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Deep Co-Training algorithms are typically comprised of two distinct and diverse feature extractors that simulta-
neously attempt to learn task-specific features from the same inputs. Achieving such anobjective is, however, not
trivial, despite its innocent look. This is because homogeneous networks tend tomimic each other under the col-
laborative training setup. Keeping this difficulty in mind, we make use of the newly proposed S∈ divergence to
encourage diversity between homogeneous networks. The S∈ divergence encapsulates popular measures such
as maximum mean discrepancy and the Wasserstein distance under the same umbrella and provides us with a
principled, yet simple and straightforward mechanism. Our empirical results in two domains, classification in
thepresence of noisy labels and semi-supervised image classification, clearly demonstrate the benefits of the pro-
posed framework in learning distinct and diverse features.We show that in these respective settings, we achieve
impressive results by a notable margin.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we address the issue of learning diverse yet distinct
models in a general Co-Training [1] (Co-Tr) framework. More specifi-
cally, we equip the Co-Tr learning paradigm with a novel discrepancy
module that results in learning different yet complementary views of
the input; thereby enhancing the overall discriminative ability of the en-
tire Co-Tr module.

Designing diverse models is a long-standing problem in machine
learning despite several breakthroughs [2–4]. The prime example is
the boosting algorithm and its variants, where a number of different,
weak classifiers are learned sequentially. However, in the era of deep
learning, the capacity of boosting algorithms to produce strong classi-
fiers have been vastly superseded, and more appropriate alternative
methods to enforce diversity in a deep network need to be investigated.

To address the aforementioned need, what started as a simple learn-
ing of two conditionally independent views of classifying web-data [1],
has now been employed across a wide variety of tasks such as image
classification [5,6], text classification [4], email classification [7], and
natural language processing [8] etc. In our preliminary study, we have
employed Co-Tr framework with MMD to learn from noisy labels. Our
ersity, New Acton, ACT 2601,
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work proved that improved Co-Tr could learn better from noisy labels.
Co-Tr has also been used in a semi-supervised setting [6],

We stress that the diversity is a requirement for the success of
the Co-Tr framework [9]. The predominant techniques to induce di-
versity in Co-Tr are (a) use of different network architectures [10],
(b) random initialization schemes [11] in each of the individual net-
works, and (c) training each network with different sets of samples [5,
6].While these tactics have achieved significant improvements in learn-
ing different but complementary views of the input, they suffer from a
few setbacks. First, two or more networks with different architectures
must be highly compatible with each other in order to jointly learn dif-
ferent yet complementary features given the same input data. More-
over, random initialization of the networks does not guarantee that
the learnt features will indeed be diverse, distinct and informative
enough for the task at hand. As a remedy, the recent work of Qiao
et al utilized adversarial examples during training along with random
initialization [6]. Nevertheless, one cannot guarantee the learning of
complementary features as the distribution of the adversarial examples
is very similar to the original training images. Interestingly, several re-
centworks used identical homogeneous networks as the feature extrac-
tor units for co-training [5,12]. Nonetheless, these methods do not
explicitly enforce a discrepancy between the homogeneous networks
and may thereby fail in capturing inherent discriminative features
across the different views.

In this paper, we address the above concern by explicitly enforcing a
diversity constraint in the Co-Tr framework such that the underlying
networks do learn different yet complementary views (or features) of
the input even though they have the same architecture and different
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Fig. 1.Deep Co-Training with Discrepancy schematic. Propagation of Discrepant Collaborative Training. A batch of images are fed into homogeneous networks independently. The first S∈

module (orange box on left) is placed after Layer n between two networks. The second S∈ (orange box on right)module is placed after softmax layer.Wemaximize the first S∈ module to
learn diverse features in each of the network, while the second S∈ is minimized so as to learn the same class distributions.

Table 1
Notation for symbols.

Symbols Corresponding notations

S∈ Sinkhorn
O1 Prediction output of first network
O2 Prediction output of second network
∈ Smoothing parameter for Sinkhorn divergence
U and V positive random measures of unit mass over a metric space

X
uU
i

� �n
i¼1 and

vVi
� �m

i¼1

samples drawn from U and V

K cost matrix
α and β finite discrete measures
σx i

the probability of xi to be at point αi

π ∗ Best transport plan
Π(u,v) Set of transportation plans
c(u,v) Cost function to move a unit of mass from U to V
C ∈ ℝn×m Matrix of cost function
⊗ Product of the marginals
f and g networks

θ and bθ parameters of networks

η learning rate
T epoch number
l the layer number for S∈

D Training set
3D Mini-batch of training set
D1 and D2 Discrepancy module
Lossf Total loss to update network f
Lossg Total loss to update network g
LMf Conventional supervised loss for network f
LMg Conventional supervised loss for network g
LD Diversity loss
LC Consistency loss
λD Combination weights for the diversity loss
λC Combination weights for the consistency loss
Xi Input data
Ai Features extracted from lth layer of network f
Bi Features extracted from lth layer of network g
z if Softmax output of network f
zig Softmax output of network g
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initialization. Both the two networks f and g have the same structure
(Fig. 1). They are fed with same batch of input data and are trained on
the same task: image classification. However, they will be updated by
different losses. Our proposed module (yellow boxes in Fig. 1) helps to
keep the homogeneous networks different from each other and im-
prove the image classification accuracy. O1 and O2 are prediction out-
puts from networks. For the test stage, we gather the outputs of
network f and g for each test image. We then select the larger value
(most confident) as the final prediction of the test image. More details
are explained in Section 5. We apply S∈ divergence [13] to measure di-
versity between networks. One can simply tune S∈ into Maximum
Mean Discrepancy (MMD) or Optimal Transport (OT) distance by
changing ∈. The S∈ module can be seamlessly added to any part of a
Co-Tr framework. This module drives the networks to robustly learn
from different views but keeping the consistency of the outputs at
same time. Fig. 1 provides a brief schematic of our proposed
methodology.

