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ABSTRACT

The choice of initial learning rate can have a profound effect on the performance
of deep networks. We present empirical evidence that networks exhibit sharply
distinct behaviors at small and large learning rates. In the small learning rate
phase, training can be understood using the existing theory of infinitely wide
neural networks. At large learning rates, we find that networks exhibit qualitatively
distinct phenomena that cannot be explained by existing theory: The loss grows
during the early part of training, and optimization eventually converges to a flatter
minimum. Furthermore, we find that the optimal performance is often found in
the large learning rate phase. To better understand this behavior we analyze the
dynamics of a two-layer linear network and prove that it exhibits these different
phases. We find good agreement between our analysis and the training dynamics
observed in realistic deep learning settings.

1 INTRODUCTION

Deep learning has shown remarkable success across a variety of tasks. At the same time, our
theoretical understanding of deep learning methods remains limited. In particular, the interplay
between training dynamics, properties of the learned network, and generalization remains a largely
open problem.

In tackling this problem, much progress has been made by studying deep neural networks whose
hidden layers are wide. In the limit of infinite width, connections between stochastic gradient descent
(SGD) dynamics of neural networks, compositional kernels, and linear models have been made. These
connections hold when the learning rate is sufficiently small. However, a theory of the dynamics of
deep networks that operate outside this regime remains largely open.

In this work, we present evidence that SGD dynamics change significantly when the learning rate is
above a critical value, ηcrit, determined by the local curvature of the loss landscape at initialization.
These dynamics are stable above the critical learning rate, up to a maximum learning rate ηmax.
Training at these large learning rates results in different signatures than observed for learning rates
η < ηcrit: the loss initially increases and peaks before decreasing again, and the local curvature
drops significantly early in training. We typically find that the best performance is obtained when
training above the critical learning rate. Empirically, we find these two learning rate regimes are
robust, holding across a variety of architectural and data settings.

Figure 1 highlights our key findings. We now describe the main contributions of this work.

1.1 TRAINING WITH A LARGE LEARNING RATE LEADS TO A CATAPULT EFFECT

Consider a deep network defined by the network function f(θ, x), where θ are the model parameters
and x the input. We define the curvature λt at training step t to be the max eigenvalue of the Fisher
Information Matrix, Ft := Ex

[
∇θf(θt, x)∇θf(θt, x)T

]
Amari et al. (2000); Karakida et al. (2018).

Equivalently, λt is the max eigenvalue of the Neural Tangent Kernel Jacot et al. (2018).

Figure 2 shows the results of training several deep networks with mean squared error (MSE) loss
using SGD with a range of learning rates. The loss and curvature are measured at every step during
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(a) (b)

Figure 1: Large learning rates lead to large weight movement and better performance. (a) A visualization
of gradient descent dynamics derived in our analytic model. A 2D slice of parameter space is shown, where
lighter color indicates higher loss and dots represents points visited during optimization. Initially, the loss grows
rapidly while local curvature decreases. Once curvature is sufficiently low, gradient descent converges to a
flat minimum. We call this the catapult effect. See Figures S2 and S1 for more details. (b) Confirmation of
our predictions in a practical deep learning setting. Line shows the test accuracy of a Wide ResNet trained
on CIFAR-10 as a function of learning rate, each trained for a fixed number of steps. Dashed lines show our
predictions for the boundaries of the large learning rate regime (the catapult phase), where we expect optimal
performance to occur. Maximal performance is achieved between the dashed lines, confirming our predictions.
See Section 2 for details.

the early part of training. We notice the following effects, which occur when the learning rate is
above the critical value ηcrit = 2/λ0, where λ0 is the curvature at initialization.1

1. During the first few steps of training, the loss grows significantly compared to its initial
value before it begins decreasing. We call this the catapult effect.

2. Over the same time frame, the curvature decreases until it is below 2/η.

We can build intuition for these effects using loss landscape considerations. Consider a linear model
where the curvature of the loss landscape is given by λ0. Here, curvature means the largest eigenvalue
of the linear model kernel. The model can be trained using gradient descent as long as the learning
rate η obeys η < 2/λ0. When η > 2/λ0, the loss diverges and optimization fails.

Next, consider a deep network. If we train the model with learning rate η > ηcrit, we may again
expect the loss to grow initially, assuming the curvature is approximately constant in the neighborhood
of the initial point in parameter space. This is the effect observed in Figure 2. However, unlike the
linear case, optimization may still succeed if gradient descent is able to navigate to an area of the
landscape that has lower curvature λ, such that η < 2/λ. This is indeed what we observe in practice.

In Figure 1 we show that optimal performance typically occurs when a network is trained in the large
learning rate regime. As discussed further in Section 2, this is true even when the compute budget
for smaller learning rates is increased to account for the smaller step size. This is consistent with
previous observations in the literature, which showed a correlation between performance and the
flatness of the minimum (Keskar et al., 2016).

1.2 AT LARGE WIDTH, A SHARP DISTINCTION BETWEEN LEARNING RATES REGIMES

The large width limit of deep networks has been shown to lead to simplified training dynamics that
are amenable to theoretical study, as in the case of the Neural Tangent Kernel (Jacot et al., 2018).
In this work we show that the distinction between small and large learning rates becomes sharply
defined at large width. This can be seen in Figures 2c, 2f, which show the curvature of sufficiently
wide networks after the initial part of training, as a function of learning rate. When η < ηcrit the
curvature is approximately independent of the learning rate, while for η > ηcrit the curvature is lower
than 2/η.

1The critical learning rate depends on the scale of initialization through λ0.
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Figure 2: Early time catapult dynamics. (a,b,c) A 3 hidden layer fully-connected network with ReLU non-
linearity with width 2048 trained on MNIST (ηcrit = 6.25). (d,e,f) Wide ResNet 28-10 trained on CIFAR-10
(ηcrit = 0.18). Both networks are trained with vanilla SGD; for more experimental details see Appendix A. (a,d)
Early time dynamics of the training loss for learning rates in the linear and catapult phases. (b) Maximum value
of the loss as a function of the learning rate. (e) Early time dynamics of the curvature for learning rates in the
linear and catapult phase. (c,f) λt measured at t · η = 250 (for FC) and t · η = 30 (for WRN), as a function of
learning rate. Training diverges for learning rates in the shaded region.

In Section 3 we analyze the gradient descent dynamics of 2-layer linear networks, and find that they
exhibit similar behavior that can be understood in the large width limit. When training with small
learning rates, existing theory can describe the training dynamics of such networks. And, we present
new theoretical results that explain the behavior at large learning rates. To summarize our findings, in
the large width limit we identify two separate learning rate regimes, or phases, with the following
characteristics.

Lazy phase: η < 2/λ0 . For sufficiently small learning rate, the curvature λt at training step t
remains constant throughout training, and the model becomes equivalent to a linear model (Jacot
et al., 2018; Lee et al., 2019). The model converges to a nearby point in parameter space, and this
behavior is sometimes called lazy training (Du et al., 2019; Zou et al., 2018; Allen-Zhu et al., 2019;
Li & Liang, 2018; Chizat et al., 2019).

Catapult phase: ηcrit < η < ηmax . At large learning rates the loss grows to be of order the width
n over a number of training steps that is of order log(n). During the same period, the curvature
decreases until it is below 2/η. Beyond this point the loss decreases and training converges, ultimately
reaching a flat minimum (relative to that reached in the lazy phase). The gradient descent dynamics
in this phase are visualized in Figure 1 and in Figure S1.

The maximum learning rate ηmax (beyond which training no longer converges) depends on the setup.
In our theoretical model the maximum learning rate is ηmax = 4/λ0. For ReLU networks, we find
empirically that ηmax ≈ 12/λ0.

