

GUIDED SAMPLING: STEERING LLMs TOWARDS DIVERSE CANDIDATE SOLUTIONS AT INFERENCE-TIME

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Repeated Sampling (RS) is a simple inference-time algorithm that has been shown
012 to improve model performance on complex tasks. Although it is an effective way
013 of scaling inference time, it often struggles to generate diverse solution candi-
014 dates, frequently relying on the same underlying approach to solve the problem
015 and thus producing redundant samples. To address this limitation, we propose a
016 new inference algorithm, GUIDED SAMPLING, which decouples the exploration
017 and generation phases during inference, increasing diversity of generated candi-
018 date solutions. The exploration phase identifies multiple concepts that can be uti-
019 lized to solve the problem, while the generation phase applies a specific concept to
020 provide final solution candidates. We first define the theoretical bounds of GUIDED
021 SAMPLING and then empirically demonstrate that it improves the performance
022 of base model at pass@50 by on an average $\sim 21.6\%$ across various benchmarks
023 compared to RS. Furthermore, models trained on trajectories of GUIDED SAM-
024 PLING exhibit substantial performance improvements at pass@5 by on an aver-
025 age $\sim 9.7\%$, compared to models trained on traditional RS. Additionally, models
026 trained with GUIDED SAMPLING increases the average number of concepts per
027 instance ($1.67 \rightarrow 3.03$), yielding a diverse set of candidates than traditional RS.¹
028

1 INTRODUCTION

029 Recent advances in large language models
030 (LLMs) have shown that scaling model size
031 and training data can lead to increasingly capa-
032 ble systems across diverse domains, including
033 mathematical reasoning, scientific analysis, and
034 code generation (Kaplan et al., 2020). How-
035 ever, scaling models indefinitely is becoming
036 increasingly infeasible due to the requirement
037 of more data for training ever-larger models
038 (Villalobos et al., 2024). As a result, a growing
039 body of work has shifted focus to alternative
040 ways of boosting performance—not by mak-
041 ing models larger, but by making better use of
042 available compute during inference (Hosseini
043 et al., 2024; Kumar et al., 2024; Lightman et al.,
044 2023; Brown et al., 2024). Several studies now suggest that allocating additional compute at infer-
045 ence time can lead to larger performance gains than spending that compute to train bigger models
046 (Snell et al., 2024; Wu et al., 2024). This has led to a fundamental shift in improving the performance
047 of inference-time algorithms (Muennighoff et al., 2025; Ghosal et al., 2025).
048 Recently, various inference-time algorithms have been proposed (Wang et al., 2022; Yao et al.,
049 2023; Zhang et al., 2024). Among them, repeated sampling (RS) (Cobbe et al., 2021) is one of
050 the most widely used inference-time algorithms, where multiple outputs are sampled for the same
051 input prompt. Traditional RS “implicitly” combines two phases: *exploration*, which we define as

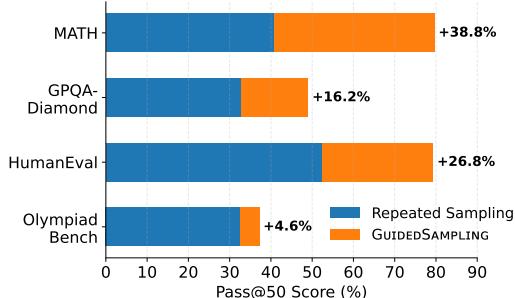


Figure 1: Pass@50 improvements with best per-
forming base model using GUIDED SAMPLING.

053 ¹The code and data is available at https://anonymous.4open.science/r/sampling_inference-B44E

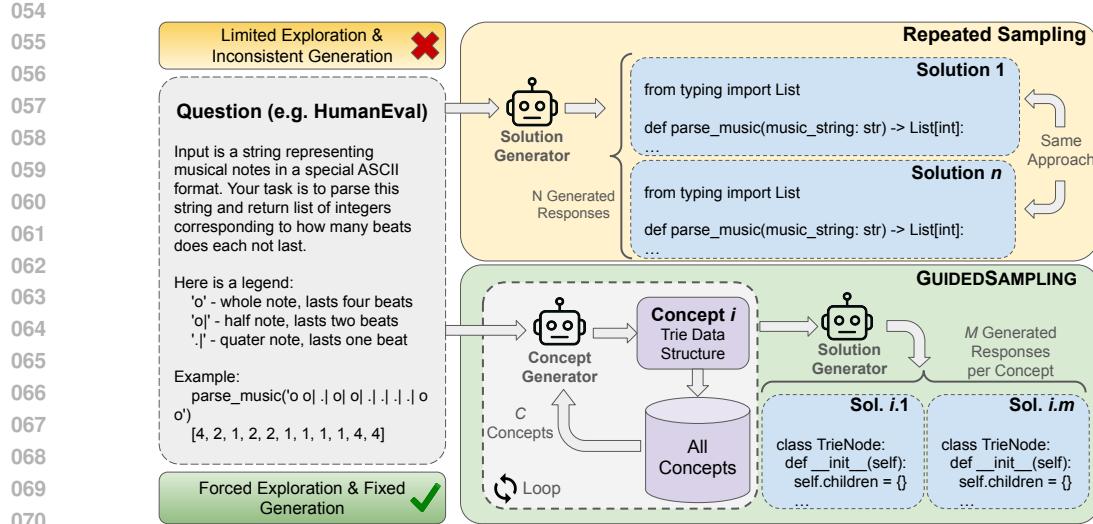


Figure 2: GUIDED SAMPLING enhances exploration during inference by first generating a set of diverse concepts or theorems to guide subsequent generations of solutions. Unlike repeated sampling (RS), where the model generates the final solution, GUIDED SAMPLING separates these phases.

identifying the diverse theorems or concepts used in solving a given question, and *generation*, where the LLMs use the identified concept and try to generate several candidate solutions for the problem. However, despite its simplicity, traditional RS suffers from a lack of exploration (Brown et al., 2024), due to LLMs being traditionally trained to generate a **single** correct response for every input (Chow et al., 2024). This leads RS to generate solutions with the same underlying concepts rather than a thorough exploration of the solution space. To address this limitation, we propose inference-time algorithm, GUIDED SAMPLING, designed to decouple the exploration of diverse concepts from the generation of final solutions. We define theoretical bounds for GUIDED SAMPLING (§3.3), and then empirically demonstrate how training LLMs on such trajectories shows significant pass@k gains.

GUIDED SAMPLING (Figure 2) first explicitly explores diverse concepts that can be used to solve a given question. For our experiments, we define concepts as the names of the theorems that can be utilized for solving questions (examples in Appendix C). In the second phase, these concepts guide the generation of complete candidate solutions. This decoupling is the key reason that GUIDED SAMPLING enhances the diversity of solution candidates generated during inference, and also gives explicit control over exploration. As illustrated in Figure 1, our experiments on Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and Qwen2.5-3B-Instruct (Yang et al., 2024) show an improvement at pass@50 on MATH for mathematical reasoning (Hendrycks et al., 2021), GPQA-Diamond for scientific reasoning (Rein et al., 2024), HumanEval for Python code generation (Chen et al., 2021), and OlympiadBench for complex mathematical and scientific reasoning (He et al., 2024). Further analysis by extracting the concept present in the candidate solutions generated by base models (§3.1) reveal that GUIDED SAMPLING generates 17.63% more diverse candidate solutions compared to RS.

For instance, consider a problem from MATH: “Find the maximum value of $\left[\frac{x-y}{x^4+y^4+6} \right]$ over all real numbers x and y .”. For this problem, we sample 1000 solutions using traditional RS and GUIDED SAMPLING. Our detailed analysis of concepts extracted from these candidates shows that 892/1000 uses the “AM-GM inequality” concept to solve the problem, consistently leading to the incorrect solution due to over-utilizing the same theorem. In contrast, only 77/1000 candidates from GUIDED SAMPLING use this theorem, dedicating the remaining compute to exploring other theorems such as “Cauchy-Schwarz Inequality”, “Trivial Inequality”, and “Chebyshev’s Inequality”.

Our other core contribution is to use GUIDED SAMPLING to improve LLM post-training. We demonstrate that fine-tuning LLMs on trajectories generated by GUIDED SAMPLING outperforms models trained on trajectories from traditional RS, Tree-of-Thought (Yao et al., 2023), and other self-correction methods like Self-Taught Reasoner (STaR) (Zelikman et al., 2022). We generate diverse solution trajectories using GUIDED SAMPLING on a random subset of 10k instances from

108 OpenMathInstruct-2 (Toshniwal et al., 2024), a mathematical reasoning dataset. LLMs fine-tuned
 109 on this data exhibited a 3.43% \uparrow in pass@5 on the MATH benchmark. These fine-tuned models also
 110 demonstrate improved generalization, with pass@5 gains on out-of-domain benchmarks, GPQA-
 111 Diamond (6.17% \uparrow), HumanEval (1.86% \uparrow), and OlympiadBench (2.11% \uparrow) compared to the
 112 strongest baseline. In summary, GUIDEDSAMPLING facilitates future research towards exploring
 113 diversity at inference-time and can effectively synthesize exploration-aware data for post-training.
 114

115 2 RELATED WORKS

116
 117 **Inference-Time Strategies** Chain-of-thought (CoT) and its variants (Wei et al., 2022; Kojima
 118 et al., 2022) showed that guiding LLMs to produce intermediate reasoning steps during inference
 119 boosts performance on complex tasks such as mathematical and commonsense reasoning. However,
 120 as reasoning chains become longer, CoT suffers from error propagation due to complex calculations
 121 (Chen et al., 2022). To mitigate this, new methods have been proposed, e.g., Self-Consistency, which
 122 samples multiple CoT from LLM and then selects the most consistent final answer through majority
 123 voting (Wang et al., 2022). Building upon these ideas, better search algorithms, such as the tree-of-
 124 thought (ToT) (Yao et al., 2023), MCTS (Zhang et al., 2024), and REBASE (Wu et al., 2024), have
 125 been proposed, which enable LLMs to perform more deliberate problem-solving by exploring mul-
 126 tiple reasoning paths in a tree structure. Several agentic systems (Parmar et al., 2025; Estornell &
 127 Liu, 2024) have shown that performing multi-agent debate at inference before generating a final solu-
 128 tion improves performance. Furthermore, recent work (Muennighoff et al., 2025) has extended the
 129 ‘thinking’ of models by introducing special tokens such as “wait” to improve performance. Finally,
 130 Ghosal et al. (2025) has shown that simply sampling from a model repeatedly outperforms such ap-
 131 proaches. In contrast to prior methods, GUIDEDSAMPLING generates a diverse set of samples with
 132 lower inference-time cost than tree search (Yao et al., 2023), while achieving greater diversity than
 133 standard sampling approaches. Parallel to our work, Wang et al. (2025) proposed *RandIdeaInjec-*
 134 *tion*, which first generates a list of distinct ideas and then injects the generated list into the generation
 135 process to produce the final response. GUIDEDSAMPLING, on the other hand, works in an iterative
 136 loop of generating concepts, adding them individually to generate the final output.