Our major contributions are as follows:

• An explicit method to disentangle learnt representations via an S∈

based discrepancy module.
• An empirical study of the effectiveness of two well known variants of
S∈ divergence measures, including MaximumMean Discrepancy and
Wasserstein Distance.

• An extensive set of experiments demonstrating the advantage of such
a S∈ module across two different settings; (i) noisy labeled image
classification, and (ii) semi-supervised image classification.

2. Extension of previous work

Weextend our previous work to amore general module by applying
more tasks, datasets and divergences. Our previouswork can be consid-
ered as a special case of our proposedwork here. Our theoretical contri-
bution is to formulate the problem using Sinkhorn divergence. Sinkhorn
divergence is a family of divergences whereMMD andWasserstein dis-
tance are considered as instances of this family. Our new work aims to
cover more general notion of distance measures under the family of
Sinkhorn divergences. As shown in Tables 3 and 4, the newmethod out-
performs previous work by a large margin. Moreover, we also show
how our contribution can be used for semi-supervised learning.
2

1. We extend the specific MMD divergence to Sinkhorn divergence
which is a family of divergences, which can be further tuned to
MMD or Wasserstein distance by tuning the hyper parameter



1 Both the networks produce different predictions with high confidence.
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which is more general and flexible compared to our previous work.
For applying our module to different tasks, one can always tries to
achieve better performance by tuning the hyper parameter easily.
And our experiment results shows that Sinkhorn Divergence pro-
vides better and robust performance than MMD divergence in most
caseswhichmeans one can always achieve competitive results with-
out tuning hyper parameters.

2. More datasets. We tested our methods on more and lager datasets
such as Clothing1M [14] and ImageNet [15]. In our previous work,
we focused on more common datasets for noisy labels problems
such as MNIST, CIFAR10, CIFAR100, CUB200 and CARS196. In this
work we not only include all those datasets but also studied on
large scale datasets Clothing1M and ImageNet, results are shown in
Section 6.

3. Extension to semi-supervised learning task. By applying the module
to semi-supervised task, we prove that our module is a general solu-
tion for the co-training framework. Since the co-training framework
has been applied to numerous task (domain adaptation [16], image
classification [6], data segmentation [17], tag-based image search
[18] and many more), one could apply our module to any tasks
using the co-training framework and expect improvements.

4. Experiments with different settings are provided. Here, we also con-
sidered extreme noise rates (such as 80%) on ImageNet. By setting
the noise rate to 80%, one expects an extremely difficult condition
to learn from labels. Even under this stringent noise condition, our
proposedmethodoutperformed theother baseline by a largemargin.

3. Related work

3.1. Co-training

Blum et al [1] successfully used a Co-Tr framework to solve the prob-
lem ofweb page classification. Co-Tr algorithm is to learn two (ormore)
models with distinction and diversity. It has been applied to a large va-
riety of tasks ranging from domain adaptation [16], image classification
[6], data segmentation [17], tag-based image search [18] and many
more. Similar to the general framework of learning in Co-Tr, Learning
to Teach [19] applies an inherent feedback sharingmechanismbetween
a teacher and student network(s) to learn distinct features. On the other
hand, model distillation algorithms [10,19] make use of an additional
mimicry loss to align final class-specific posterior distribution of the stu-
dent network. As an example, Zhang et al [20] employ the Kullback–
Leibler divergence as a mimicry loss to match the probability estimates.
In order to learn from unlabeled data, Chen et al [16] makes use of an
auto-encoder to Co-Tr framework to reconstruct synthetic segmenta-
tion labels. All the applications of Co-Tr require a diversity between
the homogeneous networks to function properly and this serves as the
intuition and motivation behind our work. To this end, we propose
anddevelop amethod that directly targets and addresses the issue of di-
versity via an explicit discrepancy mechanism.

3.2. Discrepancy measurement

Our main objective in this work is to introduce discrepancy be-
tween the homogeneous networks. Hence, we need to measure the
dissimilarity between two sets of samples, i.e., the generated features
of homogeneous networks. Here, this is achieved by statistical
measures. For the design and development of several algorithms of
3

machine learning and computer vision, comparing and matching
probability distributions between two different domains is a funda-
mental building block [21,22]. Several divergences such as Kullback–
Leibler [23], Jensen-Shannon [24], etc have successfully been used in
learning similar/dissimilar distributions across various domains. They
are appreciated for their computational simplicity, but they suffer
from the major shortcoming of not metrizising weak-convergence
[25]. It has been shown earlier that MMD [26,27] is a highly nontrivial
choice as well as the Optimal Transport (OT) distance which has been
long known to be a powerful tool to compare probability distributions
with non-overlapping supports. Both MMD and OT have the ability to
metrizise weak-convergence, but they enjoy different characteristics.
MMD can be efficiently and robustly estimated from a small number
of samples of the measures, as a closed form solution exists for
MMD. OT on the other hand, takes into account the underlying geom-
etry while is computationally expensive. Thanks to [13], this cost is
largely mitigated by settling for cheaper approximations obtained
through strongly convex regularizers, in particular entropy. [13] in-
troduce the Sinkhorn loss S∈ with a smoothing parameter ∈. When
∈ → 0, S∈ is reduced to a pure Wasserstein distance, and conversely
when ∈ = + ∞, it leads to MMD.
3.3. Learning from noisy datasets and semi-supervised learning