1.3 LIMITATIONS

Our empirical results and our theoretical analysis focus on the case of MSE loss and on training with
vanilla SGD, and do not extend to the case of cross-entropy loss, or to training with other optimizers
such as momentum. Additionally, our theoretical analysis involves a 2-layer linear network, and does
not apply to the case of networks with non-linearities such as ReLU.

1.4 RELATED WORKS

Our work builds on several existing results, which we now briefly review.
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The existing theory of infinite width networks is insufficient to describe large learning rates.
A recent body of work has investigated the gradient descent dynamics of deep networks in the limit
of infinite width (Daniely, 2017; Jacot et al., 2018; Lee et al., 2019; Du et al., 2019; Zou et al.,
2018; Allen-Zhu et al., 2019; Li & Liang, 2018; Chizat et al., 2019; Mei et al., 2018; Rotskoff &
Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2018; Woodworth et al., 2019; Naveh et al.; Xiao
et al., 2019). Of particular relevance is the work by Jacot et al. (2018) showing that gradient flow in
the space of functions is governed by a dynamical quantity called the Neural Tangent Kernel (NTK)
which is fixed at its initial value in this limit. Lee et al. (2019) showed this result is equivalent to
training the linearization of a model around its initialization in parameter space. Finally, moving
away from the strict limit of infinite width by working perturbatively, Dyer & Gur-Ari (2020); Huang
& Yau (2019) introduced an approach to computing the finite-width corrections to network evolution.

Despite this progress, in many practical deep learning settings, the neural network has finite width
and evolves nontrivially, with a large change in its associated Neural Tangent Kernel. Depending on
the architecture and hyperparameters, such networks may give superior performance. Prior work has
compared the performance of finite-width, SGD-trained deep networks with the infinite-width kernels
derived from the networks (Lee et al., 2018; Novak et al., 2019; Arora et al., 2019). Performance gaps
are observed in some cases, notably in convolutional networks, implying that existing infinite-width
theory is insufficient to explain the performance of deep networks in such settings where the network
evolves nontrivially.

Large learning rate SGD improves generalization. SGD training with large initial learning rates
often leads to improved performance over training with small initial learning rates (see (Li et al.,
2019; Leclerc & Madry, 2020; Xie et al., 2020; Frankle et al., 2020; Jastrzebski et al., 2020) for
recent discussions). It has been suggested that one of the mechanisms underlying the benefit of
large learning rates is that noise from SGD leads to flat minima, and that flat minima generalize
better than sharp minima (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016; Smith & Le, 2018;
Jiang et al., 2020; Park et al., 2019) (though see Dinh et al. (2017) for discussion of some caveats).
According to this suggestion, training with a large learning rate (or with a small batch size) can
improve performance because it leads to more stochasticity during training (Smith & Le, 2018; Mandt
et al., 2017; Smith et al., 2017; Smith et al., 2018).

We develop a connection between large learning rate and flatness of minima in models trained via
SGD. Unlike the relationship explored in most previous work though, this connection is not driven by
SGD noise, but arises solely as a result of training with a large initial learning rate, and holds even for
full batch gradient descent.

2 EXPERIMENTAL RESULTS

In a variety of deep learning settings, we find clear evidence of the different phases introduced
in Section 1. The experiments all use MSE loss, sufficiently wide networks, and vanilla SGD
with learning rate η. Parameters such as network architecture, choice of non-linearity, weight
parameterization, and regularization, do not significantly affect this conclusion.

In these experiments, we define the curvature λ as the maximum eigenvalue of the Fisher Information
Matrix or, equivalently, as the maximum eigenvalue of the Neural Tangent Kernel (NTK). Given
a network function f : Rd → R with model parameters θ ∈ Rp, and a training set {(xα, yα)}mα=1,
the NTK Θ : Rd × Rd → R is defined by Θ(x, x′) := 1

m

∑p
µ=1∇θf(x)T∇θf(x′). We denote the

curvature at time t by λt, equal to the maximum eigenvalue of Θ. Another common measure of local
curvature is the maximum Hessian eigenvalue; at large width we expect these measures to agree
(Dyer & Gur-Ari, 2020), and we verify the agreement in Appendix D.6.

Building on the observed correlation between flat minima and generalization performance (Keskar
et al., 2016; Jiang et al., 2020), we conjecture that optimal performance occurs in the large learning
rate (catapult) phase, where optimization converges to a low curvature minimum. For a fixed
amount of computational budget, we find that this conjecture holds in all cases we tried. Even when
comparing different learning rates trained for a fixed amount of physical time tphys = t · η, we find
that performance of models trained in the catapult phase either matches or exceeds that of models
trained with learning rates below ηcrit.
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2.1 EARLY TIME CURVATURE DYNAMICS

Here we present empirical support for the lazy and catapult phases of training described in the
previous section. Additional experimental results are presented in the appendix. We find that the lazy
phase is characterized by small changes to the curvature and loss during training, while the catapult
exhibits large deviations.

Figure 2 shows the curvature during the early part of training for two deep learning settings that
involve sufficiently wide networks. The results are compared against the prediction of a phase
transition at ηcrit = 2/λ0. For learning rates η < ηcrit (lazy phase), the curvature is independent of
the learning rate and is approximately constant throughout training. For ηcrit < η < ηmax we find
that the curvature decreases during training to below 2/η.

Figure 2 also shows the loss initially increasing before converging for large learning rates, a signature
of the catapult effect. This transient behavior is very short, taking less than 10 steps to complete.
Because of this, the training curve for the test loss is very similar and also shows the catapult effect. In
these and other experiments involving ReLU networks, we find that ηmax ≈ 12/λ0 is a good predictor
of the maximum learning rate (in Appendix E.4 we discuss other nonlinearities). We conjecture that
this is the typical maximum learning rate of networks with ReLU non-linearities.

2.2 GENERALIZATION PERFORMANCE

We now consider the performance of trained models in the different phases discussed in this work.
Keskar et al. (2016) observed a correlation between the flatness of a minimum found by SGD and
the generalization performance (see Jiang et al. (2020) for additional empirical confirmation of this
correlation). In this work, we showed that the minima SGD finds are flatter in the catapult phase,
as measured by the top kernel eigenvalue. Our measure of flatness differs from that of Keskar et al.
(2016), but we expect that these measures to be correlated.

We therefore conjecture that optimal performance is often obtained for learning rates above ηcrit

and below the maximum learning rate. In this section we test this conjecture empirically. We find
that performance in the large learning rate regime always matches or exceeds the performance when
η < ηcrit. For a fixed compute budget, we find that the best performance is always found in the
catapult phase.

Figure 3 shows the performance of a convolutional network and a Wide ResNet (WRN) trained on
CIFAR-10. The experimental setup, which we now describe, was chosen to ensure a fair comparison
of the performance across different learning rates. The network is trained with different initial
learning rates, followed by a decay at a fixed physical time t · η to the same final learning rate. This
schedule is introduced in order to ensure that all experiments have the same level of SGD noise
toward the end of training.

We present results using two different stopping conditions. In Figure 3a, 3c, all models were trained
for a fixed number of training steps. We find a significant performance gap between small and large
learning rates, with the optimal learning rate above ηcrit and close to ηmax. Beyond this learning rate,
performance drops sharply.

