
Position Coupling: Leveraging Task Structure for
Improved Length Generalization of Transformers

Hanseul Cho * 1 Jaeyoung Cha * 1 Pranjal Awasthi 2 Srinadh Bhojanapalli 2 Anupam Gupta 2 3 Chulhee Yun 1

Abstract
Even for simple arithmetic tasks like integer ad-
dition, it is challenging for Transformers to gen-
eralize to longer sequences than those encoun-
tered during training. To tackle this problem, we
propose position coupling, a simple yet effective
method that directly embeds the structure of the
tasks into the positional encoding of a (decoder-
only) Transformer. Taking a departure from the
vanilla absolute position mechanism assigning
unique position IDs to each of the tokens, we
assign the same position IDs to two or more “rele-
vant” tokens; for integer addition tasks, we regard
digits of the same significance as in the same po-
sition. On the empirical side, we show that with
the proposed position coupling, a small (1-layer)
Transformer trained on 1 to 30-digit additions can
generalize up to 200-digit additions (6.67× of
the trained length). On the theoretical side, we
prove that a 1-layer Transformer with coupled
positions can solve the addition task involving
exponentially many digits, whereas any 1-layer
Transformer without positional information can-
not entirely solve it. We also demonstrate that po-
sition coupling can be applied to other algorithmic
tasks such as N × 2 multiplication, copy/reverse,
and a two-dimensional task.

1. Introduction
Since the appearance of a sequence-to-sequence deep neural
architecture called Transformer (Vaswani et al., 2017), it
has brought tremendous success in various fields including
natural language process (NLP) (Thoppilan et al., 2022;
Chowdhery et al., 2023; Gemini et al., 2023; OpenAI, 2023)
and many applications such as mathematical reasoning and
theorem proving (Lewkowycz et al., 2022; Wu et al., 2022;

1Kim Jaechul Graduate School of AI, KAIST 2Google Re-
search 3New York University. Correspondence to: Chulhee Yun
<chulhee.yun@kaist.ac.kr>.

Proceedings of the 1 st Workshop on Long-Context Foundation
Models, Vienna, Austria. 2024. Copyright 2024 by the author(s).

Trinh et al., 2024). Despite its triumph, it has recently
been illuminated that Transformers often lack the ability
of length generalization (Anil et al., 2022; Deletang et al.,
2023; Zhang et al., 2023; Press et al., 2022). It refers to
a special kind of out-of-distribution generalization to ex-
trapolate the model’s performance to longer sequences than
those encountered during training. Understanding length
generalization is of great importance because the lack of
length generalization provides evidence that language mod-
els do not genuinely understand the structure of a given
task. Improving Transformer’s length generalization has
received much attention as the time/memory complexities
for training Transformers grow up to quadratically in the
sequence length.

Even for simple arithmetic tasks such as integer addition,
length generalization is still difficult for Transformers (Kim
et al., 2021; Nogueira et al., 2021; Kazemnejad et al., 2023;
Zhou et al., 2024a; Lee et al., 2024; Zhou et al., 2024b).
Humans can length-generalize in integer addition because
they understand the essential principle of the task. Never-
theless, it is observed that Transformers typically learn to
solve addition only up to the training sequence length (Lee
et al., 2024), which is different from the true arithmetic al-
gorithm that humans “implement”. This raises an important
question: can we make a Transformer truly understand the
structure of a task so that it can generalize to the longer
sequences without training on them? In other words, can
we inject the known structure of a task into a Transformer
so that it can automatically length-generalize?

In this paper, we propose position coupling, a simple yet
effective method for length generalization that directly em-
beds the structure of the tasks into a Transformer. In contrast
to the vanilla absolute position mechanism assigning unique
and consecutive position IDs to each token, we assign the
same position IDs to certain input tokens that are seman-
tically relevant. Coupling such tokens together helps the
model learn to solve the task regardless of the length of the
given input sequence. For example, in the addition task, it
is important to consider the significance of digits, so we
couple the positions at the same significance.

1

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Operand Length

0

20

40

60

80

100
Ex

ac
t-M

at
ch

 A
cc

ur
ac

y
(\%

) Decimal Integer Addition (Reversed Format + Zero-Padding)

Train lengths (1-30)
NoPE (6-layer 8-head) (EM=99.22% at 34)
Random-Start APE (6-layer 8-head) (EM=98.26% at 34)
Index Hinting w/ NoPE (6-layer 8-head) (EM=95.19% at 45)
Index Hinting w/ Random-Start APE (6-layer 8-head) (EM=99.89% at 40)
Position Coupling (1-layer 4-head) (EM=95.37% at 200)

Figure 1. Methods for length generalization in the integer addition task. We report exact-match accuracies (markers: medians over
experiments; light area: 95% confidence intervals). We employ the reversed format and zero-paddings (Lee et al., 2024) into the input
sequence. With position coupling, we achieve more than 95% exact-match accuracy for up to 200-digit additions with Transformers
trained on up to 30-digit additions. For index hinting (Zhou et al., 2024a), we separately test absolute positional embedding (APE) with a
random starting position ID (mimicking the original implementation by Zhou et al. (2024a)) and without positional encoding (NoPE)
(Kazemnejad et al., 2023) (as tested by Zhou et al. (2024b)).

1.1. Summary of Contributions

• We propose position coupling to tackle the length gen-
eralization problem of decoder-only Transformers. Our
approach injects the structure of the task into the abso-
lute position encoding by assigning the same position
IDs to relevant tokens (Section 3).

• With position coupling, we achieve a robust and near-
perfect generalization up to 200-digit additions by train-
ing Transformers on up to 30-digit additions, which is
a 6.67× extrapolation of the operand lengths (Figure 1,
Section 4). It is promising since it was not clear whether
the length generalization on the addition task can be
solved reliably with Transformers (Zhou et al., 2024b).

• We theoretically prove that a small (1-layer, 2-head)
Transformer equipped with coupled position IDs can
add two decimal integers whose lengths are exponential
in the embedding dimension (Theorem 5.1). Interest-
ingly, we observe a striking similarity between the atten-
tion patterns from our theoretical construction and those
extracted from a Transformer trained with a standard
optimizer (Appendix C). As a complementary result, we
also prove that any 1-layer Transformer without posi-
tional information cannot fully solve any permutation-
sensitive tasks such as addition (Appendix D).

• We empirically demonstrate that position coupling can
effectively address various tasks beyond addition, includ-
ing multiplication between N -digit and 2-digit integers
(Appendix E.1, in which we also provide a theoretical
construction of a 2-layer Transformer that solves this
task for exponentially large N), addition with multiple
operands, and copy/reverse (Appendix F). We also verify
that position coupling can aid Transformers in learning
tasks with multi-dimensional structures (Appendix E.2).

2. Preliminaries
We focus on decoder-only Transformers solving the tasks us-
ing next-token prediction. We study deterministic tasks with
a unique answer, so we consider greedy decoding through-
out the paper. We put backgrounds on next-token prediction,
data formats, and position embeddings in Appendix A.

3. Position Coupling: A Method for Length
Generalization

We propose position coupling, which assigns position IDs
that inject the structure of given tasks. Here, we explain the
general position ID assignment rule of position coupling in
two steps and then move on to the example of addition.

First, we partition the input tokens. The detailed princi-
ples for grouping the tokens differ by task, but the common
desiderata are the following: there are two or more groups
of consecutive tokens, and each token in a group must have
a unique semantic meaning so that a one-to-one correspon-
dence between tokens in different groups can be made.

Next, for each group of tokens, we assign a sequence of
consecutive numbers (usually, positive integers) as position
IDs, starting from a random number (at training time) or a
fixed predetermined number (at evaluation time). We use
random position IDs at training time for inducing length
generalization by enabling all position embedding vectors to
be trained, up to a pre-defined hyperparameter of maximum
position ID (max_pos).1 Very importantly, we assign the
same position IDs to the tokens in all groups that are relevant
to each other for solving the given task: we refer to this as
“coupling the positions”. Lastly, we set 0 as the position
IDs of special tokens like BOS/EOS (beginning-/end-of-
sequence) tokens and the PAD token (padding for minibatch
training and evaluation).

1It explicitly determines the maximum testable length of se-
quence that a transformer can handle. In case of the addition task,
the maximum possible generalizable length is max_pos− 2.

2

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

3.1. Position Coupling for Integer Addition Task
We illustrate position coupling for the decimal integer addi-
tion task. To study the length generalization, we regard each
digit (0–9) as a single token. If we need a concrete example,
we will use the addition 653 + 49 = 702.

Position Couplings

reversed sumzero-paddings

6 5 3 + 0 4 9 =[BOS] 2 0 7 0 [EOS]

6 7 8 9 6 7 8 90 8 7 6 5 0Position IDs

Input Tokens [PAD] [PAD]

0 0

…

…

Figure 2. Position coupling for decimal integer addition task, show-
ing 653 + 49 = 702 with appropriate input formats. The starting
position ID ‘6’ is an arbitrarily chosen number.

Before applying the position coupling, we adopt an input for-
mat similar to Lee et al. (2024); we reverse the response (the
sum) and we use zero-padding and wrapping with BOS/EOS
token ‘$’ at the same time. For example, ‘653 + 49 = 702’
becomes ’$653 + 049 = 2070$’.

We partition the tokens in the sequence into three groups:
(1) first operand & ‘+’, (2) second operand, and (3) ‘=’ &
response (which we call ‘sum’). Then each number token
is “unique” in the corresponding group in terms of signifi-
cance, which naturally induces a one-to-one correspondence
between (most of) the tokens across different groups. We
group ‘=’ and the sum together because these tokens are
where we perform next-token prediction.

Now we assign the coupled position IDs to the tokens. Let
us say that the random starting number is 6. We assign 6, 7,
and 8 to the tokens in the operands, and assign 5, 6, 7, and
8 to the tokens in the sum in a reversed order: see Figure 2.
We remark that, first, we assign 9 as position IDs of ‘+’ and
‘=’ tokens because they are adjacent to the number token
with position ID 8, even if there are no ‘significances’ for
those tokens. Second, we assign 5 as a position ID of the
most significant digit of the sum (which may be ‘0’ due
to the zero-padding) just because it is next to the number
token with position ID 6, even though there are no other
corresponding tokens in the other groups (operands). We
also note that we do not group the ‘+’ token with the second
operand to prevent unnecessary coupling between ‘+’ and
the most significant digit of the sum (position ID 5).

Even though the idea of implanting the structure of a task
into the positional encoding is novel, there is an existing
approach named index hinting (Zhou et al., 2024a) that
applies a similar idea but to the input sequence. We compare
our method with index hinting in detail in Appendix B.

4. Experiments on Addition Task
In this section, we empirically demonstrate that position
coupling allows extensive length generalization of Trans-
formers on the addition task. We delve into the impact of
training length and architecture on the length generalization

performance and provide comparisons with NoPE, APE
with a random starting position ID (we call random-start
APE), and index hinting (Zhou et al., 2024a).

Data Sampling. We opt for the balanced sampling in terms
of the number of digits (Nogueira et al., 2021). Given the
maximum number of digits Dmax, we do uniform random
balanced sampling for each operand in two steps. First,
we sample the number of digits D ∈ [1, Dmax]. Next, we
sample an operand from [10D−1, 10D−1], except for D = 1
where we sample from [0, 9]. This procedure addresses the
imbalance problem in the number of digits of operands.

Model and Training. As baseline models, we train 1-layer,
4-head, decoder-only Transformers (with roughly 4M train-
able parameters) from scratch. We set max_pos as 202 so
that the maximum testable length of summands is 200. We
do not use packing or shifting for simplicity of implemen-
tation. Since we manually put coupled position IDs with
a random starting index during training, we can train all
the positions without packing and shifting. We run each
experiment 8 times with 2 different random seeds for data
generation and 4 different random seeds for model initializa-
tion & stochastic optimization, unless mentioned otherwise.
We summarize all hyperparameters in Appendix G.

4.1. Results
Longer Training Sequences Lead to Longer Generaliz-
able Lengths. We train separate models with Dmax ∈
{10, 20, 30, 40} and evaluate the models on (up to) 200-
digit additions. For each run of training, we choose and
evaluate the best model in terms of the validation loss for
200-digit additions. The result is showcased in Figure 3.
We decide that a model successfully generalizes to a certain
length of operands (referred to as “generalizable length”) if
the median EM accuracy exceeds 95%.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Operand Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(%
)

(M
ed

ia
n

ov
er

 8
 ru

ns
)

Decimal Integer Addition (1-layer, 4-head, max_pos=202)

Trained on 1-10 (EM=95.48% at 70)
Trained on 1-20 (EM=95.55% at 135)
Trained on 1-30 (EM=95.37% at 200)
Trained on 1-40 (EM=96.42% at 200)
95% line

Figure 3. Ablation on the trained operand lengths.

We observe that the generalizable length becomes longer as
we train on longer training sequences. The generalizable
length is 70 for the models trained on additions involving
1–10 digits, 135 for models trained on 1–20, and 200 for
1–30 and 1–40. We remark that we could scale up the
generalizable length to 500 by training with lengths 1–160:
refer to Appendix F.2.

A prior work by Zhou et al. (2024b) provides a similar
analysis on the addition tasks. Combining appropriate input
format and advanced PE, they achieve ≥98% EM accuracy
for 100-digit additions with a 6-layer 8-head model trained
on 1–40. Moreover, they achieve a generalizable length

3

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

of 45 for a model trained on 1–30, 25 for 1–20, and 10
for 1–10 (no length generalization). One big difference
between their analysis and ours is they report the maximum
accuracy for each testing length over trials, while we report
the medians. Thus, we choose a bit lower threshold (95%)
for generalizability than theirs. To better the comparison,
we also report the maximum accuracies in Appendix F.1.

Shallower Models Generalize Better. Since Zhou et al.
(2024a;b) choose 6-layer 8-head models as their base mod-
els, we also test our method to deeper models. The re-
sults (with models trained on 1–40 digits) displayed in Fig-
ure 4 show that, even if deeper models can generalize up to
some extent, the performance deteriorates as the model gets
deeper. We attribute this phenomenon to the problem of
optimization. Since the theoretical construction of a 1-layer
addition Transformer (that will appear in Section 5) natu-
rally extends to larger architectures, deeper models have at
least as much generalization capability as shallower models.
Thus, the difficulty of training deep neural networks must
be the reason for the degrading performance.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Operand Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(%
)

(M
ed

ia
n

ov
er

 8
 ru

ns
)

Decimal Integer Addition (Trained on 1-40, max_pos=202)

Train lengths (1-40)
1layers, 8heads (EM=95.32% at 155)
2layers, 8heads (EM=95.89% at 115)
3layers, 8heads (EM=96.09% at 125)
4layers, 8heads (EM=95.62% at 60)
5layers, 8heads (EM=95.89% at 70)
6layers, 8heads (EM=95.52% at 55)
95% line

Figure 4. Ablation on the number of layers.

Comparison with NoPE and APE (with random starting
position ID). Our experiments demonstrate that simple PE
methods like NoPE and random-start APE cannot length-
generalize well on the addition task. In particular, we imple-
ment random-start APE to mimic the training process with
the usual APE combined with packing and shifting. The
results showcased in Figure 1 imply that naively training all
position embeddings does not necessarily help produce a
strictly better model in terms of length generalization than
that does not use position embeddings at all. We also remark
that even training itself is difficult for shallower models (e.g.,
1-layer) with NoPE and random-start APE.

5. Theory: 1-layer Transformer with Coupled
Positions can Perform Long Additions

In the previous section, we provided empirical results ex-
hibiting the outstanding performance of position coupling.
One might ask why and how position coupling works so ef-
fectively. Here we provide a theoretical analysis by carefully
constructing a 1-layer Transformer model that is capable
of solving the addition task involving exponentially long
operands when the input is encoded with position coupling.

For the sake of simplicity, we consider a Transformer with-
out any normalization layers, as conventionally done in theo-

retical constructions by previous works (Yun et al., 2020a;b;
Awasthi and Gupta, 2023). For the sake of completeness,
readers can find a mathematical formulation of the decoder-
only Transformer architecture in Appendix H.

Theorem 5.1. With the input format described in Sec-
tion 3.1, there exists a depth-1 two-head decoder-only Trans-
former with coupled positions that solves the addition task
with next-token prediction. Here, the operand length is at
most 2⌊(d−17)/2⌋−2 (embedding dimension: d ≥ 21).

We provide a detailed construction in Appendix I. We high-
light that our proof is constructive and does not rely on any
universal approximation result of neural networks.

Theorem 5.1 shows that a 1-layer 2-head Transformer is suf-
ficient for implementing addition between two exponentially
long integers. We remark that this result can be naturally ex-
tended to larger architectures with more layers/heads, with
the help of residual connections.

We discover a striking similarity between the attention pat-
terns in our theoretical construction (Theorem 5.1) and those
extracted from a Transformer trained with position coupling
and a standard optimizer: refer to Appendix C. We also
present the necessity of proper positional information for a 1-
layer Transformer to solve the addition task in Appendix D.

6. Conclusion
Achieving length generalization of Transformers even in the
simple case of the addition task has been a challenge that
received a lot of attention. We propose position coupling,
a variant of learned APE, which enables capturing task
structure to improve the length generalization performance
of Transformers for addition. We show that a Transformer
trained on 1–30 digit addition can generalize up to 200-
digit addition. We also provide the construction of a 1-layer
Transformer model capable of adding two exponentially
long integers when position coupling is applied.

Limitations & Future Directions. We intentionally lim-
ited ourselves to the tasks with an explicit structure between
the tokens in each sequence. This is because we are propos-
ing a method to instill the known structure of the task into a
Transformer by training on short sequences. Designing the
coupling of positions for tasks whose structure is implicit or
black-box (e.g., for general NLP tasks) remains a fascinating
next step: we leave the methodology for uncovering hidden
structures and autonomously creating appropriate couplings
(without manually designing them) for future work.

We also leave two challenging arithmetic tasks to length-
generalize for future work. The first is addition with a
varying number of summands, i.e., determining if the model
can generalize to summing multiple integers when trained
on samples with fewer summands. The second task is multi-
plication, where the lengths of both operands can vary.