137 **Synthetic Data w/ Inference-Time Algorithms** Recent works have explored leveraging advanced
 138 inference strategies for both generating high-quality synthetic training data and for fine-tuning mod-
 139 els to improve their performance. For instance, Self-Taught Reasoner (STaR) (Zelikman et al., 2022)
 140 is an iterative method where an LLM is prompted to generate CoT rationales; those rationales that
 141 lead to correct answers are then used as high-quality synthetic data to fine-tune the model, while
 142 those which lead to incorrect answers are passed back to model for refinement along with the cor-
 143 rect final answer, effectively bootstrapping its reasoning abilities from a small initial set. Similarly,
 144 ReSTEM (Singh et al., 2023), building on principles of reinforced self-training (ReST), employs an
 145 iterative Expectation-Maximization-like framework. It uses Best-of-N (BoN) sampling to generate
 146 multiple candidate solutions for problems and then refines the model by training on this syntheti-
 147 cally generated data. Chow et al. (2024) and Tang et al. (2025) developed reinforcement learning
 148 methods that directly optimize for pass@k metrics and majority voting performance, leading to sig-
 149 nificant gains in reasoning and code generation. Other methods, such as multi-agent fine-tuning
 150 (Subramaniam et al., 2025), train diverse agent models through debate and voting, while Gui et al.
 151 (2024) introduced BoNBoN Alignment, distilling the BoN distribution into a single model. While
 152 these strategies improve pass@k, they often do not explicitly manage the trade-off between explo-
 153 ration and generation. In contrast, our proposed GUIDEDSAMPLING method introduces a structured
 154 exploration phase during training, explicitly balancing diversity and quality, and models fine-tuned
 155 with our trajectories outperform those trained using methods like BoN, STaR, or ToT.

156 3 GUIDEDSAMPLING

157 3.1 BACKGROUND

158 **Traditional RS** Repeated Sampling (RS) is a simple strategy to increase the inference-time per-
 159 formance of a model by generating multiple samples from the model’s output distribution. Let
 160 $X = \{x_1, x_2, \dots, x_N\}$ be a set of input queries. For each input $x \in X$, we draw k independent

162 samples from the model-defined conditional distribution $p_\theta(y | x)$, i.e.,
 163

$$164 y_i^{(x)} \sim p_\theta(y | x), \quad \text{for } i = 1, \dots, k$$

165 This process effectively scales the model’s inference-time compute linearly with k . The theoretical
 166 appeal of RS lies in its potential to achieve complete coverage of the output space as $k \rightarrow \infty$. For
 167 any output y^* such that $p_\theta(y^* | x) > 0$, the probability that it’s sampled at least once after k samples:
 168

$$169 P_k = 1 - (1 - p_\theta(y^* | x))^k$$

170 This quantity monotonically increases with k and asymptotically approaches 1. Thus, under the as-
 171 sumption that all valid outputs are assigned non-zero probability by the model, unlimited sampling
 172 ensures that the target output will be generated at least once. This has led to several works adopting
 173 RS to generate solutions (Wang et al., 2022; Rozière et al., 2023; Li et al., 2022). Of course, unlim-
 174 ited sampling is impractical. The value of RS lies in whether increased sampling leads to improved
 175 output quality within a feasible compute budget. Also, several state that the lack of diversity in these
 176 generated responses is the key limitation of scaling RS (Brown et al., 2024; Wang et al., 2025).
 177

178 **Diversity Analysis** To quantify the lack of
 179 diversity in RS, we use Qwen2.5-32B-Instruct
 180 (Yang et al., 2024) to extract the core concept
 181 or theorem from each solution. We present the
 182 prompt for concept extraction in Appendix B.2.
 183 We find that solutions sampled using RS tend
 184 to rely heavily on a few underlying concepts
 185 to solve the problem, even with increasing the
 186 amount of compute. For instance, Llama-3.2-
 187 3B-Instruct used an average of 2.75 different
 188 concepts while solving code generation ques-
 189 tions from the HumanEval benchmark, even
 190 with 100 candidate solutions. Figure 3 repre-
 191 sents the distribution of the number of ques-
 192 tions for how many concepts are generated for
 193 a fixed budget of 100 responses. We observe
 194 that in 64% of the questions, fewer than three
 195 concepts were used to solve the questions, with
 196 36.4% just using one concept.
 197

198 **Tree-of-Thoughts (ToT)** ToT represents a
 199 more sophisticated strategy for enhancing model
 200 performance in complex problem-solving tasks
 201 by explicitly exploring multiple reasoning paths (Yao et al., 2023). ToT guides a language model
 202 to generate a tree of “thoughts”, where each thought t_i is a coherent sequence of text represent-
 203 ing an intermediate step towards a solution. The model generates multiple candidate thoughts
 204 $T_j = \{t_1^{(j)}, t_2^{(j)}, \dots, t_m^{(j)}\}$ from a parent thought t_p . Each of these candidate thoughts is then eval-
 205 uated, often by the LLM itself or a separate verifier, $V(t_i^{(j)} | P, t_p)$, to assess its promise. Search
 206 algorithms like Breadth-First Search (BFS) or Depth-First Search (DFS) are employed to navigate
 207 this tree, allowing the model to look ahead, backtrack if a path seems unpromising, and explore
 208 different lines of reasoning (Long, 2023). The theoretical strength of ToT lies in its potential to
 209 systematically explore a vast solution space, thereby increasing the likelihood of finding a correct
 210 or high-quality solution, especially for tasks where simpler methods like Chain of Thought (CoT)
 211 might falter due to their linear, single-path reasoning. This structured exploration aims to address
 212 issues like the lack of diversity in generated paths by deliberately generating and considering varied
 213 intermediate steps. However, this explicit generation and evaluation of numerous thought branches
 214 make tree-of-thought computationally intensive, with costs scaling with the number of candidates
 215 explored at each step (m) and the depth of the tree (Yao et al., 2023).

216 While ToT solves the lack of diversity observed in RS (Appendix D), it is significantly more com-
 217 putational as explicit evaluation of each intermediate thought generated at every step of the tree’s
 218 expansion is required. To mitigate both the lack of diversity in the solutions and less computational
 219 cost, we propose GUIDED SAMPLING, which we elaborate on in the following sections.

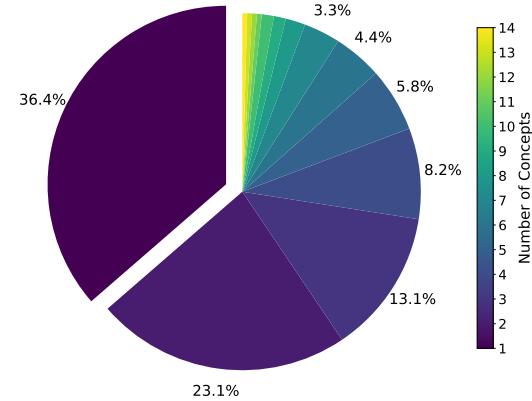


Figure 3: Distribution of the number of concepts used by Llama-3.2-3B-Instruct for 100 candidates. 37% of the questions are attempted with just one concept, while less than 36% of the questions have more than two concepts.

216 3.2 OUR PROPOSED APPROACH
217

218 Our proposed inference algorithm, GUIDEDSAMPLING, improves the diversity by separating ex-
219 ploration and generation into two distinct phases. This separation allows for finer control over the
220 diversity of concepts that can be used to solve a problem, an aspect previous approaches like tra-
221 ditional RS fall short of. Moreover, our method explores the concepts just once in the beginning,
222 which leads to better efficiency than the tree-of-thought strategy. Figure 2 highlights the differences
223 between our strategy and RS. We describe these two phases of our strategy in detail below:

224 **Exploration Phase** The goal of the Exploration Phase is to discover a diverse set of high-level
225 ideas, concepts, or theorems that could guide the solution of a given question. We start with a dataset
226 or a set of questions denoted by X , from which we sample a specific question $x \in X$ to work on.
227 Given this question x and an LLM parameterized by θ , we aim to identify a set of relevant concepts
228 that could support downstream reasoning or problem-solving, denoted as $\mathcal{C} = \{c_1, c_2, \dots, c_K\}$. The
229 process of constructing \mathcal{C} is iterative: the k -th concept is generated by conditioning on the original
230 question x and all previously generated concepts c_1, \dots, c_{k-1} . Formally, this sampling process is
231 expressed as:

$$232 \quad c_k \sim p_\theta(\cdot | x, c_{1:(k-1)})$$

233 This iterative conditioning mechanism promotes diversity among the concepts, encouraging the
234 model to explore different areas of the solution space rather than repeating similar concepts. The al-
235 gorithm continues until either K concepts have been generated or the model determines that no more
236 useful concepts can be produced—allowing for early stopping. The prompts used for exploration
237 are presented in Appendix B.1, and some concept examples are illustrated in Appendix C.

238 **Generation Phase** Once the set of candidate concepts $\mathcal{C} = c_1, c_2, \dots, c_K$ has been established
239 during the Exploration Phase, the Generation Phase uses these concepts to produce concrete solu-
240 tions. For each concept $c_k \in \mathcal{C}$, we generate M potential solutions. These solutions are sampled
241 from the LLM, conditioned on both the original question x and the specific concept c_k :

$$242 \quad \mathcal{S}_k = \left\{ s_k^{(m)} \sim p_\theta(s | x, c_k) \right\}_{m=1}^M$$

243 Each completion $s_k^{(m)}$ represents a full solution that uses the guidance provided by c_k . The full set
244 of candidate solutions is thus $\mathcal{S} = \bigcup_{k=1}^K \mathcal{S}_k$.

245 This structured sampling strategy leverages the earlier exploration to guide the solutions more effec-
246 tively. Instead of relying on unguided or purely random repeated sampling, the model systematically
247 explores multiple reasoning trajectories guided by diverse high-level concepts or theorems. This en-
248 hances the diversity of candidate solutions, increasing the likelihood that at least one solution will
249 be correct. We formally define the GUIDEDSAMPLING algorithm in Algorithm 1.