The fixed compute stopping condition, while of practical interest, biases the results in favor of large
learning rates. Indeed, in the limit of small learning rate, training for a fixed number of steps will
keep the model close to initialization. To control for this, in Figure 3b,3d models were trained for the
same amount of physical time t · η. For the CNN of figure 3b, decaying the learning rate does not
have a significant effect on performance and we observe that performance is flat up to ηmax, and there
is no correlation between our measure of curvature and generalization performance. Figure 3d shows
the analogous experiment for WRN. When decaying the learning rate toward the end of training
to control for SGD noise, we find that optimal performance is achieved above ηcrit. In all these
cases, ηmax is a good predictor of the maximal learning rate, despite significant differences in the
architectures. Notice that by tuning the learning rate to the catapult phase, we are able to achieve
performance using MSE loss, and without momentum, that is competitive with the best reported
results for this model (Zagoruyko & Komodakis, 2016).
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Figure 3: Models perform best with a large learning rate. Test accuracy vs learning rate for (a,b) a CNN
trained on CIFAR-10 using SGD with batch size 256 and L2 regularization (ηcrit ≈ 10−4) and (c,d) WRN28-10
trained on CIFAR-10 using SGD with batch size 1024, L2 regularization, and data augmentation (ηcrit ≈ 0.14);
see Appendix A for details. (a,c) have a fixed compute budget: (a) 437k steps and (b) 12k steps. (b,d) have been
evolved for a fixed amount of physical time: (b) was evolved for 475/η steps (purple) and evolved for 50k more
steps at learning rate 2 · 10−5 (red) and (d) was evolved for 3360/η steps with learning rate η (purple) and then
evolved for 4800 more steps at learning rate 0.035 (red). In all cases, optimal performance is achieved above
ηcrit and close to the expected maximum learning rate, in agreement with our predictions.

In Appendix D.2, we present additional results for WRN on CIFAR-100, with similar conclusions.
The fact that optimal performance happens in the catapult phase can also be observed for simple
models like a fully-connected ReLU network trained on a subset of MNIST (see the Appendix).

3 GRADIENT DESCENT DYNAMICS OF WIDE, 2-LAYER LINEAR NETWORKS

We now turn to a theoretical analysis of the gradient descent dynamics of a two-layer linear network
at large but finite width. While such a setting omits complexities such as depth and nonlinearity,
our theoretical treatment already reveals the existence of three phases described in Section 1.2 with
signatures that match our experiments.

Let the network function f be given by f(x) = n−1/2vTux. Here n is the width (number of neurons
in the hidden layer), u, v ∈ Rn are the model parameters (collectively denoted θ), and x ∈ R is the
training input. At initialization, the weights are drawn from N (0, 1). We prove the following
Theorem 1. Consider a 2-layer linear network of width n, trained with MSE loss and learning rate η.
The training data has a single sample with (x, y) = (1, 0). Choose initial values f0 6= 0 and λ0 > 0
for the function f(x) and curvature λ. Let ηcrit := 2/λ0 and ηmax := 4/λ0, and choose δ > 0.

1. Lazy phase: If η < ηcrit then gradient descent achieves loss L < δ in O(n0) steps, and the
final curvature λf obeys |λf − λ0| = O(n−1).

2. Catapult phase: If ηcrit < η < ηmax then gradient descent achieves loss L < δ, the final
curvature obeys λf ≤ 2/η, and during optimization the loss grows to be Ω(n log−1(n)).

3. Divergent phase: If η ≥ ηmax then gradient descent does not converge to a global minimum.

The proof can be found in the appendix. We will complement the theorem with intuition about the
dynamics of this model. In the appendix, we also generalize to the case of networks with arbitrary
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input dimension. The gradient descent equations at training step t are

ut+1 = ut − ηn−1/2ftvt , vt+1 = vt − ηn−1/2ftut . (1)

The update equations in function space can be written in terms of the Neural Tangent Kernel. For this
model, the kernel evaluated on the training set is a scalar which is equal to λ, its top eigenvalue, and
is given by Θ(1, 1) = λ = n−1

(
‖v‖22 + ‖u‖22

)
. At initialization, both f2 and λ scale as n0 with the

width n. The following update equations for f and λ at step t can be derived from equation 1.

ft+1 =

(
1− ηλt +

η2f2
t

n

)
ft , λt+1 = λt +

ηf2
t

n
(ηλt − 4) . (2)

It is important to note that these are the exact update equations for this model, and that no higher-order
terms were neglected. We now analyze these dynamical equations assuming the width n is large.
Two learning rates that will be important in the analysis are ηcrit = 2/λ0 and ηmax = 4/λ0.

Lazy phase. Taking the strict infinite width limit, equations equation 2 become

ft+1 = (1− ηλt) ft , λt+1 = λt . (3)

When η < ηcrit, λ remains constant throughout training. This is a special case of NTK dynamics,
where the kernel is constant and the network evolves as a linear model (Lee et al., 2019). The
function and the loss both shrink to zero because the multiplicative factor obeys |1− ηλt| < 1. This
convergence happens in O(n0) = O(1) steps.

Catapult phase. When ηcrit < η < ηmax, the loss diverges in the infinite width limit. Indeed, from
equation 3 we see that the kernel is constant in the limit, while f receives multiplicative updates
where |1 − ηλt| > 1. This is the well known instability of gradient descent dynamics for linear
models with MSE loss. However, the underlying model is not linear in its parameters, and finite
width contributions turn out to be important. We therefore relax the infinite width limit and analyze
equations (2) for large but finite width, n� 1.

First, note that ηλ0 − 4 < 0 by assumption, and therefore the (additive) kernel updates are negative
for all t. During early training, |ft| grows (as in the infinite width limit) while λt remains constant
up to small O(n−1) updates. After t ∼ log(n) steps, |ft| grows to order n1/2. At this point, the
kernel updates are no longer negligible because f2

t /n is of order n0. The kernel λt receives negative,
non-negligible updates while both ft and the loss continue to grow. This continues until the kernel
is sufficiently small that the condition ηλt . 2 is met.2 We call this curvature-reduction effect the
catapult effect. Beyond this point, |1−ηλt| < 1 holds, |ft| shrinks, and the loss converges to a global
minimum. The n dependence of the steps until optimization converges is log (n).

It is important for the analysis that we take a modified large width limit, in which the number of
training steps grows like log(n) as n becomes large. This is different than the large width limit
commonly studied in the literature, in which the number of steps is kept fixed as the width is taken
large. When using this modified limit, the analysis above holds even in the limit. Note as well that
the catapult effect takes place over log(n) steps, and for practical networks will occur within the first
100 steps or so of training.

In the catapult phase, the kernel at the end of training is smaller by an order n0 amount compared with
its value at initialization. The kernel provides a local measure of the loss curvature. Therefore, the
minima that SGD finds in the catapult phase are flatter than those it finds in the lazy phase. Contrast
this situation, in which the kernel receives non-negligible updates, with the conclusions of Jacot et al.
(2018) where the kernel is constant throughout training. The difference is due to the large learning
rate, which leads to a breakdown of the linearized approximation even at large width.

Completing the analysis of this model, when η > ηmax the loss diverges because the kernel receives
positive updates, accelerating the rate of growth of the function. Therefore, ηmax = 4/λ0 is the
maximum learning rate of the model.

2The bound is not exact because of the term we neglected.
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3.1 NON-PERTURBATIVE PHASE TRANSITION

The large width analysis of the small learning rate phase has been the subject of much work. In
this phase, at infinite width, the network map evolves as a linear random features model, f (0)

t+1 =

f
(0)
t −Θf

(0)
t , where f (0) is the function of the linearized model. At large but finite width (which we

denote by n), corrections to this linear evolution can be systematically incorporated via a perturbative
expansion (Taylor expansion) around infinite width Dyer & Gur-Ari (2020); Huang & Yau (2019),
ft = f

(0)
t + 1

nf
(1)
t + · · · . The evolution equations 3 of the solvable model are an example of this.