4

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

References
Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk.

Generalization on the unseen, logic reasoning and degree
curriculum. In International Conference on Machine
Learning, pages 31–60. PMLR, 2023. A.4

Kartik Ahuja and Amin Mansouri. On provable length
and compositional generalization. arXiv preprint
arXiv:2402.04875, 2024. A.4

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor
Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
Exploring length generalization in large language models.
Advances in Neural Information Processing Systems, 35:
38546–38556, 2022. 1

Pranjal Awasthi and Anupam Gupta. Improving length-
generalization in transformers via task hinting. arXiv
preprint arXiv:2310.00726, 2023. 5

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 3, J

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. Journal of Machine Learning Research, 24
(240):1–113, 2023. 1

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. Language modeling with gated convolutional
networks. In International conference on machine learn-
ing, pages 933–941. PMLR, 2017. H

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris Cundy,
Marcus Hutter, Shane Legg, Joel Veness, and Pedro A
Ortega. Neural networks and the chomsky hierarchy.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=WbxHAzkeQcn. 1

Shaoxiong Duan and Yining Shi. From interpolation to
extrapolation: Complete length generalization for arith-
metic transformers. arXiv preprint arXiv:2310.11984,
2023. A.4, E.1

Dan Friedman, Alexander Wettig, and Danqi Chen. Learn-
ing transformer programs. Advances in Neural Informa-
tion Processing Systems, 36, 2023. 10

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N Dauphin. Convolutional sequence to se-
quence learning. In International conference on machine
learning, pages 1243–1252. PMLR, 2017. A.3

Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu,
Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini:
a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805, 2023. 1

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. H

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato,
and Yann LeCun. What is the best multi-stage architec-
ture for object recognition? In 2009 IEEE 12th interna-
tional conference on computer vision, pages 2146–2153.
IEEE, 2009. H

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich,
Yuhuai Wu, Yuanzhi Li, and François Charton. Length
generalization in arithmetic transformers. arXiv preprint
arXiv:2306.15400, 2023. A.4, E.1

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Nate-
san Ramamurthy, Payel Das, and Siva Reddy. The impact
of positional encoding on length generalization in trans-
formers. Advances in Neural Information Processing
Systems, 36, 2023. 1, 1, A.3, G

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo
Kang, and Sung-Hyon Myaeng. Have you seen that num-
ber? investigating extrapolation in question answering
models. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, pages
7031–7037, 2021. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015. 1

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. Teaching
arithmetic to small transformers. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=dsUB4bst9S. 1, 1, 3.1, A.2, A.4

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan
Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
et al. Solving quantitative reasoning problems with lan-
guage models. Advances in Neural Information Process-
ing Systems, 35:3843–3857, 2022. 1

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie,
Santiago Ontanon, Manzil Zaheer, Sumit Sanghai,
Yiming Yang, Sanjiv Kumar, and Srinadh Bhojana-
palli. Functional interpolation for relative positions im-
proves long context transformers. In The Twelfth In-
ternational Conference on Learning Representations,

5

https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=dsUB4bst9S
https://openreview.net/forum?id=dsUB4bst9S

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

2024. URL https://openreview.net/forum?
id=rR03qFesqk. A.3

David Lindner, János Kramár, Sebastian Farquhar, Matthew
Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr: Com-
piled transformers as a laboratory for interpretability. Ad-
vances in Neural Information Processing Systems, 36,
2023. 10

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John
Kirchenbauer, Brian R. Bartoldson, Bhavya Kailkhura,
Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and
Tom Goldstein. Transformers can do arithmetic with the
right embeddings, 2024. A.4

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010. H

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investi-
gating the limitations of transformers with simple arith-
metic tasks. arXiv preprint arXiv:2102.13019, 2021. 1,
4

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 1

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-
brary. Advances in neural information processing systems,
32, 2019. G

Ofir Press, Noah Smith, and Mike Lewis. Train short, test
long: Attention with linear biases enables input length
extrapolation. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=R8sQPpGCv0. 1

Philip Quirke and Fazl Barez. Understanding addition in
transformers. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=rIx1YXVWZb. C

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1–67, 2020. G

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi
Grau-Moya, Róbert Csordás, Mehdi Bennani, Shane
Legg, and Joel Veness. Randomized positional encod-
ings boost length generalization of transformers. arXiv
preprint arXiv:2305.16843, 2023. A.3

Noam Shazeer. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020. 1, H

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat
Lee, Yuanzhi Li, and Yi Zhang. Positional descrip-
tion matters for transformers arithmetic. arXiv preprint
arXiv:2311.14737, 2023. A.4

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia
Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda:
Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022. 1

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang
Luong. Solving olympiad geometry without human
demonstrations. Nature, 627(8004):E8–E8, 2024. doi:
10.1038/s41586-024-07115-7. URL https://doi.
org/10.1038/s41586-024-07115-7. 1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017. 1, A.3,
G, H

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like
transformers. In International Conference on Machine
Learning, pages 11080–11090. PMLR, 2021. 10

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Hug-
gingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771, 2019. G

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe,
Charles Staats, Mateja Jamnik, and Christian Szegedy.
Autoformalization with large language models. Advances
in Neural Information Processing Systems, 35:32353–
32368, 2022. 1

Changnan Xiao and Bing Liu. Conditions for length gen-
eralization in learning reasoning skills. arXiv preprint
arXiv:2311.16173, 2023. A.4

Changnan Xiao and Bing Liu. A theory for length
generalization in learning to reason. arXiv preprint
arXiv:2404.00560, 2024. A.4

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin
Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei
Wang, and Tieyan Liu. On layer normalization in the
transformer architecture. In International Conference on
Machine Learning, pages 10524–10533. PMLR, 2020. G

6

https://openreview.net/forum?id=rR03qFesqk
https://openreview.net/forum?id=rR03qFesqk
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=rIx1YXVWZb
https://openreview.net/forum?id=rIx1YXVWZb
https://doi.org/10.1038/s41586-024-07115-7
https://doi.org/10.1038/s41586-024-07115-7

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat,
Sashank Reddi, and Sanjiv Kumar. Are transformers uni-
versal approximators of sequence-to-sequence functions?
In International Conference on Learning Representations,
2020a. URL https://openreview.net/forum?
id=ByxRM0Ntvr. 5, H, H

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli,
Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
O(n) connections are expressive enough: Universal ap-
proximability of sparse transformers. Advances in Neu-
ral Information Processing Systems, 33:13783–13794,
2020b. 5

Biao Zhang and Rico Sennrich. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019. G, 1, J

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning
(still) requires rethinking generalization. Communica-
tions of the ACM, 64(3):107–115, 2021. K.8, K.8

Yi Zhang, Arturs Backurs, Sebastien Bubeck, Ronen El-
dan, Suriya Gunasekar, and Tal Wagner. Unveiling
transformers with LEGO: A synthetic reasoning task,
2023. URL https://openreview.net/forum?
id=1jDN-RfQfrb. 1

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Joshua M. Susskind, Samy Bengio, and
Preetum Nakkiran. What algorithms can transformers
learn? a study in length generalization. In The Twelfth
International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?
id=AssIuHnmHX. 1, 1, 3.1, 4, 4.1, A.4, B, F.4, 10

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang,
Rishabh Agarwal, and Denny Zhou. Transformers can
achieve length generalization but not robustly. arXiv
preprint arXiv:2402.09371, 2024b. 1, 1, 1.1, 4.1, A.4,
F.1, G

7

https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=1jDN-RfQfrb
https://openreview.net/forum?id=1jDN-RfQfrb
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Contents

1 Introduction 1
1.1 Summary of Contributions . 2

2 Preliminaries 2

3 Position Coupling: A Method for Length Generalization 2
3.1 Position Coupling for Integer Addition Task . 3

4 Experiments on Addition Task 3
4.1 Results . 3

5 Theory: 1-layer Transformer with Coupled Positions can Perform Long Additions 4

6 Conclusion 4

A Omitted Backgrounds 10
A.1 Next-token Prediction with Decoder-only Transformers . 10

A.2 Data Formats . 10

A.3 Positional Embeddings/Encodings (PE) . 10

A.4 Other Related Works . 11

B Comparison with Index Hinting 12

C Probing the Attention Patterns in Trained Transformers with Position Coupling 13

D Omitted Theoretical Result: 1-layer Transformers Require Positional Information 14

E Applying Position Coupling Beyond Addition Task 15
E.1 Position Coupling for N × 2 Multiplication Tasks . 15

E.2 Two-dimensional Position Coupling for Minesweeper Generator Task 16

F More Applications & Experiments of Position Couping 17
F.1 Decimal Integer Addition Task: Maximum Exact-Match Accuracies . 17

F.2 Decimal Integer Addition Task: Scale-up to Length of 500 . 17

F.3 Addition Task with Multiple Summands . 18

F.4 Position Coupling for Copy/Reverse Tasks . 18

F.5 Minesweeper Generator Task: Sharing the Position Embedding Modules or Not 19

G Experiment Details and Hyperparameters 20

H Decoder-only Transformer Architecture 25

I Formal Construction of Addition Transformer with Position Coupling 26
I.1 Notation . 26

I.2 Input Sequence . 26

I.3 Encoding Function . 28

8

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

I.3.1 Token Embedding . 28
I.3.2 Coupled Position IDs and Position Embedding . 28

I.4 Transformer Block — Causal Attention Layer . 29
I.4.1 Attention Head 1: Digit-wise Addition without Carries . 29
I.4.2 Attention Head 2: Carry & EOS Detection . 32
I.4.3 Residual Connection . 37

I.5 Transformer Block — Token-wise Feed-forward Layer . 37
I.5.1 Subnetwork 1: Construction for SUM (dimension 7–16). 38
I.5.2 Subnetwork 2: Construction for IS_EOS (dimension 17). 39
I.5.3 Residual Connection . 40

I.6 Decoding Function . 40

J Proof: Impossibility of Addition with No Positional Encoding 42

K (Formal) Construction of N × 2 Multiplication Transformer with Position Coupling 44
K.1 Notation . 44
K.2 Input Sequence . 44
K.3 Encoding Function . 45

K.3.1 Token Embedding . 45
K.3.2 Coupled Position IDs and Position Embedding . 46

K.4 Construction Idea . 47
K.5 Transformer Block 1 — Causal Attention Layer . 48

K.5.1 Attention Head 1: Detecting the Ones Digit of the Second Operand 48
K.5.2 Attention Head 2: Detecting the Tens Digit of the Second Operand 50
K.5.3 Attention Head 3: Position Masking . 52
K.5.4 Residual Connection . 54

K.6 Transformer Block 1 — Token-wise Feed-forward Layer . 54
K.6.1 Residual Connection . 55

K.7 Transformer Block 2 — Causal Attention Layer . 55
K.7.1 Attention Head 1: Copying the Ones Digit of the Second Operand 56
K.7.2 Attention Head 2: Copying the Tens Digit of the Second Operand 57
K.7.3 Attention Head 3: Copying the Appropriate Digit from the First Operand I 58
K.7.4 Attention Head 4: Copying the Appropriate Digit from the First Operand II 60
K.7.5 Attention Head 5: Copying the Appropriate Digit from the First Operand III 61
K.7.6 Attention Head 6: Copying the Appropriate Digit from the First Operand IV 63
K.7.7 Attention Head 7: Copying the Appropriate Digit from the First Operand V 64
K.7.8 Residual Connection . 66

K.8 Transformer Block 2 — Token-wise Feed-forward Layer . 67
K.8.1 Residual Connection . 68

K.9 Decoding Function . 69

9

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Supplementary Material
A. Omitted Backgrounds
A.1. Next-token Prediction with Decoder-only Transformers

* * * * * * * 7 0 2 [EOS] * **O
ut

pu
t

Transformer Decoder

Calculate Loss

⬆

In
pu

t 6 5 3 + 4 9 =[BOS] 7 0 2 [EOS] [PAD] …
query response

Figure 5. Schematic of solving an integer addition task instance using next-token prediction with a decoder-only Transformers. BOS/EOS
mean beginning-/end-of-sequence tokens, respectively. PAD means a padding token, used for matching the sequence lengths in a single
minibatch of sequences. Here we assume a basic input format (plain, no zero-padding), which is different from that in our experiment.

A decoder-only Transformer returns an output sequence of the same length as the input sequence. One difference from a
Transformer encoder is that the attention mechanism in a Transformer decoder occurs only in a single forward direction due
to the causal attention mask. Due to this causal nature, the Transformer decoder is mostly used for inferring the next token
of each token, just based on the information of the current and the previous tokens.

A.2. Data Formats

Each task in this work is represented as sequences of the form ‘(query)=(response)’: given a query, our task is to infer the
response correctly. Thus, we only care about the result of the next-token prediction for the ‘=’ token and the tokens in the
response (except its last token): we only compute the losses and accuracies for those output tokens.

Previous works observe that data formats play an important role in solving downstream tasks with Transformers because
a proper data format enables the model to learn a simple function to solve a task. Here we overview some well-known
methods we apply, focusing on the addition task.

Reversed Format. Lee et al. (2024) observe that reversing the response leads to improvement in both performance and
sample efficiency. For example, ‘653 + 49 = 702’ becomes ‘653 + 49 = 207’ in a reversed format. This enables a
decoder-only Transformer to infer the response from the least significant digit to the most significant digit, similar to how
humans add two numbers.

Zero-padding. Zero-paddings ensure that the length ℓ of both operands in a query is the same and the length of a response
is fixed as ℓ + 1. By padding the query and the response of an M -digit + N -digit addition with 0’s, the input sequence
becomes a max{M,N}-digit addition with (max{M,N}+ 1)-digit response. For example, ‘653 + 49 = 702’ becomes
‘653 + 049 = 0702’.

Wrapping with BOS/EOS token(s). It is conventional in NLP to put BOS/EOS (beginning-/end-of-sequence) tokens at
the beginning/end of the sequence. Lee et al. (2024) use the same token ‘$’ for BOS and EOS tokens and observe that it
is beneficial to wrap each sequence with the $ token when solving the addition task. We do not observe any significant
difference in the performance between sequences with the same and different BOS and EOS tokens.

A.3. Positional Embeddings/Encodings (PE)

Vaswani et al. (2017) introduce the absolute positional embedding (APE) to Transformers to inject the positional information
into the model. The usual APE works as follows: given an input sequence of tokens, we assign a sequence of consecutive
position IDs (integers). Each position ID is mapped to a unique PE vector, and the vector is either added or concatenated to
the corresponding token embedding vector. We focus on the learned APE initially proposed by (Gehring et al., 2017).

Length Generalization and PE. It is actively studied whether PE is a crucial factor in solving the length generalization
problem of Transformers. Kazemnejad et al. (2023) argue that decoder-only Transformers with no positional encoding

10

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

(NoPE) can achieve length generalization of downstream tasks since a Transformer decoder can implicitly capture the
generalizable positional information due to its causal nature. However, there is a line of works proposing new PE methods
to improve the length generalization of Transformers (Ruoss et al., 2023; Li et al., 2024).

A.4. Other Related Works

Length Generalization in the Addition Tasks. Lee et al. (2024) observe that reversing the output in the addition task
enables the model to learn a simple function. Shen et al. (2023) propose “Random Spacing” and “Recursive Scratchpad”,
achieving near-perfect generalization from 10-digits to 12-digits addition. Zhou et al. (2024a) introduce “index hints”,
position markers placed in front of each token, in both the input and output of addition tasks. Most recently, Zhou et al.
(2024b) demonstrate a possibility of extrapolation to the length 100 with training length 1–40 in the addition task by
combining appropriate input format and advanced PE, yet they also observe that the performances are not robust and highly
depend on the random seeds.

Length Generalization in the N ×M Multiplication Task (M is fixed). Jelassi et al. (2023) investigate N × 3 using an
encoder-only model and Duan and Shi (2023) study N × 1 with an encoder-decoder Transformer architecture. Besides
the architectural difference, Jelassi et al. (2023) fail to observe length generalization with RPE and only achieve it by
supplementing a small number of long samples to the training set. Furthermore, although Duan and Shi (2023) provide
perfect length generalization results even for test samples 10× longer than those observed during training, their approach
requires a retraining step with hand-crafted bias correction on attention score matrices.

Analyzing Length Generalization in Theoretical Perspectives An emerging line of research seeks to theoretically address
why length generalization is difficult and under what conditions it can be achieved. In Abbe et al. (2023), the authors
demonstrate that various neural network models have an implicit bias towards min-degree interpolators, which may not
be ideal for various reasoning tasks. Xiao and Liu (2023; 2024) investigate problems whose reasoning processes can be
formulated as directed acyclic graph (DAG) structures, introducing the concept of maximal input element distance to identify
a sufficient condition for length generalization. Recently, Ahuja and Mansouri (2024) formulate the conditions of function
classes required to guarantee the length generalization of the empirical risk minimizer function.

Comparison with McLeish et al. (2024) A very recent concurrent work by McLeish et al. (2024) propose a new position
embedding method called “Abacus”. From a methodological perspective, Abacus is almost identical to our position coupling
except for two main differences: Abacus reverses both the query and the response and does not use padding. From now on,
we outline the differences between their work and ours beyond the methodology.

In terms of the model architecture, they use a depth-16 decoder-only Transformer model. They combine their method with
looped Transformers and input injection and report an improved performance. In contrast, our main results are obtained
with shallower models (up to 6 layers) with standard Transformer architecture of stacked decoder layers.

Besides the addition task, they study multiplication, sorting, and Bitwise OR. On the other hand, we study multiplication,
triple addition, copy/reverse, and a 2D task. Specifically, for the multiplication task, their study mainly considers the case
where the length of both operands could vary up to 15. In contrast, we focus solely on the N × 2 task, fixing the length of
the second operand by 2. While we achieve length generalization up to 90-digit multiplication by training the model on up
to 40-digit multiplication, they report near-perfect in-distribution performance but poor length generalization.

