
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUIDEDSAMPLING: STEERING LLMS TOWARDS DI-
VERSE CANDIDATE SOLUTIONS AT INFERENCE-TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Repeated Sampling (RS) is a simple inference-time algorithm that has been shown
to improve model performance on complex tasks. Although it is an effective way
of scaling inference time, it often struggles to generate diverse solution candi-
dates, frequently relying on the same underlying approach to solve the problem
and thus producing redundant samples. To address this limitation, we propose a
new inference algorithm, GUIDEDSAMPLING, which decouples the exploration
and generation phases during inference, increasing diversity of generated candi-
date solutions. The exploration phase identifies multiple concepts that can be uti-
lized to solve the problem, while the generation phase applies a specific concept to
provide final solution candidates. We first define the theoretical bounds of GUID-
EDSAMPLING and then empirically demonstrate that it improves the performance
of base model at pass@50 by on an average ∼ 21.6% across various benchmarks
compared to RS. Furthermore, models trained on trajectories of GUIDEDSAM-
PLING exhibit substantial performance improvements at pass@5 by on an aver-
age ∼ 9.7%, compared to models trained on traditional RS. Additionally, models
trained with GUIDEDSAMPLING increases the average number of concepts per
instance (1.67→ 3.03), yielding a diverse set of candidates than traditional RS. 1

1 INTRODUCTION

0 10 20 30 40 50 60 70 80 90
Pass@50 Score (%)

MATH

GPQA-
Diamond

HumanEval

Olympiad
Bench

+38.8%

+16.2%

+26.8%

+4.6%
Repeated Sampling
G S

Figure 1: Pass@50 improvements with best per-
forming base model using GUIDEDSAMPLING.

Recent advances in large language models
(LLMs) have shown that scaling model size
and training data can lead to increasingly capa-
ble systems across diverse domains, including
mathematical reasoning, scientific analysis, and
code generation (Kaplan et al., 2020). How-
ever, scaling models indefinitely is becoming
increasingly infeasible due to the requirement
of more data for training ever-larger models
(Villalobos et al., 2024). As a result, a growing
body of work has shifted focus to alternative
ways of boosting performance—not by mak-
ing models larger, but by making better use of
available compute during inference (Hosseini
et al., 2024; Kumar et al., 2024; Lightman et al.,
2023; Brown et al., 2024). Several studies now suggest that allocating additional compute at infer-
ence time can lead to larger performance gains than spending that compute to train bigger models
(Snell et al., 2024; Wu et al., 2024). This has led to a fundamental shift in improving the performance
of inference-time algorithms (Muennighoff et al., 2025; Ghosal et al., 2025).

Recently, various inference-time algorithms have been proposed (Wang et al., 2022; Yao et al.,
2023; Zhang et al., 2024). Among them, repeated sampling (RS) (Cobbe et al., 2021) is one of
the most widely used inference-time algorithms, where multiple outputs are sampled for the same
input prompt. Traditional RS “implicitly” combines two phases: exploration, which we define as

1The code and data is available at https://anonymous.4open.science/r/sampling_
inference-B44E

1

https://anonymous.4open.science/r/sampling_inference-B44E
https://anonymous.4open.science/r/sampling_inference-B44E

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Limited Exploration &
Inconsistent Generation

Question (e.g. HumanEval)

Input is a string representing
musical notes in a special ASCII
format. Your task is to parse this
string and return list of integers
corresponding to how many beats
does each not last.

Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat

Example:
 parse_music('o o| .| o| o| .| .| .| .| o
o')
 [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]

Concept i
Trie Data
Structure

All
Concepts

Sol. i.1

class TrieNode:
 def __init__(self):
 self.children = {}
 …

Sol. i.m

class TrieNode:
 def __init__(self):
 self.children = {}
 …

C
Concepts

GUIDEDSAMPLING

Repeated Sampling

N Generated
Responses

Solution 1
from typing import List

def parse_music(music_string: str) -> List[int]:
…

Solution n
from typing import List

def parse_music(music_string: str) -> List[int]:
…

Same
Approach

Solution
Generator

Concept
Generator

Solution
Generator

Forced Exploration & Fixed
Generation

M Generated
Responses
per Concept

Loop

Figure 2: GUIDEDSAMPLING enhances exploration during inference by first generating a set of
diverse concepts or theorems to guide subsequent generations of solutions. Unlike repeated sampling
(RS), where the model generates the final solution, GUIDEDSAMPLING separates these phases.

identifying the diverse theorems or concepts used in solving a given question, and generation, where
the LLMs use the identified concept and try to generate several candidate solutions for the problem.
However, despite its simplicity, traditional RS suffers from a lack of exploration (Brown et al., 2024),
due to LLMs being traditionally trained to generate a single correct response for every input (Chow
et al., 2024). This leads RS to generate solutions with the same underlying concepts rather than a
thorough exploration of the solution space. To address this limitation, we propose inference-time
algorithm, GUIDEDSAMPLING, designed to decouple the exploration of diverse concepts from the
generation of final solutions. We define theoretical bounds for GUIDEDSAMPLING (§3.3), and then
empirically demonstrate how training LLMs on such trajectories shows significant pass@k gains.

GUIDEDSAMPLING (Figure 2) first explicitly explores diverse concepts that can be used to solve a
given question. For our experiments, we define concepts as the names of the theorems that can be
utilized for solving questions (examples in Appendix C). In the second phase, these concepts guide
the generation of complete candidate solutions. This decoupling is the key reason that GUIDED-
SAMPLING enhances the diversity of solution candidates generated during inference, and also gives
explicit control over exploration. As illustrated in Figure 1, our experiments on Llama-3.2-3B-
Instruct (Grattafiori et al., 2024) and Qwen2.5-3B-Instruct (Yang et al., 2024) show an improvement
at pass@50 on MATH for mathematical reasoning (Hendrycks et al., 2021), GPQA-Diamond for
scientific reasoning (Rein et al., 2024), HumanEval for Python code generation (Chen et al., 2021),
and OlympiadBench for complex mathematical and scientific reasoning (He et al., 2024). Further
analysis by extracting the concept present in the candidate solutions generated by base models (§3.1)
reveal that GUIDEDSAMPLING generates 17.63% more diverse candidate solutions compared to RS.

For instance, consider a problem from MATH: “Find the maximum value of
[

x−y
x4+y4+6

]
over all real

numbers x and y.”. For this problem, we sample 1000 solutions using traditional RS and GUIDED-
SAMPLING. Our detailed analysis of concepts extracted from these candidates shows that 892/1000
uses the “AM-GM inequality” concept to solve the problem, consistently leading to the incorrect
solution due to over-utilizing the same theorem. In contrast, only 77/1000 candidates from GUID-
EDSAMPLING use this theorem, dedicating the remaining compute to exploring other theorems such
as “Cauchy-Schwarz Inequality”, “Trivial Inequality”, and “Chebyshev’s Inequality”.

Our other core contribution is to use GUIDEDSAMPLING to improve LLM post-training. We
demonstrate that fine-tuning LLMs on trajectories generated by GUIDEDSAMPLING outperforms
models trained on trajectories from traditional RS, Tree-of-Thought (Yao et al., 2023), and other
self-correction methods like Self-Taught Reasoner (STaR) (Zelikman et al., 2022). We generate
diverse solution trajectories using GUIDEDSAMPLING on a random subset of 10k instances from

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

OpenMathInstruct-2 (Toshniwal et al., 2024), a mathematical reasoning dataset. LLMs fine-tuned
on this data exhibited a 3.43% ↑ in pass@5 on the MATH benchmark. These fine-tuned models also
demonstrate improved generalization, with pass@5 gains on out-of-domain benchmarks, GPQA-
Diamond (6.17% ↑), HumanEval (1.86% ↑), and OlympiadBench (2.11% ↑) compared to the
strongest baseline. In summary, GUIDEDSAMPLING facilitates future research towards exploring
diversity at inference-time and can effectively synthesize exploration-aware data for post-training.