Learning from a clean dataset is not considered as a difficult task
any longer. Recently, there has observed a growing surge in the inter-
est of studying the robustness of any machine learning algorithm
against noisy labeled images and unlabeled images. Regard of learning
from noisy labeled images, MentorNet [28] trains an additional
StudentNet network to select clean labels which is in-turn used to fur-
ther guide the main training process. If a clean and unbiased valida-
tion set is not available, MentorNet will discover new data-driven
sample-weight schemes from data which can be updated according
to feedback from StudentNet. Ren et al [29] follow a meta-learning
paradigm and use a clean validation set to re-weight the training sam-
ples. Importance weights for training samples which result in the de-
crease of the loss in a clean validation set are increased, while the
weights of those that result in the increase of the loss are decreased
during the training process. One of the major drawbacks of [29] is
the calculation of the clean validation set based importance weights
after every gradient update of the network, which increases the time
complexity of the overall algorithm. On the other hand, Decoupling
[12] trains two different sub-networks with the examples that are
confusing to both of them during the course of training.1 Similarly,
Co-Tr [5] trains two different networks with one selecting the clean
examples, i.e. the examples with lower classification loss, for the
other in an intertwined fashion. However, without any explicit dis-
crepancy module between the networks that enforce the features
learnt to be distinct and different, the solution learnt by the two afore-
mentioned algorithm is not optimal. Motivation of semi-supervised
learning is similar to learning from noisy labels. Regard of semi-
supervised learning tasks, [30] presented the mutual-exclusivity loss
and [31] presented the entropy minimization which are applied in
one of the most famous semi-supervised learning methods – self-
training technique.
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4. Preliminaries
Notation. All notations used are shown in Table 1. Throughout this
paper,we use bold lower-case letters (e.g, x) and bold upper-case letters
(e.g, X) to represent column vectors and matrices respectively. [x]i de-
notes the ith element of the vector x. In represents the n× n identity ma-

trix. ∥X∥F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr X⊤X
� �q

represents the Frobenius norm of the matrix X,

with Tr(⋅) indicating the trace of thematrix X. X⊤ denotes the transpose
of X. P Uð Þ and P Vð Þ represent the set of probability measures on two
metric spaces U and V. uU

i

� �n
i¼1 and vVi

� �m
i¼1 denote n and m i.i.d. sam-

ples drawn from U and V, respectively.
In this work, we use S∈ [13] which can be used over general spaces

X , instead of only the Euclidean space ℝd and not only the 1-
Wasserstein distance. We first calculate OT between two probability
distributions U and V (assume U and V are positive random measures
of unit mass over a metric space X) which is defined as the solution of
the, possibly infinite dimensional, linear program:

OT c u, vð Þ ¼ min
π∈∏ u, vð Þ

Z
X�X

c u, vð Þdπ u, vð Þ ð1Þ

whereΠ(u,v) is the set of transportation plans (or couplings) of the joint
probability distribution over the product space U � V with marginals u
and v respectively. Here, c(u,v) is the cost function tomove a unit ofmass
from U to V. The cost function c needs to be defined for every pair uU

i , v
V
j ;

and thus can be represented as amatrixC∈ℝn×m. Therefore, the total cost
incurred is 〈π,C〉 = ∑ijπijCij. When X is equipped with a distance dX , a
typical choice is c u, vð Þ ¼ dX u, vð Þp with p > 0 and thus we obtain the
so-called p-Wasserstein distance between probability measures. How-
ever, because the above equation is not differentiable, we refer to the reg-
ularized optimal transport problem [32] defined by

W∈ u,vð Þ ¼ min
π∈Π u, vð Þ

〈π,C〉þ ∈ KL πju⊗vð Þ

¼ min
π∈Π u, vð Þ

Z
U�V

c u, vð Þ dπ u, vð Þ þ ∈ KL πju⊗vð Þ ,
ð2Þ
4

where KL(π |u⊗ v) denotes the KL divergence between π andu⊗ v. u⊗
v represents the product of themarginals (or the probability measures)
u and v. When c(u,v) = Dp(u,v); we obtain the entropy regularized
p-Wasserstein distance as shown below:

Wp
∈ u,vð Þ ¼ min

π∈Π u, vð Þ

Z
U�V

Dp u, vð Þ dπ u,vÞð Þ1=p þ ∈ KL πju⊗vð Þ
�

ð3Þ

Similar to [13], the Sinkhorn loss is defined as Eq. (4) and algorithm
of finding best transport plan π ∗ is given in Algorithm 1.

S∈ u, vð Þ ¼ W∈ u, vð Þ−1
2

W∈ u,uð Þ þW∈ v,vð Þð Þ ð4Þ

In this paper, we set p = 2. S∈ has the following behavior in ∈:

1. as ∈ ! 0,S∈ u, vð Þ ! 2W∈ u,vð Þc;
2. as ∈ ! ∞,S∈ u, vð Þ ! MMD−c u,vð Þ, where MMD−c is theMaximum

Mean Distance whose kernel is the cost function.

4.1. Maximum mean distance

An empirical estimate of MMD between U and V is obtained as

MMD U ,Vð Þ ¼∥1
n
∑
n

i¼1
Φ uið Þ− 1

m
∑
m

j¼1
Φ vj
� �∥2

H
ð5Þ

Here, H denotes the induced Reproducing Kernel Hilbert space [33])
and ∥ ⋅ ∥H denotes its norm.MMD U ,Vð Þ is ameasure of overlap between
U and V such that increase (or decrease) in overlap results in decrease
(or increase) in MMD U ,Vð Þ. Φ(p) represents a functional mapping of
the input p to a high-dimensional space. By the kernel trick, the form
in Eq. (5) can be written as;
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MMD U ,Vð Þ ¼ 1
n2 ∑

n

i
∑
n

i0
k ui,ui0ð Þ

−
1
nm

∑
n

i
∑
m

j
k ui, vj
� �

þ 1
m2 ∑

m

j
∑
m

j0
k uj,v j0
� 	 ð6Þ

In all our experiments, we have employed the Gaussian kernel

k u, vð Þ ¼ exp −∥u−v∥2
σ

� 

: ð7Þ

5. Methodology

Here, we present our proposedmethodology, i.e., Discrepant Collab-
orative Training (DCT). We formulate DCT as a cohort of two homoge-
neous networks f and g with their learnable parameters represented

as θ and bθ respectively (see Fig. 1 formore details.). Our total loss is con-
tributed by three parts which are: LM, LD and LC. LM is the basic loss func-
tion for different tasks (for example, cross entropy loss for image
classification task). LD is discrepancy loss to increase diversity. LC is the
consistency loss which keeps consistency between networks.