Finally and notably, we provide novel theoretical analyses, including (1) the constructive proof that a depth-1 Transformer
equipped with position coupling can completely solve the addition task for exponentially long digits and (2) the impossibility
of the same model being capable of the addition task. We also present theoretical results for the N × 2 multiplication task.

11

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

B. Comparison with Index Hinting
Index hinting is an input augmentation technique that places position markers in front of the tokens to couple the semantically
relevant tokens. For example, Zhou et al. (2024a) transform ‘653 + 49 = 702’ into ‘a0b6c5d3 + a0b0c4d9 = a0b7c0d2’
with some zero-paddings, where a, b, c, and d are consecutive index hints. Here, the starting hint character a is randomly
selected during training, similar to our method of choosing the starting position ID. The reversed format and BOS/EOS
tokens can be applied as well.

One way in which index hinting differs from position coupling is that it doubles the input sequence length. This is because
the position information and the token information do not merge: the index hints and the normal tokens are mapped to
separate token embedding vectors which are alternately placed in the input embedding matrix. As a result, a Transformer
must figure out the correspondence between each adjacent pair of an index hint and a normal token. Moreover, the doubled
input length can require up to four times the training time and memory consumption. In contrast, position coupling explicitly
combines token and position information: every token embedding and corresponding position embedding are mixed into a
single vector. Hence, a Transformer can effortlessly utilize the positional structure of the task, without hurting the training
time. We highlight that, as will be mentioned in Section 4.1, position coupling exhibits better length generalization than
index hinting.

Another difference is that the index hints should be inferred by Transformers in addition to the normal tokens in the response,
which might be an additional burden. Our position coupling circumvents this difficulty, eliminating the need to estimate
anything other than the tokens in the original response.

Comparison in Experiments. We test index hinting by running the code we implemented ourselves since the original
code is unavailable. From Figure 1, we observe that index hinting indeed helps the model to length-generalize more than the
baselines (NoPE & random-start APE). However, the generalizable lengths of the models trained with index hinting do not
extend further than 50; the models completely fail starting from the length 70. We also observe that enough amount of depth
is required for Transformers with index hinting to achieve high enough training and in-distribution validation accuracies.
Particularly, the training accuracies of 1-layer models do not deviate from near zero. Thus, we only present the results for
the 6-layer 8-head model as done by (Zhou et al., 2024a).

12

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

C. Probing the Attention Patterns in Trained Transformers with Position Coupling

H
EAD 1

H
EAD 2

: Direction of Next-token Prediction
 : Direction of (Causal & Meaningful) Attention

Causal
Attention
Mask

Causal
Attention
Mask

Figure 6. Probing attention matrices of a 1-layer 2-head Transformer with position coupling, trained on up to 5-digit additions. (Left)
There are two heatmaps (clipped to zero below 0.01) corresponding to the (transposed) attention matrices observed from the attention
heads. Averaged over 10K sequences of 6-digit additions. (Right) We magnify parts of the attention matrices that are involved in inferring
the response (sum). The arrows explain the process of inferring the next token ‘0’ from ‘3’.

We discover a striking similarity between the attention patterns in our theoretical construction (Theorem 5.1) and those
extracted from a Transformer trained with position coupling and a standard optimizer. In particular, the manually constructed
attention patterns described in Tables 11 and 17 in Appendix I closely resemble the actual attention patterns in Figure 6.2

Drawn from this discovery, we claim that a Transformer trained with position coupling spontaneously learns two separate
components of the addition task: (1) adding two numbers without carries, and (2) predicting the carries.

Let us revisit the example in Figure 2 and consider predicting ‘7’ (position ID 6) as the next token of ‘0’ (position ID 7).
Note that the token ‘7’ is the result of combining the digit-wise sum 6+0=6 and a propagated carry 1. To find out the sum
without carry, it is enough for the model to attend to the two previous positions with ID 6: tokens ‘6’ and ‘0’. On the other
hand, to predict the carry, the model may attend to the three positions with ID 7: tokens ‘5’, ‘4’, and ‘0’. The reason way we
should care about ‘0’ is that considering the sum 5+4 (=9) of the two digits in the operands is not sufficient to determine
the existence of the carry. By looking at the token ‘0’ in the response (with position ID 7), we can detect that the actual
sum in this position is 10 (=5+4+1, where 1 is another carry propagated from the previous position) and hence we need to
propagate a carry 1 to the next position (with ID 6).

Now we inspect the aforementioned claim by examining the attention matrices of an actual trained Transformer. In the
model, we discover two different patterns of attention matrices,3 playing distinct roles. The first attention pattern (top of
the figure) seems to correspond to the addition without carries: each token in the response (including ‘=’) attends to two
positions needed to find out the sum without carry. Conversely, the second attention pattern (bottom of the figure) seems to
correspond to the carry prediction: again, each token in the response attends to three positions required to find out the carry.

Remark. Similarly to our analysis, Quirke and Barez (2024) study the attention patterns of a 1-layer 3-head decoder-only
Transformer model trained solely on 5-digit addition. They also observe that each head handles different subtasks of addition,
such as digit-wise summation and carry detection.

2Note that they match up to matrix transpose, which is due to the difference in the formulations.
3Note that the attention matrices depicted in Figure 6 are square, lower-triangular (due to causal attention pattern), and row-stochastic

(all entries are nonnegative and the sum of each row equals 1).

13

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

D. Omitted Theoretical Result: 1-layer Transformers Require Positional Information
In Section 4.1, we observed that 1-layer Transformers fail to perform the addition task without position coupling. Here, we
provide a partial result that theoretically explains why this happens inevitably, particularly in the case of NoPE. We start
with a general proposition: a 1-layer Transformer without positional encoding cannot distinguish queries that are identical
up to permutation when inferring the first token of the response using greedy next-token prediction.

Proposition D.1. Consider any depth-1 finite-head decoder-only Transformer model T without positional encoding (NoPE).
Given an input sequence I and its arbitrary permutation I ′, if the last tokens of I and I ′ are identical, then the next tokens
predicted by T will also be identical for both sequences when applying a greedy decoding scheme.

The proof is deferred to Appendix J. According to the proposition above, the 1-layer Transformer without positional
encoding will always output the same values starting from the ‘=’ token, provided that the combination of query tokens
is identical, even if their order varies. However, the addition task is permutation-sensitive, meaning that the permuted
queries may result in different responses. Therefore, the 1-layer Transformer cannot completely solve the task without
positional encoding. It is important to note that this result remains unchanged regardless of the input format: neither reversed
format nor index hinting provides any benefit. We also highlight that this impossibility result can be extended to any other
permutation-sensitive tasks, such as arithmetic tasks and copy/reverse tasks.

Based on this fact, we write code to directly calculate the maximum EM accuracy on the m-digit addition task that a 1-layer
decoder-only Transformer can achieve (see Appendix J for the code). The accuracies rapidly decrease to zero: 6.2% for
3-digit addition, 1% for 4-digit integers, and 0.13% for 5-digit integers. We leave it for future work to investigate the
necessary conditions of the architecture for implementing addition when other positional encoding schemes are employed.

14

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

E. Applying Position Coupling Beyond Addition Task
To demonstrate the versatility of position coupling, we consider two other tasks in this section: N × 2 multiplication and a
two-dimensional (2D) task. Other example tasks (e.g., addition with multiple summands, copy/reverse allowing duplicates)
can be found in Appendix F.

E.1. Position Coupling for N × 2 Multiplication Tasks

Here, we study length generalization on the N -digit × 2-digit multiplication task in terms of the length N of the first
operand, while fixing the length of the second operand by 2. Similar tasks have been studied before (Duan and Shi, 2023;
Jelassi et al., 2023); we discussed further in Appendix A.

7 5 9 5 x 7 9 =[BOS] 5 0 0 0 [EOS]

4 5 6 7 8 6 7 80 7 6 5 4 0

reversed product

0 6

3 2

Figure 7. Illustration of position coupling for N × 2 multiplication task.

We reverse and zero-pad the response, setting the length of it as N + 2. We couple the position starting from the least
significant digits of both operands and response, decrementing the ID as we move to their most significant digits: see
Figure 7. The experimental results showcased in Figure 8 verify the efficacy of position coupling compared to NoPE and
random-start APE. We observe that a 1-layer model fails even with position coupling, even for training. However, as the
depth increases to 2 or more, it immediately becomes capable of length generalization.

0 20 40 60 80 100 120 140 160 180 200
Operand Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(%
) (

M
ed

ia
n)

(N-digit)×(2-digit) Multiplication

trained lengths (1-40)
Position Coupling, 1-layer 8-head (EM=0.01% at 5)
Position Coupling, 2-layer 8-head (EM=95.54% at 70)
Position Coupling, 3-layer 8-head (EM=96.03% at 80)
Position Coupling, 4-layer 8-head (EM=96.81% at 90)
NoPE, 3-layer 8-head (EM=99.41% at 42)
Random-Start APE, 3-layer 8-head (EM=98.04% at 40)
95% line

Figure 8. Exact-match accuracies for N × 2 multiplication task, trained on sequences of length 1–40.

Unlike addition, position coupling for N × 2 multiplication is less intuitive, as predicting the token in the middle of the
response requires multiple digits from both operands while each token in the response is linked with at most 2 tokens in
the query. Perhaps surprisingly, we can still construct a Transformer that provably solves this task for exponentially long
sequences.

Theorem E.1. Given an appropriate format of the input sequence, there exists a depth-2 decoder-only Transformer model
with coupled positions that can perform the N × 2 multiplication task with next-token prediction. Here, the number of
the total heads is 10 and the length of the first operand is at most 2⌊(d−34)/6⌋ − 3, where we denote the token embedding
dimension by d ≥ 46.

We defer the proof to Appendix K. This result suggests that the proposed position coupling scheme for the N × 2
multiplication task sufficiently captures the inherent structure of the task, and thus provides the potential for the trained
model to generalize across unseen lengths. Also, we believe that Theorem E.1 is optimal in terms of the number of attention
layers, as the depth-1 model exhibits total failure even for in-distribution samples in our experiment.

15

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

E.2. Two-dimensional Position Coupling for Minesweeper Generator Task

Now, we investigate the extension of position coupling for handling a 2D task, where the query and the response are
originally 2D objects. In particular, we define and investigate a task we call minesweeper generator. Given a rectangular
board where each cell is filled with either ‘M’ (mine) or ‘∗’ (an empty cell), the task is to generate a new board of the same
size, having each cell filled with:

• ‘M’, if the corresponding cell in the original board contains ‘M’;

• The count of mines in 8 adjacent cells, if the corresponding cell in the original board contains ‘∗’.

Data Format & Position Coupling. We introduce two position coupling modules: one for the row direction and another
for the column direction. Following this, we flatten the board to feed it into a Transformer: see Figure 9. Within the model,
an embedding vector for each token (cell) is generated by adding the token embedding vector and corresponding two PE
vectors.

* M *
* * M

* * *

1 M 2

1 2 M

0 1 1

BOS = EOS

0 3 0

0 1 0

In
pu

t T
ok

en
s

Po
si

tio
n

ID
s

Ro
w

 C
ou

pl
in

g
C

ol
um

n
C

ou
pl

in
g

Query Response

4 4 4

5 5 5

6 6 6

BOS * M * * * M * * * …

0 4 4 4 5 5 5 6 6 6 …

0 2 3 4 2 3 4 2 3 4 …4 4 4

5 5 5

6 6 6

2 3 4
2 3 4
2 3 4

2 3 4
2 3 4
2 3 4

= 1 M 2 1 2 M 0 1 1 EOS

3 4 4 4 5 5 5 6 6 6 0

1 2 3 4 2 3 4 2 3 4 0

Flatten

Figure 9. Position coupling for the two-dimensional ‘minesweeper generator’ task. (Left) The idea of assigning coupled position IDs.
(Right) The model receives a flattened sequence of input tokens and two-dimensional position IDs.

Experiments. To assess the efficacy of position coupling, we contrast its performance with NoPE. The training samples are
designed with the width and height of the board between 5 and 9 inclusively. We allow the width and height to be different
for training samples. We evaluate the test performance on a square board with a width between 5 and 14 inclusively. We
also employ a 4-layer 8-head model for position coupling and a 6-layer 8-head model for NoPE. In particular, for position
coupling, we use the same embedding layer for both position coupling modules, as this approach empirically performs better
than using distinct embedding layers for each module (see Appendix F.5).

The experimental results are described in Figure 10. Position coupling maintains over 98% accuracy until a width of 12 and
near 90% accuracy even at a width of 14. In contrast, NoPE fails even for in-distribution samples. One might be concerned
that the generalizable length of 12 seems only slightly higher than the trained length of 9. However, we stress that our query
is a 2D board, therefore the actual length generalization is from 81 to 144.

5 6 7 8 9 10 11 12 13 14
Width/Height

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(\%
) (

M
ed

ia
n) Minesweeper Generator

Train widths/heights (5-9)
NoPE (6-layer 8-head) (EM=99.50% at 5)
Position Coupling (4-layer 8-head) (EM=98.07% at 12)

Figure 10. EM accuracies for minesweeper generator task, trained on sequences of length (5–9)×(5–9).

16

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

F. More Applications & Experiments of Position Couping
F.1. Decimal Integer Addition Task: Maximum Exact-Match Accuracies

For a better comparison with Zhou et al. (2024b), we report the maximum exact-match accuracies. See Figures 11 and 12.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Operand Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(%
)

(M
ax

 o
ve

r 8
 ru

ns
)

Decimal Integer Addition (max_pos=202)

Trained on 1-10 (EM=98.14% at 65)
Trained on 1-20 (EM=98.02% at 140)
Trained on 1-30 (EM=98.55% at 195)
Trained on 1-40 (EM=99.38% at 200)
98% line

Figure 11. Ablation on the trained lengths.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Operand Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(%
)

(M
ax

 o
ve

r 8
 ru

ns
)

Decimal Integer Addition (Trained on 1-40, max_pos=202)

Train lengths (1-40)
1layers, 8heads (EM=98.05% at 190)
2layers, 8heads (EM=98.18% at 100)
3layers, 8heads (EM=98.08% at 160)
4layers, 8heads (EM=98.79% at 125)
5layers, 8heads (EM=98.40% at 80)
6layers, 8heads (EM=98.56% at 60)
98% line

Figure 12. Ablation on the number of layers.

F.2. Decimal Integer Addition Task: Scale-up to Length of 500

In this section, we demonstrate the scalability of our proposed position coupling approach for large lengths of up to 500.
Specifically, we again train a depth-1 decoder-only model for the addition task and evaluate the performance for instances
with up to 500 digits. The results are shown in Figure 13. We notice that at a train length of 160, we achieve excellent length
generalization for 500-digit addition. On the other hand, training on sequences of length up to 40 or 80 is insufficient for
extreme length generalization. While these results lead to a smaller length generalization ratio of 500/160 = 3.125, as
opposed to the ratio of 6.66 achieved when training on sequences of length up to 30, the results demonstrate that position
coupling, as an approach, is highly scalable. The experimental details can be found in Table 3.

0 40 80 100 160 200 300 400 500
Operand Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(%
)

(M
ed

ia
n

ov
er

 6
 ru

ns
)

Decimal Integer Addition

Train on 1-40 (EM=95.60% at 80)
Train on 1-80 (EM=96.30% at 200)
Train on 1-160 (EM=95.15% at 500)

Figure 13. The full sequence accuracy obtained by training a depth-1 decoder-only model on the addition task. We see that while training
with sequences of length up to 40 and 80 is insufficient for generalization to large lengths, at training length 160 we achieve strong
performance for lengths up to 500.

17

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

F.3. Addition Task with Multiple Summands

The position coupling scheme for the vanilla addition task (with two operands) can naturally extend to the addition task with
multiple summands: assign position IDs in ascending order from most significant digits to least significant digits for every
operand and the response. Here, we focus on the addition of three summands. To the best of our knowledge, there is no
prior work considering multiple summands.

0 10 20 30 40 50 60 70 80 90 100
Operand Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(%
) (

M
ed

ia
n

ov
er

 4
 ru

ns
) Addition with 3 operands

trained lengths (1-40)
Ours, 1-layer 4-head (EM=96.42% at 85)
Ours, 2-layer 4-head (EM=95.17% at 85)
Ours, 3-layer 4-head (EM=96.77% at 90)
NoPE, 6-layer 8-head (EM=95.38% at 28)
Random-Start APE, 6-layer 8-head (EM=0.00% at 50)
95% line

Figure 14. Exact-match accuracy (median over 4 runs) for triple addition task, trained on sequences of length 1-40 with position coupling,
NoPE, and random-start APE. For further experiment details, refer to Table 6.

Experiments. We train on sequences with operands of 1–40 digits. Our choice of max_pos is 102, so we test the
operands of up to 100 digits. We investigate the performance of 3 different architectures, each with a different depth. The
experimental results are described in Figure 14. 1-layer models keep their generalization capability until 100 digits, whereas
the 3-layer models exhibit great stability across random seeds and achieve the highest generalizable length of 90.

Lastly, we note that the result of Theorem 5.1 can be extended to addition tasks with multiple summands with slight
adjustments to the feed-forward layer in the construction.

F.4. Position Coupling for Copy/Reverse Tasks

Data Format & Position Coupling. Each token of the query sequence is a digit (10 distinct characters). We couple the
positions in the query and the response by their correspondence. Note that the position ID assigned to the equal token is
different for the two tasks because as per our design principle (Sec 3.1), the equal token is grouped to the response tokens
and position IDs have to be consecutive numbers within each group.

a b a c =[BOS] a b a c [EOS]

3 4 5 6 20 3 4 5 6 0

a b a c =[BOS] c a b a [EOS]

3 4 5 6 70 3456 0

Figure 15. Illustration of position coupling for copy/reverse tasks.

Experiments. We compare the performance of position coupling with NoPE and random-start APE. We train the model
on lengths 1-40 and evaluate its performance on lengths from 5 to 300, at intervals of 5. While a 1-layer 4-head model is
used for the position coupling, we observe that the same architecture fails to memorize training samples for both NoPE and
random-start APE. Therefore, we use a 6-layer 8-head model for the latter cases as it is commonly used in the literature
(Zhou et al., 2024a).

