimate from data, by replacing the expectation with the
average over data. Analogous to before, we have the following proposition:

Proposition 5. We have
KL(p, q) ≤ CAT2(q)(Mp(q)−Mp(p))

and more generally for any class P containing p, we have KL(p, q) ≤ CAT2(q,P)(Mp(q) −
Mp(p)).

We now show how to rewrite Mp(q) to match the formula from the original reference. Observe

Mp(q) =
1

4

d∑
i=1

EX∼p|Xi − Eq[Xi | X∼i]|2 =
1

4

d∑
i=1

EX∼p|1−XiEq[Xi | X∼i]|2

Observe that for any z ∈ {±1} we have

zEq[Xi | X∼i] =
q(Xi = z | X∼i)− q(Xi = −z | X∼i)

q(Xi = z | X∼i) + q(Xi = −z | X∼i)

and

1− zEq[Xi | X∼i] =
2q(Xi = −z | X∼i)

q(Xi = z | X∼i) + q(Xi = −z | X∼i)

=
2

1 + q(Xi = z | X∼i)/q(Xi = −z | X∼i)
.
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Figure 3: Level sets for the distribution over estimates in the same example as Figure 1. We see that
as the distance a between modes increases, the direction of large variance for the score matching
estimator (right figure) corresponds to the difference of the sufficient statistics which encodes the
sparse cut in the distribution. On the other hand, the MLE (left figure) does not exhibit this behavior
and has low variance in all directions.

Also for z ∈ {±1}d we have q(Xi = zi | X∼i = z∼i)/q(Xi = −zi | X∼i = z∼i) = q(z)/q(z−i)
where z−i reprsents z with coordinate i flipped, so

Mp(q) =

d∑
i=1

EX∼p

(
1

1 + q(X)/q(X−i)

)2

which matches the formula in Theorem 1 of Hyvärinen (2007).

Summarizing, minimizing the ratio matching objective makes the right hand side of the strengthened
tensorization estimate (22) small, so when CAT2(q) is small it will imply successful distribution
learing in KL. (The obvious variant of Theorem 5 will therefore hold.) In this way ratio matching
can also be understood as a relaxation of maximum likelihood.

G FURTHER SIMULATIONS

Complementary visualization to Figure 1. In Figure 3, we illustrate the distribution of the errors
in the bimodal experiment with the cut statistic. As expected based on the theory, the direction
where score matching with large offset performs very poorly corresponds to the difference between
the two sufficient statistics, which encodes the sparse cut in the distribution.

Fitting a bimodal distribution without a cut statistic. In Figure 4 we show the result of fitting
the same bimodal distribution using score matching, but we remove the second sufficient statistic
(which is correlated with the sparse cut in the distribution). In this case, score matching fits the
distribution nearly as well as the MLE. This is consistent with our theory (e.g. the failure of score
matching in Theorem 3 requires that we have a sufficient statistic approximately representing the
cut) and justifies some of the distinctions we made in our results: even though the Poincaré constant
is very large, the asymptotic variance of score matching within the exponential family is upper
bounded by the restricted Poincaré constant (see Theorem 2) which is much smaller.
Example 3 (Application of Theorem 2 to this example). To briefly expand the last point, we show
how to apply Theorem 2 in this example (Example 2, where we have not added a bad cut statistic.)
The restricted Poincaré constant for applying Theorem 2 will be

C :=
Var(F1(X))

E(F ′
1(X))2

=
Var(X2 −X4/2a2)

E(2X − 2X3/a2)2
(25)
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Figure 4: Here we see the result of running an identical experiment to Figure 1, only we remove the
second sufficient statistic, so our distribution is now pθ(x) ∝ eθ0(x

2−x4/(2a2)) where θ0 = 1 and
we again vary the offset a between 1 and 7. With only the single sufficient statistic, score matching
performs comparably to MLE.

which asymptotically goes to a constant, rather than blowing up exponentially, as a goes to infinity.
(This can be made formal using arguments as in the proof of Corollary 1; informally, the distribution
is similar to a mixture of two standard Gaussians centered at ±a so the numerator is close to
VarZ∼N(0,1)((a+Z)

2−(a+Z)4/2a2) = Var(2aZ+Z2−(4aZ+6Z2+4Z3/a+Z4)/2) = Θ(1)

and the denominator is approximately EZ∼N(0,1)(2(a+ Z)− 2(a+ Z)3/a2)2 = E(2Z − 2(3Z +

3Z3/a+ Z3/a2))2 = Θ(1).)