We now define our total loss function as follows:

Lossf ¼ LfM−λDLD þ λCLC ð8Þ

Lossg ¼ LgM−λDLD þ λCLC ð9Þ

λD and λC are the combinationweights for the diversity and the con-
sistency loss (i.e. LD and LC) respectively. Eqs. (8) and (9) are used to up-
date f and g using stochastic gradient decent optimizer.

Thefirst part of the loss function, LM, is different for each specific net-
work. For example, if we are considering a supervised learning task, LM
will be a conventional supervised loss that trains the network to predict
the correct labels for the training instances. To increase the diversity be-
tween f and g, we apply our S∈ in the middle of our two networks (see
Fig.1) which forms the second part of the total loss which we call dis-
crepancy loss.

LD ¼ S∈ Ai,Bið Þ ð10Þ

whereAi= fθ(1:l)(Xi) and Bi ¼ gbθ 1:lð Þ
Xið Þ for the ith inputXi, l denotes the

layerwhere the discrepant S∈ module is inserted, and θ(1 : l) andbθ 1 : lð Þ
represent the parameters of the two networks f and g up until layer l. It
is to be noted that LD is calculated irrespective of the presence or ab-
sence of noisy labels within the mini-batch of images. Even though we
want both
f and g to learn diverse and distinct features, the final class probability
distribution learnt by f and g should not be very different from each
other. Thus, we use another S∈ to explicitly reduce the discrepancy be-
tween z i

f and zi
g for every Xi as shown below:

LC ¼ S∈ zfi , z
g
i

� 	
, ð11Þ

where z i
f = fθ(Xi) and zgi ¼ gbθ Xið Þ.2

5.1. Extension to learning from noisy labels

5.1.1. Settings
We refer to the settings of [5] for the task of learning from noisy la-

bels. The input for f and g is always the samemini-batch of training/test-
ing set. Labels of all samples in mini-batch are randomly corrupted
based on noise rate. The outputs of f and g for each sample are predic-
tions of the class (each network will predict one most possible class
2 Usually it is the output of the softmax layer for each of f and g.

5

where the sample is from). During the test step, we gather the outputs
of f and g for each sample. For example, if the dataset is CIFAR10, final
outputs of f and g are both 1 ∗ 1 for each test image.We select the larger
value as the final prediction of the test image.

Now,we showhowwe introduce ourDCTdesign to theCo-Tr frame-
work to deal with noisy labels Fig.2. As elaborated in the previous sec-
tion, we employ the total loss defined in Eqs. (8) and (9). Similar to [5,
27,28], networkswill select possible clean examples based on classifica-
tion loss.More specifically, classification loss forXi for f and g are shown
below:

Lf Xið Þ ¼ − log
exp zfi

� 	
∑m

1 exp zfj
� 	

0
@

1
A

Lg Xið Þ ¼ − log
exp zgi

� �
∑m

1 exp zgj
� 	

0
@

1
A ,

ð12Þ

where z i
f = fθ(Xi) and zgi ¼ gbθ Xið Þ.3 Similar to [5], within each mini-

batch examples which produce the R lowest Lg and Lf will be selected
for f and g separately. The loss to update θf is given as

LfM ¼ ∑
R

i¼1
Lf Xið Þ ∀Xi∈Dg , ð13Þ

whereDg represents a set of images that results in the R lowest Lg calcu-
lated in Eq. (12). Similarly, we calculate the loss to update θg as

LgM ¼ ∑
R

i¼1
Lg Xið Þ ∀Xi∈Df , ð14Þ

whereDf represents a set of images that results in the R lowest Lf as cal-
culated in Eq. (12). LD and LC are the same as discussed in the previous
section. Algorithm 2 provides the pseudo code of our proposed DCT al-
gorithm for the noisy label task.

5.2. Extension to semi-supervised learning

5.2.1. Settings
We choose [6] as our baseline for the task of semi-supervised learn-

ing. Here, we denote D ¼ S ∪ U as our dataset where images in S are
labeled and images in S are not. For the training of semi-supervised
task, both networks have access to S and U. We feed two networks
with samemini-batchwhich contains both labeled and unlabelled sam-
ples. The network is trained to make similar predictions on training
samples (no matter labeled or not) and make different predictions on
adversarial samples. We simply add the divergence modules to the co-
training framework to force the networks to extract different features
but similar softmax outputs on training samples.

We also define ffc and gfc as the final fully-connected layer that clas-
sify the softmax outputs zf and zg to one of the categories in S. L1 is the
semi supervised learning loss [6] defined as:

LfM ¼ LgM ¼ Lsup þ Lcot þ Ldiff ð15Þ

For the above equation, we define:

Lsup X, yð Þ ¼ H y, f fc pf Xð Þ
� 	� 	

þ H y, gfc pg Xð Þ
� 	� 	

ð16Þ

pf(x) = zf and pg(x)= zg (see Fig.1), for any data (X,y) in S where y
is the label for X and H(m,n) is the cross entropy between distribution
m and n.
3 Usually it is the output of the softmax layer for each of f and g.