The experimental results are described in Figures 16 and 17. For both copy and reverse, position coupling exhibits near-
perfect accuracy across the entire test length (7.5 × for the trained length). In contrast, NoPE and random-start APE
immediately fail to length-generalize.

18

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
Query Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(\%
) (

M
ed

ia
n) Copy

Train lengths (1-40)
NoPE (6-layer 8-head) (EM=96.28% at 75)
Random-Start APE (6-layer 8-head) (EM=95.50% at 75)
Position Coupling (1-layer 4-head) (EM=100.00% at 300)

Figure 16. Exact-match accuracy (median over 4 runs) for copying task, trained on sequences of length 1–40 with position coupling,
NoPE, and random-start APE. For further experiment details, refer to the Table 7.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
Query Length

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(\%
) (

M
ed

ia
n) Reverse

Train lengths (1-40)
NoPE (6-layer 8-head) (EM=96.86% at 50)
Random-Start APE (6-layer 8-head) (EM=98.99% at 50)
Position Coupling (1-layer 4-head) (EM=100.00% at 300)

Figure 17. Exact-match accuracy (median over 4 runs) for reversing task, trained on sequences of length 1–40 with position coupling,
NoPE, and random-start APE. For further experiment details, refer to the Table 7.

F.5. Minesweeper Generator Task: Sharing the Position Embedding Modules or Not

Here, we present the extra experimental results for training the minesweeper generator task with position coupling.
Specifically, we compare the performance of two configurations: one where the model shares the same positional embedding
layer for both position coupling modules, and another where the model uses separate positional embedding layers for each
position coupling module.

The results are described in Figure 18. When sharing the same positional embedding layer, position coupling achieves
over 98% accuracy on a 12×12 board, and maintains near 90% accuracy on a 14×14 board. However, with distinct
positional embedding layers, position coupling only successfully generalizes to a 10×10 board. We currently do not have a
clear explanation for why the former method exhibits significantly better performance than the latter one. We leave the
investigation and explanation of this phenomenon for future work.

5 6 7 8 9 10 11 12 13 14
Width/Height

0

20

40

60

80

100

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

(\%
) (

M
ed

ia
n) Minesweeper Generator

Train widths/heights (5-9)
Position Coupling with Shared Embedding (4-layer 8-head) (EM=98.07% at 12)
Position Coupling with Distinct Embedding (4-layer 8-head) (EM=99.68% at 10)

Figure 18. Exact-match accuracy (median over 4 runs) for minesweeper generator task, trained on sequences of length (5–9)×(5–9) with
position coupling. For further experiment details, refer to the Table 8.

19

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

G. Experiment Details and Hyperparameters
Position coupling can be easily implemented on top of usual libraries of training transformer models like HuggingFace
(Wolf et al., 2019) and Flaxformer4 since these libraries support an arbitrary array of position IDs (in the case of using
APE). All we need is to build up a short routine implementing the assigning rule of position IDs when establishing the
dataset and data loaders. To compare with NoPE, we use the code base provided by Kazemnejad et al. (2023) for most of the
experiments.5 It contains a custom implementation of decoder-only T5 (Raffel et al., 2020) established on top of PyTorch
(Paszke et al., 2019) and Huggingface, including several PE methods. We additionally implement a custom RMSNorm
module (Zhang and Sennrich, 2019) and various positioning schemes of normalization layers (e.g., PreNorm (Xiong et al.,
2020), PostNorm (Vaswani et al., 2017), and their combination), to follow the implementation details of Zhou et al. (2024b).

Table 1. Hyperparameter summary for decimal integer addition task in the main text: comparison between trained lengths (Figure 3).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 1
Number of Attention Heads 4
Embedding Dimension 512
Dimension per Head 128
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU (Shazeer, 2020)
Normalization Layer RMSNorm (Zhang and Sennrich, 2019)
Normalization Layer Position PreNorm and PostNorm

Training Steps 50,000
Batch Size 1,000
Optimizer Adam (Kingma and Ba, 2015)
Learning Rate (LR) 0.0001
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 202

Training Dataset Size 1,000,000
Evaluation Dataset Size 100,000

Device NVIDIA RTX A6000 48GB
Training Time ≤ 10 hours

4github.com/google/flaxformer
5github.com/McGill-NLP/length-generalization

20

https://github.com/google/flaxformer
https://github.com/McGill-NLP/length-generalization

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 2. Hyperparameter summary for decimal integer addition task in the main text: comparison between the number of layers (Figure 4).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 1-6
Number of Attention Heads 8
Embedding Dimension 512
Dimension per Head 64
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU
Normalization Layer RMSNorm
Normalization Layer Position PreNorm and PostNorm

Trained Lengths of Operands 1–40
Training Steps 50,000
Batch Size 400
Optimizer Adam
Learning Rate (LR) 0.0001
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 202

Training Dataset Size 1,000,000
Evaluation Dataset Size 100,000

Device NVIDIA RTX A6000 48GB
Training Time ≤ 10 hours

Table 3. Hyperparameter summary for decimal integer addition task: generalization up to length 500 (Figure 13).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 1
Number of Attention Heads 2
Embedding Dimension 512
Dimension per Head 256
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU
Normalization Layer LayerNorm (Ba et al., 2016)
Normalization Layer Position PostNorm

Training Steps 1,000,000
Batch Size 128
Optimizer Adam
Learning Rate (LR) 0.0001
LR Warm-up Linear (From 0 to LR), 500 steps
LR Cool-down Cosine Decay (From LR to 0.0)
Maximum Position ID (max_pos) 1003

Training Dataset Size 1,000,000
Evaluation Dataset Size 100,000

Device 64 TPU V4 Chips
Training Time ≤ 4 hours

21

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 4. Hyperparameter summary for decimal integer addition task: extracting attention patterns (Figure 6).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 1
Number of Attention Heads 2
Embedding Dimension 512
Dimension per Head 256
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU
Normalization Layer RMSNorm
Normalization Layer Position PreNorm and PostNorm

Trained Lengths of Operands 1–5
Training Steps 50,000
Batch Size 100
Optimizer Adam
Learning Rate (LR) 0.00005
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 17

Training Dataset Size 100,000

Device NVIDIA RTX A6000 48GB
Training Time ≤ 6 hours

Table 5. Hyperparameter summary for N × 2 multiplication task (Figure 8).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 1-4 (Ours), 3 (NoPE & Random-start APE)
Number of Attention Heads 8
Embedding Dimension 512
Dimension per Head 64
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU
Normalization Layer RMSNorm
Normalization Layer Position PreNorm and PostNorm

Trained Lengths of Operands 1–40
Training Steps 50,000
Batch Size 200 (Ours), 800 (Others)
Optimizer Adam
Learning Rate (LR) 0.0001
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 203 (Ours), 1023 (Random-start APE)

Training Dataset Size 50,000 (Ours), 500,000 (Others)
Evaluation Dataset Size 100,000

Device NVIDIA RTX A6000 48GB
Training Time ≤ 8 hours

22

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 6. Hyperparameter summary for addition task with three summands (Figure 14).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 1-3 (Ours), 6 (NoPE & Random-start APE)
Number of Attention Heads 4
Embedding Dimension 512
Dimension per Head 128
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU
Normalization Layer RMSNorm
Normalization Layer Position PreNorm and PostNorm

Trained Lengths of Operands 1–40
Training Steps 50,000
Batch Size 1000 (Ours), 800 (Others)
Optimizer Adam
Learning Rate (LR) 0.0001
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 102 (Ours), 1023 (Random-start APE)

Training Dataset Size 1,000,000
Evaluation Dataset Size 100,000

Device NVIDIA RTX A6000 48GB
Training Time ≤ 12 hours

Table 7. Hyperparameter summary for copy/reverse task (Figures 16 and 17).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 1 (Ours), 6 (NoPE & Random-start APE)
Number of Attention Heads 4 (Ours), 8 (NoPE & Random-start APE)
Embedding Dimension 512
Dimension per Head 128
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU
Normalization Layer RMSNorm
Normalization Layer Position PreNorm and PostNorm

Trained Lengths of Query 1–40
Training Steps 50,000
Batch Size 1000 (Ours), 500 (Others)
Optimizer Adam
Learning Rate (LR) 0.0001
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 301 (Ours), 601 (Random-start APE)

Training Dataset Size 1,000,000
Evaluation Dataset Size 100,000

Device NVIDIA RTX A6000 48GB
Training Time ≤ 8 hours

23

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 8. Hyperparameter summary for minesweeper generator task (Figures 10 and 18).

Hyperparameter Value

Architecture Decoder-only Transformer
Number of Layers 4 (Ours), 6 (NoPE)
Number of Attention Heads 8
Embedding Dimension 512
Dimension per Head 64
Hidden Width of Feed-forward Layer 2048
Activation Function of Feed-forward Layer GEGLU
Normalization Layer RMSNorm
Normalization Layer Position PreNorm and PostNorm

Trained Lengths of Query (5–9) × (5–9)
Training Steps 100,000
Batch Size 200
Optimizer Adam
Learning Rate (LR) 0.0001 (Ours), 0.0002 (NoPE)
LR Warm-up Linear (From 0 to LR), 1% of total steps
LR Cool-down Cosine Decay (From LR to 0.1LR)
Maximum Position ID (max_pos) 15

Training Dataset Size 100,000
Evaluation Dataset Size 100,000

Device NVIDIA RTX A6000 48GB
Training Time ≤ 30 hours

24

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

H. Decoder-only Transformer Architecture
Here we detail the architecture of a depth-L, H-head decoder-only Transformer (Vaswani et al., 2017). For a simple
presentation, we ignore the normalization layers, as in Yun et al. (2020a).

Let V be the (ordered) vocabulary, a set of all tokens. Given an input sequence I ∈ VN and its length N , the encoding
function Enc : VN → Rd×N maps it to

X(0) := Enc(I). (1)

It is a sum of the token embedding and the position embedding.

Next, there are L Transformer blocks that sequentially transform this input. We denote by Tfl : Rd×N → Rd×N the
operation of the l-th block (l ∈ [L]), so that

X(l) := Tfl

(
X(l−1)

)
. (2)

The block Tfl consists of a (causal) attention layer Attl : Rd×N → Rd×N and a (token-wise) feed-forward layer
FFl : Rd×N → Rd×N , each of which contains a residual connection:

Tfl := (id+ FFl) ◦ (id+ Attl), (3)

where we denote by id : Rd×N → Rd×N an identity map.

Each attention layer Attl consists of H attention heads. Its h-th head (h ∈ [H]) has matrices Q
(l)
h ,K

(l)
h ∈ Rd

(l)
QK,h×d,

V
(l)
h ∈ Rd

(l)
V,h×d and U

(l)
h ∈ Rd×d

(l)
V,h as its parameters.6 With these matrices, borrowing the notation from Yun et al.

(2020a), the attention layer with an input X ∈ Rd×N can be written as

Attl(X) :=

H∑
h=1

U
(l)
h V

(l)
h X · softmax

(
(K

(l)
h X)⊤Q

(l)
h X

)
. (4)

Here the softmax operator takes a square matrix M ∈ RN×N and outputs an N ×N upper-triangular column-stochastic7

matrix

[softmax(M)]ij =
eMij∑

1≤i′≤j e
Mi′j

1{i≤j}, (5)

where 1{E} is an indicator function for a predicate E : it equals 1 if E is true and 0 otherwise. Note that the upper
triangularity captures the auto-regressive behavior of the causal attention. For the sake of convenience, we denote by
Y (l) := X(l−1) + Attl(X

(l−1)) ∈ Rd×N which is a consequence of residual connection right after the attention layer.

Each feed-forward layer FFl is a two-layer perceptron having W
(l)
1 ∈ RdF×d, b(l)1 ∈ RdF , W (l)

2 ∈ Rd×dF , b(l)2 ∈ Rd as its
parameters. It applies the following map to each column y of an input Y :

y 7→ W
(l)
2 ϕ(W

(l)
1 y + b

(l)
1) + b

(l)
2 , (6)

where ϕ is a component-wise activation function. That is, the feed-forward layer is defined as

FFl(Y) := W
(l)
2 ϕ(W

(l)
1 Y + b

(l)
1 1⊤

dF
) + b

(l)
2 1⊤

d , (7)

where 1d is the d-dimensional vectors filled with 1’s. Here we mainly use the ReLU operation ϕ(·) = max {·, 0} (Jarrett
et al., 2009; Nair and Hinton, 2010), but there are many other popular choices such as GeLU (Hendrycks and Gimpel, 2016),
GLU (Dauphin et al., 2017), ReGLU, and GEGLU (Shazeer, 2020).

The final component of the Transformer model is the decoding function Dec : Rd×N → VN , which is composed of a linear
readout and a (token-wise) arg-max operation. Here, the linear readout is simply a linear layer having Wout ∈ R|V|×d as its
parameter. The decoding function produces the output sequence

O := Dec(X(L)) ∈ VN . (8)

6One can let dH = maxl,h max{d(l)QK,h, d
(l)
V,h} as an inner dimension of each head. This makes our formal constructions a bit messier

with redundant entries 0.
7Every entry is non-negative and the sum of entries in each column is 1.

25

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

I. Formal Construction of Addition Transformer with Position Coupling
Here we show how to implement the addition by employing a single-block two-head decoder-only Transformer equipped
with position coupling. We restate the theorem for the sake of readability.

Theorem 5.1. With the input format described in Section 3.1, there exists a depth-1 two-head decoder-only Transformer with
coupled positions that solves the addition task with next-token prediction. Here, the operand length is at most 2⌊(d−17)/2⌋−2
(embedding dimension: d ≥ 21).

Organization of the Proof. A whole section is dedicated to prove Theorem 5.1.

• We start with the notation (Appendix I.1).

• We review and formalize the format of the input sequence (zero-padding, reversed format, and wrapping with BOS/EOS)
(Appendix I.2).

• We define the encoding function Enc with a table of a concrete example (Appendix I.3), where Enc maps an input
sequence of length N to a d×N encoding matrix X(0).

• We devote a lot of pages to the detailed construction of the parameters of a causal attention layer Att1 to generate
desired attention patterns (Appendix I.4). The attention layer has two heads playing distinct roles: (1) preparing for a
sum without considering carries; and (2) preparing for the carry prediction & EOS detection.

• We provide a construction of a token-wise feed-forward neural network FF1 which is a two-layer ReLU network
(Appendix I.5). It consists of two subnetworks playing different roles: (1) producing one-hot vectors, each of which
indicates a digit of the sum (response); and (2) binary values indicating whether the position is the end of the sequence.

• We conclude the proof by defining the decoding function Dec which performs the linear readout and the arg-max
operation to generate the output sequence (Appendix I.6).

We illustrate the roadmap of the proof in Figure 19.

I.1. Notation

For the architecture of the decoder-only Transformer, we follow the notation introduced in Appendix H.

Let edi denote the i-th standard basis vector of Rd. For example, e31 =
[
1 0 0

]⊤
. Let Im be the m×m identity matrix.

Let 0p and 1p denote the p-dimensional vectors filled with 0’s and 1’s, respectively. Similarly, let 0m×n denote the m× n
zero matrix. For a positive integer n, we frequently use the set [n] := {1, ..., n}. For any matrix A, denote the i-th row
and j-th column of A by Ai• and A•j , respectively. Given two non-negative integers a and b, let ℓ(a, b) be the length of a
longer one between a and b. For example, ℓ(12, 3456) = 4.

Consider an ordered vocabulary V = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,=, $). We include a special token ‘$’ that plays the role of
both the beginning-of-sequence (BOS) token and the end-of-sequence (EOS) token.8 We denote Vk as k-th element of V .
For instance, V4 = 3 and V13 = $. Lastly, since we employ only one Transformer block, we omit the superscripts (l) in the
parameter matrices/vectors and the size of dimensions d(l)QK,h and d

(l)
V,h.

I.2. Input Sequence

We seek to perform an addition a+ b = c using next-token prediction. To this end, we want to transform it into an input
sequence I = $A+B = C of an appropriate format. Note that the EOS token is the last token that needs to be predicted,
so we exclude EOS in the input sequence. Let ℓ := ℓ(a, b).

We first zero-pad the shorter one between a and b to match the length of the part A and part B as ℓ. Sometimes, the sum c
might be longer than a or b due to a carry. To make the length of the part C consistent, we also put a zero-pad in front of c to
set its length as ℓ+ 1. Also, to ease calculating the addition with next-token prediction, we reverse the sum c to make the
part C. For example, if we have a sum 3812 + 98 = 3910, we use $3812 + 0098 = 01930 as an input sequence; if a sum

8BOS and EOS tokens do not need to be identical. We regard them as the same token just for the simplicity of the presentation.

26

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

0

Addition: “653+49=702”

Input Sequence: $653+049=2070

Input Encoding: X(0) =

Token Embeddings

Position Embeddings

PRE_SUM
PRE_CARRY

PRE_EOS

Token Embeddings

Position Embeddings

PRE_SUM
PRE_CARRY

PRE_EOS

Head 1: Preparing

Sum w/o Carries

Head 2: Preparing

Carry Prediction &

EOS Detection

Y(0) =

N

d

Residual

Connection

𝙴𝚗𝚌
Attention Layer (E.4)

X(1) =
‘SUM’

‘SUM’
‘EOS’

PRE_SUM
Token Embeddings

Position Embeddings

PRE_EOS
PRE_CARRY ‘EOS’

Sub-NN 1:

One-hot Vectors

Indicating Sum

Sub-NN 2:

Binary:

EOS or notResidual

Connection

Feed-Forward Layer (E.5)

* * * * * * * * *2070$Output Sequence:

𝙳𝚎𝚌

Based on
Position
Coupling

𝙰𝚝𝚝1

𝙵𝙵1

(E.2)

(E.3) (E.4.1)

(E.4.2)

(E.6)

Figure 19. Roadmap to the formal construction of addition Transformer with position coupling.