At large width and in the small learning rate phase, the O(n−1) terms are suppressed for all times.
In contrast, the leading order dynamics of f (0)

t diverge when η > ηcrit, and so the true evolution
cannot be described by the linear model. Indeed, the logits grow to O(n1/2) and thus all terms in
equation 3 are of the same order. Similarly, the growth observed empirically in the catapult phase for
more general models cannot be described by truncating the perturbative series at any order, because
the terms all become comparable.

4 DISCUSSION

Previous work (Jacot et al., 2018; Lee et al., 2019; Chizat et al., 2019) has studied the lazy phase
of deep neural networks, which is known to occur for sufficiently small learning rates. In this work
we argued that the lazy phase exists for learning rates smaller than ηcrit = 2/λ0, where λ0 is the
curvature at initialization. This critical learning rate corresponds to where a linear model, constructed
from a deep network about its initialized parameters, would diverge under MSE loss. We pointed
out the existence of the catapult phase in deep networks, corresponding to the learning rate regime
ηcrit < η < ηmax. Its unique empirical signatures include the early-time growth of the loss and
convergence to a flat minimum. Empirically, the existence and properties of the catapult phase can be
observed across a variety network architectures and datasets. At yet larger learning rates η > ηmax,
SGD dynamics are unstable.

A novel analysis illustrating the catapult phase. Through our analytical treatment of a two-layer
linear network, we are able to clarify the dynamics behind the catapult effect. Among these, we (i)
derived the quantitative changes in loss and curvature and the time scales over which they occur; (ii)
derived an expression for ηmax in terms of the curvature at initialization; (iii) specified the manner
in which the lazy and catapult regimes are distinct phases, which we elaborate on below, in a novel
modified infinite-width, infinite-time limit; and (iv) illustrated the dynamical mechanism stabilizing
the catapult phase. Our approach reduces to analyzing two coupled difference equations relating the
loss and curvature, which we hope may inspire a full treatment of deep networks with nonlinearities.

The change in behavior upon sweeping the learning rate from the lazy to catapult phase is reminiscent
of phase transitions that commonly appear in physical systems such as ferromagnets or water, as one
changes parameters such as temperature. Indeed, in Appendix C this connection is made concrete,
with the change in behavior sharpening as width is increased. In particular, these transitions are
non-perturbative: a Taylor series expansion of the linearized model that takes into account finite
width corrections is not sufficient to describe the behavior beyond the critical learning rate.

Catapult dynamics often improve generalization. Our results shed light on the regularizing
effect of training at large learning rates. The effect presented here is independent of the regularizing
effect of stochastic gradient noise, which has been studied extensively. Building on previous works,
we noted the observed correlation between flatness and generalization performance. Based on
these observations, we expect the optimal performance to often occur for learning rates larger than
ηcrit, where the linearized model is unstable. Observing this effect required controlling for several
confounding factors that affect the comparison of performance between different learning rates.
Under a fair comparison, and also for a fixed compute budget, we find that this expectation holds in
practice.

One outcome of our work is to address the performance gap between ordinary neural networks,
and linear models inspired by the theory of infinite-width networks. Optimal performance is often
obtained at large learning rates which are inaccessible to linearized models. In such cases, we expect
the performance gap to persist even at arbitrarily large widths. We hope our work can further improve
the understanding of deep learning dynamics and performance.

8
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A EXPERIMENTAL DETAILS

We are using JAX (Bradbury et al., 2018) and the Neural Tangents Library for our experiments
(Novak et al., 2020).

All the models have been trained with Mean Squared Error normalized as L({x, y}B) =
1

2k|B|
∑

(x,y)∈B,i(f
i(x)− yi)2, where k is the number of classes and yi are one-targets.

In a similar way, we have normalized the NTK as Θij(x, x
′) = 1

k|B|
∑
α ∂αf

i(x)∂αf
j(x′) so that

the eigenvalues of the NTK are the same as the non-zero eigenvalues of the Fisher information:
1

k|B|
∑
x∈B,i ∂αf

i(x)∂βf
i(x).

In our experiments we measure the top eigenvalue of the NTK using Lanczos’ algorithm. We
construct the NTK on a small batch of data, typically several hundred samples, compute the top
eigenvalue, and then average over batches. In this work, we do not focus on precision aspects such as
fluctuations in the top eigenvalue across batches.

All experiments that compare different learning rates use the same seed for the weights at initialization
and we consider only one such initialization (unless otherwise stated) although we have not seen
much variance in the phenomena described. We let σw, σb denote the constant (width-independent)
coefficient of the standard deviation of the weight and bias initializations, respectively.

Here we describe experimental settings specific to a figure.

Figure 2a,2c,2e. Fully connected, three hidden layers w = 2048, ReLU non-linearity trained using
SGD (no momentum) on MNIST. Batch size= 512, using NTK normalization, σw =

√
2, σb = 0.

Figures 2b,2d,2f. Wide ResNet 28-18 trained on CIFAR10 with SGD (no momentum). Batch size
of 128, LeCun initialization with σw =

√
2, σb = 0, L2 = 0.

Figures S4,S17 Fully connected network with one hidden layer and ReLU non-linearity trained
on 512 samples of MNIST with SGD (no momentum). Batch size of 512, NTK initialization with
σw =

√
2, σb = 0.

Figures 3a,3b. The convolutional network has the following architecture: Conv1(320)→ ReLU→
Conv2(320) → ReLU → MaxPool((2,2), ’VALID’) → Conv1(320) → ReLU → Conv2(128) →
MaxPool((2,2), ’VALID’) → Flatten() → Dense(256) → ReLU → Dense(10). Dense(n) denotes
a fully-connected layer with output dimension n. Conv1(n),Conv2(n) denote convolutional layers
with ’SAME’ or ’VALID’ padding and n filters, respectively; all convolutional layers use (3, 3) filters.
MaxPool((2,2), ’VALID’) performs max pooling with ’VALID’ padding and a (2,2) window size.
LeCun initialization is used, with the standard deviation of the weights and biases drawn as σw =

√
2,

σb = 0.05, respectively. Trained on CIFAR-10 with SGD, batch size of 256 and L2 regularization =
0.001.

Figures 1, 3c,3d. Wide ResNet on CIFAR10 using SGD (no momentum). Training on v3-8 TPUs
with a total batch size of 1024 (and per device batch size of 128). They all use L2 regularization=
0.0005, LeCun initialization with σw = 1, σb = 0. There is also data augmentation: we use flip,
crop and mixup. With softmax classification, these models can get test accuracy of 0.965 if one uses
cosine decay, so we don’t observe a big performance decay due to using MSE. Furthermore, we are
using JAX’s implementation of Batch Norm which doesn’t keep track of training batch statistics for
test mode evaluation. We have not hyperparameter tuned for learning rates nor L2 regularization
parameter.

Figures S5,S6. Wide ResNet on CIFAR100 using SGD (no momentum). Same setting as figure 3c,
3d except for the different dataset, different L2 regularization = 0.000025 and label smoothing (we
have subtracted 0.01 from the target one-hot labels).

Figure S12. Two hidden layer, ReLU network for one data point x = 1, y = 1.

Figure S15. Fully connected network with two hidden layers and tanh non-linearity trained on
MNIST with SGD (no momentum). Batch size of 512, LeCun initialization with σw = 1, σb = 0.