Fig. 2. Forward (top) and backward (bottom) propagation of Discrepant Collaborative Training. [FORWARD] Five images are fed into sub-networks independently, four (blue) are correctly
labeled and one (red) is corrupted with noise. The first discrepancy module is placed after Layer n between two networks. The second discrepancy module is placed after softmax layer.
Then, the five images will be ranked according to its own cross entropy loss calculated by each network. Then the two networks exchange information of the ranking. [BACKWARD]
According to the ranking information provided by its”peer” network, each network chooses only a few images with smaller loss value to update itself. D1 and D2 are Sinkhorn
divergence modules. We maximize the diversity of the first discrepancy module to learn diverse features in each of the network, while the diversity of the second module is
minimized so as to learn the same class distributions. [27].

Y. Han, S.K. Roy, L. Petersson et al. Image and Vision Computing 112 (2021) 104213
Lcot xð Þ ¼ H
1
2

pf Xð Þ þ pg Xð Þ
� 	� 


−
1
2
H pf Xð Þ þ pg Xð Þ
� 	

ð17Þ

where x ∈ U and H(m) is the entropy of m. Lcot is the Jensen-Shannon
divergence between ffc(pf(X)) and gfc(pg(X)).

We then generate a set of adversarial examples [22]
D0 ¼ h Xð ÞjX∈Df g. We employ several constraints for the adversarial
examples: (i) ffc(pf(h(X))) ≠ gfc(pg(h(X))), (ii) pf(h(X)) = pf(X) but
6

pg(h(X)) ≠ pg(X), which implies that h(X) is an adversarial example of
g that fools network g but not network h (and vice versa), and (iii)
h(X) − X is small. Ldiff is finally defined as:

Ldiff xð Þ ¼ H pf Xð Þ,pg h Xð Þð Þ
� 	

−H pf h Xð Þð Þ, pg Xð Þ
� 	

ð18Þ

Similarly, LD and LC will be the same discussed in the previous sec-
tion. Algorithm provides the pseudo code of our proposed DCT algo-
rithm for the task of semi-supervised learning.
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Table 2
Network Structure trained by MNIST, CIFAR10, CIFAR100 and
SVHN. The slope of all LReLU functions in the network are set to
0.01. Number of training classes for the dataset is K.

#Layer Input image

1 3 × 3 conv, 128 LReLU
2 3 × 3 conv, 128 LReLU
3 3 × 3 conv, 128 LReLU

2 × 2 max-pool, stride 2
dropout, p = 0.25

4 3 × 3 conv, 256 LReLU
5 3 × 3 conv, 256 LReLU
6 3 × 3 conv, 256 LReLU

2 × 2 max-pool, stride 2
dropout, p = 0.25

7 3 × 3 conv, 512 LReLU
8 3 × 3 conv, 256 LReLU
9 3 × 3 conv, 128 LReLU

avg-pool
10 fc-layer 128 → K

softmax

Table 3
Details of the various datasets used in the evaluation of DCT.

Dataset # of train images # of test images # of class Image size

MNIST 60,000 10,000 10 28 × 28
CIFAR10 50,000 10,000 10 32 × 32
CIFAR100 50,000 10,000 100 32 × 32
SVHN 73,257 26,032 10 32 × 32
CUB200-2011 5864 5924 200 227 × 227
CARS196 8054 8131 196 227 × 227

Table 5
Comparison between our proposed DCT algorithm with baseline algorithms for CUB200-
2011 and CARS196 in terms of accuracy on the test set (%). Co-T stands for Co-teaching [5].

Noise Dataset Cross
Entropy

Co-T
[5]

DCT
(∈ = + ∞)

DCT
(∈ = 0)

Symmetric-50% CUB200–2011 40.80 54.64 59.24 60.56
Symmetric-20% CUB200–2011 63.78 72.34 74.57 75.44

Symmetric-50% CARS196 38.86 66.75 67.80 69.15
Symmetric-20% CARS196 71.76 86.00 86.62 87.51

Table 6
Comparison between our proposed DCT algorithm with popular baseline algorithms. We
report the average accuracy (%) from 5 runs using DCT. CIFAR100+ means it is trained
using data augmentation, otherwise not.

Dataset GAN
[30]

S-T
[30]

π Model
[40]

T-E
[40]

D-C
[6]

DCT
(∈ = + ∞)

DCT
(∈ = 0)

CIFAR10 81.37 88.71 87.64 87.84 90.97 91.45 91.89
CIFAR100 – – 56.57 – 61.23 61.77 61.98
CIFAR100+ – – – – 65.37 65.84 66.16
SVHN 91.89 – 95.18 95.58 96.39 96.52 96.78

S-T stands for Stochastic Transformations. T-E stands for Temporal Ensembling. D-C stands
for Deep Co-Training. “–” means the original papers did not report the corresponding
accuracy.

Table 7
Comparison of our proposed CCT against two different baselines on Clothing1M dataset:
Co-Teaching [45] and JoCoR [46]. Accuracy(%) is reported as the average of 5 runs.

Method Co-Teaching JoCoR DCT(OURS)

Accuracy 68.5 69.8 70.1

The best results are shown in bold.
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6. Experiments

6.1. Dataset

We verify the effectiveness of our approach on six benchmark
datasets: MNIST [35], CIFAR10 [36], CIFAR100 [36], SVHN [37],
CUB200–2011 [38], CARS196 [39], Clothing1M [15] on different tasks.
Table 3 provides more details regarding the datasets.