98 + 9907 = 10005 is given, we use $0098 + 9907 = 50001 as an input sequence. The red digits are zero-paddings, and
the blue digits are the reversed sum.

To recap, the input sequence I = σ1σ2 . . . σN ∈ VN of length N = 3ℓ+ 4 consists of six parts:

1. the BOS token σ1 = ‘$’

2. the first operand A = σ2 . . . σℓ+1 where σi ∈ {0, . . . , 9};

3. the addition symbol σℓ+2 = ‘+’;

4. the second operand B = σℓ+3 . . . σ2ℓ+2 where σi ∈ {0, . . . , 9};

5. the equality symbol σ2ℓ+3 = ‘=’;

6. the (reversed) sum C = σ2ℓ+4 . . . σ3ℓ+4 where σi ∈ {0, . . . , 9}.

Note that the part C might be incomplete (i.e., N < 3ℓ+ 4) at the inference time; we infer the digits of the part C one by
one using next-token prediction. Throughout this section on a formal construction, however, we only consider the train time
setup in which we infer all the digits of the part C at once using simultaneous next-token prediction in a single forward
pass. Precisely, we want to use an input sequence I = σ1 . . . σN to produce an output sequence O = σ′

1 . . . σ
′
N where

σ′
2ℓ+3 . . . σ

′
N−1 = C = σ2ℓ+4 . . . σN and σ′

N = ‘$’ (EOS).

27

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

I.3. Encoding Function

We plan to produce an input encoding, given an input sequence I designed as above. The encoding matrix X(0) is of
size d × N : each column represents an embedding vector for a token, while each row represents a particular named
dimension. What we mean by named dimension is that we give a name to each dimension for a clear description of our
formal construction.

We construct an input encoding by concatenating the token embedding and the position embedding, which can be viewed as
a sum of two different embedding matrices of the same size.

Table 9. Example initial encoding. Here we consider the input sequence $653 + 049 = 2070 and the starting position ID is chosen as
s = 2. The vectors vP

□ are defined in Equation (11). The gray rows will be filled in later.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 6 5 3 0 0 4 9 0 2 0 7 0
2: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
7–16: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

17: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
18–(P + 17): POS_1 0P vP

3 vP
4 vP

5 vP
6 vP

3 vP
4 vP

5 vP
6 vP

5 vP
4 vP

3 vP
2

(P + 18)–(2P + 17): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
4 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3

I.3.1. TOKEN EMBEDDING

The token embedding consists of 17 dimensions: we call them

1=NUM, 2=IS_BOS, 3=FULL_ONES, 4=PRE_SUM,

5=PRE_CARRY, 6=PRE_EOS, {7,...,16}=SUM, and 17=IS_EOS.

Initially, we let the last 14 dimensions be empty (i.e., all zeros). Thus, we explain the first three dimensions, NUM, IS_BOS,
and FULL_ONES.

Dimension 1 (NUM). For a number token (0, . . . , 9), we put itself in the dimension NUM. For the other tokens (+,=, $),
we put 0.

Dimension 2 (IS_BOS). For a special token ‘$’, we put 1 in the dimension IS_BOS. Otherwise, we put 0.

Dimension 3 (FULL_ONES). We put 1 everywhere in this dimension.

I.3.2. COUPLED POSITION IDS AND POSITION EMBEDDING

Before constructing a position embedding, we specify the coupled position IDs for the addition task. Let max_pos be
a hyperparameter of the maximum position IDs, where position IDs are non-negative integers. Basically, we match the
significance of the digits: e.g., a least significant digit is always coupled to the other least significant digits. To this end,
we first randomly choose a starting position ID s ∈ [max_pos− ℓ− 1]. (For that, max_pos ≥ ℓ+ 2 must hold.) Then we
allocate the position IDs of token σi in the input sequence I = σ1 . . . σN as

p(i) =


0, i = 1,

s+ i− 1, i = 2, . . . , ℓ+ 2,

s+ i− (ℓ+ 2), i = ℓ+ 3, . . . , 2ℓ+ 3,

s+ (3ℓ+ 4)− i i = 2ℓ+ 4, . . . , 3ℓ+ 4.

(9)

28

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Recall that N = 3ℓ+ 4. Also, observe that for i ∈ {2, . . . , ℓ+ 1},

p(i) = p(i+ ℓ+ 1) = p(3ℓ+ 5− i) = s+ i, (10)

which couples the position of (ℓ− i+ 2)-th significant digit in the first operand (A), the second operand (B), and the sum
(C). Also, the position of tokens ‘+’ and ‘=’ are coupled. Lastly, the only token that has the position ID 0 is the special
token ‘$’.

Before moving on to the positional embedding, we define vD
k (k ∈ [2D]) as

vD
k =

[
(−1)b

(D,k)
i

]D
i=1

∈ RD (11)

where b
(D,k)
i is defined as the i-th (from left) digit of D-digit binary representation of k − 1. For example, if D = 2,

v2
1 =

[
1 1

]⊤
, v2

2 =
[
−1 1

]⊤
, v2

3 =
[
1 −1

]⊤
, v2

4 =
[
−1 −1

]⊤
. (12)

We remark that the points vD
k are the vertices of D-dimensional hypercube with side length 2, centered at the origin.9 Note

that for k ̸= l, ∥∥vD
k

∥∥2 = D,
〈
vD
k ,vD

l

〉
≤ D − 2. (13)

Now we explain the position embedding. It consists of 2P dimensions, which eventually become from 18-th to (2P +17)-th
dimension after concatenation. If p(i) = 0, we let 02P as a position embedding vector. For the positive position IDs
p(i) ≥ 1, we let a concatenation [

vP
p(i)

vP
p(i)+1

]
(14)

as a position embedding vector of a token σi. (In case of p(i) = 2P , we use vP
1 instead of vP

p(i)+1.) We call the former P
dimensions for the position embedding as POS_1 and the latter P dimensions as POS_2.

Concatenating the token embedding and the position embedding, we get the input embedding X(0). See Table 9 for
an example. As a result, the total embedding dimension is d = 2P + 17. Note the maximum possible position ID
that can be represented with vP

k ’s is max_pos = 2P = 2⌊(d−17)/2⌋. Therefore, the length of an operand must be
ℓ ≤ max_pos− 2 = 2⌊(d−17)/2⌋ − 2.

I.4. Transformer Block — Causal Attention Layer

The goal of the causal attention layer is to fill in the zero-blanks10 of the encoding matrix at dimensions PRE_SUM,
PRE_CARRY, and PRE_EOS. We divide the roles into two different heads.

I.4.1. ATTENTION HEAD 1: DIGIT-WISE ADDITION WITHOUT CARRIES

The goal of the first head is to perform a digit-wise addition and to fill in the blanks of the encoding matrix at dimension
PRE_SUM. Later, using this dimension, combined with the dimension PRE_CARRY, we will be able to perform the next-token
prediction for addition. For now, we do not care about the carries, which will be dealt with in a later section. Formally, we
aim to perform σi + σi+ℓ+1 for each i ∈ {2, · · · , ℓ+ 1} and put its result at the (3ℓ+ 4− i)-th position (column) of the
dimension PRE_SUM (row). To this end, we utilize our position embedding.

Recall that d = 2P + 17 and let dQK,1 = P + 1. Let M > 0 be a number determined later. Let

Q1 =

(
0P×17

√
MIP 0P×P√

MP (e17FULL_ONES)
⊤ 01×P 01×P

)
∈ RdQK,1×d, (15)

K1 =

(
0P×17 0P×P

√
MIP√

MP (e17IS_BOS)
⊤ 01×P 01×P

)
∈ RdQK,1×d. (16)

9The choice of the vectors vD
k is not strict. They only need to have the same length and be distinguishable (for at least a constant

order) in terms of inner products. That is, there should be a noticeable difference between
∥∥vD

k

∥∥2
and

〈
vD
k ,vD

l

〉
for k ̸= l.

10Such an idea of filling in the blacks of the encoding matrix is borrowed from the literature of RASP language(s) (Weiss et al., 2021;
Friedman et al., 2023; Lindner et al., 2023; Zhou et al., 2024a). This can be done with the help of residual connections.

29

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

The linear transformations with matrices Q1 and K1 do two different jobs at once. (1) Q1 (K1, resp.) takes the dimensions
POS_1 (POS_2, resp.) from the input encoding matrix and scale them up by

√
M ; (2) Q1 (K1, resp.) takes the dimension

FULL_ONES (IS_BOS, resp.) and scale it up by
√
MP . For concrete examples, please refer to Tables 12 and 13. By these,

the attention score matrix C1 := (K1X
(0))⊤Q1X

(0) becomes as in Table 10. The blanks in Table 10 are the numbers
smaller than M(P − 2); the asterisks (‘*’) are the entries (or lower triangular submatrices) ignored by the causal softmax
operator; the dots represents the hidden MP ’s.

Table 10. Exact attention score matrix C1 (with explicit row/column indices) of Head 1.
row \ col j = 1 2 3 · · · ℓ+ 2 ℓ+ 3 ℓ+ 4 · · · 2ℓ+ 3 · · · 3ℓ+ 2 3ℓ+ 3 3ℓ+ 4

i = 1 MP MP MP · · · MP MP MP · · · MP · · · MP MP MP
2 * MP MP MP
... * *

. . .
.

.

ℓ+ 1 * * * MP MP
ℓ+ 2 * * * *
ℓ+ 3 * * * * * MP MP

... * * * * * *
.

.

2ℓ+ 2 * * * * * * * MP
2ℓ+ 3 * * * * * * * *

... * * * * * * * * *
3ℓ+ 2 * * * * * * * * * *
3ℓ+ 3 * * * * * * * * * * *
3ℓ+ 4 * * * * * * * * * * * *

Now consider the attention matrix A1 := softmax(C1) ∈ RN×N . Its exact form is a bit messy due to the softmax operation
of finite numbers. However, one can observe that, if the number M is large enough, it gets close to the column-stochastic
matrix T1 ∈ RN×N described in Table 11. The blanks in Table 11 are zeros; the dots represent the omitted nonzero entries.

Table 11. Limiting attention matrix T1 (with explicit row/column indices) of Head 1, as M gets large.
row \ col j = 1 2 3 · · · ℓ+ 2 ℓ+ 3 ℓ+ 4 · · · 2ℓ+ 3 · · · 3ℓ+ 2 3ℓ+ 3 3ℓ+ 4

i = 1 1 1 1/2 · · · 1/2 1 1/3 · · · 1/3 · · · 1/3 1 1
2 0 0 1/2 0 0 1/3 0 1/3 0 0
...

. . .
.

.

ℓ+ 1 0 0 0 1/2 0 0 1/3 0 0 0
ℓ+ 2 0 0 0 0 0 0 0 0 0 0
ℓ+ 3 0 0 0 0 0 1/3 0 1/3 0 0

...
.

.

2ℓ+ 2 0 0 0 0 0 0 1/3 0 0 0
2ℓ+ 3 0 0 0 0 0 0 0 0 0 0

...
3ℓ+ 4 0 0 0 0 0 0 0 0 0 0

Let R1 = A1 − T1 ∈ RN×N be the error matrix, which is upper triangular. Its exact form is messy as well, but we can
obtain the bounds of their entries. Consider a pair of indices (i, j) ∈ [N]2 such that i ≤ j. Let xj = 1/[T1]1j ∈ {1, 2, 3}. If
[T1]ij =

1
xj

, [R1]ij < 0 and

−[R1]ij ≤
1

xj
− eMP

xjeMP + (j − xj)eM(P−2)
=

j − xj

xj(xje2M + (j − xj))
. (17)

30

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

On the other hand, if [T1]ij = 0, [R1]ij > 0 and

[R1]ij ≤
eM(P−2)

xjeMP + (j − xj)eM(P−2)
=

1

xje2M + (j − xj)
. (18)

Now let dV,1 = 1 and

V1 = 3(edNUM)
⊤ ∈ RdV,1×d, (19)

U1 = edPRE_SUM ∈ Rd×dV,1 . (20)

The linear transformation with matrix U1V1 takes the dimension NUM from the input encoding matrix, scales it up by 3, and
puts it to the dimension PRE_SUM. A concrete example is provided in Table 14.

Obtaining U1V1X
(0)A1, its every entry is zero except at the dimension PRE_SUM. Observe that [U1V1X

(0)](PRE_SUM)1 = 0,
because in the input encoding matrix, the dimension NUM starts with 0. Also, note that it is enough to focus on the columns
j ∈ {2ℓ+ 3, . . . , 3ℓ+ 4} since we only care about the next-token prediction of the tokens after σ2ℓ+3 =‘=’. Specifying the
dimension (i.e., the particular row) for these columns, we have

[U1V1X
(0)T1](PRE_SUM)j =

{
X

(0)
(NUM)(3ℓ+4−j) +X

(0)
(NUM)(4ℓ+5−j) if j ∈ {2ℓ+ 3, . . . , 3ℓ+ 2},

0 if j ∈ {3ℓ+ 3, 3ℓ+ 4},
(21)

=

{
σ(3ℓ+4)−j + σ(4ℓ+5)−j if j ∈ {2ℓ+ 3, . . . , 3ℓ+ 2},
0 if j ∈ {3ℓ+ 3, 3ℓ+ 4}.

(22)

Refer to Table 15 for a concrete example of computing U1V1X
(0)T1. Also, for the softmax errors,

[U1V1X
(0)R1](PRE_SUM)j =

∑
2≤i≤j

3X
(0)
(NUM)i[R1]ij . (23)

Specifically, if j ∈ {2ℓ+ 3, . . . , 3ℓ+ 2} (thus xj = 3),

[U1V1X
(0)R1](PRE_SUM)j =

∑
i∈{(3ℓ+4)−j,(4ℓ+5)−j}

3X
(0)
(NUM)i[R1]ij︸ ︷︷ ︸

negative

+
∑

2≤i≤j
i ̸=(3ℓ+4)−j
i ̸=(4ℓ+5)−j

3X
(0)
(NUM)i[R1]ij

︸ ︷︷ ︸
positive

, (24)

where

0 ≤ −
∑

i∈{(3ℓ+4)−j,(4ℓ+5)−j}

3X
(0)
(NUM)i[R1]ij ≤

2 · 9(j − 3)

3e2M + (j − 3)
(25)

holds by Equation (17), and

0 ≤
∑

2≤i≤j
i̸=(3ℓ+4)−j
i̸=(4ℓ+5)−j

3X
(0)
(NUM)i[R1]ij ≤

27(j − 3)

3e2M + (j − 3)
(26)

holds by Equation (18). On the other hand, if j ∈ {3ℓ+ 3, 3ℓ+ 4},

0 ≤ [U1V1X
(0)R1](PRE_SUM)j =

∑
2≤i≤j

3X
(0)
(NUM)i[R1]ij ≤

27(j − 1)

e2M + (j − 1)
. (27)

One can easily prove these inequalities by using the bounds of [R1]ij’s and the fact that the entries in X
(0)
(NUM)• lie in the

interval [0, 9].

31

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

If we let M ≥ 1
2 log(N − 1) + 3, we can ensure that

∣∣[U1V1X
(0)R1](PRE_SUM)j

∣∣ smaller than 0.1 for each j ∈ {2ℓ +
3, . . . , 3ℓ+ 4}. The proof is simple: it is enough to check

27(N − 3)

3e2M + (N − 3)
<

1

10
,

27(N − 1)

e2M + (N − 1)
<

1

10
. (28)

Table 12. Example of Q1X
(0), continuing from Table 9.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1–P : 0P
√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

P + 1:
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

Table 13. Example of K1X
(0), continuing from Table 9.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1–P : 0P
√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

P + 1:
√
MP 0 0 0 0 0 0 0 0 0 0 0 0

Table 14. Example of U1V1X
(0), continuing from Table 9.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 18 15 9 0 0 12 27 0 6 0 21 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
7–16: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

17: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
18–end: POS_1,POS_2 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Table 15. Example of U1V1X
(0)T1, continuing from Table 14. See Table 11 for the definition of T1.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 9 7.5 4.5 0 6 9 12 9 6 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
7–16: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

17: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
18–end: POS_1,POS_2 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

I.4.2. ATTENTION HEAD 2: CARRY & EOS DETECTION

The goal of the second head is to fill in the blanks of the encoding matrix at dimensions PRE_CARRY and PRE_EOS. At
dimension PRE_EOS, we will put (approximately) 1 if the next token would be the EOS token (‘$’), otherwise, we will put
strictly smaller numbers like (approximately) 2/3 and 1/2.

32

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

What we will put at dimension PRE_CARRY is the evidence of the presence of an additional carry, which is not quite
straightforward to understand. Let us take a look at some examples. Consider an addition 3 + 9 = 12. Since it is greater
than or equal to 10, the least significant digits in the operands generate a carry 1. But in some cases, a pair of digits with a
sum less than 10 can make a carry. Next, consider an addition 53 + 49 = 102. In the second least significant digits, An
addition of 5 and 4 occurs. However, a carry is already produced in the least significant digits (3 + 9 = 12), so the total sum
including the carry is 10, not 9. Thus, it also produces a carry. But how can we know the presence of a carry while only
looking at the second least significant digits? The answer is to observe the second least significant digit in the sum, 0 of 102.
Somehow, the consequence of adding 5 and 4 is 0, (or 10, implicitly) so it makes a carry.

To generalize this explanation, let a and b be digits of the operands in the same significance, and c be a digit of the sum in
the same significance as a and b. We find that the rule of recognizing that the addition of a and b generates a carry is that{

If a+ b− c ∈ {9, 10}, then a carry is generated,
Otherwise, then the carry is not generated.

(29)

Thus, it is crucial to store the information of a + b − c or any related one somewhere. In fact, we can store a + b + c at
dimension PRE_CARRY of the encoding matrix, and it can be transformed into a+ b− c and used later in the feed-forward
layer. Formally, we aim to perform σi +σi+ℓ+1 +σ3ℓ+5−i for each i ∈ {2, ..., ℓ+1} and put its result at the (3ℓ+5− i)-th
position (column) of the dimension PRE_CARRY (row). To this end, we again utilize our position embedding.