Figure S13a. Two-hidden layer fully connected network trained on MNIST with batch size 512,
NTK normalization with σw =

√
2, σb = 0. Trained using both momenta γ = 0.9 and vanilla SGD
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Figure S1: Visualization of training dynamics in all three phases. In the lazy phase, the network is
approximately linear in its parameters, and converges exponentially to a global minimum. In the
catapult phase, the loss initially grows, while the weight norm and curvature decrease. Once the
curvature is low enough, optimization converges. In the divergent phase, both the loss and parameter
magnitudes diverge. (a)-(d) Loss surface and training dynamics visualized in a 2d linear subspace.
The network has a single hidden layer with width n = 500, linear activations, and is trained with
MSE loss on a single 1D sample x = 1 with label y = 0. The parameter subspace is defined by
u = [dim1] r+ [dim2] s, v = [dim1] r− [dim2] s, where r and s are orthonormal vectors, u, v ∈ Rn
are the weight vectors, and [dim1], [dim2] are the coordinates in the subspace. If initialized in this 2d
subspace, ut and vt remain in the subspace throughout training, and so training dynamics can be fully
visualized with a two dimensional plot. (e) Visualization of the loss surface and training dynamics
in terms of a nonlinear reparameterization, providing interpretable properties: x-axis correlation
between weight vectors, y-axis curvature λ. The trajectory shown is identical to that in (c), and in
Figure 1.

for three different non-linearities: tanh, ReLU and identity (no non-linearity). The learning rate for
each non-linearity was chosen to correspond to η = 1

λ0
.

Rest of appendix figures. Small modifications of experiments in previous figures, specified in
captions.
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B THEORETICAL DETAILS

B.1 THEOREM

For 1D input x with label y, a network f(x) = n−1/2vTux, learning rate η, and loss L = (f(x)−
y)2/2. We set x = 1 and y = 0. The curvature is λ = n−1(‖u‖2 + ‖v‖2).

Theorem 1. Consider a 2-layer linear network of width n, trained with MSE loss and learning rate
η. The training data has a single sample with input x = 1 and label y = 0. Choose the initial
values f0 6= 0 and λ0 > 0 for the value of the function f(x) and curvature λ. Let ηcrit := 2/λ0 and
ηmax := 4/λ0, and choose δ > 0.

1. Lazy phase: If η < ηcrit then gradient descent achieves loss L < δ in O(n0) steps, and the
final curvature λf obeys |λf − λ0| = O(n−1).

2. Catapult phase: If ηcrit < η < ηmax then gradient descent achieves loss L < δ, the final
curvature obeys λf ≤ 2/η, and during optimization the loss grows to be Ω(n log−1(n)).

3. Divergent phase: If η ≥ ηmax then gradient descent does not converge to a global minimum.

Proof. Under gradient descent, the function and curvature update equations are given by

∆ft =

(
−ηλt +

η2f2
t

n

)
ft , ∆λt =

ηf2
t

n
(ηλt − 4) . (S1)

Here we denote f = f(1), ∆ft = ft+1 − ft, and ∆λt = λt+1 − λt.

Convergence when η < ηmax. If η < ηmax then ∆λt ≤ 0 and λt ≤ λ0 for all t. Therefore,

λT+1 = λ0 +

T∑
t=0

∆λt ≤ λ0 +
η

n
(ηλ0 − 4)

T∑
t

f2
t . (S2)

Since λT+1 ≥ 0 we then have

T∑
t

f2
t ≤

nλ0

η(4− ηλ0)
. (S3)

From the monotone convergence theorem, the sum on the left-hand side converges when taking
T →∞, and therefore limt→∞ ft = 0, proving convergence when η < ηmax.

Lazy phase. Next, assume that η < ηcrit. We will first show that, when taking the infinite n
limit, optimization converges in a finite number of steps and the curvature is constant throughout
optimization. We then show that the finite n solution is close to the infinite n one up to O(n−1)
corrections, which is enough to establish statement (1).

Taking n→∞, the update equations equation S1 become

∆ft = −ηλ0ft , ∆λt = 0 . (S4)

Here we denote by f∞t , λ∞t the function and curvature at step t in the infinite width limit. For given
(n independent) initial conditions f0, λ0, in this limit the loss drops below δ in O(n0) steps, while
the curvature remains constant.

Next, we compare the optimization trajectory (ft, λt) of the equations at finite n, with the trajectory
(f∞t , λ∞t ) of the infinite n equations. We set the initial conditions to be the same, f0 = f∞0 and
λ0 = λ∞0 . Next, let us show by induction on t that the following holds at every step.

|ft| = O(n0) , λt = O(n0) , |ft − f∞t | = O(n−1) , |λt − λ∞t | = O(n−1) . (S5)
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At t = 0 these relations hold by assumption. We now show the induction step. For the function
trajectory,

|ft+1 − f∞t+1| =
∣∣∣∣(1− ηλt +

η2f2
t

n

)
ft − (1− ηλ∞t ) f∞t

∣∣∣∣
≤ |ft − f∞t |+ η|λ∞t f∞t − λtft|+

η2

n
|f3
t |

≤ |ft − f∞t |+ ηλ∞t |f∞t − ft|+ η|ft||λ∞t − λt|+
η2

n
|f3
t |

= O(n−1) . (S6)

For the curvature trajectory,

|λt+1 − λ∞t+1| =
∣∣∣∣λt +

ηf2
t

n
(ηλt − 4)− λ∞t

∣∣∣∣
≤ |λt − λ∞t |+

η

n
|f2
t (ηλt − 4)|

= O(n−1) . (S7)

The remaining relations in equation S5 follow from the fact that |f∞t | and λ∞t are O(n0). Since the
infinite n trajectory leads to L < δ in O(n0) steps, this proves statement (1).

Catapult phase. We now show that any global minimum (f, λ) with f = 0 and λ > 2/η is a
repulsive fixed point of the update equations. Assume that λt = 2

η + δ for some δ > 0, and that
0 < |ft| < ε for some ε. For sufficiently small ε,∣∣∣∣ft+1

ft

∣∣∣∣ =

∣∣∣∣1− ηλt +
η2f2

t

n

∣∣∣∣ = −1 + ηλt −
η2f2

t

n
> 1 + δη − η2ε2

n
> 1 . (S8)

We see that ft grows in absolute value, proving that optimization does not converge. We showed that
gradient descent converges in this case, and therefore the final curvature λf < 2/η.

It is left to show that the loss grows to be Ω(n log−1(n)) during optimization. We choose ε > 0.
If it enough to show that if ε is sufficiently small, then |ft| grows larger than

√
nε

log(n) at a step

t = O(log(n)).

From now on let us make the following assumptions. For some τ > 0 (to be chosen),

f2
t <

nε

log(n)
, 0 < t < τ log(n) . (S9)

Notice that these hold at initialization for sufficiently large n.

Using the fact that λt ≤ λ0 for all t, the curvature update is

∆λt =
ηf2
t

n
(ηλt − 4) <

η

n

nε

log(n)
(ηλt − 4) ≤ ηε

log(n)
(ηλ0 − 4) . (S10)

With the assumptions above, we have

|λt − λ0| =

∣∣∣∣∣
t∑

t′=1

∆λt′

∣∣∣∣∣ < ητε|ηλ0 − 4| = O(ε) . (S11)

We find that with the above assumptions, we have

1− ηλt = 1− ηλ0 + η|λt − λ0| = 1− ηλ0 +O(ε) . (S12)

Here we used again that λt ≤ λ0. In particular, since 1 − ηλ0 = −1 − 4δ for some δ > 0, then
1− ηλt < −1− 2δ for sufficiently small ε.