2 RELATED WORKS

Inference-Time Strategies Chain-of-thought (CoT) and its variants (Wei et al., 2022; Kojima
et al., 2022) showed that guiding LLMs to produce intermediate reasoning steps during inference
boosts performance on complex tasks such as mathematical and commonsense reasoning. However,
as reasoning chains become longer, CoT suffers from error propagation due to complex calculations
(Chen et al., 2022). To mitigate this, new methods have been proposed, e.g., Self-Consistency, which
samples multiple CoT from LLM and then selects the most consistent final answer through majority
voting (Wang et al., 2022). Building upon these ideas, better search algorithms, such as the tree-of-
thought (ToT) (Yao et al., 2023), MCTS (Zhang et al., 2024), and REBASE (Wu et al., 2024), have
been proposed, which enable LLMs to perform more deliberate problem-solving by exploring mul-
tiple reasoning paths in a tree structure. Several agentic systems (Parmar et al., 2025; Estornell &
Liu, 2024) have shown that performing multi-agent debate at inference before generating a final so-
lution improves performance. Furthermore, recent work (Muennighoff et al., 2025) has extended the
‘thinking’ of models by introducing special tokens such as “wait” to improve performance. Finally,
Ghosal et al. (2025) has shown that simply sampling from a model repeatedly outperforms such ap-
proaches. In contrast to prior methods, GUIDEDSAMPLING generates a diverse set of samples with
lower inference-time cost than tree search (Yao et al., 2023), while achieving greater diversity than
standard sampling approaches. Parallel to our work, Wang et al. (2025) proposed RandIdeaInjec-
tion, which first generates a list of distinct ideas and then injects the generated list into the generation
process to produce the final response. GUIDEDSAMPLING, on the other hand, works in an iterative
loop of generating concepts, adding them individually to generate the final output.

Synthetic Data w/ Inference-Time Algorithms Recent works have explored leveraging advanced
inference strategies for both generating high-quality synthetic training data and for fine-tuning mod-
els to improve their performance. For instance, Self-Taught Reasoner (STaR) (Zelikman et al., 2022)
is an iterative method where an LLM is prompted to generate CoT rationales; those rationales that
lead to correct answers are then used as high-quality synthetic data to fine-tune the model, while
those which lead to incorrect answers are passed back to model for refinement along with the cor-
rect final answer, effectively bootstrapping its reasoning abilities from a small initial set. Similarly,
ReSTEM (Singh et al., 2023), building on principles of reinforced self-training (ReST), employs an
iterative Expectation-Maximization-like framework. It uses Best-of-N (BoN) sampling to generate
multiple candidate solutions for problems and then refines the model by training on this syntheti-
cally generated data. Chow et al. (2024) and Tang et al. (2025) developed reinforcement learning
methods that directly optimize for pass@k metrics and majority voting performance, leading to sig-
nificant gains in reasoning and code generation. Other methods, such as multi-agent fine-tuning
(Subramaniam et al., 2025), train diverse agent models through debate and voting, while Gui et al.
(2024) introduced BoNBoN Alignment, distilling the BoN distribution into a single model. While
these strategies improve pass@k, they often do not explicitly manage the trade-off between explo-
ration and generation. In contrast, our proposed GUIDEDSAMPLING method introduces a structured
exploration phase during training, explicitly balancing diversity and quality, and models fine-tuned
with our trajectories outperform those trained using methods like BoN, STaR, or ToT.

3 GUIDEDSAMPLING

3.1 BACKGROUND

Traditional RS Repeated Sampling (RS) is a simple strategy to increase the inference-time per-
formance of a model by generating multiple samples from the model’s output distribution. Let
X = {x1, x2, . . . , xN} be a set of input queries. For each input x ∈ X , we draw k independent

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

samples from the model-defined conditional distribution pθ(y | x), i.e.,

y
(x)
i ∼ pθ(y | x), for i = 1, . . . , k

This process effectively scales the model’s inference-time compute linearly with k. The theoretical
appeal of RS lies in its potential to achieve complete coverage of the output space as k → ∞. For
any output y∗ such that pθ(y∗ | x) > 0, the probability that it’s sampled at least once after k samples:

Pk = 1− (1− pθ(y
∗ | x))k

This quantity monotonically increases with k and asymptotically approaches 1. Thus, under the as-
sumption that all valid outputs are assigned non-zero probability by the model, unlimited sampling
ensures that the target output will be generated at least once. This has led to several works adopting
RS to generate solutions (Wang et al., 2022; Rozière et al., 2023; Li et al., 2022). Of course, unlim-
ited sampling is impractical. The value of RS lies in whether increased sampling leads to improved
output quality within a feasible compute budget. Also, several state that the lack of diversity in these
generated responses is the key limitation of scaling RS (Brown et al., 2024; Wang et al., 2025).

36.4%

23.1%

13.1%

8.2%

5.8%

4.4%
3.3%

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Nu
m

be
r o

f C
on

ce
pt

s

Figure 3: Distribution of the number of con-
cepts used by Llama-3.2-3B-Instruct for 100 can-
didates. 37% of the questions are attempted with
just one concept, while less than 36% of the ques-
tions have more than two concepts.

Diversity Analysis To quantify the lack of
diversity in RS, we use Qwen2.5-32B-Instruct
(Yang et al., 2024) to extract the core concept
or theorem from each solution. We present the
prompt for concept extraction in Appendix B.2.
We find that solutions sampled using RS tend
to rely heavily on a few underlying concepts
to solve the problem, even with increasing the
amount of compute. For instance, Llama-3.2-
3B-Instruct used an average of 2.75 different
concepts while solving code generation ques-
tions from the HumanEval benchmark, even
with 100 candidate solutions. Figure 3 repre-
sents the distribution of the number of ques-
tions for how many concepts are generated for
a fixed budget of 100 responses. We observe
that in 64% of the questions, fewer than three
concepts were used to solve the questions, with
36.4% just using one concept.

Tree-of-Thoughts (ToT) ToT represents a
more sophisticated strategy for enhancing model performance in complex problem-solving tasks
by explicitly exploring multiple reasoning paths (Yao et al., 2023). ToT guides a language model
to generate a tree of “thoughts”, where each thought ti is a coherent sequence of text represent-
ing an intermediate step towards a solution. The model generates multiple candidate thoughts
Tj = {t(j)1 , t

(j)
2 , . . . , t

(j)
m } from a parent thought tp. Each of these candidate thoughts is then eval-

uated, often by the LLM itself or a separate verifier, V (t
(j)
i | P, tp), to assess its promise. Search

algorithms like Breadth-First Search (BFS) or Depth-First Search (DFS) are employed to navigate
this tree, allowing the model to look ahead, backtrack if a path seems unpromising, and explore
different lines of reasoning (Long, 2023). The theoretical strength of ToT lies in its potential to
systematically explore a vast solution space, thereby increasing the likelihood of finding a correct
or high-quality solution, especially for tasks where simpler methods like Chain of Thought (CoT)
might falter due to their linear, single-path reasoning. This structured exploration aims to address
issues like the lack of diversity in generated paths by deliberately generating and considering varied
intermediate steps. However, this explicit generation and evaluation of numerous thought branches
make tree-of-thought computationally intensive, with costs scaling with the number of candidates
explored at each step (m) and the depth of the tree (Yao et al., 2023).

While ToT solves the lack of diversity observed in RS (Appendix D), it is significantly more com-
putational as explicit evaluation of each intermediate thought generated at every step of the tree’s
expansion is required. To mitigate both the lack of diversity in the solutions and less computational
cost, we propose GUIDEDSAMPLING, which we elaborate on in the following sections.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 OUR PROPOSED APPROACH

Our proposed inference algorithm, GUIDEDSAMPLING, improves the diversity by separating ex-
ploration and generation into two distinct phases. This separation allows for finer control over the
diversity of concepts that can be used to solve a problem, an aspect previous approaches like tra-
ditional RS fall short of. Moreover, our method explores the concepts just once in the beginning,
which leads to better efficiency than the tree-of-thought strategy. Figure 2 highlights the differences
between our strategy and RS. We describe these two phases of our strategy in detail below:

Exploration Phase The goal of the Exploration Phase is to discover a diverse set of high-level
ideas, concepts, or theorems that could guide the solution of a given question. We start with a dataset
or a set of questions denoted by X , from which we sample a specific question x ∈ X to work on.
Given this question x and an LLM parameterized by θ, we aim to identify a set of relevant concepts
that could support downstream reasoning or problem-solving, denoted as C = {c1, c2, ..., cK}. The
process of constructing C is iterative: the k-th concept is generated by conditioning on the original
question x and all previously generated concepts c1, . . . , ck−1. Formally, this sampling process is
expressed as:

ck ∼ pθ(· | x, c1:(k−1))

This iterative conditioning mechanism promotes diversity among the concepts, encouraging the
model to explore different areas of the solution space rather than repeating similar concepts. The al-
gorithm continues until either K concepts have been generated or the model determines that no more
useful concepts can be produced—allowing for early stopping. The prompts used for exploration
are presented in Appendix B.1, and some concept examples are illustrated in Appendix C.