6.2. Setup

Table 2 shows the CNN architecture used for experiments on
MNIST, CIFAR10, CIFAR100 and SVHN. For experiments in the weakly-
supervised learning setup, we follow the well-acknowledged standard
settings of “Temporal Ensembling” [40] and “Virtual Adversarial Train-
ing” [41]. Further, we use Adam optimizer with details of hyper-
Table 4
Comparison between our proposed DCT algorithm with popular baseline algorithms. We repo

Noise Dataset F-C [44] Decoupling [12]

Pairflip-45% MNIST 0.24 58.03
Symmetric-50% MNIST 79.61 81.15
Symmetric-20% MNIST 98.82 95.70

Pairflip-45% CIFAR10 6.61 48.80
Symmetric-50% CIFAR10 59.83 51.49
Symmetric-20% CIFAR10 84.55 80.44

Pairflip-45% CIFAR100 1.60 26.05
Symmetric-50% CIFAR100 41.04 25.80
Symmetric-20% CIFAR100 61.87 44.52

F-C stands for F-correction, M-Net stands for MentorNet, and Co-T stands for Co-Teaching.
The best results are shown in bold.
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parameters such as learning rate andweight decay are provided in sup-
plementary material. We choose [5] as our baseline for the Noisy Label
task and we follow their detailed settings. For the task of Semi-
Supervised learning, we follow the settings of [6]. For experiments on
two fine-grained image recognition datasets (i.e. CUB200–2011 and
CARS196), we use the Inception-V1 [42] architecture, pretrained on
Imagenet [43]. Here, we use RMSProp and the Adam optimizer for the
CUB200–2011 [38] and CARS196 [39] datasets respectively. The initial
learning rate for both optimizers is set to 0.0001.

Note: We report the optimal value of the hyper-parameters λ2 and
λ3, batch size, and number of epochs used in DCT for all the datasets
in the supplementary material. The method trains two networks simul-
taneously and out of the two predictions, we select the prediction that
has the higher confidence.
rt the average accuracy in (%) from 5 runs of DCT.

M-Net [28] Co-T [5] DCT (∈ = + ∞) DCT (∈ = 0)

80.88 87.63 88.54 90.85
90.05 91.32 94.21 95.85
96.70 97.25 98.54 99.07

58.14 72.62 72.91 74.34
71.10 74.02 78.50 80.4
80.76 82.32 85.41 87.2

31.60 34.811 35.33 36.00
39.00 41.37 42.11 43.4
52.13 54.23 56.11 57.8



Table 8
Comparison of our proposed CCT against two different baselines on Mini-Imagenet:
Co-Teaching [45] and JoCoR [46]. Accuracy(%) is reported as the average of 5 runs.

Noise rate 20% 40% 80%

Co-Teaching 54.1 45.3 37.0
JoCoR 57.2 49.1 40.4
DCT(OURS) 58.4 50.8 42.1

Table 9
The accuracy (%) of S∈¼0 (i.e. 2-Wasserstein Distance) for various setups (using
CUB200–2011 dataset contaminated by symmetric noise with rate of 50%.)

λ2 λ3 DCT(%) Descriptions

0 0 54.64 Co-teaching [5]
0.001 0 57.44 Diversity loss only
0 0.001 56.52 Consistency loss only
0.001 0.001 60.56 Optimal Case
0.001 0.005 58.75 –
0.001 0.0005 58.25 –
0.005 0.001 58.22 –
0.0005 0.001 59.45 –

Table 10
Study of the importance of ∈ for S∈ for CUB200-2011 dataset in the presence of 50% sym-
metric noisy labels. The average accuracy (%) is reported after 5 different runs of DCT.WD
stands for Wasserstein Distance. We fix λ2 = λ3 = 0.001.

Condition ∈ = 0
(2-WD)

∈ = 1 ∈ = 5 ∈ =
1000

∈ = ∞
(MMD)

Co-Teaching
[5]

Accuracy 60.56 60.25 59.85 59.41 59.24 54.64
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6.3. Learning from noisy labels

6.3.1. Noise transition
Herewe test our proposed algorithmon the task of noisy-supervised

image classification. More specifically and following the protocols of [5,
44], wemanually corrupt all the clean datasets by a noise transitionma-
trix Q ∈ ℝK×K, where Q ij ¼ Pr ey ¼ jjy ¼ i

� �
gives the probability that

noisy label (i.e. ey) is flipped to a value j from clean label (i.e. y) value
of i. In this paper, we set up two different noise transition situations:
(1) Pair flipping, and (2) Symmetric flipping. Exemplar noise transition
matrix for each of the pair and symmetric flipping is shown in Fig. 3
(a) and (b), where the value of noise rate ζ is set 45% and 50%
respectively.

In our experiments, we run and test our proposed DCT in three dif-
ferent noise conditions, which are specified as follows: (1) 45% pair
flip noise; (2) 50% symmetric flip noise; (3) 20% symmetric flip noise.
We choose high noise rate values, i.e., 45% and 50%, as this papermainly
Fig. 3. Noise transition matrices [5

9

focuses on the robustness of DCT and the value of working with noisy
data. However one should definitely set the value ∈ lower than 50%
for pair flip noise, otherwise the neural networks will need additional
information to learn discriminative features. We further test on 20%
symmetric flip noise so as to verify the robustness of our proposed
DCT algorithm under lower noise conditions.

6.3.2. Baseline algorithms
For MNIST, CIFAR10 and CIFAR100, we compare our results against

the following baseline methods: (i) F-correction [44], which makes
use of a noise transition matrix to correct the softmax predictions; (ii)
Decoupling [12], which select those samples where the underlying net-
works are highly non-confident of their predictions and use them to up-
date the parameters; (iii) MentorNet [28], where noisy instances for the
student networks are filtered out by a pre-trained additional teacher
network to learn robustly under noisy labels. (iv) Co-Teaching [5],
which trains two identical homogeneous networks where one selects
the best possible clean instances for the other and vice-versa. Results
of the above baselines are reported from [5]. Furthermore, we consider
two baseline models trained with (a) conventional cross-entropy loss
and (b) Co-Teaching algorithms so as to verify the robust performance
of our proposed DCT method on CUB200–2011 and CARS196 datasets.