Next, consider the ft update.

ft+1

ft
= 1− ηλt +

η2f2
t

n
< −1− 2δ +

η2ε

log(n)
. (S13)

4



Under review as a conference paper at ICLR 2021

Again setting ε sufficiently small, we get
∣∣∣ ft+1

ft

∣∣∣ > 1 + δ. We find that as long as the assumptions
equation S9 hold,

|ft| > (1 + δ)t|f0| . (S14)

Let us now choose τ > log−1(1 + δ). Then for t > τ log(n)/2 and sufficiently small ε,

|ft| > nτ log(1+δ)/2|f0| >
√
n|f0| >

√
nε

log(n)
. (S15)

This shows that the first assumption in equation S9 is the first to be violated when increasing t from
zero. Therefore, we find that Lt > nε/ log(n) = Ω(n/ log(n)) at some point during training.

Divergent phase. Finally, suppose that η ≥ ηmax. Then ∆λt ≥ 0 and λt ≥ λ0 > 2/η for all t.
We showed that gradient descent can only converge to minima with λ < 2/η, and therefore gradient
descent will not converge in this case. This concludes the proof of statement (3).

B.2 EMPIRICAL PLOT OF SIMPLE MODEL

Figure S2 illustrates the dynamics in the catapult phase. For learning rates ηcrit < η < ηmax we
observe the catapult effect: the loss goes up before converging to zero. The curvature exhibits the
expected sharp transitions as a function of the learning rate: it is constant in the lazy phase, decreases
in the catapult phase, and diverges for η > ηmax..
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Figure S2: Empirical results for the gradient descent dynamics of the warmup model with n = 103,
for which ηcrit ≈ 1. (a) Training loss for different learning rates. (b) Maximum NTK eigenvalue as a
function of time. For η > 1, λt decreases rapidly to a fixed value. (c) Maximum NTK eigenvalue
at t = 25/η. The shaded area indicates learning rates for which training diverges empirically. The
results are presented as a function of t · η (rather than t) for convenience.

B.3 FULL MODEL ANALYSIS

Here we provide additional details on the theoretical analysis of the full model We introduce the
notation fα := f(xα) for the function evaluated on a training sample, f̃α := fα − yα for the error,
and Θαβ := Θ(xα, xβ) for the kernel elements. We will treat f, f̃ evaluated on the training set as
vectors in Rm, whose elements are fα, f̃α. .The gradient descent update equations are

ut+1
ia = uia −

η√
nm

vixaαf̃α , vt+1
i = vi −

η√
nm

uiaxaαf̃α . (S16)

and

Θαβ =
1

nm
(|v|2xTαxβ + xTαu

Tuxβ) (S17)

5
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The update equations for the error and kernel evaluated on training set inputs are

f̃ t+1
α = (δαβ − ηΘαβ)f̃β +

η2

nm
(xTαζ)(fT f̃) , (S18)

Θt+1
αβ = Θαβ −

η

nm

[
(xTβ ζ)fα + (xTαζ)fβ +

2

m
(xTαxβ)(f̃T f)

]
+

η2

n2m

[
|v|2(xTαζ)(xTβ ζ) + (ζTuTuζ)(xTαxβ)

]
. (S19)

Where ζ :=
∑
α f̃αxα/m ∈ Rd. We now consider the dynamics of the kernel projected onto the f̃

direction, which is given by

f̃TΘt+1f̃ = f̃TΘf̃ +
η

n
ζT ζ

(
ηf̃TΘf̃ − 4fT f̃

)
. (S20)

Let us now analyze the phase structure of equation S18 and equation S20. For now, we neglect
the last term on the right-hand side of equation S18 (at initialization this term is of order n−1 and
is negligible at large width). Let λ0 be the maximal eigenvalue of the kernel at initialization, and
let emax ∈ Rm be the corresponding eigenvector. Notice that f̃ projected onto the top eigenvector
evolves as

(emax)T f̃t+1 = (1− ηλ)emaxT f̃ +O(n−1) . (S21)

Lazy phase. When ηλ0 < 2, we see that |emaxT f̃ t| shrinks during training. The kernel updates
are of order n−1, while convergence happens in order n0 steps. Therefore the kernel does not change
by much during training. This is a special case of the NTK result (Jacot et al., 2018). Effectively, the
model evolves as a linear model in this phase.

Catapult phase. When 2 < ηλ0 < 4, ‖f̃‖2 grows exponentially fast, and it grows fastest in
the emax direction. Therefore, the vector f̃ becomes aligned with emax after a number of steps
that is of order n0. Also, f itself grows quickly while the label is constant, and so we find that
f ≈ f̃ ≈ (emaxT f̃)emax after a similar number of steps. When these approximations hold, notice
that f̃TΘf̃ ≈ λ · ‖f̃‖22.

Regarding the evolution of the top eigenvector itself, it is easy to see from equation S19 that the
kernel updates preserve the two separate subspaces of eigenvectors with λi < 2/η and λi > 2/η. If
there is only one vector with ηλi > 2, then the emax direction stays constant during training. If there
are multiple such vectors, we expect that ones with larger eigenvalues grow exponentially faster, and
thus we expect that the eigenvectors are approximately preserved.

Now, from equation equation S20 we can then derive an approximate equation for the evolution of
the top NTK eigenvalue.

λt+1 ≈ λ+
η

n
ζT ζ(ηλ− 4) . (S22)

While f̃ grows exponentially fast, so will ζ. When ζt becomes of order n1/2, the updates to the top
eigenvalue become of order n0 (and negative), causing λt to decrease by a non-negligible amount.
This will continue until λt < 2/η, at which point f̃t will start converging to zero. Eventually, after a
number of steps of order log(n), gradient descent will converge to a global minimum that has a lower
curvature than the curvature at initialization.

The justification for dropping the order n−1 term in equation S21 was explained in the warmup model:
While this term may affect the details of the dynamics, eventually the maximum kernel eigenvalue
must drop below 2/η for the component emaxT f̃ of the error (and therefore for the loss) to converge
to zero.

Divergent phase. When ηλ0 > 4, both ‖f̃‖22 and λ will grow, and optimization will diverge.
Therefore, 4/λ0 is the maximum learning rate for this model.

6
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C MODEL DYNAMICS CLOSE TO THE CRITICAL LEARNING RATE

Here we consider the gradient descent dynamics of the model analyzed in Section 3, for learning
rates η that are close to the critical point ηcrit = 2/λ0. The analysis reveals that the gradient descent
dynamics of the model are qualitatively different above and below this point. For example, the loss
decreases monotonically during training when η < ηcrit, but not when η > ηcrit. In this section we
show that the transition from small to large learning rate becomes sharp once we take the modified
large width limit, in the following sense: certain functions of the learning rate become non-analytic
at ηcrit in the limit. This sharp transition bears close resemblance to phase transitions of the kind
found in physical systems, such as the transition between the liquid and gaseous phases of water. In
particular, our case involves a dynamical system, where the dynamics are governed by the gradient
descent equations. These dynamics undergo a phase transition as a function of the learning rate — an
external parameter. We point to the logistic map May (1976) as a well-known example of a dynamical
system that undergoes phase transitions as a function of an external parameter.

C.1 NON-PERTURBATIVE DYNAMICS

A phase transition is a drastic change in a system’s behavior incurred under a small change in external
parameters. Mathematically, it is a non-analyticity in some property of the system as a function of
these parameters. For example, consider the property λ∗(η), the curvature of the model at the end
of training as a function of the learning rate. In the modified large width limit, λ∗(η) is constant
for η < ηcrit, but not for η > ηcrit. Therefore, this function is not analytic at ηcrit. Notice that this
statement is true in the limit but not necessarily at finite width, where the final curvature may be an
analytic function of the learning rate even at ηcrit. It is well known in physics that phase transitions
only occur in a limit where the number of dynamical variables (in this case the number of model
parameters) is taken to infinity. One immediate consequence of the non-analyticity at ηcrit is that
the large learning rate phase is inaccessible from the small learning rate phase via a perturbative
expansion. In other words, we cannot describe all properties of the model for some η > ηcrit by
doing a Taylor expansion around a point η0 < ηcrit and keeping a finite number of terms.