Generation Phase Once the set of candidate concepts C = c1, c2, . . . , cK has been established
during the Exploration Phase, the Generation Phase uses these concepts to produce concrete solu-
tions. For each concept ck ∈ C, we generate M potential solutions. These solutions are sampled
from the LLM, conditioned on both the original question x and the specific concept ck:

Sk =
{
s
(m)
k ∼ pθ(s | x, ck)

}M

m=1

Each completion s
(m)
k represents a full solution that uses the guidance provided by ck. The full set

of candidate solutions is thus S =
⋃K

k=1 Sk.

This structured sampling strategy leverages the earlier exploration to guide the solutions more effec-
tively. Instead of relying on unguided or purely random repeated sampling, the model systematically
explores multiple reasoning trajectories guided by diverse high-level concepts or theorems. This en-
hances the diversity of candidate solutions, increasing the likelihood that at least one solution will
be correct. We formally define the GUIDEDSAMPLING algorithm in Algorithm 1.

3.3 THEORETICAL BOUNDS FOR GUIDEDSAMPLING

Definition 1 (Notation). Let x be the input prompt and y∗ be a correct final solution. Let
πbase(y | x) be the base model’s conditional probability of generating solution y directly from
x. In the GUIDEDSAMPLING framework, we define:

• c: An intermediate concept or theorem.

• Cr: The set of “relevant” concepts that contain a valid concept pointing towards the correct
reasoning path y∗.

• πconcept(c | x): The probability of generating concept c from prompt x.

• πsolution(y | x, c): Probability of generating solution y given the prompt x and concept c.

• I(y; c | x): sample-wise mutual information between y and c conditional on x. This
represents the additional information contributed by the concept c in predicting y.

By intuition, solving a question becomes easier if we know a good problem-appropriate “hint” for a
question. To elaborate on the performance bounds of GUIDEDSAMPLING, we make the following
assumption:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Assumption 1. For any “relevant” concept c ∈ Cr, conditioning on it strictly increases the proba-
bility of generating a correct solution y∗. That is, there exists an amplification factor kc > 1 such
that:

πbase(y
∗ | x, c) ≥ kc · πbase(y

∗ | x) (1)

The above assumption is based on the intuition that I(y; c | x) > 0, i.e., any “relevant” concept
strictly increases the probability of generating the correct final response. For “irrelevant” concepts
(c /∈ Cr), the assumption doesn’t hold. We also bridge the intuition to above assumption in Appendix
A.1. Following the above assumption, we now state our main theorem:

Theorem 1. Let PRS(y
∗ | x) be the probability of generating a correct solution through Repeated

Sampling and PGS(y
∗ | x) be the probability of generating a correct solution through GUIDED-

SAMPLING. Under Assumption 1, PGS(y
∗ | x) > PRS(y

∗ | x) iff the following condition holds:

(kmin · P (Cr | x)− 1) · PRS(y
∗ | x) +

∑
c/∈Cr

πconcept(c | x) · πbase(y
∗ | x, c) > 0 (2)

where P (Cr | x) =
∑

c∈Cr
πconcept(c | x) is the probability of generating a relevant concept, and

kmin > 1 is the amplification factor in accordance with the above assumption.

The condition derived in Theorem 1 provides a formal basis for when GUIDEDSAMPLING outper-
forms RS. We detail the proof in Appendix A.2. In practice, this condition is satisfied if one or more
of the following pathways hold:

Recovery from Irrelevant Concepts If the second term,
∑

c/∈Cr
πconcept(c | x) · πbase(y

∗ | x, c),
is sufficiently large. This corresponds to the scenario where the model generates a flawed or “ir-
relevant” concept but still manages to produce the correct solution, y∗. While this is possible, we
observe empirically that it is a rare event. We detail one such case study in Appendix G. Therefore,
for GUIDEDSAMPLING to be reliably superior, the following condition is more critical.

Sufficient Concept Coverage If first term, (kmin · P (Cr | x) − 1) · PRS(y
∗ | x) > 0. Since the

second term is a probability distribution and will always remain≥ 0, for the overall sum in equation
2 to be positive, the first term should be positive. This holds when P (Cr | x) > 1/kmin. This can
be achieved either when the underlying model’s probability of generating relevant concepts is high
(P (Cr | x) ≫ 0), or when conditioning on a relevant concept provides a significant probabilistic
advantage for generating the correct solution compared to direct generation (kmin ≫ 1). We em-
pirically observe both of these to be true for most cases in our study, but some models may lack this
ability on certain tasks (e.g., Qwen2.5-3B-Instruct on code generation).

3.4 POST-TRAINING USING GUIDEDSAMPLING

Synthetic data has become an increasingly effective tool for enhancing the reasoning capabilities of
LLMs (Gupta et al., 2023; Mitra et al., 2024; Chaudhary et al., 2023). In particular, inference-time
algorithms are valuable for generating such data when the correctness of the final solution can be
programmatically verified (Zelikman et al., 2022; Arora & Zanette, 2025; Shao et al., 2024). We
demonstrate that GUIDEDSAMPLING can serve not only as an effective inference-time strategy but
also as a powerful synthetic data generation mechanism.

Let x denote an input question, and C = {c1, . . . , cK} be the diverse set of concepts generated for
x using exploration phase of GUIDEDSAMPLING. For each concept ck ∈ C, we sample a solution
s ∼ S. We define two distinct settings for constructing synthetic training pairs (x, y):

1. Final-Answer Only (FA): In this setting, we discard the generated concept and only use the
final verified response s as the target output. This encourages the model to learn mappings
from problem statements directly to correct answers, i.e. (x, y) = (x, s). The correspond-
ing training objective is the standard fine-tuning loss:

LFA = −E(x,s)∼DFA [logPθ(s | x)]

whereDFA is the dataset constructed under the FA regime and Pθ is the model’s conditional
distribution parameterized by θ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2. Concept-Augmented Answer (CAA): In the CAA setting, we construct an enriched target
sequence that includes both the conceptual diversity and the final answer. Specifically, we
concatenate the concepts C with one selected solution s to form the training target:

(x, y) = (x,concat(C, s))

This setting encourages the model to internalize multiple reasoning strategies before com-
mitting to one concrete solution path. The training objective becomes:

LCAA = −E(x,C,s)∼DCAA [logPθ(y | x)]

where DCAA is the dataset constructed under the CAA regime. The prompt for CAA is
provided in Appendix B.3.

4 EXPERIMENT SETUP

Baselines We showcase GUIDEDSAMPLING against Repeated Sampling (RS) to showcase the
better pass@k performance. For training, we compare models trained using Self-Taught Reasoner
(STaR) (Zelikman et al., 2022), RS (Brown et al., 2024), and Tree-of-Thought (Yao et al., 2023).

Dataset We use test sets of MATH (for mathematical reasoning) (Hendrycks et al., 2021), GPQA-
Diamond (scientific reasoning) (Rein et al., 2024), HumanEval (code generation) (Chen et al., 2021),
and OlympiadBench (mathematical and scientific reasoning) (He et al., 2024) to measure the effec-
tiveness of GUIDEDSAMPLING. For training the models, we first randomly select 10k samples from
the training set of OpenMathInstruct-2 (Toshniwal et al., 2024), math reasoning dataset. We then
create reasoning chains using corresponding inference strategies and select the reasoning chains with
correct final answer since ground truth is available to create corresponding training sets. We detail
the fine-tuning setup in Appendix F.