253 3.3 THEORETICAL BOUNDS FOR GUIDEDSAMPLING
254

255 **Definition 1** (Notation). *Let x be the input prompt and y^* be a correct final solution. Let
256 $\pi_{\text{base}}(y | x)$ be the base model’s conditional probability of generating solution y directly from
257 x . In the GUIDEDSAMPLING framework, we define:*

- 258 • c : An intermediate concept or theorem.
- 259 • \mathcal{C}_r : The set of “relevant” concepts that contain a valid concept pointing towards the correct
260 reasoning path y^* .
- 261 • $\pi_{\text{concept}}(c | x)$: The probability of generating concept c from prompt x .
- 262 • $\pi_{\text{solution}}(y | x, c)$: Probability of generating solution y given the prompt x and concept c .
- 263 • $\mathcal{I}(y; c | x)$: sample-wise mutual information between y and c conditional on x . This
264 represents the additional information contributed by the concept c in predicting y .

265 By intuition, solving a question becomes easier if we know a good problem-appropriate “hint” for a
266 question. To elaborate on the performance bounds of GUIDEDSAMPLING, we make the following
267 assumption:

270 **Assumption 1.** For any “relevant” concept $c \in \mathcal{C}_r$, conditioning on it strictly increases the probability of generating a correct solution y^* . That is, there exists an amplification factor $k_c > 1$ such that:

$$\pi_{base}(y^* | x, c) \geq k_c \cdot \pi_{base}(y^* | x) \quad (1)$$

275 The above assumption is based on the intuition that $\mathcal{I}(y; c | x) > 0$, i.e., any “relevant” concept
276 strictly increases the probability of generating the correct final response. For “irrelevant” concepts
277 ($c \notin \mathcal{C}_r$), the assumption doesn’t hold. We also bridge the intuition to above assumption in Appendix
278 A.1. Following the above assumption, we now state our main theorem:

279 **Theorem 1.** Let $P_{RS}(y^* | x)$ be the probability of generating a correct solution through Repeated
280 Sampling and $P_{GS}(y^* | x)$ be the probability of generating a correct solution through GUIDED-
281 SAMPLING. Under Assumption 1, $P_{GS}(y^* | x) > P_{RS}(y^* | x)$ iff the following condition holds:

$$(k_{min} \cdot P(\mathcal{C}_r | x) - 1) \cdot P_{RS}(y^* | x) + \sum_{c \notin \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) > 0 \quad (2)$$

285 where $P(\mathcal{C}_r | x) = \sum_{c \in \mathcal{C}_r} \pi_{concept}(c | x)$ is the probability of generating a relevant concept, and
286 $k_{min} > 1$ is the amplification factor in accordance with the above assumption.

287 The condition derived in Theorem 1 provides a formal basis for when GUIDEDSAMPLING outper-
288 forms RS. We detail the proof in Appendix A.2. In practice, this condition is satisfied if one or more
289 of the following pathways hold:

291 **Recovery from Irrelevant Concepts** If the second term, $\sum_{c \notin \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c)$,
292 is sufficiently large. This corresponds to the scenario where the model generates a flawed or “ir-
293 relevant” concept but still manages to produce the correct solution, y^* . While this is possible, we
294 observe empirically that it is a rare event. We detail one such case study in Appendix G. Therefore,
295 for GUIDEDSAMPLING to be reliably superior, the following condition is more critical.

297 **Sufficient Concept Coverage** If first term, $(k_{min} \cdot P(\mathcal{C}_r | x) - 1) \cdot P_{RS}(y^* | x) > 0$. Since the
298 second term is a probability distribution and will always remain ≥ 0 , for the overall sum in equation
299 2 to be positive, the first term should be positive. This holds when $P(\mathcal{C}_r | x) > 1/k_{min}$. This can
300 be achieved either when the underlying model’s probability of generating relevant concepts is high
301 ($P(\mathcal{C}_r | x) \gg 0$), or when conditioning on a relevant concept provides a significant probabilistic
302 advantage for generating the correct solution compared to direct generation ($k_{min} \gg 1$). We em-
303 pirically observe both of these to be true for most cases in our study, but some models may lack this
304 ability on certain tasks (e.g., Qwen2.5-3B-Instruct on code generation).

305 3.4 POST-TRAINING USING GUIDEDSAMPLING

307 Synthetic data has become an increasingly effective tool for enhancing the reasoning capabilities of
308 LLMs (Gupta et al., 2023; Mitra et al., 2024; Chaudhary et al., 2023). In particular, inference-time
309 algorithms are valuable for generating such data when the correctness of the final solution can be
310 programmatically verified (Zelikman et al., 2022; Arora & Zanette, 2025; Shao et al., 2024). We
311 demonstrate that GUIDEDSAMPLING can serve not only as an effective inference-time strategy but
312 also as a powerful synthetic data generation mechanism.

313 Let x denote an input question, and $\mathcal{C} = \{c_1, \dots, c_K\}$ be the diverse set of concepts generated for
314 x using exploration phase of GUIDEDSAMPLING. For each concept $c_k \in \mathcal{C}$, we sample a solution
315 $s \sim \mathcal{S}$. We define two distinct settings for constructing synthetic training pairs (x, y) :

317 1. **Final-Answer Only (FA):** In this setting, we discard the generated concept and only use the
318 final verified response s as the target output. This encourages the model to learn mappings
319 from problem statements directly to correct answers, i.e. $(x, y) = (x, s)$. The correspond-
320 ing training objective is the standard fine-tuning loss:

$$\mathcal{L}_{FA} = -\mathbb{E}_{(x, s) \sim \mathcal{D}_{FA}} [\log P_{\theta}(s | x)]$$

323 where \mathcal{D}_{FA} is the dataset constructed under the FA regime and P_{θ} is the model’s conditional
324 distribution parameterized by θ .

324 2. **Concept-Augmented Answer (CAA):** In the CAA setting, we construct an enriched target
 325 sequence that includes both the conceptual diversity and the final answer. Specifically, we
 326 concatenate the concepts \mathcal{C} with one selected solution s to form the training target:
 327

$$328 \quad (x, y) = (x, \text{concat}(\mathcal{C}, s))$$

329 This setting encourages the model to internalize multiple reasoning strategies before com-
 330 mitting to one concrete solution path. The training objective becomes:
 331

$$332 \quad \mathcal{L}_{\text{CAA}} = -\mathbb{E}_{(x, \mathcal{C}, s) \sim \mathcal{D}_{\text{CAA}}} [\log P_{\theta}(y | x)]$$

333 where \mathcal{D}_{CAA} is the dataset constructed under the CAA regime. The prompt for CAA is
 334 provided in Appendix B.3.
 335

336 4 EXPERIMENT SETUP

339 **Baselines** We showcase GUIDEDSAMPLING against Repeated Sampling (RS) to showcase the
 340 better pass@k performance. For training, we compare models trained using Self-Taught Reasoner
 341 (STaR) (Zelikman et al., 2022), RS (Brown et al., 2024), and Tree-of-Thought (Yao et al., 2023).

342 **Dataset** We use test sets of MATH (for mathematical reasoning) (Hendrycks et al., 2021), GPQA-
 343 Diamond (scientific reasoning) (Rein et al., 2024), HumanEval (code generation) (Chen et al., 2021),
 344 and OlympiadBench (mathematical and scientific reasoning) (He et al., 2024) to measure the effec-
 345 tiveness of GUIDEDSAMPLING. For training the models, we first randomly select 10k samples from
 346 the training set of OpenMathInstruct-2 (Toshniwal et al., 2024), math reasoning dataset. We then
 347 create reasoning chains using corresponding inference strategies and select the reasoning chains with
 348 correct final answer since ground truth is available to create corresponding training sets. We detail
 349 the fine-tuning setup in Appendix F.
 350

351 **Models and Metrics** We evaluate two open-source LLMs in our main study – Llama-3.2-3B-
 352 Instruct (Grattafiori et al., 2024) and Qwen2.5-3B-Instruct (Yang et al., 2024). We generate $n = 100$
 353 responses using all models and report values until $k = 50$. For finetuned models, we generate
 354 $n = 10$ responses and report values until $k = 5$. Since our experiments involve generating up
 355 to 100 responses, we also perform a limited study of other models in Appendix E. To assess the
 356 performance, we use the pass@k metric, which is defined as the expected maximum reward obtained
 357 from the k sampled responses out of n , where c are correct candidates. Formally, it is defined as:
 358

$$359 \quad \text{pass}@k = \mathbb{E} \left[1 - \frac{\binom{n-c}{k}}{\binom{n}{k}} \right]$$

361 5 RESULTS AND DISCUSSION

364 **GUIDEDSAMPLING pass@k performance** As shown in Figure 4, GUIDEDSAMPLING signifi-
 365 cantly outperforms RS across the majority of models and benchmark combinations. As an edge
 366 case, only one combination of Qwen2.5-3B-Instruct and HumanEval shows degradation in per-
 367 formance due to weak concept generation. Averaging across all models, we observe pass@50 im-
 368 provements of 21.8% on MATH, 11.87% on GPQA-Diamond, 11.28% on HumanEval, and 3.08%
 369 on OlympiadBench. These results highlight that structured exploration enables more effective use of
 370 limited compute. However, the gains from GUIDEDSAMPLING are not uniform across all tasks and
 371 models. While Qwen2.5-3B-Instruct achieves strong improvements on MATH, its performance on
 372 HumanEval worsens compared to traditional RS. Upon closer analysis, this drop stems from Qwen’s
 373 limited ability to generate diverse concepts for coding during the exploration phase. As mentioned
 374 in §3.3, a weaker probability of generating good concepts, $P(C_r | x)$, results in lower performance
 375 of GUIDEDSAMPLING. On average, Qwen produces only 1.13 distinct concepts per HumanEval
 376 problem, indicating that nearly all sampled solutions are guided by the same idea. This lack of di-
 377 versity not only fails to leverage the core strengths of GUIDEDSAMPLING but can also dilute the
 378 model’s effectiveness by forcing the model to follow a particular concept. In contrast, Llama-3.2-
 379 3B-Instruct generates 7.58 unique concepts on average on HumanEval, enabling richer exploration