Given this bound on the restricted Poincaré constant, we can apply Theorem 2. Based on similar
reasoning to above, one can show that EF ′

1(X)4 = (−1/4a2)4E((X−a)(X+a)2+(X−a)2(X+
a))4 = Θ(1) and EF ′′

1 (X)2 = E(−3x2/2a2 + 1/2)2 = Θ(1), so we conclude that ∥ΓSM∥OP =
O(∥ΓMLE∥2OP ). This proves that score matching will perform not much worse than the MLE, as we
saw in the experimental result of Figure 4.
Remark 8. Example 3 shows a case where there is a large gap between the restricted and un-
restricted Poincaré constants. This also implies a completely analogous gap between appropriate
restricted and unrestricted log-Sobolev constants, as used e.g. in the context of Theorem 1. To elab-
orate, we know that the unrestricted log-Sobolev constant blows up exponentially in a, just like the
unrestricted Poincaré constant, because CLS ≥ CP /2 (Van Handel, 2014). On the other hand, if
we fix the ground truth distribution pa consider the class of distributions

Pr = {pa′ : |a− a′| ≤ r},

we have that
lim
r→0

CLS(q,Pr) = C/2

where C is the constant defined in (25) in terms of a (and which isO(1) as a→ ∞). This is because
from the definition as an exponential family, we have

pa(x)/pa′(x) =
exp ((a− a′)F1(x))

Ea′ exp ((a− a′)F1(x))

so

lim
a′→a

KL(pa, pa′)

I(pa | pa′)
= lim

a′→a

(a− a′)2Varpa′ (F1(x))

2(a− a′)2Epa′∥∇F1(x)∥2
= C/2

where the first equality is by a standard Taylor expansion argument (see proof of Lemma 3.28 of
(Van Handel, 2014)).

Fitting a unimodal but not smooth distribution. In Figure 5, we demonstrate what happens
when the distribution is unimodal (and has small isoperimetric constant), but the sufficient statistic
is not quantitatively smooth. More precisely, we consider the case pθ(x) ∝ e−θ0x

2/2−θ1 sin(ωx) as ω
increases. In the figure, we used the formulas from asymptotic normality to calculate the distribution
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Figure 5: Score matching vs MLE for a distribution with a rapidly oscillating sufficient statistic,
pθ(x) ∝ e−θ0x

2/2−θ1 sin(ωx) where (θ0, θ1) = (1, 1), and increasing ω. On the top, for increasing
ω we show a log-log plot of the average Euclidean distance in parameter space between θ and the
output of each estimator. On the bottom, for each value of ω, we draw a level set of the distribution
within which a fixed fraction of returned estimates lie (MLE left, score matching right). Score
matching becomes increasingly inaccurate as ω increases while the MLE stays extremely accurate.
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over parameter estimates from 100,000 samples. We also verified via simulations that the asymptotic
formula almost exactly matches the actual error distribution.

The result is that while the MLE can always estimate the coefficient θ1 accurately, score matching
performs much worse for large values of ω. This demonstrates that the dependence on smoothness in
our results (in particular, Theorem 2) is actually required, rather than being an artifact of the proof.
Conceptually, the reason score matching fails even when though the distribution has no sparse cuts is
this: the gradient of the log density becomes harder to fit as the distribution becomes less smooth (for
example, the Rademacher complexity from Theorem 1 will become larger as it scales with ∇x log p
and ∇2

x log p).

Fitting a mixture of Gaussians with a one-layer network: further discussion. We provide
some further remarks on the results in Figure 2. In the right hand side example (the one with
large separation between modes), the shape of the two Gaussian components is learned essentially
perfectly — it is only the relative weights of the two components which are wrong. This closely
matches the idea behind the proof of the lower bound in Theorem 3; informally, the feedforward
network can naturally represent a function which detects the cut between the two modes of the
distribution, i.e. the additional bad sufficient statistic F2 from Theorem 3. The fact that the shapes
are almost perfectly fit where the distribution is concentrated indicates that the test loss Jp is near its
minimum. Recall from (1) that the suboptimality of a distribution q in score matching loss is given
by Jp(q) − Jp(p) = Ep∥∇ log p − ∇ log q∥2. If we let q be the distribution recovered by score
matching, we see from the figure that the slopes of the distribution were correctly fit wherever p is
concentrated, so Ep∥∇ log p − ∇ log q∥2 is small. However near-optimality of the test loss Jp(q)
does not imply that q is actually close to p: the test loss does not heavily depend on the behavior of
log q in between the two modes, but the value of ∇ log q in between the modes affects the relative
weight of the two modes of the distribution, leading to failure.

Model details: both models illustrated in the figure have 2048 tanh units and are trained via SGD
on fresh samples for 300000 steps. After training the model, the estimated distribution is computed
from the learned score function using numerical integration.
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