Models and Metrics We evaluate two open-source LLMs in our main study – Llama-3.2-3B-
Instruct (Grattafiori et al., 2024) and Qwen2.5-3B-Instruct (Yang et al., 2024). We generate n = 100
responses using all models and report values until k = 50. For finetuned models, we generate
n = 10 responses and report values until k = 5. Since our experiments involve generating up
to 100 responses, we also perform a limited study of other models in Appendix E. To assess the
performance, we use the pass@k metric, which is defined as the expected maximum reward obtained
from the k sampled responses out of n, where c are correct candidates. Formally, it is defined as:

pass@k = E

[
1−

(
n−c
k

)(
n
k

)]

5 RESULTS AND DISCUSSION

GUIDEDSAMPLING pass@k performance As shown in Figure 4, GUIDEDSAMPLING signifi-
cantly outperforms RS across the majority of models and benchmark combinations. As an edge
case, only one combination of Qwen2.5-3B-Instruct and HumanEval shows degradation in perfor-
mance due to weak concept generation. Averaging across all models, we observe pass@50 im-
provements of 21.8% on MATH, 11.87% on GPQA-Diamond, 11.28% on HumanEval, and 3.08%
on OlympiadBench. These results highlight that structured exploration enables more effective use of
limited compute. However, the gains from GUIDEDSAMPLING are not uniform across all tasks and
models. While Qwen2.5-3B-Instruct achieves strong improvements on MATH, its performance on
HumanEval worsens compared to traditional RS. Upon closer analysis, this drop stems from Qwen’s
limited ability to generate diverse concepts for coding during the exploration phase. As mentioned
in §3.3, a weaker probability of generating good concepts, P (Cr | x), results in lower performance
of GUIDEDSAMPLING. On average, Qwen produces only 1.13 distinct concepts per HumanEval
problem, indicating that nearly all sampled solutions are guided by the same idea. This lack of di-
versity not only fails to leverage the core strengths of GUIDEDSAMPLING but can also dilute the
model’s effectiveness by forcing the model to follow a particular concept. In contrast, Llama-3.2-
3B-Instruct generates 7.58 unique concepts on average on HumanEval, enabling richer exploration

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50

30

40

50
Pa

ss
@

k
(%

) 52.20%
57.00%

MATH

0 50

20

40

60 56.57%
64.14%

GPQA-Diamond

0 50

40

60

80

52.44%

79.27%
HumanEval

0 50

20

30
32.53%

37.14%
Olympiad Bench

0 50
k (Number of Attempts)

0

20

40

60

80

Pa
ss

@
k

(%
)

40.80%

79.60%

0 50
k (Number of Attempts)

20

40
32.83%

48.99%

0 50
k (Number of Attempts)

50

60

70

80 79.88%75.61%

0 50
k (Number of Attempts)

20

30

40 38.35%
39.89%

Traditional Repeated Sampling G S

Figure 4: GUIDEDSAMPLING forces exploration during inference-time, resulting in 16.01% aver-
age pass@k improvement compared to repeated sampling. We observe an average improvement of
21.8% on MATH, 11.87% on GPQA-Diamond, 11.28% on HumanEval, and 3.08% on Olympiad-
Bench. First row: For Llama-3.2-3B-Instruct, Second row: For Qwen2.5-3B-Instruct. For GUID-
EDSAMPLING, we choose the optimal value of K (from Fig. 5) that maximizes the performance.

and stronger performance. These results underscore that the successful application of GUIDEDSAM-
PLING depends critically on the model’s ability to generate varied and relevant high-level ideas. To
validate whether the observed drop is due to poor concept generation or Qwen’s inability to generate
the correct solution from the concept, we use the concepts generated by Llama-3.2-3B-Instruct for
generating the final answer. Using a stronger concept generator yields a pass@50 performance of
83.53%, a 3.65% improvement from RS. The smaller gains of Qwen on OlympiadBench can be at-
tributed to the benchmark’s high difficulty (olympiad-level problems) combined with the relatively
small model size (3B). Nevertheless, GUIDEDSAMPLING still yields measurable improvements.

The higher performance of GUIDEDSAMPLING is due to K concepts being generated. In practice,
this value is far lower than the number of samples generated (100 in our case). Moreover, as the com-
pute increases (increasing k for pass@k), we observe that the performance gap between Repeated
Sampling and GUIDEDSAMPLING increases in most cases (Fig. 4), suggesting that GUIDEDSAM-
PLING benefits more with increased compute. This leads us to believe that when computational
resources are sufficient, a small overhead of sequential calls for generating concepts might be a
beneficial tradeoff for better performance.

Diversity in GUIDEDSAMPLING To measure the diversity of candidate solutions, we use
Qwen2.5-32B-Instruct (Yang et al., 2024) to extract the core concept or theorem. We then com-
pute the number of distinct concepts generated. On average, RS produces 3.54, 6.72, 2.66, and
3.25 distinct concepts on MATH, GPQA-Diamond, HumanEval, and OlympiadBench, respectively.
GUIDEDSAMPLING produces 3.66, 7.66, 3.87, and 3.81 distinct concepts, improving the diver-
sity by an average of 17.63%. We also found the diversity gains from GUIDEDSAMPLING are
model-specific. We find that Llama-3.2-3B-Instruct generates 3.7× more unique concepts on av-
erage compared to Qwen2.5-3B-Instruct, with this gap ranging from 2.82× on GPQA-Diamond to
5.12× on HumanEval. This suggests that model architecture and pretraining influence the capacity
for generating novel reasoning strategies. We show examples of generated concepts in Appendix C.

Trade-off between Exploration and Generation A key design choice in GUIDEDSAMPLING is
the allocation of the limited inference compute budget IC between the exploration phase (number
of concepts K) and the generation phase (number of samples M per concept, where M = IC/K).
The number of distinct concepts K directly controls this trade-off: a larger K encourages broader
exploration of different approaches, but consequently reduces the compute available for generating

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 3 6 9 12 15 18 21

50

55

60

pa
ss

@
50

 (%
)

52.2

55.8
53.8

57

MATH

0 3 6 9 12 15 18 21

55

60

65

70

56.57
58.59

64.14

58.08

GPQA-Diamond

0 3 6 9 12 15 18 21
50

60

70

80

52.44

75
78.66 79.27

HumanEval

0 3 6 9 12 15 18 21
30.0

32.5

35.0

37.5

40.0

pa
ss

@
50

 (%
)

32.53

37.14
36.04

33.3

OlympiadBench

0 3 6 9 12 15 18 21
K (No. of concepts)

40

60

80

pa
ss

@
50

 (%
)

40.8

77 78.4 79.6

0 3 6 9 12 15 18 21
K (No. of concepts)

30

35

40

45

50

32.83

42.93
45.45

48.99

0 3 6 9 12 15 18 21
K (No. of concepts)

70

75

80

85

79.88

75.61
73.78 73.05

0 3 6 9 12 15 18 21
K (No. of concepts)

35.0

37.5

40.0

42.5

38.35

39.89

37.69
36.33

Figure 5: Pass@50 performance variation with different exploration (number of concepts K) and
generation (samples per idea M) compute allocations, given a fixed total compute of 100 calls
(M = 100/K). Increasing exploration initially helps, but performance declines when the generation
budget per idea becomes too small. At K = 0, GUIDEDSAMPLING becomes traditional RS. The
first row shows results for Llama-3.2-3B-Instruct, and the second for Qwen2.5-3B-Instruct.

solutions using each approach (i.e., smaller M). Conversely, a smaller K allows for more gener-
ations using fewer concepts. As demonstrated in Fig. 5, increasing exploration by increasing K
initially boosts performance in most cases by uncovering more diverse, potentially successful strate-
gies. However, beyond an optimal point, performance may decline as the generation budget M for
each concept becomes insufficient to thoroughly develop any single approach.

Performance of Earlier vs Later Concepts During the concept generation phase of GUIDED-
SAMPLING, concepts are generated iteratively. To determine the contribution of the k-th concept
across all questions that produced at least k concepts, we analyzed all models and benchmarks men-
tioned in §4, which contains a total of 1772 questions. We observe a minor decline from k = 1 to 5
(19.8%ß16.2%). This observation suggests that earlier concepts suggested by the concept generator
are better than later ones. However, for concepts with index k ≥ 6 (i.e., when more exploration is
needed) a higher performance variance due to a sharp decrease in coverage is observed. E.g., only
72 out of 1772 questions reach k = 9, meaning there are fewer samples with k ≥ 6 concepts. This
results in variations in performance, with higher performance being observed for many such cases
(e.g., 52.05% performance for k = 14, due to just 23 instances). Thus, although the earlier concepts
are beneficial, later ones (k ≥ 6) also contribute to increasing performance, but for a small number
of instances that require significant exploration. Hence, for the overall success of GuidedSampling,
even the later ones are also important, but the earlier ones play a major role. Individual performance
values are provided in Appendix I.