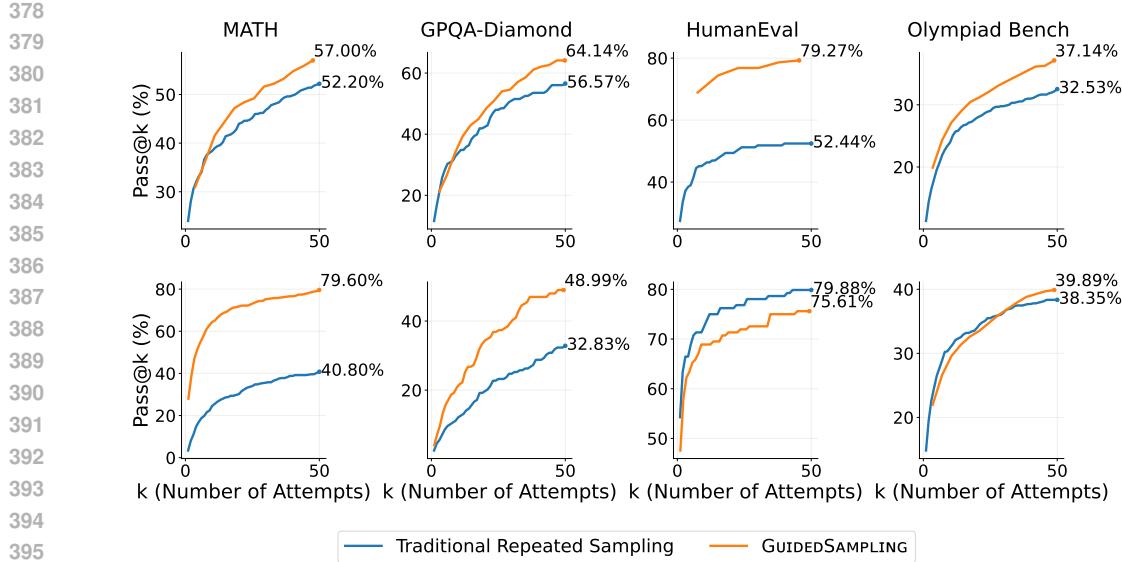


Figure 4: GUIDED SAMPLING forces exploration during inference-time, resulting in 16.01% average pass@k improvement compared to repeated sampling. We observe an average improvement of 21.8% on MATH, 11.87% on GPQA-Diamond, 11.28% on HumanEval, and 3.08% on Olympiad-Bench. **First row:** For Llama-3.2-3B-Instruct, **Second row:** For Qwen2.5-3B-Instruct. For GUIDED SAMPLING, we choose the optimal value of K (from Fig. 5) that maximizes the performance.

and stronger performance. These results underscore that the successful application of GUIDED SAMPLING depends critically on the model’s ability to generate varied and relevant high-level ideas. To validate whether the observed drop is due to poor concept generation or Qwen’s inability to generate the correct solution from the concept, we use the concepts generated by Llama-3.2-3B-Instruct for generating the final answer. Using a stronger concept generator yields a pass@50 performance of 83.53%, a 3.65% improvement from RS. The smaller gains of Qwen on OlympiadBench can be attributed to the benchmark’s high difficulty (olympiad-level problems) combined with the relatively small model size (3B). Nevertheless, GUIDED SAMPLING still yields measurable improvements.

The higher performance of GUIDED SAMPLING is due to K concepts being generated. In practice, this value is far lower than the number of samples generated (100 in our case). Moreover, as the compute increases (increasing k for pass@k), we observe that the performance gap between Repeated Sampling and GUIDED SAMPLING increases in most cases (Fig. 4), suggesting that GUIDED SAMPLING benefits more with increased compute. This leads us to believe that when computational resources are sufficient, a small overhead of sequential calls for generating concepts might be a beneficial tradeoff for better performance.

Diversity in GUIDED SAMPLING To measure the diversity of candidate solutions, we use Qwen2.5-32B-Instruct (Yang et al., 2024) to extract the core concept or theorem. We then compute the number of distinct concepts generated. On average, RS produces 3.54, 6.72, 2.66, and 3.25 distinct concepts on MATH, GPQA-Diamond, HumanEval, and OlympiadBench, respectively. GUIDED SAMPLING produces 3.66, 7.66, 3.87, and 3.81 distinct concepts, improving the diversity by an average of 17.63%. We also found the diversity gains from GUIDED SAMPLING are model-specific. We find that Llama-3.2-3B-Instruct generates $3.7\times$ more unique concepts on average compared to Qwen2.5-3B-Instruct, with this gap ranging from $2.82\times$ on GPQA-Diamond to $5.12\times$ on HumanEval. This suggests that model architecture and pretraining influence the capacity for generating novel reasoning strategies. We show examples of generated concepts in Appendix C.

Trade-off between Exploration and Generation A key design choice in GUIDED SAMPLING is the allocation of the limited inference compute budget IC between the exploration phase (number of concepts K) and the generation phase (number of samples M per concept, where $M = IC/K$). The number of distinct concepts K directly controls this trade-off: a larger K encourages broader exploration of different approaches, but consequently reduces the compute available for generating

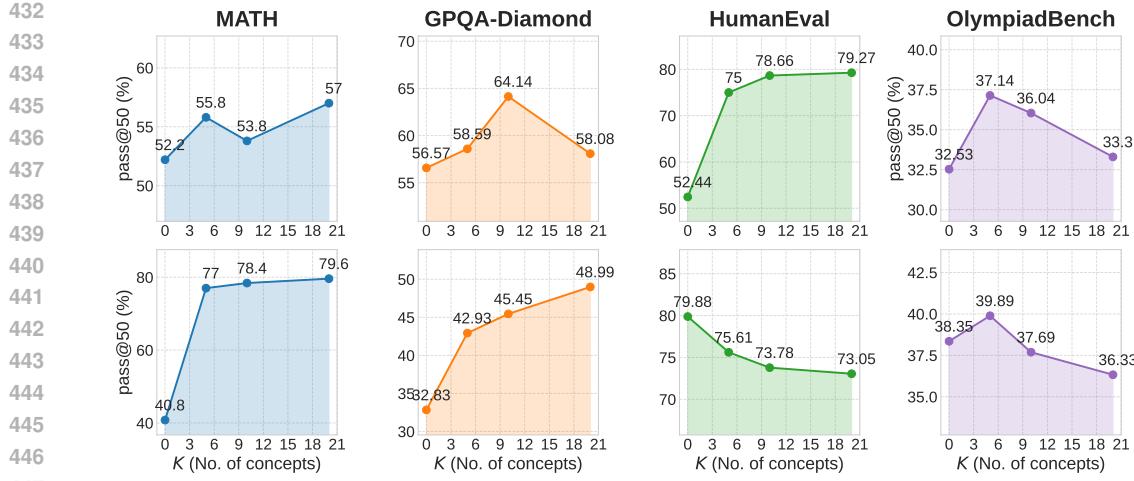


Figure 5: Pass@50 performance variation with different exploration (number of concepts K) and generation (samples per idea M) compute allocations, given a fixed total compute of 100 calls ($M = 100/K$). Increasing exploration initially helps, but performance declines when the generation budget per idea becomes too small. At $K = 0$, GUIDED SAMPLING becomes traditional RS. The first row shows results for Llama-3.2-3B-Instruct, and the second for Qwen2.5-3B-Instruct.

solutions using each approach (i.e., smaller M). Conversely, a smaller K allows for more generations using fewer concepts. As demonstrated in Fig. 5, increasing exploration by increasing K initially boosts performance in most cases by uncovering more diverse, potentially successful strategies. However, beyond an optimal point, performance may decline as the generation budget M for each concept becomes insufficient to thoroughly develop any single approach.

Performance of Earlier vs Later Concepts During the concept generation phase of GUIDED SAMPLING, concepts are generated iteratively. To determine the contribution of the k -th concept across all questions that produced at least k concepts, we analyzed all models and benchmarks mentioned in §4, which contains a total of 1772 questions. We observe a minor decline from $k = 1$ to 5 (19.8% to 16.2%). This observation suggests that earlier concepts suggested by the concept generator are better than later ones. However, for concepts with index $k \geq 6$ (i.e., when more exploration is needed) a higher performance variance due to a sharp decrease in coverage is observed. E.g., only 72 out of 1772 questions reach $k = 9$, meaning there are fewer samples with $k \geq 6$ concepts. This results in variations in performance, with higher performance being observed for many such cases (e.g., 52.05% performance for $k = 14$, due to just 23 instances). Thus, although the earlier concepts are beneficial, later ones ($k \geq 6$) also contribute to increasing performance, but for a small number of instances that require significant exploration. Hence, for the overall success of GuidedSampling, even the later ones are also important, but the earlier ones play a major role. Individual performance values are provided in Appendix I.

Dependence of GUIDED SAMPLING on Well-defined Concepts Theorem 1 states that for a “relevant” concept c , conditioning on c increases the probability of generating the correct solution. However, in domains such as commonsense reasoning, which involve more imprecise, vague, and uncertain knowledge, defining such concepts is difficult. Hence, the condition stated in Theorem 1, i.e., $P(C_r|x) \gg 0$, might not be satisfied. Applying GUIDED SAMPLING to Qwen2.5-3B-Instruct on CommonSenseQA (Talmor et al., 2019), a commonsense benchmark. The model is prompted to generate a general idea that could help solve the question (not a task-specific concept, since those are lacking in the commonsense domain). On such domains, GUIDED SAMPLING underperforms against Repeated Sampling by 3.28% (pass@50). Based on this, we believe that GUIDED SAMPLING has a better chance of succeeding when concepts can be formulated efficiently. More details in Appendix E.

486 **Final Answer Selection via Majority Voting** To select a final solution after sampling multiple
 487 times, we use the majority voting technique, where the most common solution is selected as the
 488 final answer. GUIDEDSAMPLING achieves an average accuracy of 35.87% compared to Repeated
 489 Sampling (32.80%) and Tree-of-Thought (26.26%). Detailed accuracies in Appendix E.3.
 490

491 **Finetuning models on GUIDEDSAMPLING trajectories** Models fine-tuned on data synthesized
 492 via GUIDEDSAMPLING significantly outperform those trained using data from other inference-time
 493 algorithms, as illustrated in Table 1. Notably, when the models are asked to produce more responses
 494 (pass@5), a bigger improvement in performance is observed. On average, the CAA setting yields
 495 7.13% pass@5 improvements compared to the RS, while FA shows 5.64% pass@5 improvements
 496 against RS. Models trained using trajectories from Tree-of-Thought, another explorative strategy,
 497 performed better than RS as well, showing a 4.37% improvement, but still underperformed when
 498 compared against GUIDEDSAMPLING: FA (1.45%) and CAA (2.76%).
 499

500 Table 1: Performance of Llama-3.2-3B-Instruct trained using different synthetic data creation strate-
 501 gies. FA: Using just the final answer for training the model. CAA: Using both the concepts and the
 502 corresponding final solution to create the training data.