Recall that d = 2P + 17 and let dQK,2 = P + 1. Let

Q2 =

(
0P×17

√
MIP 0P×P√

MP (e17FULL_ONES)
⊤ 01×P 01×P

)
∈ RdQK,2×d, (30)

K2 =

(
0P×17

√
MIP 0P×P√

MP (e17IS_BOS)
⊤ 01×P 01×P

)
∈ RdQK,2×d. (31)

The linear transformations with matrices Q2 and K2 do two different jobs at once. (1) they take the dimensions POS_1
from the input encoding matrix and scale them up by

√
M ; (2) Q2 (K2, resp.) takes the dimension FULL_ONES (IS_BOS,

resp.) and scale it up by
√
MP . For concrete examples, refer to Tables 18 and 19. By these, the attention score matrix

C2 := (K2X
(0))⊤Q2X

(0) becomes as in Table 16. The blanks in Table 16 are the numbers less than equal to M(P − 2);
the asterisks (‘*’) are the entries (or lower triangular submatrices) ignored by the causal softmax operator; the dots represent
the hidden MP ’s.

Table 16. Exact attention score matrix C2 (with explicit row/column indices) of Head 2.
row \ col j = 1 2 · · · ℓ+ 1 ℓ+ 2 ℓ+ 3 · · · 2ℓ+ 2 2ℓ+ 3 2ℓ+ 4 · · · 3ℓ+ 3 3ℓ+ 4

i = 1 MP MP · · · MP MP MP · · · MP MP MP · · · MP MP
2 * MP MP MP
... * *

. . .
.

.

ℓ+ 1 * * * MP MP MP
ℓ+ 2 * * * * MP MP
ℓ+ 3 * * * * * MP MP

... * * * * * *
.

.

2ℓ+ 2 * * * * * * * MP MP
2ℓ+ 3 * * * * * * * * MP
2ℓ+ 4 * * * * * * * * * MP

... * * * * * * * * * *
. . .

3ℓ+ 3 * * * * * * * * * * * MP
3ℓ+ 4 * * * * * * * * * * * * MP

Now consider the attention matrix A2 := softmax(C2) ∈ RN×N . Similarly to the previous head, if the number M is large
enough, it gets close to the column-stochastic matrix T2 ∈ RN×N described in Table 17. The blanks in Table 17 are zeros;
the dots represent the omitted nonzero entries.

33

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 17. Limiting attention matrix T2 (with explicit row/column indices) of Head 2, as M gets large.
row \ col j = 1 2 · · · ℓ+ 1 ℓ+ 2 ℓ+ 3 · · · 2ℓ+ 2 2ℓ+ 3 2ℓ+ 4 · · · 3ℓ+ 3 3ℓ+ 4

i = 1 1 1/2 · · · 1/2 1/2 1/3 · · · 1/3 1/3 1/4 · · · 1/4 1/2
2 * 1/2 0 0 1/3 0 0 0 1/4 0
... * *

. . .
.

.

ℓ+ 1 * * * 1/2 0 0 1/3 0 1/4 0 0
ℓ+ 2 * * * * 1/2 0 0 1/3 0 0 0
ℓ+ 3 * * * * * 1/3 0 0 0 1/4 0

... * * * * * *
.

.

2ℓ+ 2 * * * * * * * 1/3 0 1/4 0 0
2ℓ+ 3 * * * * * * * * 1/3 0 0 0
2ℓ+ 4 * * * * * * * * * 1/4 0 0

... * * * * * * * * * *
. . .

3ℓ+ 3 * * * * * * * * * * * 1/4 0
3ℓ+ 4 * * * * * * * * * * * * 1/2

Let R2 = A2−T2 ∈ RN×N be the error matrix, which is upper triangular as well. Its exact form is messy as well, but we can
obtain the bounds of their entries. Consider a pair of indices (i, j) ∈ [N]2 such that i ≤ j. Let xj = 1/[T2]1j ∈ {1, 2, 3, 4}.
If [T2]ij =

1
xj

, [R2]ij < 0 and

−[R2]ij ≤
1

xj
− eMP

xjeMP + (j − xj)eM(P−2)
=

j − xj

xj(xje2M + (j − xj))
. (32)

On the other hand, if [T2]ij = 0, [R2]ij > 0 and

[R2]ij ≤
eM(P−2)

xjeMP + (j − xj)eM(P−2)
=

1

xje2M + (j − xj)
. (33)

Now let dV,2 = 2 and

V2 =

(
4(edNUM)

⊤

2(edIS_BOS)
⊤

)
∈ RdV,2×d, (34)

U2 =
(
edPRE_CARRY edPRE_EOS

)
∈ Rd×dV,2 . (35)

The linear combination with matrix U2V2 does two jobs at once. First, it takes the dimension NUM from the encoding
matrix, scales it up by 4, and puts it to the dimension PRE_CARRY. Second, it takes the dimension IS_BOS from the encoding
matrix, scales it up by 2, and puts it to the dimension PRE_EOS. A concrete example is provided in Table 20.

Obtaining U2V2X
(0)A2, its every entry is zero except at the dimensions PRE_CARRY and PRE_EOS. Observe that

[U2V2X
(0)](PRE_CARRY)1 = 0, because in the input encoding matrix, the dimension NUM starts with 0. Also, note again that

it is enough to focus on the columns j ∈ {2ℓ+ 3, . . . , 3ℓ+ 4}, since we only care about the next-token prediction of the
tokens after σ2ℓ+3 =‘=’. Specifying the dimensions (i.e., the particular rows) for these columns, we have

[U2V2X
(0)T2](PRE_CARRY)j =


4

3

(
X

(0)

(NUM)(ℓ+2) +X
(0)

(NUM)j

)
if (2ℓ+ 3) = 2ℓ+ 3,

X
(0)

(NUM)(3ℓ+5−j) +X
(0)

(NUM)(4ℓ+6−j) +X
(0)

(NUM)j if j ∈ {2ℓ+ 4, . . . , 3ℓ+ 3},

0 if j = 3ℓ+ 4,

(36)

=

{
0 if j ∈ {2ℓ+ 3, 3ℓ+ 4},
σ(3ℓ+5)−j + σ(4ℓ+6)−j + σj if j ∈ {2ℓ+ 4, . . . , 3ℓ+ 3},

(37)

[U2V2X
(0)T2](PRE_EOS)j =


2/3 if j = 2ℓ+ 3,

1/2 if j ∈ {2ℓ+ 4, . . . , 3ℓ+ 3},
1 if j = 3ℓ+ 4.

(38)

34

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Refer to Table 21 for a concrete example of computing U2V2X
(0)T2. Also, for the softmax errors,

[U2V2X
(0)R2](PRE_CARRY)j =

∑
2≤i≤j

4X
(0)
(NUM)i[R1]ij , (39)

[U2V2X
(0)R2](PRE_EOS)j =

∑
1≤i≤j

2X
(0)
(IS_BOS)i[R1]ij . (40)

Let us first obtain a bound of the softmax error term at dimension PRE_CARRY. If j = 2ℓ + 3, since X
(0)
(NUM)(ℓ+2) =

X
(0)
(NUM)(2ℓ+3) = 0,

[U2V2X
(0)R2](PRE_CARRY)(2ℓ+3) =

∑
2≤i≤2ℓ+2

i ̸=ℓ+2

4X
(0)
(NUM)i[R1]ij (41)

and

0 ≤
∑

2≤i≤2ℓ+2
i̸=ℓ+2

4X
(0)
(NUM)i[R1]ij ≤

36(2ℓ)

3e2M + 2ℓ
. (42)

If j ∈ {2ℓ+ 4, . . . , 3ℓ+ 3},

[U2V2X
(0)R2](PRE_CARRY)j =

∑
i∈{(3ℓ+5)−j,(4ℓ+6)−j,j}

4X
(0)
(NUM)i[R1]ij︸ ︷︷ ︸

negative

+
∑

2≤i≤j−1
i ̸=(3ℓ+5)−j
i ̸=(4ℓ+6)−j

4X
(0)
(NUM)i[R1]ij

︸ ︷︷ ︸
positive

, (43)

where

0 ≤ −
∑

i∈{(3ℓ+5)−j,(4ℓ+6)−j,j}

4X
(0)
(NUM)i[R1]ij ≤

3 · 9(j − 4)

4e2M + (j − 4)
(44)

and

0 ≤
∑

2≤i≤j−1
i ̸=(3ℓ+5)−j
i ̸=(4ℓ+6)−j

4X
(0)
(NUM)i[R1]ij ≤

36(j − 4)

4e2M + (j − 4)
. (45)

And if j = 3ℓ+ 4 = N ,

[U2V2X
(0)R2](PRE_CARRY)N = 4X

(0)
(NUM)N [R1]NN︸ ︷︷ ︸

negative

+
∑

2≤i≤N−1

4X
(0)
(NUM)i[R1]iN︸ ︷︷ ︸

positive

, (46)

where

0 ≤ −4X
(0)
(NUM)N [R1]NN ≤ 18(N − 2)

2e2M +N − 2
(47)

and

0 ≤
∑

2≤i≤N−1

4X
(0)
(NUM)i[R1]iN ≤ 36(N − 2)

2e2M +N − 2
. (48)

Next, we obtain a bound of the softmax error term at dimension PRE_EOS. Since∑
1≤i≤j

2X
(0)
(IS_BOS)i[R1]ij = 2X

(0)
(IS_BOS)1[R1]1j , (49)

35

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

the error term can be bounded as

0 ≤ −[U2V2X
(0)R2](PRE_EOS)j ≤



2(j − 3)

3(3e2M + j − 3)
if j = 2ℓ+ 3

2(j − 4)

4(4e2M + j − 4)
if j ∈ {2ℓ+ 4, . . . , 3ℓ+ 3},

(j − 2)

2e2M + j − 2
if j = 3ℓ+ 4.

(50)

We then can ensure that both
∣∣[U2V2X

(0)R2](PRE_SUM)j

∣∣ and
∣∣[U2V2X

(0)R2](PRE_EOS)j

∣∣ smaller than 0.1 for each j ∈
{2ℓ+ 3, . . . , 3ℓ+ 4}, by letting M ≥ 1

2 log(N) + 3. The proof is similar to the one that is presented for head 1.

Table 18. Example of Q2X
(0), continuing from Table 9.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1–P : 0P
√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

P + 1: √
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

Table 19. Example of K2X
(0), continuing from Table 9.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1–P : 0P
√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

P + 1:
√
MP 0 0 0 0 0 0 0 0 0 0 0 0

Table 20. Example of U2V2X
(0), continuing from Table 9.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 24 20 12 0 0 16 36 0 8 0 28 0
6: PRE_EOS 2 0 0 0 0 0 0 0 0 0 0 0 0
7–16: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

17: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
18–end: POS_1 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Table 21. Example of U2V2X
(0)T2, continuing from Table 20. See Table 17 for definition of T2.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 12 10 6 0 8 12 16 0 14 9 13 0
6: PRE_EOS 2 1 1 1 1 2/3 2/3 2/3 2/3 1/2 1/2 1/2 1
7–16: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

17: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
18–end: POS_1 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

36

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

I.4.3. RESIDUAL CONNECTION

So far we have computed the output of Att1 operation. Passing through the residual connection, the output of the attention
layer is the sum of the original input encoding matrix and the output of Att operation:

Y (1) = X(0) +
∑

h∈{1,2}

UhVhX
(0)Th +

∑
h∈{1,2}

UhVhX
(0)Rh︸ ︷︷ ︸

softmax error term

. (51)

Since the term
∑

h∈{1,2} UhVhX
(0)Th has nonzero entries only at dimensions PRE_SUM, PRE_CARRY, and PRE_EOS,

the residual connection plays a role of “filling in some blanks” in the input encoding matrix. A concrete example of the
output of residual connection is presented in Table 22, ignoring the softmax error term, whose entries have an absolute value
smaller than 0.1.

Table 22. Example output of residual connection, continuing from Tables 9, 15 and 21. Here we ignore the softmax error terms in the
orange rows. The gray rows will be filled in later.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 6 5 3 0 0 4 9 0 2 0 7 0
2: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 9 7.5 4.5 0 6 9 12 9 6 0 0
5: PRE_CARRY 0 12 10 6 0 8 12 16 0 14 9 13 0
6: PRE_EOS 2 1 1 1 1 2/3 2/3 2/3 2/3 1/2 1/2 1/2 1
7–16: SUM 010 010 010 010 010 010 010 010 010 010 010 010 010

17: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
18–(P + 17): POS_1 0P vP

3 vP
4 vP

5 vP
6 vP

3 vP
4 vP

5 vP
6 vP

5 vP
4 vP

3 vP
2

(P + 18)–(2P + 17): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
4 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3

I.5. Transformer Block — Token-wise Feed-forward Layer

The goal of the feed-forward layer is to fill in the blanks of the encoding matrix at dimensions SUM and IS_EOS. Be careful
that the feed-forward layer can only implement token-wise mappings; a token-wise mapping takes inputs only from the
entries in the same column of the encoding matrix. Besides, the architecture of our feed-forward layer (except for the
residual connection) is a one-hidden-layer ReLU network.

For a token σi for i ∈ {2ℓ + 3, . . . , 3ℓ + 3} (from ‘=’ token to the second), we will put a standard unit vector e10k+1 to
dimensions SUM if the next token is k ∈ {0, . . . , 9}.

Recall from the discussion in Appendix I.4.2 that we can judge whether a carry 1 is generated at a certain position by
exploiting only the digits (of the operands and the sum) in the same significance. Bringing the notation, let a and b be digits
of the operands in the same significance, and c be a digit of the sum in the same significance as a and b. Then the rule of
recognizing that the addition of a and b generates a carry is that{

If a+ b− c ∈ {9, 10}, then a carry is generated,
Otherwise: if a+ b− c ∈ {−1, 0}, then the carry is not generated.

(52)

A simple case analysis shows that the value of a+ b− c must be one of −1, 0, 9, and 10. Let us briefly check this claim in
our example:

6 + 0− 7 = −1; no carry from 6+0 (53)
5 + 4− 0 = 9; there is a carry from 5+4 (54)
3 + 9− 2 = 10. there is a carry from 3+9 (55)

37

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Recall that a noisy version of a+ b+ c is already stored at dimension PRE_CARRY of Y (1), and c is exactly at dimension
NUM. Thus, we can (approximately) implement a+ b− c for a token σj by

Y
(0)
(PRE_CARRY)j − 2Y

(0)
(NUM)j . (56)

This is a kind of token-wise linear transform, so we do not need to consume any hidden layer (with ReLU activation ϕ) to
implement it.

Combining with Y
(0)
(PRE_SUM)j , a noisy version of addition without carry, we can indeed implement the addition. Note that a

digit-wise addition should be done as

digit-wise addition = (addition without carry + 1{carry propagates}) mod 10. (57)

We first describe the formal construction of feed-forward network FF1 for dimensions SUM and IS_EOS and then explain the
intuition behind the construction. For the example result of applying the feed-forward network is presented in Table 23.

I.5.1. SUBNETWORK 1: CONSTRUCTION FOR SUM (DIMENSION 7–16).

Given a vector y = [yj]
d
j=1 ∈ Rd, define a linear function g : Rd → R as

g(y) := yPRE_SUM +
yPRE_CARRY − 2yNUM

10
+ 0.21 = y3 +

y4 − 2y1

10
+ 0.21 (58)

and consider a one-hidden-layer ReLU network fk : R → R (k = 0, 1, . . . , 9) defined as

fk(x) = 2
[
ϕ(x− (k − 0.5))− ϕ(x− k)− ϕ(x− (k + 0.5)) + ϕ(x− (k + 1))

+ ϕ(x− (k + 9.5))− ϕ(x− (k + 10))− ϕ(x− (k + 10.5)) + ϕ(x− (k + 11))
]
.

(59)

Then we construct a subnetwork of our feed-forward network for a token σj by[
FF1

(
Y (1)

)]
(SUM)j

=
[
f0

(
g
(
Y

(1)
•j

))
· · · f9

(
g
(
Y

(1)
•j

))]⊤
. (60)

Explanation. The purpose of the first subnetwork is to generate a 10-dimensional one-hot vector whose position of 1
indicates the next digit: e10k for the answer of next-token prediction ‘k’. There are two cases where we need to predict the
next token as ‘k’:

• Case 1: (Addition without carry) = k mod 10 and no carry propagates.

• Case 2: (Addition without carry) = k − 1 mod 10 and there is a propagating carry 1.

In the first case, due to the softmax error (with magnitude at most 0.1),

Y
(0)
(PRE_SUM)j ∈ [k − 0.1, k + 0.1] ∩ [k + 9.9, k + 10.1], (61)

Y
(0)
(PRE_CARRY)j − 2Y

(0)
(NUM)j ∈ [−1.1,−0.9] ∩ [−0.1, 0.1] ⊂ [−1.1, 0.1]. (62)

In the second case, again due to the softmax error (with magnitude at most 0.1),

Y
(0)
(PRE_SUM)j + 1 ∈ [k − 0.1, k + 0.1] ∩ [k + 9.9, k + 10.1], (63)

Y
(0)
(PRE_CARRY)j − 2Y

(0)
(NUM)j − 10 ∈ [−1.1,−0.9] ∩ [−0.1, 0.1] ⊂ [−1.1, 0.1]. (64)

In both cases,

Y
(0)
(PRE_SUM)j +

Y
(0)
(PRE_CARRY)j − 2Y

(0)
(NUM)j

10
+ 0.21 ∈ [k, k + 0.32] ∩ [k + 10, k + 10.32] (65)

⊂ [k, k + 0.5] ∩ [k + 10, k + 10.5]. (66)

38

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

We can map the column Y
(0)
•j to the set [k, k+ 0.5]∩ [k+ 10, k+ 10.5] if the next token is σj+1 = ‘k’. This job is done by

the function g. Note that the resulting sets [k, k + 0.5] ∩ [k + 10, k + 10.5] are disjoint for different k’s.