Dependence of GUIDEDSAMPLING on Well-defined Concepts Theorem 1 states that for a “rel-
evant” concept c, conditioning on c increases the probability of generating the correct solution.
However, in domains such as commonsense reasoning, which involve more imprecise, vague, and
uncertain knowledge, defining such concepts is difficult. Hence, the condition stated in Theorem 1,
i.e., P (Cr|x) >> 0, might not be satisfied. Applying GUIDEDSAMPLING to Qwen2.5-3B-Instruct
on CommonSenseQA (Talmor et al., 2019), a commonsense benchmark. The model is prompted to
generate a general idea that could help solve the question (not a task-specific concept, since those
are lacking in the commonsense domain). On such domains, GUIDEDSAMPLING underperforms
against Repeated Sampling by 3.28% (pass@50). Based on this, we believe that GUIDEDSAM-
PLING has a better chance of succeeding when concepts can be formulated efficiently. More details
in Appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Final Answer Selection via Majority Voting To select a final solution after sampling multiple
times, we use the majority voting technique, where the most common solution is selected as the
final answer. GUIDEDSAMPLING achieves an average accuracy of 35.87% compared to Repeated
Sampling (32.80%) and Tree-of-Thought (26.26%). Detailed accuracies in Appendix E.3.

Finetuning models on GUIDEDSAMPLING trajectories Models fine-tuned on data synthesized
via GUIDEDSAMPLING significantly outperform those trained using data from other inference-time
algorithms, as illustrated in Table 1. Notably, when the models are asked to produce more responses
(pass@5), a bigger improvement in performance is observed. On average, the CAA setting yields
7.13% pass@5 improvements compared to the RS, while FA shows 5.64% pass@5 improvements
against RS. Models trained using trajectories from Tree-of-Thought, another explorative strategy,
performed better than RS as well, showing a 4.37% improvement, but still underperformed when
compared against GUIDEDSAMPLING: FA (1.45%) and CAA (2.76%).

Table 1: Performance of Llama-3.2-3B-Instruct trained using different synthetic data creation strate-
gies. FA: Using just the final answer for training the model. CAA: Using both the concepts and the
corresponding final solution to create the training data.

Method MATH GPQA-Diamond HumanEval OlympiadBench

pass@1 pass@5 pass@1 pass@5 pass@1 pass@5 pass@1 pass@5

Base Model 24.00% 33.20% 11.62% 28.28% 27.44% 39.02% 11.32% 19.56%
RS 37.62% 44.78% 18.13% 40.08% 52.13% 55.78% 6.42% 10.83%

STaR 36.60% 46.23% 16.61% 38.41% 52.13% 57.35% 5.82% 10.62%
ToT 40.40% 56.63% 16.77% 44.44% 35.73% 49.51% 9.19% 18.36%

FA (Ours) 29.88% 47.98% 20.20% 50.61% 48.17% 55.95% 11.21% 20.21%
CAA (Ours) 38.00% 60.06% 15.66% 40.23% 53.05% 59.21% 10.76% 20.47%

Diversity of Solutions by Finetuned Models We extract the core concept or theory used in the
candidate solutions and observe that diversity increases from 1.67 (RS) to 2.58 (FA) and 3.03 (CAA).
Surprisingly, the largest diversity gain occurs on GPQA-Diamond rather than MATH, indicating that
diversity learned through training on mathematical reasoning data can transfer to other domains.
This highlights the generalizability of the GUIDEDSAMPLING framework across domains.

6 CONCLUSIONS

We propose a new inference-time algorithm, GUIDEDSAMPLING, that forces exploration of can-
didate solutions over repeated sampling. The paper demonstrates how performance varies with
shifting compute between the exploration of diverse concepts and the generation of final solutions
and shows pass@50 improvements of up to 34.6%. Furthermore, fine-tuning LLMs on trajectories
generated by GUIDEDSAMPLING significantly boosts performance on mathematical reasoning and
shows generalizability to other domains like scientific reasoning and code generation.

LIMITATIONS AND FUTURE WORK

While our method is successful in improving the diversity of solutions generated by LLMs, it repre-
sents an early step in this area and has some limitations, including but not limited to the following:

1. Robust Concepts: Current implementation of GUIDEDSAMPLING has no mechanism for
verifying how useful the generated concept is. Although some “irrelevant” concepts can
help, a more robust pipeline for generating concepts can boost the performance even further.

2. Better Verifier: GUIDEDSAMPLING has an exploration phase, which forces the model to
explore multiple concepts, increasing diversity. This can lead to multiple final solutions.
While this increases pass@k, building a robust verifier that can select a final solution, even
if it is in the minority, remains a challenging future task.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUBILITY STATEMENT

To ensure the reproducibility of our results, we release the source code and data through
the anonymized GitHub repo https://anonymous.4open.science/r/sampling_
inference-B44E. We commit to releasing the non-anonymized version publicly following pub-
lication. We also note that LLMs are inherently probabilistic in nature, and some results may vary
upon each run. We hope our code and data aid in future research.

ETHICS STATEMENT

In accordance with ICLR policy, we disclose that AI assistants, specifically Grammarly for gram-
mar correction and ChatGPT for sentence restructuring and paraphrasing, were utilized during the
preparation of this manuscript. The authors have reviewed, edited, and take full responsibility for
all final content presented in this paper.

REFERENCES

Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin
Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical
report: Compact yet powerful multimodal language models via mixture-of-loras. arXiv preprint
arXiv:2503.01743, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Aditi Chaudhary, Karthik Raman, and Michael Bendersky. It’s all relative!–a synthetic query gen-
eration approach for improving zero-shot relevance prediction. arXiv preprint arXiv:2311.07930,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning
for best-of-n sampling in large language models. arXiv preprint arXiv:2412.15287, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 9, 2021.

Andrew Estornell and Yang Liu. Multi-llm debate: Framework, principals, and interventions. Ad-
vances in Neural Information Processing Systems, 37:28938–28964, 2024.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
evitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv preprint
arXiv:2404.01413, 2024.

Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does think-
ing more always help? understanding test-time scaling in reasoning models. arXiv preprint
arXiv:2506.04210, 2025.

11

https://anonymous.4open.science/r/sampling_inference-B44E
https://anonymous.4open.science/r/sampling_inference-B44E

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and
the sweetness of best-of-n sampling. arXiv preprint arXiv:2406.00832, 2024.

Himanshu Gupta, Kevin Scaria, Ujjwala Anantheswaran, Shreyas Verma, Mihir Parmar, Saurabh Ar-
jun Sawant, Chitta Baral, and Swaroop Mishra. Targen: Targeted data generation with large
language models. arXiv preprint arXiv:2310.17876, 2023.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Co-
das, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward gen-
erative teaching with agentic flows. arXiv preprint arXiv:2407.03502, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen, Long Le, Swaroop Mishra, Hossein Mobahi,
Jindong Gu, Zifeng Wang, Hootan Nakhost, et al. Plangen: A multi-agent framework for
generating planning and reasoning trajectories for complex problem solving. arXiv preprint
arXiv:2502.16111, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code, 2023. URL https://arxiv. org/abs/2308.12950, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631(8022):755–759,
2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Vighnesh Subramaniam, Yilun Du, Joshua B Tenenbaum, Antonio Torralba, Shuang Li, and Igor
Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains. arXiv preprint
arXiv:2501.05707, 2025.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, 2019.

Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
inference time objectives using reinforcement learning. arXiv preprint arXiv:2503.19595, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
data. arXiv preprint arXiv:2410.01560, 2024.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: Will we run out of data? limits of llm scaling based on human-generated data. In Forty-
first International Conference on Machine Learning, 2024.

Tianchun Wang, Zichuan Liu, Yuanzhou Chen, Jonathan Light, Haifeng Chen, Xiang Zhang,
and Wei Cheng. Diversified sampling improves scaling llm inference. arXiv preprint
arXiv:2502.11027, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis of
compute-optimal inference for problem-solving with language models. 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THEORETICAL PROOFS

A.1 FROM INTUITION TO ASSUMPTION 1

Assumption 1 stems from the intuition that any “relevant” concept helps in answering a given ques-
tion, i.e., the concept adds more information which is useful. This is represented as sample-wise
information between y and c conditioned on x.

I(y; c | x) > 0

log πbase(y
∗ | x, c) − log πbase(y

∗ | x) > 0

log πbase(y
∗ | x, c) > log πbase(y

∗ | x)
πbase(y

∗ | x, c) ≥ kc · πbase(y
∗ | x) (3)

This is the stated assumption 1.