503 Method	504 MATH		505 GPQA-Diamond		506 HumanEval		507 OlympiadBench	
	508 pass@1	509 pass@5	510 pass@1	511 pass@5	512 pass@1	513 pass@5	514 pass@1	515 pass@5
516 Base Model	24.00%	33.20%	11.62%	28.28%	27.44%	39.02%	11.32%	19.56%
517 RS	37.62%	44.78%	18.13%	40.08%	52.13%	55.78%	6.42%	10.83%
518 STaR	36.60%	46.23%	16.61%	38.41%	52.13%	57.35%	5.82%	10.62%
519 ToT	40.40%	56.63%	16.77%	44.44%	35.73%	49.51%	9.19%	18.36%
520 FA (Ours)	29.88%	47.98%	20.20%	50.61%	48.17%	55.95%	11.21%	20.21%
521 CAA (Ours)	38.00%	60.06%	15.66%	40.23%	53.05%	59.21%	10.76%	20.47%

522 **Diversity of Solutions by Finetuned Models** We extract the core concept or theory used in the
 523 candidate solutions and observe that diversity increases from 1.67 (RS) to 2.58 (FA) and 3.03 (CAA).
 524 Surprisingly, the largest diversity gain occurs on GPQA-Diamond rather than MATH, indicating that
 525 diversity learned through training on mathematical reasoning data can transfer to other domains.
 526 This highlights the generalizability of the GUIDEDSAMPLING framework across domains.
 527

528 6 CONCLUSIONS

529 We propose a new inference-time algorithm, GUIDEDSAMPLING, that forces exploration of can-
 530 didate solutions over repeated sampling. The paper demonstrates how performance varies with
 531 shifting compute between the exploration of diverse concepts and the generation of final solutions
 532 and shows pass@50 improvements of up to 34.6%. Furthermore, fine-tuning LLMs on trajectories
 533 generated by GUIDEDSAMPLING significantly boosts performance on mathematical reasoning and
 534 shows generalizability to other domains like scientific reasoning and code generation.
 535

536 LIMITATIONS AND FUTURE WORK

537 While our method is successful in improving the diversity of solutions generated by LLMs, it repre-
 538 sents an early step in this area and has some limitations, including but not limited to the following:
 539

- 540 1. **Robust Concepts:** Current implementation of GUIDEDSAMPLING has no mechanism for
 541 verifying how useful the generated concept is. Although some “irrelevant” concepts can
 542 help, a more robust pipeline for generating concepts can boost the performance even further.
 543
- 544 2. **Better Verifier:** GUIDEDSAMPLING has an exploration phase, which forces the model to
 545 explore multiple concepts, increasing diversity. This can lead to multiple final solutions.
 546 While this increases pass@k, building a robust verifier that can select a final solution, even
 547 if it is in the minority, remains a challenging future task.
 548

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our results, we release the source code and data through
543 the anonymized GitHub repo [https://anonymous.4open.science/r/sampling_](https://anonymous.4open.science/r/sampling_inference-B44E)
544 [inference-B44E](https://anonymous.4open.science/r/sampling_inference-B44E). We commit to releasing the non-anonymized version publicly following pub-
545 lication. We also note that LLMs are inherently probabilistic in nature, and some results may vary
546 upon each run. We hope our code and data aid in future research.

548 ETHICS STATEMENT
549

550 In accordance with ICLR policy, we disclose that AI assistants, specifically Grammarly for gram-
551 mar correction and ChatGPT for sentence restructuring and paraphrasing, were utilized during the
552 preparation of this manuscript. The authors have reviewed, edited, and take full responsibility for
553 all final content presented in this paper.

555 REFERENCES
556

557 Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin
558 Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical
559 report: Compact yet powerful multimodal language models via mixture-of-loras. *arXiv preprint*
560 *arXiv:2503.01743*, 2025.

561 Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint*
562 *arXiv:2502.04463*, 2025.

564 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
565 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
566 *arXiv preprint arXiv:2407.21787*, 2024.

567 Aditi Chaudhary, Karthik Raman, and Michael Bendersky. It's all relative!—a synthetic query gen-
568 eration approach for improving zero-shot relevance prediction. *arXiv preprint arXiv:2311.07930*,
569 2023.

570 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
571 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
572 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

574 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
575 ing: Disentangling computation from reasoning for numerical reasoning tasks. *arXiv preprint*
576 *arXiv:2211.12588*, 2022.

577 Yinlam Chow, Guy Tennenholz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
578 Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning
579 for best-of-n sampling in large language models. *arXiv preprint arXiv:2412.15287*, 2024.

580 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
581 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
582 solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>, 9, 2021.

584 Andrew Estornell and Yang Liu. Multi-llm debate: Framework, principals, and interventions. *Ad-*
585 *vances in Neural Information Processing Systems*, 37:28938–28964, 2024.

586 Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
587 Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
588 evitable? breaking the curse of recursion by accumulating real and synthetic data. *arXiv preprint*
589 *arXiv:2404.01413*, 2024.

591 Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
592 Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does think-
593 ing more always help? understanding test-time scaling in reasoning models. *arXiv preprint*
arXiv:2506.04210, 2025.

594 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 595 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 596 of models. *arXiv preprint arXiv:2407.21783*, 2024.

597

598 Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and
 599 the sweetness of best-of-n sampling. *arXiv preprint arXiv:2406.00832*, 2024.

600

601 Himanshu Gupta, Kevin Scaria, Ujjwala Anantheswaran, Shreyas Verma, Mihir Parmar, Saurabh Ar-
 602 jun Sawant, Chitta Baral, and Swaroop Mishra. Targen: Targeted data generation with large
 603 language models. *arXiv preprint arXiv:2310.17876*, 2023.

604

605 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 606 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 607 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint
 608 arXiv:2402.14008*, 2024.

609

610 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 611 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 612 preprint arXiv:2103.03874*, 2021.

613

614 Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
 615 Agarwal. V-star: Training verifiers for self-taught reasoners. *arXiv preprint arXiv:2402.06457*,
 616 2024.

617

618 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 619 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 620 arXiv:2410.21276*, 2024.

621

622 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 623 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 624 models. *arXiv preprint arXiv:2001.08361*, 2020.

625

626 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 627 language models are zero-shot reasoners. *Advances in neural information processing systems*,
 628 35:22199–22213, 2022.

629

630 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
 631 Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
 632 reinforcement learning. *arXiv preprint arXiv:2409.12917*, 2024.

633

634 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
 635 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
 636 with alphacode. *Science*, 378(6624):1092–1097, 2022.

637

638 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 639 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
 640 International Conference on Learning Representations*, 2023.

641

642 Jieyi Long. Large language model guided tree-of-thought. *arXiv preprint arXiv:2305.08291*, 2023.

643

644 Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweta Mahajan, Dany Rouhana, Andres Co-
 645 das, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward gen-
 646 erative teaching with agentic flows. *arXiv preprint arXiv:2407.03502*, 2024.

647

648 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 649 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 650 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

651

652 Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen, Long Le, Swaroop Mishra, Hossein Mobahi,
 653 Jindong Gu, Zifeng Wang, Hootan Nakhost, et al. Plangen: A multi-agent framework for
 654 generating planning and reasoning trajectories for complex problem solving. *arXiv preprint
 655 arXiv:2502.16111*, 2025.

648 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 649 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 650 mark. In *First Conference on Language Modeling*, 2024.

651

652 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 653 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
 654 code, 2023. URL <https://arxiv.org/abs/2308.12950>, 2023.

655

656 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 657 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 658 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

659

660 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
 661 Ai models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759,
 662 2024.

663

664 Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
 665 Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
 666 for problem-solving with language models. *arXiv preprint arXiv:2312.06585*, 2023.

667

668 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 669 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

670

671 Vighnesh Subramaniam, Yilun Du, Joshua B Tenenbaum, Antonio Torralba, Shuang Li, and Igor
 672 Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains. *arXiv preprint
 673 arXiv:2501.05707*, 2025.

674

675 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 676 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference
 677 of the North American Chapter of the Association for Computational Linguistics: Human Lan-
 678 guage Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, 2019.

679

680 Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
 681 inference time objectives using reinforcement learning. *arXiv preprint arXiv:2503.19595*, 2025.

682

683 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 684 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 685 report. *arXiv preprint arXiv:2503.19786*, 2025.

686

687 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
 688 Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
 689 data. *arXiv preprint arXiv:2410.01560*, 2024.

690

691 Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
 692 Position: Will we run out of data? limits of llm scaling based on human-generated data. In *Forty-
 693 first International Conference on Machine Learning*, 2024.

694

695 Tianchun Wang, Zichuan Liu, Yuanzhou Chen, Jonathan Light, Haifeng Chen, Xiang Zhang,
 696 and Wei Cheng. Diversified sampling improves scaling llm inference. *arXiv preprint
 697 arXiv:2502.11027*, 2025.

698

699 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 700 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 701 *arXiv preprint arXiv:2203.11171*, 2022.

702

703 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 704 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 705 neural information processing systems*, 35:24824–24837, 2022.

706

707 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis of
 708 compute-optimal inference for problem-solving with language models. 2024.

702 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
703 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
704 *arXiv:2412.15115*, 2024.

705

706 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
707 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
708 *vances in neural information processing systems*, 36:11809–11822, 2023.

709 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
710 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

711

712 Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
713 mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. *arXiv preprint*
714 *arXiv:2406.07394*, 2024.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THEORETICAL PROOFS
757758 A.1 FROM INTUITION TO ASSUMPTION 1
759760 Assumption 1 stems from the intuition that any “relevant” concept helps in answering a given ques-
761 tions, i.e., the concept adds more information which is useful. This is represented as sample-wise
762 information between y and c conditioned on x .

763
$$\begin{aligned} \mathcal{I}(y; c | x) &> 0 \\ 764 \log \pi_{base}(y^* | x, c) - \log \pi_{base}(y^* | x) &> 0 \\ 765 \log \pi_{base}(y^* | x, c) &> \log \pi_{base}(y^* | x) \\ 766 \pi_{base}(y^* | x, c) &\geq k_c \cdot \pi_{base}(y^* | x) \end{aligned} \tag{3}$$

768 This is the stated assumption 1.
769770 A.2 PROOF OF THEOREM 1
771772 *Proof.* The probability of generating a correct solution via Repeated Sampling is given by:
773

774
$$P_{RS}(y^* | x) = \pi_{base}(y^* | x) \tag{4}$$

775 For GUIDED SAMPLING, the probability of generating a correct solution:
776

777
$$P_{GS}(y^* | x) = \sum_c \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) \tag{5}$$

779 We can partition the sum based on whether the concept is in the set of relevant concepts, \mathcal{C}_r :
780

781
$$P_{GS}(y^* | x) = \sum_{c \in \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) + \sum_{c \notin \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) \tag{6}$$

784 Let’s analyze the first term. By Assumption 1, for any informative concept $c \in \mathcal{C}_{inf}$, we have
785 $\pi_{base}(y^* | x, c) = k_c \cdot \pi_{base}(y^* | x)$ where $k_c > 1$. Intuitively, since relevant concepts tend
786 to be informative, we can say that for any relevant concept $c \in \mathcal{C}_r$, we have $\pi_{base}(y^* | x, c) =$
787 $k_c \cdot \pi_{base}(y^* | x)$. Let $k_{min} = \min_{c \in \mathcal{C}_r} k_c$. It follows that $k_{min} > 1$. We can therefore lower-bound
788 the first term:

789
$$\sum_{c \in \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) \geq \sum_{c \in \mathcal{C}_r} \pi_{concept}(c | x) \cdot (k_{min} \cdot \pi_{base}(y^* | x)) \tag{7}$$

791
$$= k_{min} \cdot \pi_{base}(y^* | x) \sum_{c \in \mathcal{C}_r} \pi_{concept}(c | x) \tag{8}$$

793
$$= k_{min} \cdot P_{RS}(y^* | x) \cdot P(\mathcal{C}_r | x) \tag{9}$$

794 where $P(\mathcal{C}_r | x)$ is the total probability of sampling a valid concept.
795796 Substituting this back into our expression for $P_{GS}(y^* | x)$ (Eq. 5), we get:
797

798
$$P_{GS}(y^* | x) \geq k_{min} \cdot P_{RS}(y^* | x) \cdot P(\mathcal{C}_r | x) + \sum_{c \notin \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) \tag{10}$$

800 For GUIDED SAMPLING to be superior to repeated sampling, we require $P_{GS}(y^* | x) > P_{RS}(y^* | x)$.
801 This inequality holds if:
802

803
$$k_{min} \cdot P_{RS}(y^* | x) \cdot P(\mathcal{C}_r | x) + \sum_{c \notin \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) > P_{RS}(y^* | x) \tag{11}$$

805 Rearranging the terms yields the condition stated in the theorem:
806

807
$$(k_{min} \cdot P(\mathcal{C}_r | x) - 1) \cdot P_{RS}(y^* | x) + \sum_{c \notin \mathcal{C}_r} \pi_{concept}(c | x) \cdot \pi_{base}(y^* | x, c) > 0 \tag{12}$$

808

809 \square

810 **B PROMPTS USED IN OUR STUDY**
811812 **B.1 EXPLORATION PROMPTS**
813814 **B.1.1 MATH**
815816 The following prompts were used for GUIDEDSAMPLING for the MATH (Hendrycks et al., 2021)
817 benchmark.818 **MATH Initial Concept Generation**
819820 You are an expert mathematician. You will be presented with a mathematical question and
821 your task is to identify and state one single, specific theorem or fundamental concept that is
822 most relevant and useful for solving the problem.823 **QUESTION:**
824825 `{ele['question']}`826 Provide only the name of the theorem or concept, or a concise statement of the principle,
827 that is most directly applicable to solving this problem. Do not attempt to solve the original
828 problem. Only provide the theorem or concept.830 **MATH Subsequent Concept Generation**
831832 You are an expert mathematician. You will be presented with a mathematical question and
833 a list of theorems and concepts that have already been proposed as potentially useful for
834 solving the problem. Your task is to provide a *new* and *different* theorem or concept
835 that is most relevant and useful for solving the problem.836 **QUESTION:**
837838 `{ele['question']}`839 **EXISTING CONCEPTS:**
840841 `{ideas_text}`842 Provide only the name of the theorem or concept, or a concise statement of the principle,
843 that is most directly applicable to solving this problem. Do not attempt to solve the original
844 problem. Only provide the theorem or concept. If no new, distinct, and useful theorem or
845 concept can be identified, respond with “No additional concepts found.”846 **B.1.2 GPQA-DIAMOND**
847848 The following prompts were used for GUIDEDSAMPLING for the GPQA-Diamond (Rein et al.,
849 2024) benchmark.850 **GPQA-Diamond Initial Concept Generation**
851852 You are an expert scientist and problem solver. You will be presented with a complex,
853 graduate-level science question and your task is to identify and state one single, specific
854 theorem or fundamental concept that is most relevant and useful for solving the problem.855 **QUESTION:**
856857 `{ele['question']}{options}`858 Provide only the name of the theorem or concept, or a concise statement of the principle,
859 that is most directly applicable to solving this problem. Do not attempt to solve the original
860 problem. Only provide the theorem or concept.

864
865

GPQA-Diamond Subsequent Concept Generation

866
867
868
869

You are an expert scientist and problem solver. You will be presented with a complex, graduate-level science question and a list of theorems and concepts that have already been proposed as potentially useful for solving the problem. Your task is to provide a **new** and **different** theorem or concept that is most relevant and useful for solving the problem.

870

QUESTION:

```
{ele['question']}{options}
```

871
872
873
874
875

EXISTING CONCEPTS:

```
{ideas_text}
```

876
877
878
879
880

Provide only the name of the theorem or concept, or a concise statement of the principle, that is most directly applicable to solving this problem. Do not attempt to solve the original problem. Only provide the theorem or concept. If no new, distinct, and useful theorem or concept can be identified, respond with “No additional concepts found.”

881
882

B.1.3 HUMANEVAL

883
884

The following prompts were used for GUIDEDSAMPLING for the HumanEval (Chen et al., 2021) benchmark.

885

HumanEval Initial Concept Generation

886
887
888
889

You are an expert python programmer. You will be presented with a programming question and your task is to identify and state one single, specific concept that is most relevant and useful for solving the problem.

890
891
892
893

QUESTION:

```
{ele['question']}
```

894
895
896
897
898
899

Provide only the name or short description of the concept, that is most directly applicable to solving this problem. Do not attempt to solve the original question. Only provide the concept.

900
901

HumanEval Subsequent Concept Generation

902
903
904
905
906
907

You are an expert python programmer. You will be presented with a programming question and a list of concepts that have already been proposed as potentially useful for solving the question. Your task is to provide a **new** and **different** concept that is most relevant and useful for solving the question.

908
909
910

QUESTION:

```
{ele['question']}
```

911
912
913

EXISTING CONCEPTS:

```
{ideas_text}
```

914
915
916
917

Provide only the name or the short description of the concept, that is most directly applicable to solving this problem. Do not attempt to solve the original question. Only provide the concept. If no new, distinct, and useful concept can be identified, respond with “No additional concepts found.”

918 B.1.4 OLYMPIADBENCH
919920 The following prompts were used for GUIDEDSAMPLING for the OlympiadBench (He et al., 2024)
921 benchmark.
922

923

924 OlympiadBench Initial Concept Generation
925926 You are an expert scientist. You will be presented with a question and your task is to identify
927 and state one single, specific theorem or concept that is most relevant and useful for solving
928 the problem.

929

930 QUESTION:
931 {ele['question']}932 Provide only the name of the theorem or concept that is most directly applicable to solving
933 this problem. Do not attempt to solve the original problem. Only provide a single theorem
934 or concept.

935

936

937 OlympiadBench Subsequent Concept Generation
938939 You are an expert scientist. You will be presented with a question and a list of theorems
940 and concepts that have already been proposed as potentially useful for solving the problem.
941 Your task is to provide a single **new** and **different** theorem or concept that is most
942 relevant and useful for solving the problem. Do not elaborate on the theorem or concept.
943 If no new, distinct, and useful theorem or concept can be identified, respond with “No
944 additional concepts found.”

945

946 QUESTION:
947 {ele['question']}948 EXISTING CONCEPTS:
949 {ideas_text}950 Provide only the name of a single new and different theorem or concept that is most directly
951 applicable to solving this problem. Do not attempt to solve the original problem. If no
952 new, distinct, and useful theorem or concept can be identified, respond with “No additional
953 concepts found.”

954

955

956

957 B.2 CONCEPT EXTRACTION PROMPT
958

959

960 Concept Extraction Prompt
961962 You are ConceptTagger, an expert that maps a worked-out solution (chain-of-thought or
963 final answer) to the most specific mathematical or logical concept that makes the solution
964 possible.965 Task: For every input consisting of a reasoning explanation (a step-by-step solution,
966 scratch-work, or short justification):
967

1. Read the explanation.
2. Decide which single mathematical concept, theorem, or canonical formula is essential
968 for the solution.
3. Output that concept’s standard name—nothing else.

970

971

972
 973 Choose the narrowest concept that still covers the whole solution.
 974 • Good: “Pythagorean Theorem” (precise).
 975 • Bad: “Geometry” (too broad).
 976 If two or more concepts appear, pick the one without which the problem cannot be solved
 977 (typically the first pivotal step).

978 Here are two examples:
 979

980 ### Example 1
 981 Problem: A right triangle has legs of lengths 5 cm and 12 cm. What is the length of the
 982 hypotenuse?
 983 Step-by-step solution:
 984 Step 1: Recognize this is a right triangle → apply the Pythagorean Theorem.
 985 Step 2: hypotenuse = $\sqrt{(5^2 + 12^2)} = \sqrt{(25 + 144)} = \sqrt{169} = 13\text{cm}$
 986 Concept Used: Pythagorean Theorem

987 ### Example 2
 988 Problem: What is the area of a rectangle with a length of 9 meters and width of 4 meters?
 989 Step-by-step solution:
 990 Step 1: Identify the shape as a rectangle.
 991 Step 2: Use the area formula: Area = length × width = $9 \times 4 = 36\text{ m}^2$
 992 Concept Used: Area of Rectangle

993
 994 Formatting Rules:
 995 Output exactly one line with the concept name.
 996 Use Title Case and the singular form (e.g., “Least Common Multiple”, not “LCMs”).
 997 No extra punctuation, explanation, or line breaks.

1000 B.3 CAA PROMPT

1001
 1002 CAA Data
 1003
 1004 I have a few ideas to solve this problem.
 1005 a) {Concept 1}
 1006 :
 1007 k) {Concept k}
 1008
 1009 To solve the problem I will use the idea i) {Concept i}:
 1010
 1011 {Step by step solution}
 1012
 1013 **Final Answer**
 1014 {Final Answer}

1015 C CONCEPT EXAMPLES

1016
 1017 In this section, we detail some examples from each benchmark and the concepts generated by Re-
 1018 peated Sampling and GUIDED SAMPLING. We extract the concepts using Qwen2.5-32B-Instruct.

1019
 1020 C.1 CONCEPT EXAMPLES IN MATH

1021
 1022 For the following question from the MATH benchmark, Table 2 displays the generated concepts
 1023 related to the above question.

1026

1027 Convert the point $(0, 3)$ in rectangular coordinates to polar coordinates. Enter your answer
 1028 in the form (r, θ) , where $r > 0$ and $0 \leq \theta < 2\pi$.

1029

1030

1031 Table 2: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a MATH instance.

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

C.2 CONCEPT EXAMPLES IN GPQA-DIAMOND

1042

1043

1044

For the following question from the GPQA-Diamond benchmark, Table 3 displays the generated concepts related to the above question.

1045

1046

1047

1048

1049

1050

1051

1052

Two quantum states with energies E_1 and E_2 have a lifetime of 10^{-9} sec and 10^{-8} sec, respectively. We want to clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can be clearly resolved?