Recall that our objective is to output 1 to the dimension k + 6 (among the dimensions 7, 8, . . . , 16 in SUM) and to output
0 to the other dimensions in SUM if we need to predict ‘k’ as the next token. To this end, it is enough to map the set
[k, k + 0.5] ∩ [k + 10, k + 10.5] to 1 and to map the other sets (for different k’s) to 0. This can be done by a ReLU network
fk(x) is a ReLU network having two bumps at intervals [k − 0.5, k + 1] and [k + 9.5, k + 11]. In particular, fk(x) = 1 if
x ∈ [k, k + 0.5] ∪ [k + 10, k + 10.5]: see Figure 20 for an illustration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1
f0(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1
f1(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1
f2(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1
f3(x)

Figure 20. Example plots of fk(x) defined in Equation (59). (k = 0, 1, 2, 3)

Lastly, we have a desired one-hot vector output for each j by taking a composition between g and [f0(·), . . . , f9(·)]⊤ as
written in Equation (60).

I.5.2. SUBNETWORK 2: CONSTRUCTION FOR IS_EOS (DIMENSION 17).

We move on to the dimension IS_EOS. For a token σj for j ∈ {2ℓ+3, . . . , 3ℓ+4}, if k is the next token, we will put 1{k=$}
to dimension IS_EOS: 1 if k is the special token ‘$’ and 0 otherwise. To this end, we define a ReLU network h : R → R as

h(x) = 10ϕ (x− 0.8)− 10ϕ (x− 0.9) . (67)

Then, we can construct a subnetwork of our feed-forward network for a token σj by[
FF1

(
Y (1)

)]
(IS_EOS)j

= h
(
Y

(1)
(PRE_EOS)j

)
. (68)

Explanation. Note that for columns j ∈ {2ℓ+3, . . . , 3ℓ+4}, if we consider the presence of softmax errors with magnitude at
most 0.1, the values that Y (1)

(PRE_EOS)j can have lie in the set [0.4, 0.6]∩[2/3−0.1, 2/3+0.1]∩[0.9, 1.1] ⊂ (−∞, 0.8)∩[0.9,∞).

We want to output 1 if Y (1)
(PRE_EOS)j ≥ 0.9 and 0 otherwise: this can be done with the ReLU network h with two neurons.

Remark:

• In total, we consume 8 × 10 + 2 = 82 ReLU neurons in our feed-forward network FF1. However, it is possible to
construct the addition Transformer with a smaller number of neurons, with a slight modification in the linear readout of
the decoding function (Appendix I.6).

• Unlike in the attention layer, now we do not have to worry about softmax errors in the output since the feed-forward
ReLU network plays the role of denoiser.

39

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 23. Example output after applying the feed-forward network.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0
2: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0
4: PRE_SUM 0 0 0 0 0 0 0 0 0 0 0 0 0
5: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0
6: PRE_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0
7–16: SUM e101 e101 e1010 e108 e105 e102 e107 e1010 e103 e101 e108 e101 e101
17: IS_EOS 1 1 1 1 1 0 0 0 0 0 0 0 1
18–(P + 17): POS_1 0P vP

3 vP
4 vP

5 vP
6 vP

3 vP
4 vP

5 vP
6 vP

5 vP
4 vP

3 vP
2

(P + 18)–(2P + 17): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
4 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3

I.5.3. RESIDUAL CONNECTION

The last task of the feed-forward layer is to pass FF1
(
Y (1)

)
through the residual connection. As a result, we have

X(1) = Y (1) + FF1

(
Y (1)

)
. (69)

A concrete example of the output of the second residual connection is showcased in Table 24.

Table 24. Example output of residual connection, continuing from Table 23. Here we ignore the softmax error terms in the orange rows.

I $ 6 5 3 + 0 4 9 = 2 0 7 0

1: NUM 0 6 5 3 0 0 4 9 0 2 0 7 0
2: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0
3: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1
4: PRE_SUM 0 0 9 7.5 4.5 0 6 9 12 9 6 0 0
5: PRE_CARRY 0 12 10 6 0 8 12 16 0 14 9 13 0
6: PRE_EOS 2 1 1 1 1 2/3 2/3 2/3 2/3 1/2 1/2 1/2 1
7–16: SUM e101 e101 e1010 e108 e105 e102 e107 e1010 e103 e101 e108 e101 e101
17: IS_EOS 1 1 1 1 1 0 0 0 0 0 0 0 1
18–(P + 17): POS_1 0P vP

3 vP
4 vP

5 vP
6 vP

3 vP
4 vP

5 vP
6 vP

5 vP
4 vP

3 vP
2

(P + 18)–(2P + 17): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
4 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3

I.6. Decoding Function

As mentioned in Appendix H, the decoding function performs a linear readout (with a weight matrix Wout ∈ R|V|×d) and a
(token-wise) arg-max operation. That is,

Dec
(
X(1)

)
:= (Vki

)i=1,...,N ∈ VN , (70)

where Vk is the k-th element of V and

ki := argmax
k∈[|V|]

{
ok : WoutX

(1)
•i =

[
o1 · · · o|V|

]⊤}
. (71)

The objective of the decoding function is to perform a proper next-token prediction for addition, especially utilizing the
dimensions SUM and IS_EOS of X(1).

We now construct the weight matrix Wout. For a token σi, if the value of dimension IS_EOS of X(1) is 0, then the linear
readout output the dimensions SUM as it is to return one of a number token (0-9). On the other hand, if the value of dimension

40

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

IS_EOS is 1, then the linear readout outputs a large number (like 100 for example) for the token ‘$’ to return EOS ($). This
can be implemented by the weight matrix Wout described in Table 25. Also, an example of applying the linear transform is
showcased in Table 26.

Table 25. The transposed weight matrix W⊤
out of the linear readout in decoding function.

V 0 1 2 3 4 5 6 7 8 9 + = $

1-6: NUM-PRE_EOS 06 06 06 06 06 06 06 06 06 06 06 06 06

7: SUM1 1 0 0 0 0 0 0 0 0 0 0 0 0
8: SUM2 0 1 0 0 0 0 0 0 0 0 0 0 0
9: SUM3 0 0 1 0 0 0 0 0 0 0 0 0 0
10: SUM4 0 0 0 1 0 0 0 0 0 0 0 0 0
11: SUM5 0 0 0 0 1 0 0 0 0 0 0 0 0
12: SUM6 0 0 0 0 0 1 0 0 0 0 0 0 0
13: SUM7 0 0 0 0 0 0 1 0 0 0 0 0 0
14: SUM8 0 0 0 0 0 0 0 1 0 0 0 0 0
15: SUM9 0 0 0 0 0 0 0 0 1 0 0 0 0
16: SUM10 0 0 0 0 0 0 0 0 0 1 0 0 0
17: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 100
18–end: POS_1, POS_2 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P 02P

Table 26. Example output of linear readout (WoutX
(1)), continuing from Tables 24 and 25. The yellow cells represent the maximum

value of each column, from the ‘=’ token’s column to the rightmost column (which are used for next-token prediction).

I $ 6 5 3 + 0 4 9 = 2 0 7 0

0 1 1 0 0 0 0 0 0 0 1 0 1 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 1 0 0 0 0 1 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0 0
$ 9 9 9 9 9 0 0 0 0 0 0 0 9

Table 27. Example output sequence O = Dec
(
X(1)

)
, continuing from Table 26. The yellow cells in the bottom row exactly predict the

next tokens.
I $ 6 5 3 + 0 4 9 = 2 0 7 0

O $ $ $ $ $ 1 6 9 2 0 7 0 $

41

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

J. Proof: Impossibility of Addition with No Positional Encoding
For the sake of readability, we restate the proposition below.
Proposition D.1. Consider any depth-1 finite-head decoder-only Transformer model T without positional encoding (NoPE).
Given an input sequence I and its arbitrary permutation I ′, if the last tokens of I and I ′ are identical, then the next tokens
predicted by T will also be identical for both sequences when applying a greedy decoding scheme.

Remark. We assume the 1-layer (L = 1) H-head Transformer achitecture specified in Appendix H. Although it
omits normalization layers, we remark that Proposition D.1 remains valid even for the architecture with a standard layer
normalization (Ba et al., 2016) or its variants (e.g., Zhang and Sennrich, 2019).

Proof of Proposition D.1. We keep following the notation about matrices introduced in Appendix I.1. Throughout the proof,
we denote the value/vector/matrix related to I ′ by appending ′ to it.

Let encoding matrices generated from the input sequences I, I ′ ∈ VN as

X := Enc(I) ∈ Rd×N and X ′ := Enc(I ′) ∈ Rd×N . (72)

Since there is no positional encoding, the encoding function Enc(·) maps the same tokens to the same columns. In particular,
Ii = I ′

j implies X•i = X ′
•j . Since we assume that I ′ is a permutation of I such that IN = I ′

N , there exists a bijection
π : [N] → [N] such that I ′

i = Iπ(i) for each i ∈ [N] and π(N) = N . Then, it follows that X ′
•i = X•(π(i)) for each i and,

specifically, X ′
•N = X•N .

Recall that the single H-head attention layer Att : Rd×N → Rd×N operates as Att(X) =
∑H

h=1 Headh(X) where the
attention head h is defined as

Headh(X) := UhVhX · softmax
(
(KhX)⊤QhX

)
∈ Rd×N ,

where Qh,Kh ∈ RdQK×d, Vh ∈ RdV ×d and Uh ∈ Rd×dV .

Claim: [Headh(X)]•N = [Headh(X
′)]•N for all h ∈ [H].

The claim suffices to prove the proposition because of the following: first, the claim implies that the last (N -th) column
of the attention layer outputs are the same, i.e., [Att(X)]•N = [Att(X ′)]•N . Note that the operations after the attention
layer—residual connections, FF, and Dec—all operate in a token-wise (column-by-column) manner: the j-th column of the
output of a token-wise operation is a function of j-th column of the input for the operation. Therefore, the last column of the
attention layer output totally determines the next-token prediction at N -th input token. As a result, the predicted next-tokens
are the same for I and I ′.

The rest of the proof is devoted to prove the aforementioned claim. Fix any h ∈ [H]. Let[
softmax

(
(KhX)⊤QhX

)]
•N =

[
s1 . . . sN

]⊤
, (73)[

softmax
(
(KhX

′)⊤QhX
′)]

•N =
[
s′1 . . . s′N

]⊤
, (74)

which are both stochastic (sum to 1) column vectors. Considering that we are taking the last column of the softmax output, it
follows that s′i = sπ(i) for each i ∈ [N]: this can be proved by applying the definition of the softmax operation and the fact[

(KhX
′)⊤QhX

′]
iN

= X ′⊤
•i K

⊤
h QhX

′
•N = X⊤

•π(i)K
⊤
h QhX•N =

[
(KhX)⊤QhX

]
(π(i))N

. (75)

Consequently, since

N∑
i=1

s′iX
′
•i =

N∑
i=1

sπ(i)X•(π(i)) =

N∑
i=1

siX•i, (76)

we have

X ′ ·
[
softmax

(
(KhX

′)⊤QhX
′)]

•N = X ·
[
softmax

(
(KhX)⊤QhX

)]
•N . (77)

Therefore, the claim holds. This concludes the proof.

42

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Here, we provide the Python code that calculates the maximum possible exact-match accuracy based on Proposition D.1 that
a 1-layer Transformer with NoPE can achieve for the m-digit addition problem.

1 from itertools import product
2 from collections import defaultdict
3

4 m = 4 # Change here
5 total = 0
6 counter_dict = defaultdict(dict)
7

8 for a, b in product(product(range(10), repeat=m), product(range(10), repeat=m)):
9 if a[0] == 0 or b[0] == 0: continue

10 total += 1
11 c = tuple(sorted(a+b))
12 a_num = int(’’.join(map(str, a)))
13 b_num = int(’’.join(map(str, b)))
14 ab_sum = a_num + b_num
15 if ab_sum in counter_dict[c]:
16 counter_dict[c][ab_sum] += 1
17 else:
18 counter_dict[c][ab_sum] = 1
19

20 count = sum(max(d.values()) for _, d in counter_dict.items())
21

22 print("m =", m)
23 print("Permutation Invariant Additions Count:", count)
24 print(" Total m-digit Additions Count:", total)
25 print(" Ratio:", count / total)
26

27 """
28 [Example Outputs]
29

30 m = 1
31 Permutation Invariant Additions Count: 81
32 Total m-digit Additions Count: 81
33 Ratio: 1.0
34 m = 2
35 Permutation Invariant Additions Count: 2668
36 Total m-digit Additions Count: 8100
37 Ratio: 0.32938271604938274
38 m = 3
39 Permutation Invariant Additions Count: 50150
40 Total m-digit Additions Count: 810000
41 Ratio: 0.06191358024691358
42 m = 4
43 Permutation Invariant Additions Count: 765139
44 Total m-digit Additions Count: 81000000
45 Ratio: 0.00944616049382716
46 m = 5
47 Permutation Invariant Additions Count: 10033314
48 Total m-digit Additions Count: 8100000000
49 Ratio: 0.0012386807407407407
50 """

43

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

K. (Formal) Construction of N × 2 Multiplication Transformer with Position Coupling
Here we show how to implement the N × 2 multiplication using a depth-2 decoder-only Transformer equipped with position
coupling. Our construction involves 3 heads in the first Transformer block and 7 heads in the second Transformer block,
requiring a total of 10 heads.

Theorem E.1. Given an appropriate format of the input sequence, there exists a depth-2 decoder-only Transformer model
with coupled positions that can perform the N × 2 multiplication task with next-token prediction. Here, the number of
the total heads is 10 and the length of the first operand is at most 2⌊(d−34)/6⌋ − 3, where we denote the token embedding
dimension by d ≥ 46.

We note that our construction for the N × 2 multiplication task permits the use of multiple FFN layers at the second decoder
block. However, we believe that there exists a potential improvement in our construction, wherein a single FFN layer could
suffice for each decoder block, leveraging the expressivity of the neural network. Additionally, we do not provide a detailed
error analysis but assume that the softmax operation with sufficiently large attention weights can reduce small attention
scores to zero values, thereby clearly revealing the desired attention patterns.

K.1. Notation

Consider an ordered vocabulary V = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,×,=, $). We include a special token ‘$’ that plays the role of
both the beginning-of-sequence (BOS) token and the end-of-sequence (EOS) token. We denote Vk as k-th element of V . For
instance, V4 = 3 and V13 = $. Unlike the addition task, our construction for the multiplication involves multiple layers and
hence we do not omit the superscripts (l) in the parameter matrices/vectors and the size of dimensions.

K.2. Input Sequence

Our objective is to use next-token prediction for implementing a× b = c. To this end, we want to transform it into an input
sequence I = $A×B = C of an appropriate format. Let ℓa and ℓb represent the lengths of a and b, respectively, and we
denote their sum as ℓ = ℓa + ℓb. While our immediate focus is on the case where ℓb = 2, it is worth noting that our approach
can be extended to the case where ℓb > 2, as the key insight for the construction does not rely on ℓb. Thus, we present the
input sequence and encoding function in a more general form applicable to ℓb ≥ 2.

Unlike the addition case, we do not zero-pad both a and b. Instead, we only zero-pad the response, as the length of c may
either equal the sum of the lengths of a and b, or be less than the sum of their lengths by 1. Hence, we zero-pad in front
of c for the latter case to fix the length of c by ℓ. We also reverse the response c to make the part C. For instance, if we
have 312× 24 = 7488, the input sequence transforms to $312× 24 = 88470. If we have 589× 62 = 36518, then the input
sequence would be $589× 62 = 81563. The red digit is a zero-padding, and the blue digits are the reversed product.

To recap, the input sequence I = σ1σ2 . . . σN ∈ VN of length N = 2ℓ+ 3 consists of six parts:

1. the BOS token σ1 = ‘$’

2. the first operand A = σ2 . . . σℓa+1 where σi ∈ {0, . . . , 9};

3. the multiplication symbol σℓa+2 = ‘×’;

4. the second operand B = σℓa+3 . . . σℓ+2 (note that ℓ = ℓa + ℓb) where σi ∈ {0, . . . , 9};

5. the equality symbol σℓ+3 = ‘=’;

6. the (reversed) product C = σℓ+4 . . . σ2ℓ+3 where σi ∈ {0, . . . , 9}.

Note that the part C might be incomplete (i.e., N < 2ℓ+ 3) at the inference time; we infer the digits of the part C one by
one using next-token prediction. Throughout this section on a formal construction, however, we only consider the train time
setup in which we infer all the digits of the part C at once using simultaneous next-token prediction in a single forward
pass. Precisely, we want to use an input sequence I = σ1 . . . σN to produce an output sequence O = σ′

1 . . . σ
′
N where

σ′
ℓ+3 . . . σ

′
N−1 = C = σℓ+4 . . . σN and σ′

N = ‘$’ (EOS).

44

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

K.3. Encoding Function

We now explain the input embedding for given an input sequence I designed as above. The embedding matrix X(0) is
of size d × N : each column represents an embedding vector for a token, while each row represents a particular named
dimension. We concatenate the token embedding and the position embedding, which can be viewed as a sum of two different
embedding matrices of the same size.