Dyer & Gur-Ari (2020); Huang & Yau (2019) developed a formalism that allows one to compute
finite-width corrections to various properties of deep networks, using a perturbative expansion around
the infinite width limit. We have argued that the usual infinite width approximation to the training
dynamics is not valid for learning rates above ηcrit, and that a full analysis must account for large
finite-width effects. One may have hoped that including the perturbative finite-width corrections
discussed in Dyer & Gur-Ari (2020); Huang & Yau (2019) would allow us to regain analytic control
over the dynamics. The results presented here suggest that this is not the case: For η > ηcrit, we
expect that the perturbative expansion will not provide a good approximation to the gradient descent
dynamics at any finite order in inverse width.

C.2 CRITICAL EXPONENTS

When the external parameters are close to a phase transition, one often finds that the dynamical
properties of the system obey power law behavior. The exponents of these power laws (called critical
exponents) are of interest because they are often found to be universal, in the sense that the same set
of exponents is often found to describe the phase transitions of completely different physical systems.

Here we consider t∗(η), the number of steps until convergence, as a function of the learning rate. We
will now show that t∗ exhibits power-law behavior when η is close to ηcrit. For simplicity we consider
the warmup model studied in Section 3. First, suppose that we are below the transition, setting
ηλ0 = 2− ε for some small ε > 0. From the update equation, ft+1 ≈ (1− ηλt)ft ≈ −(1− ε)ft we
see that ft will converge to some fixed small value f∗ after time t∗ ≈ ε−1 log(f−1

∗ ) ∼ ε−1. Here we
assumed that λt is constant in t, which is true as long as t∗ is independent of n (namely we fix ε and
then take n large). Therefore, the convergence time below the transition scales as t∗ ∼ (ηcrit − η)−1,
and the critical exponent is -1.

Next, suppose that ηλ0 = 2 + ε with ε > 0. Now the update equation reads ft+1 ≈ −(1 + ε)ft. This
approximation holds early during training, when the curvature updates are small. Initially, |ft| will
grow until it is of order

√
n, at which point the updates to λt become of order n0. This will happen

in time t̂ ∼ ε−1 log
√
n. Following this, the optimizer will converge. At this point ηλt is no longer

7
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tuned to be close to the transition, and so the convergence time measured from this point on will not
be sensitive to ε. Therefore, for small ε the convergence time will be dominated by the early part
of training, namely t∗ ≈ t̂ ∼ ε−1. The critical exponent is again -1. Figure S3 show an empirical
verification of this behavior.
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Figure S3: The convergence time diverges when the learning rate is close to the critical value ηcrit,
indicated by the solid green line. The measured exponents (shown in parentheses) are close to the
predicted value of -1. Experiment involves the warmup model of Section 3 with width 16,000.

D EXPERIMENTAL RESULTS: LATE TIME PERFORMANCE

D.1 SIMPLE MNIST EXPERIMENT

Figure S4 shows the accuracy as a function of the learning rate for a fully-connected ReLU network
trained on a subset of MNIST. We find that the optimal performance is achieved above ηcrit and close
to ηmax = 12/λ0, the expected maximum learning rate.

D.2 CIFAR-100 PERFORMANCE

We can also repeat the performance experiments for CIFAR-100 and the same Wide ResNet 28-10
setup. In this case, using MSE and SGD we require to evolve the system for longer times, which
requires a smaller L2 regularization. We didn’t tune for it, but found that 2.5× 10−5 works. With
only one decay we can get within 3% of the Zagoruyko & Komodakis (2016) performance that used
softmax classification and two learning rate decays. However, evolution for longer time is needed:
we found that different learning rates converge at ≈ 2000 physical epochs. Similar to the main text
experiments, we observe that if we decay after evolving for the same amount of physical epochs,
larger learning rates do better. See figure S5.

D.3 DIFFERENT LEARNING RATES CONVERGE AT THE SAME PHYSICAL TIME

We can also plot the test accuracy versus physical time for different learning rates to show that for
vanilla SGD, the performance curves of different learning rates are basically on top of each other if
we plot them in physical time, which is why we find that the fair comparison between learning rates
should be at the same physical time.

We have picked a subset of learning rates of the previous WRN28-18 CIFAR100 experiment of
Appendix D.2. In figure S6, we see how even if the curves are slightly different they converge to

8
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Figure S4: Final accuracy versus learning rate for a fully-connected 1 hidden layer ReLU network,
trained on 512 samples of MNIST with full-batch gradient descent until training accuracy reaches 1
or 700k physical steps (see Appendix A for details). We used a subset of samples to accentuate the
performance difference between phases. The optimal performance is obtained when the learning rate
is above ηcrit, and close to ηmax.
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Figure S5: Test accuracy vs learning rate for WRN28-10 and CIFAR100 with vanilla SGD, L2

regularization, data augmentation, label smoothing and batch size 1024. The critical learning rate is
ηcrit ≈ 0.4. (a) Evolved for 38400 steps. (b) Evolved for 96000/η steps with learning rate η (blue)
and then evolved for 7200 more steps at learning rate 0.01 (red).

roughly the same accuracy. The only curve which is slightly different is η = 2.5 which is a rather
high learning rate (close to 12

λ0
).

D.4 COMPARISON OF LEARNING RATES FOR DIFFERENT L2 REGULARIZATION FOR
WRN28-10 ON CIFAR10

Even if in the main section we have considered a model with fixed L2 regularization, we can study
the effect without L2 or with a different value. In these two examples, we will be considering the
same setup as figures 3c,3d.

Without L2 regularization, we see that the larger learning rate does better even in the absence of
learning rate decay, although training takes a really long time. In our experience, comparing this setup
with state of the art, L2 = 0 regularization makes the experiment take longer before convergence but
does not influence performance much.

9



Under review as a conference paper at ICLR 2021

0 500 1000 1500 2000
ηt

0.0

0.2

0.4

0.6

0.8

T
es

t
a

cc
u

ra
cy

η =0.1. Max acc 0.75

η =0.2. Max acc 0.75

η =0.8. Max acc 0.75

η =1.2. Max acc 0.75

η =1.6. Max acc 0.75

η =2.5. Max acc 0.76

Figure S6: Test accuracy vs physical time for different learning rates in the WRN CIFAR100
experiment of the previous section D.2
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Figure S7: WRN28-10 on CIFAR10 without L2. Same setup as 3d but evolved for longer times.

In the presence of L2 regularization we picked the particular value L2 = 0.0005 in order to make
sure that our conclusion is not dependent on the choice of L2, the only hyperparameter (other than η),
we have considered a larger L2 = 0.001. We see that the optimal performance in physical time is
also peaked in the catapult phase, although the difference here is smaller.

D.5 TRAINING ACCURACY PLOTS

The training accuracies of the previous experiments are shown in figure S9.
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Figure S8: Test accuracies for a larger L2 CIFAR10 experiment like that of the main section. (a)
WRN CIFAR-10 7200 steps as in figure 3c. (b) WRN CIFAR10 2400 physical steps and then 4800
more steps at learning rate 0.01 as in figure 3d.