A.2 PROOF OF THEOREM 1

Proof. The probability of generating a correct solution via Repeated Sampling is given by:

PRS(y
∗ | x) = πbase(y

∗ | x) (4)

For GUIDEDSAMPLING, the probability of generating a correct solution:

PGS(y
∗ | x) =

∑
c

πconcept(c | x) · πbase(y
∗ | x, c) (5)

We can partition the sum based on whether the concept is in the set of relevant concepts, Cr:

PGS(y
∗ | x) =

∑
c∈Cr

πconcept(c | x) · πbase(y
∗ | x, c) +

∑
c/∈Cr

πconcept(c | x) · πbase(y
∗ | x, c) (6)

Let’s analyze the first term. By Assumption 1, for any informative concept c ∈ Cinf , we have
πbase(y

∗ | x, c) = kc · πbase(y
∗ | x) where kc > 1. Intuitively, since relevant concepts tend

to be informative, we can say that for any relevant concept c ∈ Cr, we have πbase(y
∗ | x, c) =

kc ·πbase(y
∗ | x). Let kmin = minc∈Cr

kc. It follows that kmin > 1. We can therefore lower-bound
the first term:∑

c∈Cr

πconcept(c | x) · πbase(y
∗ | x, c) ≥

∑
c∈Cr

πconcept(c | x) · (kmin · πbase(y
∗ | x)) (7)

= kmin · πbase(y
∗ | x)

∑
c∈Cr

πconcept(c | x) (8)

= kmin · PRS(y
∗ | x) · P (Cr | x) (9)

where P (Cr | x) is the total probability of sampling a valid concept.

Substituting this back into our expression for PGS(y
∗ | x) (Eq. 5), we get:

PGS(y
∗ | x) ≥ kmin · PRS(y

∗ | x) · P (Cr | x) +
∑
c/∈Cr

πconcept(c | x) · πbase(y
∗ | x, c) (10)

For GUIDEDSAMPLING to be superior to repeated sampling, we require PGS(y
∗|x) > PRS(y

∗|x).
This inequality holds if:

kmin · PRS(y
∗ | x) · P (Cr | x) +

∑
c/∈Cr

πconcept(c | x) · πbase(y
∗ | x, c) > PRS(y

∗ | x) (11)

Rearranging the terms yields the condition stated in the theorem:

(kmin · P (Cr | x)− 1) · PRS(y
∗ | x) +

∑
c/∈Cr

πconcept(c | x) · πbase(y
∗ | x, c) > 0 (12)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PROMPTS USED IN OUR STUDY

B.1 EXPLORATION PROMPTS

B.1.1 MATH

The following prompts were used for GUIDEDSAMPLING for the MATH (Hendrycks et al., 2021)
benchmark.

MATH Initial Concept Generation

You are an expert mathematician. You will be presented with a mathematical question and
your task is to identify and state one single, specific theorem or fundamental concept that is
most relevant and useful for solving the problem.

QUESTION:
{ele[‘question’]}

Provide only the name of the theorem or concept, or a concise statement of the principle,
that is most directly applicable to solving this problem. Do not attempt to solve the original
problem. Only provide the theorem or concept.

MATH Subsequent Concept Generation

You are an expert mathematician. You will be presented with a mathematical question and
a list of theorems and concepts that have already been proposed as potentially useful for
solving the problem. Your task is to provide a *new* and *different* theorem or concept
that is most relevant and useful for solving the problem.

QUESTION:
{ele[‘question’]}

EXISTING CONCEPTS:
{ideas text}

Provide only the name of the theorem or concept, or a concise statement of the principle,
that is most directly applicable to solving this problem. Do not attempt to solve the original
problem. Only provide the theorem or concept. If no new, distinct, and useful theorem or
concept can be identified, respond with “No additional concepts found.”

B.1.2 GPQA-DIAMOND

The following prompts were used for GUIDEDSAMPLING for the GPQA-Diamond (Rein et al.,
2024) benchmark.

GPQA-Diamond Initial Concept Generation

You are an expert scientist and problem solver. You will be presented with a complex,
graduate-level science question and your task is to identify and state one single, specific
theorem or fundamental concept that is most relevant and useful for solving the problem.

QUESTION:
{ele[‘question’]}{options}

Provide only the name of the theorem or concept, or a concise statement of the principle,
that is most directly applicable to solving this problem. Do not attempt to solve the original
problem. Only provide the theorem or concept.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GPQA-Diamond Subsequent Concept Generation

You are an expert scientist and problem solver. You will be presented with a complex,
graduate-level science question and a list of theorems and concepts that have already been
proposed as potentially useful for solving the problem. Your task is to provide a *new* and
different theorem or concept that is most relevant and useful for solving the problem.

QUESTION:
{ele[‘question’]}{options}

EXISTING CONCEPTS:
{ideas text}

Provide only the name of the theorem or concept, or a concise statement of the principle,
that is most directly applicable to solving this problem. Do not attempt to solve the original
problem. Only provide the theorem or concept. If no new, distinct, and useful theorem or
concept can be identified, respond with “No additional concepts found.”

B.1.3 HUMANEVAL

The following prompts were used for GUIDEDSAMPLING for the HumanEval (Chen et al., 2021)
benchmark.

HumanEval Initial Concept Generation

You are an expert python programmer. You will be presented with a programming question
and your task is to identify and state one single, specific concept that is most relevant and
useful for solving the problem.

QUESTION:
{ele[‘question’]}

Provide only the name or short description of the concept, that is most directly applicable
to solving this problem. Do not attempt to solve the original question. Only provide the
concept.

HumanEval Subsequent Concept Generation

You are an expert python programmer. You will be presented with a programming question
and a list of concepts that have already been proposed as potentially useful for solving the
question. Your task is to provide a *new* and *different* concept that is most relevant and
useful for solving the question.

QUESTION:
{ele[‘question’]}

EXISTING CONCEPTS:
{ideas text}

Provide only the name or the short description of the concept, that is most directly applicable
to solving this problem. Do not attempt to solve the original question. Only provide the con-
cept. If no new, distinct, and useful concept can be identified, respond with “No additional
concepts found.”

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.1.4 OLYMPIADBENCH

The following prompts were used for GUIDEDSAMPLING for the OlympiadBench (He et al., 2024)
benchmark.

OlympiadBench Initial Concept Generation

You are an expert scientist. You will be presented with a question and your task is to identify
and state one single, specific theorem or concept that is most relevant and useful for solving
the problem.

QUESTION:
{ele[‘question’]}
Provide only the name of the theorem or concept that is most directly applicable to solving
this problem. Do not attempt to solve the original problem. Only provide a single theorem
or concept.

OlympiadBench Subsequent Concept Generation

You are an expert scientist. You will be presented with a question and a list of theorems
and concepts that have already been proposed as potentially useful for solving the problem.
Your task is to provide a single **new** and **different** theorem or concept that is most
relevant and useful for solving the problem. Do not elaborate on the theorem or concept.
If no new, distinct, and useful theorem or concept can be identified, respond with “No
additional concepts found.”

QUESTION:
{ele[‘question’]}

EXISTING CONCEPTS:
{ideas text}

Provide only the name of a single new and different theorem or concept that is most directly
applicable to solving this problem. Do not attempt to solve the original problem. If no
new, distinct, and useful theorem or concept can be identified, respond with “No additional
concepts found.”

B.2 CONCEPT EXTRACTION PROMPT

Concept Extraction Prompt

You are ConceptTagger, an expert that maps a worked-out solution (chain-of-thought or
final answer) to the most specific mathematical or logical concept that makes the solution
possible.

Task: For every input consisting of a reasoning explanation (a step-by-step solution,
scratch-work, or short justification):
1. Read the explanation.
2. Decide which single mathematical concept, theorem, or canonical formula is essential
for the solution.
3. Output that concept’s standard name—nothing else.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Choose the narrowest concept that still covers the whole solution.
• Good: “Pythagorean Theorem” (precise).
• Bad: “Geometry” (too broad).
If two or more concepts appear, pick the one without which the problem cannot be solved
(typically the first pivotal step).