6.4. Results analysis and discussion

Here, we provide a detailed insight regarding the performance of
DCT and compare it against the several baseline algorithms mentioned
before across the different datasets for different settings of noise.

6.4.1. MNIST
As observed in Table 4, all baseline methods obtain competitive re-

sults against each other in the case of a low noise rate (i.e. symmetric
20%). Our DCTmethod achieve a competitive 99.07% against the second
best F-correction method (which achieves 98.82% accuracy on the test
set). Further one can observe a drop in performance when the noise
rate is increased to 50% for the F-correction and theDecoupling baseline
methods. However both MentorNet and Co-Teaching are quite robust
when dealing with large values of the noise rate. Further our proposed
DCT algorithm obtains the state-of-the-art accuracy of 95.85%, thereby
outperforming all the baselines and the current best algorithm (i.e.
Co-Teaching) by 4.53%. A further increase in the complexity of the
noise (i.e. pair-flip noise with ζ = 45%) results in a considerable drop
in the classification accuracy for both F-correction and Decoupling
methods. On the other hand, we again observe that DCT outperforms
all the baselines by a significant margin. More specifically, we outper-
formMentorNet by 9.97% in terms of accuracy on the test set.Moreover,
we notice that when ∈=0 (S∈ becomes theWasserstein Distance) the
performance is improved somewhat compared to when ∈ = + ∞ (the
S∈ loss becomesMMD). The same conclusion can be drawn from the ex-
periments on the other datasets as well.
] in the example of 5 classes.
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6.4.2. CIFAR10
From Table 4, one can observe that similar results (in terms of clas-

sification accuracy) is obtained by all the baselinemethods for symmet-
ric flip noise with 20%. Unlike for the MNIST dataset, on CIFAR10, DCT
outperforms all the baselines including F-correction by 2.65%. With fur-
ther increase in the level and the complexity of the noise, it is easily seen
that DCT outperforms all the baseline algorithms, thus further validating
the design choices incorporated within DCT to learn distinct and dis-
criminative features.

6.4.3. CIFAR100
It is observed from Table 4 that for symmetric noise with 20% noise

rate, DCT outperforms all the competitive baseline algorithms apart
from F-correction. It is evident that F-correction is indeed a reliable
method below a certain moderate level of noise corruption. However
as the complexity of noise in increased, F-correction is no longer able
to cope. On the other hand in complexnoise settings, DCT is significantly
more robust in comparison to the baselinemethods, thereby reinforcing
the choice of our algorithmic design.

6.4.4. CUB200-2011
The results are reported in Table 5. In the 20% symmetric noise set-

ting, the baseline model trained with the conventional cross-entropy
classification loss achieves a test accuracy of 63.78%. Co-Teaching algo-
rithm outperforms this baseline by 8.56%. Moreover, DCT outperforms
all the baseline methods and achieves an accuracy of 74.57% and
75.44% with different values of noise rate for the same noise setting. A
decrease in the classification accuracy is observed when the noise rate
is increased to 50%. Nonetheless, DCT still outperforms the rest by a sig-
nificantmargin. These results clearly demonstrate the effectiveness and
robustness of DCT for large scale fine-grained image recognition tasks
against different value of noise corruption percentages.

6.4.5. CARS196
It is observed in Table 5 that our proposed DCT algorithm outper-

forms both cross-entropy baselines by a significant margin in terms of
accuracy on the test set for different values of 20% and 50%. However
unlike the CUBS200-2011 dataset, the performance gain observed
over Co-Teaching is not substantial for the CARS196 dataset. One plau-
sible justification that can be attributed to this observation is that
CARS196 is a difficult dataset to train on in comparison to CUBS200-
2011.

In summary, according to the results shown in Tables 4 and 5, we
have successfully verified and demonstrated the effectiveness and ro-
bustness of our proposed DCT method, irrespective of the kind and the
level of noise present in the datasets.

Note: Fine-grained image recognition datasets usually consist of la-
beled images which have low (and high) intra (and inter) class vari-
ances, thereby making it difficult to train models on such datasets as
they are more vulnerable to noise. From the results obtained in
Table 5, it is observed that both Co-Teaching and DCT significantly out-
performs the cross-entropy baseline in terms of classification accuracy
on the test set. This observation clearly demonstrates the need for two
(ormore) feature extractors in order to learn distinct and discriminative
features from a fine-grained dataset in the presence of noisy labels.

6.4.6. Clothing1M
We use the noise corrupted version of the Clothing1M4 to infer the

noise rate by the clean validation set. The batch size is set to 64. Further,
we report the classification accuracy after training for 51 epochs for all
methods. As shown in Table 7, our DCT performs better than Co-
Teaching [45] and JoCoR [46]; thus demonstrating the effectiveness of
DCT over Co-Teaching and JoCoR for a large dataset.
4 We have already used the noise corrupted version of the Clothing1M dataset in our
experiments.
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6.4.7. ImageNet
Jiang et al. [47] proposed to use mini-ImageNet and Stanford Cars to

introduce both web and symmetric indistribution noise in a controlled
manner with different noise ratios. We adopt the mini-ImageNet web
noise dataset for evaluation in a real scenario with several ratios,
which consists of 100 classes with 50 K (5 K) samples for training (val-
idation). For fair comparison, we use a standard ResNet-18 [48] and fol-
low the work of [47,49].