1053

1054

1055

1056

Table 3: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a GPQA-Diamond instance.

1057

1058

1059

C.3 CONCEPT EXAMPLES IN HUMANEVAL

1060

1061

1062

For the following question from the HumanEval benchmark, Table 4 displays the generated concepts related to the above question.

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

```
from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:
    """ Input to this function is a string containing multiple
    groups of nested parentheses. Your goal is to separate
    those group into separate strings and return the list of
    those.
    Separate groups are balanced (each open brace is properly
    closed) and not nested within each other
    Ignore any spaces in the input string.
    >>> separate_paren_groups('() (( )) (( )( ))')
    ['()', '(())', '(()())']"""

```

C.4 CONCEPT EXAMPLES IN OLYMPIADBENCH

1076

1077

1078

1079

For the following question from the OlympiadBench benchmark, Table 5 displays the generated concepts related to the above question.

1080

1081 Table 4: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a HumanEval in-
1082 stance.

Repeated Sampling	GUIDEDSAMPLING
Stack	Graph-Based Approach with a Stack
Parentheses Matching	Balanced Parentheses Tree Construction
Stack Manipulation Space Ignoring	Recursive Descent Parsing Prefix Tree Traversal
	Dynamic Programming with Memoization
	Level Order Traversal with a Queue
	Suffix Tree Construction with a Stack
	Counter-Based Approach with a Stack
	Kruskal's Algorithm with a Union-Find Data Structure
	Nested Set Algorithm

1093

1094

1095 Xenia and Sergey play the following game. Xenia thinks of a positive integer N not exceeding 5000. Then she fixes 20 distinct positive integers a_1, a_2, \dots, a_{20} such that, for each
1096 $k = 1, 2, \dots, 20$, the numbers N and a_k are congruent modulo k . By a move, Sergey
1097 tells Xenia a set S of positive integers not exceeding 20, and she tells him back the set
1098 $\{a_k : k \in S\}$ without spelling out which number corresponds to which index. How many
1099 moves does Sergey need to determine for sure the number Xenia thought of?
1100

1101

1102

1103

1104 Table 5: Concepts generated via Repeated Sampling and GUIDEDSAMPLING on a GPQA-Diamond
1105 instance.

Repeated Sampling	GUIDEDSAMPLING
Chinese Remainder Theorem	Pigeonhole Principle
Inclusion-Exclusion Principle	Chebyshev's Postulate
Pick's Theorem	Erdős-Szekeres Lemma Sperner's Lemma Dirichlet's Box Principle Hadamard's Lemma König's Theorem

1113

1114

1115

1116

D DIVERSITY ANALYSIS OF INFERENCE-TIME ALGORITHMS

1117

1118 Here we detail the diversity analysis of Repeated Sampling (RS), Tree-of-Thought (ToT), and GUID-
1119 EDSAMPLING. We use Qwen-2.5-32B-Instruct to extract the concepts used in each candidate solu-
1120 tion. We observe an average of 4.04 concepts in RS, while in GUIDEDSAMPLING, we observe 4.75
1121 different concepts, with less compute budget. With ToT, on the other hand, we observe 4.25 average
1122 concepts.
1123

1124

1125

E MORE RESULTS USING GUIDEDSAMPLING

1126

1127

E.1 RESULTS FOR MORE LLMs

1128

1129 In this section, we showcase some results on additional models. As mentioned in §4, we generate
1130 100 candidate solutions for each instance. We provide results on Phi-4-mini-instruct (Abouelenin
1131 et al., 2025), GPT-4o-mini (Hurst et al., 2024), and Gemma-3-27b-it (Team et al., 2025). Due
1132 to limited resource constraints, we limit the proprietary model to just the MATH (Hendrycks et al.,
1133 2021) benchmark. Table 6 and 7 show the pass@50 results for these models along with the observed
diversity as extracted by Qwen-3.2-32B-Instruct (Yang et al., 2024). Diversity is measured by the
average number of concepts for each instance.

1134

1135 Table 6: pass@50 performance of GPT-4o-mini and Phi-4-mini-instruct on MATH, along with diver-
1136 sity of concepts observed in candidate solutions. RS: Repeated Sampling, GS: GUIDEDSAMPLING

Model	Repeated Sampling	GUIDEDSAMPLING	Diversity in RS	Diversity in GS
GPT-4o-mini	85.71%	90.00%	3.2	5.0
Phi-4-mini-instruct	71.80%	80.80%	2.1	3.4

1140

1141

1142 Table 7: pass@50 performance of Gemma-3-27b-it
1143

Benchmark	Repeated Sampling	GUIDEDSAMPLING
MATH	81.00%	82.87%
GPQA-Diamond	70.20%	91.92%
MATH	83.54%	94.51%

1144

1145

E.2 RESULTS ON COMMONSENSEQA

1146

1147 Results for Qwen2.5-3B-Instruct on CommonSenseQA are reported in Table 8. The prompts used
1148 don't specify a task-specific definition of concepts. Prompts are as follows:
1149

1150

1151

1152

1153

CommonSenseQA Initial Concept Generation

1154

1155

1156

1157

You are a helpful assistant. Your task is to state a concept that is relevant and useful for
answering the question.

1158

1159

QUESTION:

1160

{ele['question']}

1161

1162

1163

Provide the concept that is most directly applicable to answering the question. Do not answer
the original question.

1164

1165

1166

CommonSenseQA Subsequent Concept Generation

1167

1168

1169

1170

You are a helpful assistant. You will be presented with a question and a list of concepts
that have already been proposed as potentially useful for answering the question. Your task
is to provide a *new* and *different* concept that is relevant and useful for answering the
question.

1171

1172

QUESTION:

1173

{ele['question']}

1174

1175

EXISTING CONCEPTS:

1176

{ideas_text}

1177

1178

1179

Provide the concept that is most directly applicable to answering the question. Do not answer
the original question. If no new, distinct, and useful concept can be identified, respond with
“No additional concepts found.”

1180

1181

1182

1183

1184

Table 8: pass@50 performance of Qwen2.5-3B-Instruct on CommonSenseQA. RS: Repeated Sam-
pling, GS: GUIDEDSAMPLING

1185

1186

1187

Repeated Sampling	GUIDEDSAMPLING
98.94%	95.66%

1188 E.3 MAJORITY VOTING RESULTS
11891190 Table 9 shows the overall accuracies of Majority Voting applied on top of Repeated Sampling, GUID-
1191 EDSAMPLING, and Tree-of-thought. Out of the 8 different settings, GUIDEDSAMPLING achieves
1192 better accuracy in 4 of them, and a higher average performance as well.
1193
11941195 Table 9: Accuracy of models on benchmarks using majority voting.
1196

Benchmark	Model	Repeated Sampling	GUIDEDSAMPLING	Tree-of-thought
MATH	Llama-3.2-3B-Instruct	50.40%	43.40%	45.80%
GPQA-Diamond	Llama-3.2-3B-Instruct	23.23%	23.23%	19.19%
HumanEval	Llama-3.2-3B-Instruct	20.12%	45.12%	25.61%
OlympiadBench	Llama-3.2-3B-Instruct	17.47%	18.35%	12.75%
MATH	Qwen2.5-3B-Instruct	51.20%	64.20%	45.40%
GPQA-Diamond	Qwen2.5-3B-Instruct	20.71%	20.20%	7.07%
HumanEval	Qwen2.5-3B-Instruct	56.71%	50.61%	39.02%
OlympiadBench	Qwen2.5-3B-Instruct	22.53%	21.87%	15.27%
Average	-	32.80%	35.87%	26.26%

1208 F FINETUNING SETUP
12091210 Here we define the hyperparameters that we used for fine-tuning defined in Section 3.4.
12111212 All the models were trained on $4 \times$ A100 GPUs, with a learning rate of $5e^{-5}$ and 3 epochs. Batch
1213 size and Gradient accumulation steps were 2, and fp16 was used for all experiments. 20% of the
1214 data was split for evaluation (random seed as 21), and the checkpoint with the lowest evaluation loss
1215 was considered for reporting the results.
12161217 To determine whether the model trained using CAA trajectories experiences any collapse, we use
1218 one common observation: a collapsed model can repeat tokens indefinitely without generating an
1219 end-of-sequence token during inference. While model collapse has been studied to occur for several
1220 reasons (Shumailov et al., 2024; Gerstgrasser et al., 2024), checking for repeated tokens can indicate
1221 whether collapse happens or not.
12221223 To validate this, we run the base model and the model trained on CAA trajectories on HumanEval
1224 with 10 candidate solutions and check the “*finish_reason*”² after generation. Both the base model
1225 and the model trained using CAA trajectories return with the finish reason of “*stop*”, indicating that
1226 the model produced the end-of-sequence token.
12271228 Moreover, our evaluation, as described in §4, requires the model to generate responses in a particular
1229 format (refer to Appendix B.3 for the prompt). Since we did see improvements in pass@k values,
1230 we can be assured that the model followed the format closely.
12311232 Based on these two insights, we can say with some evidence that no model collapse occurred while
1233 training with CAA trajectories.
1234

G CASE STUDY: CORRECT SOLUTION FROM “IRRELEVANT” CONCEPTS

1235 As noted in §3.3, one approach for GUIDEDSAMPLING to outperform repeated sampling is through
1236 “Recovery from Irrelevant Concepts”. While our empirical results (Figure 4) show that generating
1237 concepts boosts pass@k performance, we observe “irrelevant” concepts generated in some instances.
1238 Below, we detail one such example where the concept is unrelated at first glance, but leads to the
1239 correct solution.
12401241 ²https://docs.vllm.ai/en/latest/api/vllm/outputs/#vllm.outputs.CompletionOutput.finish_reason

```

1242
1243 Question from HumanEval
1244
1245     from typing import List
1246     def has_close_elements(numbers: List[float], threshold: float)
1247         -> bool:
1248             """
1249                 Check if in given list of numbers, are any two numbers
1250                 closer to each other than given threshold.
1251                 >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
1252                     False
1253                 >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
1254                     True
1255             """
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

To solve this problem, the model suggests 4 different concepts – Range Tree, K-D Tree or Octree, Bloom Filter, and Sorting. The simplest and most straightforward way to solve this problem is by using a sorting algorithm. While Range Tree and Octree also lead to correct solutions, they are more complex in nature. Bloom Filter, on the other hand, is **not** a correct concept for this problem. However, we still see some correct solutions leading from this concept. One such solution is given below:

```

1262 Response from Llama-3.2-3B-Instruct
1263
1264
1265     from typing import List
1266
1267     def has_close_elements(numbers: List[float], threshold: float)
1268         -> bool:
1269             # Create a set to store the numbers we've seen so far
1270             seen = set()
1271
1272             # Iterate over the list of numbers
1273             for num in numbers:
1274                 # For each number, check if there's a number in the set
1275                 # that's closer to it for seen_num in seen:
1276                 # If we find a number that's closer to the current
1277                 # number than the threshold
1278                 if abs(num - seen_num) < threshold:
1279                     # Return True, because we've found two numbers
1280                     # that are close to each other
1281                     return True
1282
1283             # If we haven't found a close number yet, add the
1284             # current number to the set
1285             seen.add(num)
1286
1287             # If we've iterated over the entire list and haven't found
1288             # two close numbers, return False
1289             return False
1290
1291
1292
1293
1294
1295

```

The above solution is inspired by the Bloom Filter concept, but does not use the concept as-is, making it an approach that has never been observed in RS. Instances like this make GUIDEDSAMPLING more explorative than RS.

H ALGORITHM FOR GUIDEDSAMPLING

Here, we present the algorithm 1 for GUIDEDSAMPLING:

1296 **Algorithm 1** GUIDED SAMPLING

1297 1: **Input:** Question prompt x , LLM p_θ , maximum number of ideas K , completions per idea M

1298 2: **Output:** Set of candidate solutions \mathcal{S}

1299 3:

1300 4: // Exploration Phase

1301 5: $\mathcal{C} \leftarrow \emptyset$ ▷ Initialize set of concepts

1302 6: $k \leftarrow 1$

1303 7: **while** $k \leq K$ **do**

1304 8: $c_k \sim p_\theta(\cdot \mid x, c_1, \dots, c_{k-1})$ ▷ Sample concept

1305 9: **if** $c_k = \text{None}$ **then** ▷ Model indicates no more useful concepts

1306 10: **break**

1307 11: **end if**

1308 12: $\mathcal{C} \leftarrow \mathcal{C} \cup \{c_k\}$

1309 13: $k \leftarrow k + 1$

1310 14: **end while**

1311 15:

1312 16: // Generation Phase

1313 17: $\mathcal{S} \leftarrow \emptyset$ ▷ Initialize set of solutions

1314 18: **for** each concept $c_k \in \mathcal{C}$ **do**

1315 19: $\mathcal{S}_k \leftarrow \emptyset$ ▷ Initialize solutions for current concept

1316 20: **for** $m = 1$ **to** M **do**

1317 21: Sample solution $s_k^{(m)} \sim p_\theta(\cdot \mid x, c_k)$ ▷ Generate solution based on concept

1318 22: $\mathcal{S}_k \leftarrow \mathcal{S}_k \cup \{s_k^{(m)}\}$

1319 23: **end for**

1320 24: $\mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{S}_k$

1321 25: **end for**

1322 26: **return** \mathcal{S}

1323 I PERFORMANCE VARIATION FOR k -TH CONCEPT

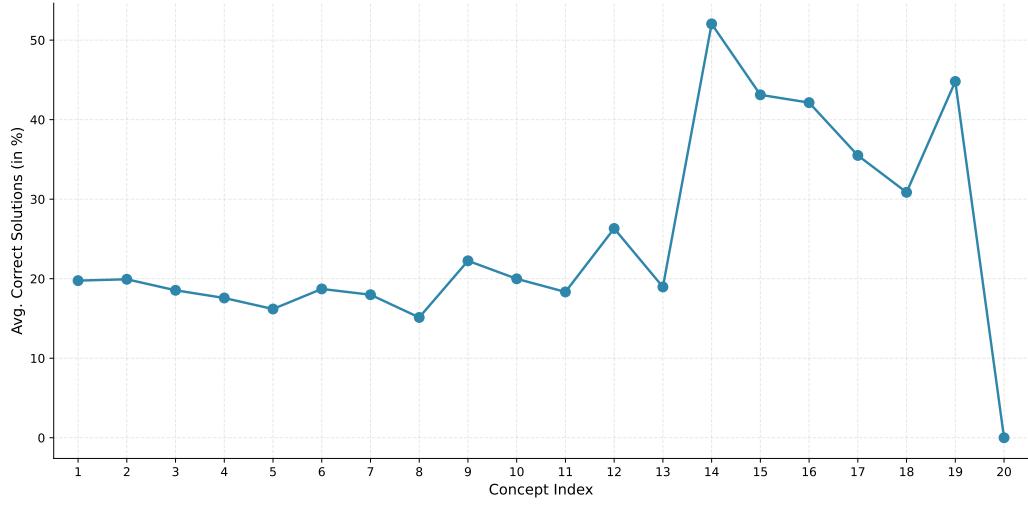


Figure 6: Pass@50 performance variation for k -th concept averaged across all benchmarks and models mentioned in §4.

Here we detail the individual performance of the k -th concept across every model and benchmark. Fig. 6 illustrates the performance for every concept. As discussed in §5. Since later concepts have fewer instances, we see a huge variation in performance. Table 10 shows the detailed performance and number of instances for all concepts.

1350

1351 Table 10: pass@50 performance and the number of instances for the k -th concept generated in
1352 GUIDEDSAMPLING across all benchmarks and models, resulting in a total of 1772 instances.

1353	Concept Index	Avg. Correct Solutions (in %)	Number of Instances
1354	1	19.76 %	1772 (100.00%)
1355	2	19.93 %	1646 (92.89%)
1356	3	18.54 %	1473 (83.13%)
1357	4	17.57 %	1193 (67.33%)
1358	5	16.19 %	819 (46.22%)
1359	6	18.71 %	178 (10.05%)
1360	7	17.98 %	126 (7.11%)
1361	8	15.13 %	89 (5.02%)
1362	9	22.25 %	72 (4.06%)
1363	10	19.98 %	59 (3.33%)
1364	11	18.34 %	47 (2.65%)
1365	12	26.31 %	39 (2.20%)
1366	13	18.96 %	28 (1.58%)
1367	14	52.05 %	23 (1.30%)
1368	15	43.12 %	16 (0.90%)
1369	16	42.14 %	14 (0.79%)
1370	17	35.50 %	8 (0.45%)
	18	30.86 %	7 (0.40%)
	19	44.80 %	5 (0.28%)
	20	0.00 %	1 (0.06%)

1371

1372

1373 **J LATENCY OF INFERENCE-TIME ALGORITHMS**

1374

1375 Figure 7 shows the relationship between the number of LLM calls and pass@50 performance for
 1376 Repeated Sampling (RS), GUIDEDSAMPLING (GS), and Tree-of-Thought (ToT). All results are
 1377 averaged across all models and benchmarks. We found that GUIDEDSAMPLING (pass@50=60.2
 1378 with 104.75 calls) outperforms both Repeated Sampling (pass@50=48.2 with 100 calls) and Tree-
 1379 of-Thought (pass@50=37.1 with 154 calls), while being more efficient than Tree-of-Thought.

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

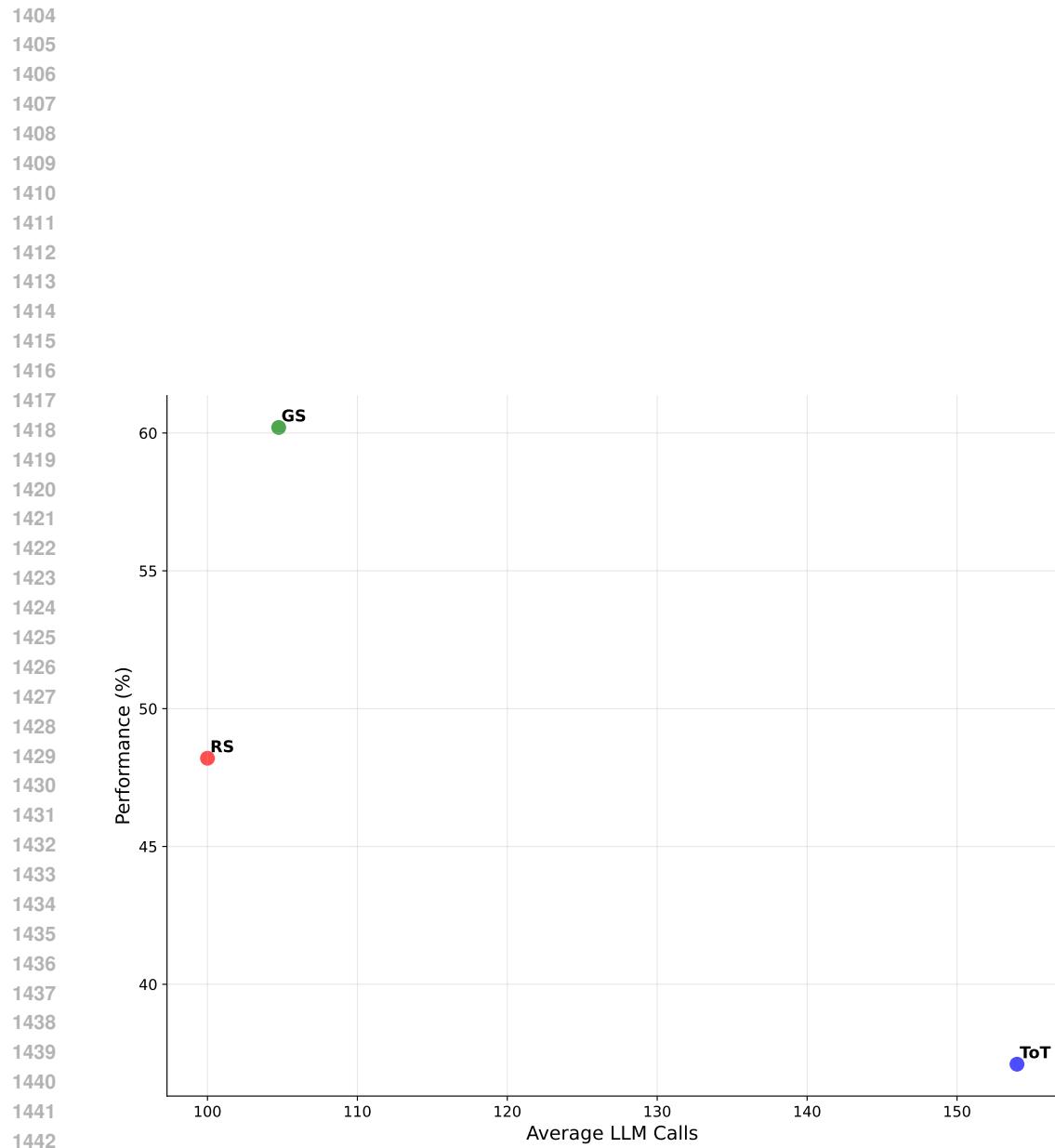


Figure 7: Pass@50 performance against the number of LLM calls for different inference-time algorithms averaged across all models and benchmarks.