Here are two examples:

Example 1
Problem: A right triangle has legs of lengths 5 cm and 12 cm. What is the length of the
hypotenuse?
Step-by-step solution:
Step 1: Recognize this is a right triangle → apply the Pythagorean Theorem.
Step 2: hypotenuse =

√
(52 + 122) =

√
(25 + 144) =

√
169 = 13cm

Concept Used: Pythagorean Theorem

Example 2
Problem: What is the area of a rectangle with a length of 9 meters and width of 4 meters?
Step-by-step solution:
Step 1: Identify the shape as a rectangle.
Step 2: Use the area formula: Area = length × width = 9 × 4 = 36 m²
Concept Used: Area of Rectangle

Formatting Rules:
Output exactly one line with the concept name.
Use Title Case and the singular form (e.g., “Least Common Multiple”, not “LCMs”).
No extra punctuation, explanation, or line breaks.

B.3 CAA PROMPT

CAA Data

I have a few ideas to solve this problem.
a) {Concept 1}
...
k) {Concept k}

To solve the problem I will use the idea i) {Concept i}:

{Step by step solution}

Final Answer
{Final Answer}

C CONCEPT EXAMPLES

In this section, we detail some examples from each benchmark and the concepts generated by Re-
peated Sampling and GUIDEDSAMPLING. We extract the concepts using Qwen2.5-32B-Instruct.

C.1 CONCEPT EXAMPLES IN MATH

For the following question from the MATH benchmark, Table 2 displays the generated concepts
related to the above question.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer
in the form (r, θ), where r > 0 and 0 ≤ θ < 2π.

Table 2: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a MATH instance.
Repeated Sampling GUIDEDSAMPLING

Polar Coordinates Conversion Distance Formula
Inverse Circular Function

Trigonometric Identity
Circular Function

Pythagorean Theorem
Polar Coordinate Transformation

C.2 CONCEPT EXAMPLES IN GPQA-DIAMOND

For the following question from the GPQA-Diamond benchmark, Table 3 displays the generated
concepts related to the above question.

Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec,
respectively. We want to clearly distinguish these two energy levels. Which one of the
following options could be their energy difference so that they can be clearly resolved?

Table 3: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a GPQA-Diamond
instance.

Repeated Sampling GUIDEDSAMPLING

Heisenberg Uncertainty Principle Heisenberg Uncertainty Principle
Stark Shift

Quantum Rabi Frequency

C.3 CONCEPT EXAMPLES IN HUMANEVAL

For the following question from the HumanEval benchmark, Table 4 displays the generated concepts
related to the above question.

from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:
""" Input to this function is a string containing multiple
groups of nested parentheses. Your goal is to separate
those group into separate strings and return the list of
those.
Separate groups are balanced (each open brace is properly
closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups(’() (()) (()())’)
[’()’, ’(())’, ’(()())’]
"""

C.4 CONCEPT EXAMPLES IN OLYMPIADBENCH

For the following question from the OlympiadBench benchmark, Table 5 displays the generated
concepts related to the above question.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a HumanEval in-
stance.

Repeated Sampling GUIDEDSAMPLING

Stack Graph-Based Approach with a Stack
Parentheses Matching Balanced Parentheses Tree Construction

Stack Manipulation Space Ignoring Recursive Descent Parsing
Prefix Tree Traversal

Dynamic Programming with Memoization
Level Order Traversal with a Queue

Suffix Tree Construction with a Stack
Counter-Based Approach with a Stack

Kruskal’s Algorithm with a Union-Find Data Structure
Nested Set Algorithm

Xenia and Sergey play the following game. Xenia thinks of a positive integer N not ex-
ceeding 5000. Then she fixes 20 distinct positive integers a1, a2, . . . , a20 such that, for each
k = 1, 2, . . . , 20, the numbers N and ak are congruent modulo k. By a move, Sergey
tells Xenia a set S of positive integers not exceeding 20 , and she tells him back the set
{ak : k ∈ S} without spelling out which number corresponds to which index. How many
moves does Sergey need to determine for sure the number Xenia thought of?

Table 5: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a GPQA-Diamond
instance.

Repeated Sampling GUIDEDSAMPLING

Chinese Remainder Theorem Pigeonhole Principle
Inclusion-Exclusion Principle Chebyshev’s Postulate

Pick’s Theorem Erdős-Szekeres Lemma
Sperner’s Lemma

Dirichlet’s Box Principle
Hadamard’s Lemma

König’s Theorem

D DIVERSITY ANALYSIS OF INFERENCE-TIME ALGORITHMS

Here we detail the diversity analysis of Repeated Sampling (RS), Tree-of-Thought (ToT), and GUID-
EDSAMPLING. We use Qwen-2.5-32B-Instruct to extract the concepts used in each candidate solu-
tion. We observe an average of 4.04 concepts in RS, while in GUIDEDSAMPLING, we observe 4.75
different concepts, with less compute budget. With ToT, on the other hand, we observe 4.25 average
concepts.

E MORE RESULTS USING GUIDEDSAMPLING

E.1 RESULTS FOR MORE LLMS

In this section, we showcase some results on additional models. As mentioned in §4, we generate
100 candidate solutions for each instance. We provide results on Phi-4-mini-instruct (Abouelenin
et al., 2025), GPT-4o-mini (Hurst et al., 2024), and Gemma-3-27b-it (Team et al., 2025). Due
to limited resource constraints, we limit the proprietary model to just the MATH (Hendrycks et al.,
2021) benchmark. Table 6 and 7 show the pass@50 results for these models along with the observed
diversity as extracted by Qwen-3.2-32B-Instruct (Yang et al., 2024). Diversity is measured by the
average number of concepts for each instance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: pass@50 performance of GPT-4o-mini and Phi-4-mini-instruct on MATH, along with diver-
sity of concepts observed in candidate solutions. RS: Repeated Sampling, GS: GUIDEDSAMPLING

Model Repeated Sampling GUIDEDSAMPLING Diversity in RS Diversity in GS

GPT-4o-mini 85.71% 90.00% 3.2 5.0
Phi-4-mini-instruct 71.80% 80.80% 2.1 3.4

Table 7: pass@50 performance of Gemma-3-27b-it
Benchmark Repeated Sampling GUIDEDSAMPLING

MATH 81.00% 82.87%
GPQA-Diamond 70.20% 91.92%

MATH 83.54% 94.51%

E.2 RESULTS ON COMMONSENSEQA

Results for Qwen2.5-3B-Instruct on CommonSenseQA are reported in Table 8. The prompts used
don’t specify a task-specific definition of concepts. Prompts are as follows:

CommonSenseQA Initial Concept Generation

You are a helpful assistant. Your task is to state a concept that is relevant and useful for
answering the question.

QUESTION:
{ele[‘question’]}

Provide the concept that is most directly applicable to answering the question. Do not answer
the original question.

CommonSenseQA Subsequent Concept Generation

You are a helpful assistant. You will be presented with a question and a list of concepts
that have already been proposed as potentially useful for answering the question. Your task
is to provide a *new* and *different* concept that is relevant and useful for answering the
question.

QUESTION:
{ele[‘question’]}

EXISTING CONCEPTS:
{ideas text}

Provide the concept that is most directly applicable to answering the question. Do not answer
the original question. If no new, distinct, and useful concept can be identified, respond with
“No additional concepts found.”

Table 8: pass@50 performance of Qwen2.5-3B-Instruct on CommonSenseQA. RS: Repeated Sam-
pling, GS: GUIDEDSAMPLING

Repeated Sampling GUIDEDSAMPLING

98.94% 95.66%

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.3 MAJORITY VOTING RESULTS

Table 9 shows the overall accuracies of Majority Voting applied on top of Repeated Sampling, GUID-
EDSAMPLING, and Tree-of-thought. Out of the 8 different settings, GUIDEDSAMPLING achieves
better accuracy in 4 of them, and a higher average performance as well.

Table 9: Accuracy of models on benchmarks using majority voting.
Benchmark Model Repeated Sampling GUIDEDSAMPLING Tree-of-thought

MATH Llama-3.2-3B-Instruct 50.40% 43.40% 45.80%
GPQA-Diamond Llama-3.2-3B-Instruct 23.23% 23.23% 19.19%

HumanEval Llama-3.2-3B-Instruct 20.12% 45.12% 25.61%
OlympiadBench Llama-3.2-3B-Instruct 17.47% 18.35% 12.75%

MATH Qwen2.5-3B-Instruct 51.20% 64.20% 45.40%
GPQA-Diamond Qwen2.5-3B-Instruct 20.71% 20.20% 7.07%

HumanEval Qwen2.5-3B-Instruct 56.71% 50.61% 39.02%
OlympiadBench Qwen2.5-3B-Instruct 22.53% 21.87% 15.27%

Average - 32.80% 35.87% 26.26%

F FINETUNING SETUP

Here we define the hyperparameters that we used for fine-tuning defined in Section 3.4.