Table 8 illustrates the superior performance of our DCT when train-
ing in the presence ofweb label noise inmini-ImageNet [14]. The results
demonstrate that DCT are robust to web noise and the improvements
are consistenct across noise levels.
6.5. Semi-supervised learning

We also investigate the performance of our algorithm in the semi-
supervised setting, in particular, on the SVHN, CIFAR10 and CIFAR100
datasets. Following [40], for SVHN, we only use 1,000 images out of
the available 73,257 training images as the supervised set S, the remain-
ing 73,257 − 1,000 images goes in to the unsupervised set U . For
CIFAR10, we only use 4,000 images out of the 500,000 available training
images in the supervised set S and the remaining 46,000 images form
the unsupervised set U . For CIFAR100, we use 10,000 images out of
the 50,000 available training images in the supervised set S and the re-
maining 40,000 imagesmake up the unsupervised set U . We use the full
set of test images for evaluation across all datasets. For the baseline, we
follow thework by [6].We also compare our designwith: GAN [50], Sto-
chastic Transformations [30],∏Model [40], Temporal Ensembling [40],
Mean Teacher [51] and Deep Co-Training 2-views D-C, [6]. To support a
fair comparison, we only use D-C-2-views as more views increase the
number of network parameters.

6.5.1. Baselines
Baseline methods are listed in Table 6. All of the baselines methods,

as well as ours, require the evaluation of multiple models, meaning that
even though DCT has two homogeneous networks, it is not at a compu-
tational disadvantage.

6.5.2. Discussion of results
From Table 6 it is observed that for CIFAR10, all baseline

methods reach 80% accuracy on the test set. Our DCT outperforms
other methods and achieves 91.89% which beats previous state-of-
the-art, Deep-Co-Training [6], by 0.92%. The same conclusion can
be drawn for CIFAR100, CIFAR100+ and SVHN where our DCT out-
performs previous state-of-the-art by 0.39 − 0.79%. Also, S∈¼0

works better than S∈+∞, which is consistent with our results on
the tasks using noisy labels. According to the results in Table 6,
Deep Co-Training [6] is indeed a very good method for semi-
supervised learning. Whenever we are injecting S∈ into the Deep
Co-Training framework, we see improvements. Moreover, these im-
provements do not come at the expense of adding more parameters
to the network and, thanks to [13], the computational burden is af-
fordable. Details of running times and ablation studies are provided
in the next section.
7. Further discussion and analysis

In this section, we provide details of our implementation and study
the robustness of our DCT designwith respect to its parameters, namely
λ2 and λ3 (see Eq. (19), below). We will first report the value of the
hyper parameters used in our experiments. Then we will analyze and
investigate the effect of the hyper-parameters over the performance of
the proposed DCT algorithm.
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7.1. Hyper-parameters

• For all experiments on MNIST, CIFAR10, CIFAR100 and SVHN, we set
initial learning rate and weight decay as 0.001 and 0 respectively.
The models are trained for 600 epochs (with a batch of size 128 at
each iteration).

• For CUBS200-2011 and CARS196, we use RMSProp and Adam opti-
mizer respectively. The initial learning rate for both optimizers is set
to 0.0001. Themodels are trained for 80 and the batch size is set to 32.

7.2. Robustness of the DCT algorithm

We recall that the loss of the DCT algorithm as:

Loss ¼ L1−λ2L2 þ λ3L3: ð19Þ

Here, L1 is the classification loss (for each network), L2 and L3 are di-
versity and consistency losses, respectively. Furthermore, λ2 and λ3 de-
note the associated weights of L2 and L3 respectively. Here, we analyze
the robustness of the DCT algorithm with respect to its parameters. By
doing so, we evaluate the performance of the DCT algorithm on the
CUB200–2011 dataset by varying the values of λ2 and λ3. Table 9
shows the accuracy of the S∈¼0 (i.e., 2-Wasserstein Distance) for the
50% symmetric noise (which is a challenging setup) for various values
of λ2 and λ3. Some of the observations are as follows:

When λ2 = λ3= 0, we recover the vanilla Co-Tr framework with an
accuracy of 54.64%. Setting λ3 = 0.0001 and λ2 = 0 results in adding
only the consistency loss and a modest increase in the performance
(1.88% to be exact) is observed. Interestingly, by just adding the diver-
sity loss (λ2= 0.001 and λ3= 0), the accuracy soars to 57.44%, a signif-
icant improvement over the vanilla Co-Tr. This confirms the premise of
our work, i.e., the importance of diversity in Co-Tr. For example, by fix-
ing λ2= 0.001 and varying λ3 in a range from 0.0005 to 0.005, the accu-
racy varies in the range [58.25 % ,60.56%]. Similar trends can be observed
if we pick λ2 reasonably. For example, with λ3 = 0.001, changing λ2

from 0.0001 to 0.005 results in accuracies in the range of [58.22 %,
59.45%].

Overall, we have observed a very robust performance with DCT,
outperforming vanilla Co-Tr framework consistently with ease. Here,
we recommend a simple and general way to set λ2 and λ3 which is to
set both of them as 0.001. However, one can fine tune them to achieve
even better results and our suggestion is to set λ2 a bit smaller than λ3.

7.3. Ablation study on effect of ∈

In this part, we study the importance of ∈ in our DCT algorithm for
the CUB200-2011 dataset in the presence of 50% symmetric noisy labels.
The results are shown in Table 10. It is clearly observed that with in-
creasing the ∈, the performance drops. As seen, the performance
drops as ∈ is increased from 0 (i.e. 2-Wasserstein Distance) to +∞
(MMD). Thereby S∈¼0 (i.e. 2-Wasserstein Distance) clearly outperforms
S∈+∞ (MMD).

8. Conclusion

A novel and effective method (i.e. Co-Tr utilizing S∈) for training
deep neural networks was presented. It was demonstrated to be
outperforming all other baseline methods in the vast majority of set-
tings influenced by noisy labels, as well as in a semi-supervised setting.
S∈ divergence was used, in the middle of the network, to drive the net-
works to learn distinct features, while the S∈ at the end enforces the
networks to still learn similar class probability distributions. Multi-
label classification tasks is another area with related challenges where
similar approaches may prove successful.
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