11



Under review as a conference paper at ICLR 2021

10−1 100

η

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

T
ra

in
a

cc
u

ra
cy

2/λ0

12/λ0

No decay

(a)

10−1 100

η

0.70

0.75

0.80

0.85

0.90

0.95

T
ra

in
a

cc
u

ra
cy

2/λ0

12/λ0

No decay

Decay η → 0.035

(b)

10−1 100

η

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ra

in
a

cc
u

ra
cy

2/λ0

12/λ0

No decay

(c)

10−1 100

η

0.70

0.75

0.80

0.85

0.90

0.95

T
ra

in
a

cc
u

ra
cy

2/λ0

12/λ0

No decay

Decay η → 0.01

(d)

Figure S9: Training accuracies for the performance experiments. Smaller learning rates have higher
training accuracy when compared in physical time. However, they still perform worse for a fixed
number of steps. (a) WRN CIFAR-10 12000 steps as in figure 3c. (b) WRN CIFAR10 3360 physical
steps as in figure 3d. (c) WRN CIFAR100 38400 steps as in figure S5a.(d) WRN CIFAR100 96000
physical steps as in figure S5b.
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D.6 EQUIVALENCE OF λ0 AND THE HESSIAN EIGENVALUE

In figure S10 we run an experiment for a shallow Wide Resnet with 10 layers (1 block), without data
augmentation and measure of the maximum eigenvalues of the NTK and Hessian for different widths.
We see that they track each other fairly well for all times. There is intrinsic noise because different
samples are used to compute these eigenvalues.
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Figure S10: NTK vs Hessian eigenvalues for shallow Wide Resnet trained on CIFAR10 during
training. These values are normalized by λ0

D.7 LATE TIME BEHAVIOUR OF EIGENVALUES

We can compute the eigenvalues at late times for the experiment of figure 3d . Figure S11 shows λ
at the final step of training (before decaying). We see that the dependence of the curvature on the
learning rate is preserved at late times.
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Figure S11: λ vs η at late times for the experiment of figure 3d.
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E EXPERIMENTAL RESULTS: EARLY TIME DYNAMICS

E.1 RELU ACTIVATIONS FOR THE SIMPLE MODEL

In the main text we have been using ReLU non-linearities. Compared with the simple model with no
non-linearities, ReLU networks have a broader trainability regime after η = 4

λ0
. It looks like these

networks generically will train until η = 12
λ0

. This is a generic feature of deep ReLU networks and
can be already observed for a non-linear generalization of the single sample model in Section 3 with
a target y = 1, two hidden layers and a ReLU non-linearity: f = u.ReLU(w.ReLU(v)), as shown
in figure S12). In this single sample context for η ≥ 12

λ , the loss doesn’t diverge but the neurons die
and end up giving the trivial f = 0 function. For deep networks with more than one hidden layer and
multiple samples, as discussed in the main text, we observe that the loss diverges after ∼ 12

λ .
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Figure S12: Simple model ReLU non-linearity (ηcrit = 2.54). (b) is evaluated at physical time 100.

E.2 MOMENTA

The effect of the optimizer also affects these dynamics. If we consider a similar setup with momenta,
first we expect that a linear model converges in a broader range η < 2

λ0
(1 + γ). For smooth non-

linearities, we observe that for η < 2
λ0

, the λt is constant. However this is not true for ReLU, see
figure S13a. In fact, for ReLu networks, we observe that there is a small learning rate, roughly
ηeff,crit = ηcrit

1−γ , below which the time dynamics of λt is similar (but non-constant). However, for
η > ηeff,crit, there are strong time dynamics, we illustrate this in figure S13b with a 3 hidden layer
ReLu network.

E.3 EFFECT OF L2 REGULARIZATION TO EARLY TIME DYNAMICS

We don’t expect L2 regularization to affect the early time dynamics, but because of the strong
rearrangement that goes on in the first steps, it could potentially have a non-trivial effect; among
other things, the Hessian spectrum necessarily is decaying. We can see how the dynamics that drives
the rearrangement is roughly the same, even in the maximum eigenvalue at early times is decreasing
slowly.

E.4 TANH ACTIVATIONS

We observe that for Tanh activation, ηmax is closer to the simple model expectation 4
λ0

, see figure
S15.
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Figure S13: (a) Evolution of the normalized curvature λt/λ0 for d = 2 w = 2048 FC connected
networks evolved with momenta (same networks with SGD with dashed line for reference) evolved
for η = 1

λ0
. We observe that ReLU networks evolved with momenta doesn’t have a constant kernel

in the naive ‘lazy’ phase. (b) ηcrit = 6.96, ηcrit,eff = 0.69 Same setup as the FC network of figure 2
with momenta γ = 0.9: fully connected, three hidden layers w = 2048, ReLU non-linearity. ηcrit is
slightly different due to variations at initialization.
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Figure S14: Same WRN as figure 2d,f with L2 regularization= 0.0005. Dynamics in physical steps
of the λt and λt vs η. ηcrit = 0.18 a) λt, b) λt at physical time 25

E.5 WRN NTK NORMALIZATION

As illustrated in the text in figures 2c, 2e we also see this behaviour for NTK normalization. For
completeness we include the WRN model with NTK normalization. From the linearized intuition,
we expect the phases to also be determined by the quantity ηλt, independently of the normalization.
Figure S16 has the same setup as in figure 2.

F RESTORATION OF LINEAR DYNAMICS

One striking prediction of the the catapult mechanism is that after a period of excursion, the logit
differences settle back to O(1) values, the NTK stops changing, and evolution is again well approxi-
mated by a linear model with constant kernel at large width.
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Figure S15: Maximum NTK eigenvalue λ at early times for a 2 hidden layer fully connected network
with tanh non-linearity trained on MNIST, with ηcrit = 0.06. (a) Early time dynamics of the curvature
for learning rates in the linear and catapult phase. (b) λ measured at ηt = 3.
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Figure S16: Same as Figures 2d,2f but with NTK normalization. a,b) Wide Resnet 28-10. ηcrit =
31.47,λ vs η at physical time 4000

We speculate that the return to linearity and constancy of the kernel may hold asymptotically in width
generally for a range of learning rates above ηcrit. We test this by evolving the model for order log(n)
steps until the catapult effect is over, linearizing the model, and comparing the evolution of the two
models beyond this point. Figure S17 shows an example of this. At fixed width, the accuracy of the
linear and non-linear networks match for a range of learning rates above the transition up to 4/λ0.
We present additional evidence for this asymptotic linearization behavior in the Supplement.

F.1 ADDITIONAL EVIDENCE FOR LINEARIZATION IN THE CATAPULT PHASE.

Here we present some more detailed evidence for the re-emergence of linear dynamics in the catapult
phase. Figure S18 show results for models trained on subsets of MNIST with learning rates η > ηcrit.
In figure Figure S18a we see that for a one-hidden-layer fully connected model trained on 512 MNIST
images, the performance of the full non-linear model and model linearized after 10 steps track closely.
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Figure S17: Evidence for linear dynamics after the catapult effect is over. Here we show the same
model as in Figure S4 with the addition of models linearized at step 0 and another linearized at step
10. We observe that the model linearized after 10 steps tracks the non-linear performance in the
catapult phase up to η ≈ 4/λ0.

Models evolve as linear models when the NTK is constant. In Figure S18b we give evidence that as
networks become wider, the change in the kernel decreases.
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Figure S18: Evidence for a return of linear dynamics after tlin. (a,b) Show the same model as in figure
S4 with the addition of linearized models at step 0 and 10. We observe that the linearized model after
10 steps tracks the non-linear performance in the ‘catapult’ phase up to η ∼ 4

λ0
(c) The change in the

NTK between tlin = 50 steps and t = 1000 steps decreases as the width increases. Here we consider
2-class MNIST with 100 samples per class.
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