All the models were trained on 4 × A100 GPUs, with a learning rate of 5e−5 and 3 epochs. Batch
size and Gradient accumulation steps were 2, and fp16 was used for all experiments. 20% of the
data was split for evaluation (random seed as 21), and the checkpoint with the lowest evaluation loss
was considered for reporting the results.

To determine whether the model trained using CAA trajectories experiences any collapse, we use
one common observation: a collapsed model can repeat tokens indefinitely without generating an
end-of-sequence token during inference. While model collapse has been studied to occur for several
reasons (Shumailov et al., 2024; Gerstgrasser et al., 2024), checking for repeated tokens can indicate
whether collapse happens or not.

To validate this, we run the base model and the model trained on CAA trajectories on HumanEval
with 10 candidate solutions and check the “finish reason” 2 after generation. Both the base model
and the model trained using CAA trajectories return with the finish reason of “stop”, indicating that
the model produced the end-of-sequence token.

Moreover, our evaluation, as described in §4, requires the model to generate responses in a particular
format (refer to Appendix B.3 for the prompt). Since we did see improvements in pass@k values,
we can be assured that the model followed the format closely.

Based on these two insights, we can say with some evidence that no model collapse occurred while
training with CAA trajectories.

G CASE STUDY: CORRECT SOLUTION FROM “IRRELEVANT” CONCEPTS

As noted in §3.3, one approach for GUIDEDSAMPLING to outperform repeated sampling is through
“Recovery from Irrelevant Concepts”. While our empirical results (Figure 4) show that generating
concepts boosts pass@k performance, we observe “irrelevant” concepts generated in some instances.
Below, we detail one such example where the concept is unrelated at first glance, but leads to the
correct solution.

2https://docs.vllm.ai/en/latest/api/vllm/outputs/#vllm.outputs.
CompletionOutput.finish_reason

23

https://docs.vllm.ai/en/latest/api/vllm/outputs/#vllm.outputs.CompletionOutput.finish_reason
https://docs.vllm.ai/en/latest/api/vllm/outputs/#vllm.outputs.CompletionOutput.finish_reason

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Question from HumanEval

from typing import List
def has_close_elements(numbers: List[float], threshold: float)
-> bool:

’’’
Check if in given list of numbers, are any two numbers
closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
’’’

To solve this problem, the model suggests 4 different concepts – Range Tree, K-D Tree or Octree,
Bloom Filter, and Sorting. The simplest and most straightforward way to solve this problem is by
using a sorting algorithm. While Range Tree and Octree also lead to correct solutions, they are
more complex in nature. Bloom Filter, on the other hand, is not a correct concept for this problem.
However, we still see some correct solutions leading from this concept. One such solution is given
below:

Response from Llama-3.2-3B-Instruct

from typing import List

def has_close_elements(numbers: List[float], threshold: float)
-> bool:

Create a set to store the numbers we’ve seen so far
seen = set()

Iterate over the list of numbers
for num in numbers:

For each number, check if there’s a number in the set
that’s closer to it for seen_num in seen:

If we find a number that’s closer to the current
number than the threshold
if abs(num - seen_num) < threshold:

Return True, because we’ve found two numbers
that are close to each other
return True

If we haven’t found a close number yet, add the
current number to the set
seen.add(num)

If we’ve iterated over the entire list and haven’t found
two close numbers, return False
return False

The above solution is inspired by the Bloom Filter concept, but does not use the concept as-is, mak-
ing it an approach that has never been observed in RS. Instances like this make GUIDEDSAMPLING
more explorative than RS.

H ALGORITHM FOR GUIDEDSAMPLING

Here, we present the algorithm 1 for GUIDEDSAMPLING:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 1 GUIDEDSAMPLING

1: Input: Question prompt x, LLM pθ, maximum number of ideas K, completions per idea M
2: Output: Set of candidate solutions S
3:
4: // Exploration Phase
5: C ← ∅ ▷ Initialize set of concepts
6: k ← 1
7: while k ≤ K do
8: ck ∼ pθ(· | x, c1, . . . , ck−1) ▷ Sample concept
9: if ck = None then ▷ Model indicates no more useful concepts

10: break
11: end if
12: C ← C ∪ {ck}
13: k ← k + 1
14: end while
15:
16: // Generation Phase
17: S ← ∅ ▷ Initialize set of solutions
18: for each concept ck ∈ C do
19: Sk ← ∅ ▷ Initialize solutions for current concept
20: for m = 1 to M do
21: Sample solution s

(m)
k ∼ pθ(· | x, ck) ▷ Generate solution based on concept

22: Sk ← Sk ∪ {s(m)
k }

23: end for
24: S ← S ∪ Sk
25: end for
26: return S

I PERFORMANCE VARIATION FOR k-TH CONCEPT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Concept Index

0

10

20

30

40

50

Av
g.

 C
or

re
ct

 S
ol

ut
io

ns
 (i

n
%

)

Figure 6: Pass@50 performance variation for k-th concept averaged across all benchmarks and
mdoels mentioned in §4.

Here we detail the individual performance of the k-th concept across every model and benchmark.
Fig. 6 illustrates the performance for every concept. As discussed in §5. Since later concepts have
fewer instances, we see a huge variation in performance. Table 10 shows the detailed performance
and number of instances for all concepts.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: pass@50 performance and the number of instances for the k-th concept generated in
GUIDEDSAMPLING across all benchmarks and models, resulting in a total of 1772 instances.

Concept Index Avg. Correct Solutions (in %) Number of Instances

1 19.76 % 1772 (100.00%)
2 19.93 % 1646 (92.89%)
3 18.54 % 1473 (83.13%)
4 17.57 % 1193 (67.33%)
5 16.19 % 819 (46.22%)
6 18.71 % 178 (10.05%)
7 17.98 % 126 (7.11%)
8 15.13 % 89 (5.02%)
9 22.25 % 72 (4.06%)
10 19.98 % 59 (3.33%)
11 18.34 % 47 (2.65%)
12 26.31 % 39 (2.20%)
13 18.96 % 28 (1.58%)
14 52.05 % 23 (1.30%)
15 43.12 % 16 (0.90%)
16 42.14 % 14 (0.79%)
17 35.50 % 8 (0.45%)
18 30.86 % 7 (0.40%)
19 44.80 % 5 (0.28%)
20 0.00 % 1 (0.06%)

J LATENCY OF INFERENCE-TIME ALGORITHMS

Figure 7 shows the relationship between the number of LLM calls and pass@50 performance for
Repeated Sampling (RS), GUIDEDSAMPLING (GS), and Tree-of-Thought (ToT). All results are
averaged across all models and benchmarks. We found that GUIDEDSAMPLING (pass@50=60.2
with 104.75 calls) outperforms both Repeated Sampling (pass@50=48.2 with 100 calls) and Tree-
of-Thought (pass@50=37.1 with 154 calls), while being more efficient than Tree-of-Thought.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

100 110 120 130 140 150
Average LLM Calls

40

45

50

55

60

Pe
rfo

rm
an

ce
 (%

)

RS

GS

ToT

Figure 7: Pass@50 performance against the number of LLM calls for different inference-time algo-
rithms averaged across all models and benchmarks.

27

	Introduction
	Related Works
	GuidedSampling
	Background
	Our Proposed Approach
	Theoretical Bounds for GuidedSampling
	Post-Training using GuidedSampling

	Experiment Setup
	Results and Discussion
	Conclusions
	Theoretical Proofs
	From Intuition to Assumption 1
	Proof of Theorem 1

	Prompts used in our study
	Exploration Prompts
	MATH
	GPQA-Diamond
	HumanEval
	OlympiadBench

	Concept Extraction Prompt
	CAA Prompt

	Concept Examples
	Concept Examples in MATH
	Concept Examples in GPQA-Diamond
	Concept Examples in HumanEval
	Concept Examples in OlympiadBench

	Diversity Analysis of Inference-Time Algorithms
	More results using GuidedSampling
	Results for more LLMs
	Results on CommonSenseQA
	Majority Voting Results

	Finetuning Setup
	Case Study: Correct Solution from ``Irrelevant'' Concepts
	Algorithm for GuidedSampling
	Performance variation for k-th Concept
	Latency of Inference-Time Algorithms