Table 28. Example initial encoding. Here we consider the input sequence $7595× 79 = 500006 and the starting position ID is chosen as
s = 1. The vectors vP

□ are defined in Equation (79). The gray rows will be filled in later.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 7 5 9 5 0 7 9 0 5 0 0 0 0 6
2: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
6: IS_OP2_ONE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: IS_OP2_TEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8: OP2_ONE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: OP2_TEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: OP1_SHIFT0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: OP1_SHIFT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: OP1_SHIFT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: OP1_SHIFT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: OP1_SHIFT4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: RESULT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16: RESULT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17: RESULT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18: RESULT4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: PRE_PROD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21: PRE_EOS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22: PRE_EOS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23-32: PROD 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

33: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34: MASK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35–(P+34): POS_2_MASK 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

(P+35)–(2P+34): POS_1 0P vP
3 vP

4 vP
5 vP

6 vP
7 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3 vP
2 vP

1

(2P+35)–(3P+34): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
8 vP

6 vP
7 vP

8 vP
7 vP

6 vP
5 vP

4 vP
3 vP

2

(3P+35)–(4P+34): POS_3 0P vP
5 vP

6 vP
7 vP

8 vP
9 vP

7 vP
8 vP

9 vP
8 vP

7 vP
6 vP

5 vP
4 vP

3

(4P+35)–(5P+34): POS_4 0P vP
6 vP

7 vP
8 vP

9 vP
10 vP

8 vP
9 vP

10 vP
9 vP

8 vP
7 vP

6 vP
5 vP

4

(5P+35)–(6P+34): POS_5 0P vP
7 vP

8 vP
9 vP

10 vP
11 vP

9 vP
10 vP

11 vP
10 vP

9 vP
8 vP

7 vP
6 vP

5

K.3.1. TOKEN EMBEDDING

The token embedding consists of (34+P) dimensions, where P represents the dimension for the position embedding which
will be described in the very next section. While the token embedding dimension for the addition task was independent of P ,
our construction strategy for the multiplication task involves copying the position embedding into the token embedding.
This is why we have the P term in our token embedding dimension. For the first 34 dimensions, we label them as:

1=NUM, 2=FULL_ONES, 3=IS_BOS, 4=IS_MUL, 5=IS_EQUAL,

6=IS_OP2_ONE, 7=IS_OP2_TEN, 8=OP2_ONE, 9=OP2_TEN,

10=OP1_SHIFT0, 11=OP1_SHIFT1, 12=OP1_SHIFT2, 13=OP1_SHIFT3, 14=OP1_SHIFT4,

15=RESULT1, 16=RESULT2, 17=RESULT3, 18=RESULT4,

19=PRE_PROD, 20=PRE_CARRY, 21=PRE_EOS1, 22=PRE_EOS2

{23,...,32}=PROD, 33=IS_EOS, 34=MASK,

45

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

and for the last P dimensions ({35, ..., 34 + P}), we named them as POS_2_MASK.

The initial token embedding fills only NUM, FULL_ONES, IS_BOS, IS_MUL, and IS_EQUAL, leaving the other (29 + P)
dimensions empty (i.e., all zeros). These (29+P) dimensions will be filled by passing through the layers. Here we describe
how we fill the first 5 dimensions.

Dimension 1 (NUM). For a number token (0, . . . , 9), we put itself into the dimension NUM. For the other tokens (×,=, $),
we put 0.

Dimension 2 (FULL_ONES). We put 1 everywhere in this dimension.

Dimension 3 (IS_BOS). For a special token ‘$’, we put 1 into the dimension IS_BOS. Otherwise, we put 0.

Dimension 4 (IS_MUL). For a special token ‘×’, we put 1 into the dimension IS_MUL. Otherwise, we put 0.

Dimension 5 (IS_EQUAL). For a special token ‘=’, we put 1 into the dimension IS_EQUAL. Otherwise, we put 0.

K.3.2. COUPLED POSITION IDS AND POSITION EMBEDDING

We now specify the allocation of coupled position IDs for the N ×M multiplication task as the following: given an input
sequence I = σ1 . . . σN ,

p(i) =


0, i = 1,

s+ i− 2 + ℓb, i = 2, . . . , ℓa + 2,

s+ i− 3, i = ℓa + 3, . . . , ℓ+ 3,

s− i+ 3 + 2ℓ i = ℓ+ 4, . . . , 2ℓ+ 3.

(78)

Compared to the addition case, the position allocating function p becomes more complicated since the length of two operands
can be different, but the core remains simple: coupling the position IDs for the least significant digit in the first operand (A),
the second operand (B), and the result (C), and then decreasing the IDs as the digit position increases for each A, B, and C.

Now we explain the position embedding. We utilize the same vD
k (k ∈ [2D]) defined for the addition task, specifically

vD
k =

[
(−1)b

(D,k)
i

]D
i=1

∈ RD (79)

where b
(D,k)
i is defined as the i-th (from left) digit of D-digit binary representation of k − 1. Using vD

k , we design the
position embedding for each position ID p(i) by 

vP
p(i)

vP
p(i)+1

vP
p(i)+2

vP
p(i)+3

vP
p(i)+4

 . (80)

The first P dimensions of the position embedding are named as POS_1, and subsequent sets of P dimensions are named
as POS_2, POS_3, POS_4, and POS_5, respectively. Thus, the position embedding is a 5P -dimensional vector. In case of
p(i) + j (j ∈ [4]) exceeding 2P , we use vP

p(i)+j−2P instead of vP
p(i)+j . If p(i) = 0, we let 05P as a position embedding

vector.

By concatenating the token embedding and the position embedding, we get the input embedding X(0). Specifically,
the position embedding is placed under the token embedding ((P + 35)-th to (6P + 34)-th dimension). See Table 9
for an example. As a result, the total embedding dimension is d = 6P + 34. Note the maximum possible position ID
that can be represented with vP

k ’s is max_pos = 2P = 2⌊(d−34)/6⌋. Therefore, the length of the first operand must be
ℓa ≤ max_pos− ℓb − 1 = 2⌊(d−34)/6⌋ − ℓb − 1. For the case when ℓb = 2, this inequality becomes ℓa ≤ 2⌊(d−34)/6⌋ − 3.

46

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

K.4. Construction Idea

Here, we provide an example that demonstrates how we construct the N × 2 multiplication. Consider the calculation
7595× 79 = 600005. While a typical method for computing such a multiplication is illustrated in Table 29, we consider an
alternative approach, as shown in Table 30. In this method, we pair the digits from the first and second operands at each
step where the sum of their digit positions is the same, and then calculate the sum of the pairwise products. For example,
the number 116 in Table 30 is generated by 9 × 9 + 5 × 7, and the number 108 is generated by 5 × 9 + 9 × 7, where
blue indicates numbers from the first operand and red indicates numbers from the second operand. The main reason for
considering such a method is to provide a clearer intuition for determining which numbers from each operand we should
attend to when predicting the next token.

Table 29. Multiplication I

7 5 9 5
× 7 9

6 8 3 5 5
5 3 1 6 5
6 0 0 0 0 5

Table 30. Multiplication II

7 5 9 5
× 7 9

4 5
1 1 6

1 0 8
9 8

4 9
6 0 0 0 0 5

Suppose the current input sequence is $7595× 79 = 5000. During this step, the model is tasked with predicting 0 (the 0
just before 6) for the next token. As illustrated in Table 30, this 0 is computed from the sum of 9, 9, 1, and an additional
1, representing the carry from the previous step. Similar to the explanation in I.4.2, we highlight that the carry 1 can be
detected by computing 8 (ones digit of 98) + 0 (tens digit of 108) + 1 (hundreds digit of 116)− 0 (current token): yielding
a result of 9, indicating the occurrence of a carry 1.

In summary, the correct prediction of the next token 0 (the 0 just before 6) can be achieved by summing the main summation
part and the carry part, where the main summation part is computed using 49, 98, 108, and the carry part is calculated using
98, 108, and 116. Additionally, it’s noteworthy to detail the breakdowns:

49 = 0× 9 + 7× 7, 98 = 7× 9 + 5 + 7, 108 = 5× 9 + 9 + 7, 116 = 9× 9 + 5 + 7. (81)

Thus, for predicting the next token, we need 0, 7, 5, 9, 5, 9, 7. Here, we highlight that this structure, requiring 5 consecutive
tokens from the first operand and every token from the second operand for the next-token prediction, remains unchanged for
any prediction time and any query length.

As we will see in the later subsection, a depth-2 decoder-only Transformer model can be constructed to fill OP2_ONE by 9,
OP2_TEN by 7, and OP1_SHIFT0 to OP1_SHIFT4 by 0, 7, 5, 9, and 5, respectively. One may be concerned that 0 is not
given in the first operand at the input sequence. This requirement of 0 beyond the most significant digit arises in the later
stage of the prediction, i.e., predicting the token that is near the most significant digit of the response. Although 0 is not
explicitly given in the first operand, our construction can automatically manage as if the 0 were originally at the start of the
first operand. A similar situation occurs in the early stage of the prediction that 0 is required before the least significant digit
of the first operand, and our construction is also capable of handling this issue.

Consequently, the embedding vector of the current token 0 (the 0 preceding 60) will be structured as the left-most table in
Table 31, with some irrelevant dimensions omitted for readability. We then utilize a feed-forward layer to fill

• RESULT1 with OP1_SHIFT0 × OP2_ONE + OP1_SHIFT1 × OP2_TEN,

• RESULT2 with OP1_SHIFT1 × OP2_ONE + OP1_SHIFT2 × OP2_TEN,

• RESULT3 with OP1_SHIFT2 × OP2_ONE + OP1_SHIFT3 × OP2_TEN,

• RESULT4 with OP1_SHIFT3 × OP2_ONE + OP1_SHIFT4 × OP2_TEN.

47

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

The result is illustrated in the center table of Table 31. Next, we employ an additional feed-forward layer to fill

• PRE_PROD with ones digit of RESULT1 + tens digit of RESULT2 + hundreds digit of RESULT3,

• PRE_CARRY with ones digit of RESULT2 + tens digit of RESULT3 + hundreds digit of RESULT4.

These computations yield the result illustrated in the right-most table of Table 31. Once this process is done, we can finally
predict the next token by the following two steps:

• CARRY =


0, if PRE_CARRY − NUM ∈ {−2, −1, 0},
1, if PRE_CARRY − NUM ∈ {8, 9, 10},
2, if PRE_CARRY − NUM ∈ {18, 19, 20},

• NEXT_TOKEN = PRE_PROD + CARRY (mod 10).

Table 31. Illustration of the construction idea.

I 0

1: NUM 0
2: FULL_ONES 1
3: IS_BOS 0
4: IS_MUL 0
5: IS_EQUAL 0
8: OP2_ONE 9
9: OP2_TEN 7
10: OP1_SHIFT0 0
11: OP1_SHIFT1 7
12: OP1_SHIFT2 5
13: OP1_SHIFT3 9
14: OP1_SHIFT4 5
15: RESULT1 0
16: RESULT2 0
17: RESULT3 0
18: RESULT4 0
19: PRE_PROD 0
20: PRE_CARRY 0
(P+35)–(2P+34): POS_1 vP

3

(2P+35)–(3P+34): POS_2 vP
4

(3P+35)–(4P+34): POS_3 vP
5

(4P+35)–(5P+34): POS_4 vP
6

(5P+35)–(6P+34): POS_5 vP
7

→

I 0

1: NUM 0
2: FULL_ONES 1
3: IS_BOS 0
4: IS_MUL 0
5: IS_EQUAL 0
8: OP2_ONE 9
9: OP2_TEN 7
10: OP1_SHIFT0 0
11: OP1_SHIFT1 7
12: OP1_SHIFT2 5
13: OP1_SHIFT3 9
14: OP1_SHIFT4 5
15: RESULT1 49
16: RESULT2 98
17: RESULT3 108
18: RESULT4 116
19: PRE_PROD 0
20: PRE_CARRY 0
(P+35)–(2P+34): POS_1 vP

3

(2P+35)–(3P+34): POS_2 vP
4

(3P+35)–(4P+34): POS_3 vP
5

(4P+35)–(5P+34): POS_4 vP
6

(5P+35)–(6P+34): POS_5 vP
7

→

I 0

1: NUM 0
2: FULL_ONES 1
3: IS_BOS 0
4: IS_MUL 0
5: IS_EQUAL 0
8: OP2_ONE 9
9: OP2_TEN 7
10: OP1_SHIFT0 0
11: OP1_SHIFT1 7
12: OP1_SHIFT2 5
13: OP1_SHIFT3 9
14: OP1_SHIFT4 5
15: RESULT1 49
16: RESULT2 98
17: RESULT3 108
18: RESULT4 116
19: PRE_PROD 19
20: PRE_CARRY 9
(P+35)–(2P+34): POS_1 vP

3

(2P+35)–(3P+34): POS_2 vP
4

(3P+35)–(4P+34): POS_3 vP
5

(4P+35)–(5P+34): POS_4 vP
6

(5P+35)–(6P+34): POS_5 vP
7

K.5. Transformer Block 1 — Causal Attention Layer

To implement the concept introduced in Appendix K.4, it is essential to design a Transformer block capable of generating an
embedding matrix depicted in the left-most table of Table 31. The goal of the first Transformer block is to fill IS_OP2_ONE
(6-th dimension) and IS_OP2_TEN (7-th dimension) by 1 if the token corresponds to the ones or tens digit of the second
operand, respectively, and 0 otherwise. These two dimensions enable the filling of OP2_ONE (8-th dimension) and OP2_TEN
(9-th dimension) at the second Transformer block. Furthermore, we will fill MASK (34-th dimension) in the first block,
which will serve as a base for filling OP1_SHIFT0 to OP1_SHIFT4 in the second block. Thus, we currently have 3 objectives,
each of which will be addressed by an individual head.

K.5.1. ATTENTION HEAD 1: DETECTING THE ONES DIGIT OF THE SECOND OPERAND

The goal of the first head is to make the dimension IS_OP2_ONE as a one-hot row vector, where 1 is placed only at the token
corresponding to the ones digit of the second operand.

48

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Recall that d = 6P + 34 and let dQK,11 = P + 1. Let M > 0 be a sufficiently large positive real number. Let

Q
(1)
1 =

(
0P×(P+34) 0P×P

√
MIP 0P×P 0P×P 0P×P√

MP
(
eP+34

FULL_ONES

)⊤
01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,11×d, (82)

K
(1)
1 =

(
0P×(P+34)

√
MIP 0P×P 0P×P 0P×P 0P×P√

MP
(
eP+34

IS_BOS

)⊤
01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,11×d. (83)

Unlike the construction for the addition task, we do not provide the table for the exact matrix and detailed error analysis due
to their complex characterization. Instead, we provide an illustrative example for each step. We will also simply regard
M as a sufficiently large real scalar and thus the attention values can be clearly separated after going through the softmax
operation.

The matrix Q
(1)
1 maps the embedding matrix X(0) into a query matrix Q

(1)
1 X(0) ∈ R(P+1)×N , where the first P rows

are obtained by copying from the dimensions POS_2 and scaling by
√
M , while the last row is the copy of the dimension

FULL_ONES scaled by
√
MP . Similarly, the matrix K

(1)
1 maps the embedding matrix to a key matrix K

(1)
1 X(0) ∈

R(P+1)×N . In this case, the first P rows are obtained by copying from the dimensions POS_1 and scaled by
√
M , with the

last row being the dimension IS_BOS, scaled by
√
MP . For concrete examples, refer to Tables 32 and 33.

Table 32. Example of Q(1)
1 X(0), continuing from Table 28.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

8

√
MvP

6

√
MvP

7

√
MvP

8

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

P + 1: √MP
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

Table 33. Example of K(1)
1 X(0), continuing from Table 28.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

√
MvP

1

P + 1: √MP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

By these, the attention score matrix C
(1)
1 := (K

(1)
1 X(0))⊤Q

(1)
1 X(0) and the attention matrix A

(1)
1 := softmax(C

(1)
1) ∈

RN×N can be obtained. We provide the example of A(1)
1 in Table 34.

Now let dV,11 = 1 and define

V
(1)
1 = 2(edIS_MUL − edIS_EQUAL)

⊤ ∈ RdV,11×d, (84)

U
(1)
1 = edIS_OP2_ONE ∈ Rd×dV,11 . (85)

The matrix U
(1)
1 V

(1)
1 X(0) takes the dimension IS_MUL and IS_EQUAL from the embedding matrix X(0), subtracts one from

the other, scales the result by 2, and puts it to the dimension IS_OP2_SUM. Consequently, the matrix U
(1)
1 V

(1)
1 X(0)A

(1)
1 is

a matrix that matches the size of the input embedding matrix X(0) and is filled with zeroes, except for a unique 1 located at
the ones place of the second operand in the input sequence, in the dimension IS_OP2_ONE (6-th). A concrete example is
provided in Tables 35 and 36.

49

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 34. Example of A(1)
1 (with explicit row/column indices and sufficiently large M), continuing from Tables 32 and 33.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 1 1 1 1 1 1 1/2 1/2 1 1/3 1/4 1/4 1/3 1/3 1/2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0
3 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0
4 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0
5 0 0 0 0 0 0 1/2 0 0 0 1/4 0 0 0 0
6 0 0 0 0 0 0 0 1/2 0 1/3 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 35. Example of U (1)
1 V

(1)
1 X(0), continuing from Table 28. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: IS_OP2_ONE 0 0 0 0 0 2 0 0 -2 0 0 0 0 0 0

Table 36. Example of U (1)
1 V

(1)
1 X(0)A

(1)
1 , continuing from Tables 34 and 35. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: IS_OP2_ONE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

K.5.2. ATTENTION HEAD 2: DETECTING THE TENS DIGIT OF THE SECOND OPERAND

In the previous head, we set the dimension IS_OP2_ONE (6-th dimension) to a one-hot row vector, where 1 is placed only in
the token corresponding to the ones digit of the second operand. The objective of Attention head 2 is to fill the dimension
IS_OP2_TEN (7-th dimension) in a similar manner to IS_OP2_ONE, but with 1 placed only in the tens digit of the second
operand.

The design of the query, key, and value weight is not significantly different from the previous head. Compared to the
construction of Attention head 1, we only push

√
MIP to the next block for designing Q

(1)
2 . Specifically, Q(1)

2 and K
(1)
2

50

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

are defined as

Q
(1)
2 =

(
0P×(P+34) 0P×P 0P×P

√
MIP 0P×P 0P×P√

MP
(
eP+34

FULL_ONES

)⊤
01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,12×d, (86)

K
(1)
2 =

(
0P×(P+34)

√
MIP 0P×P 0P×P 0P×P 0P×P√

MP
(
eP+34

IS_BOS

)⊤
01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,12×d, (87)

where dQK,12 is set to P + 1. We refer to Tables 37 and 38 for specific examples.

Table 37. Example of Q(1)
2 X(0), continuing from Table 28.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

8

√
MvP

9

√
MvP

7

√
MvP

8

√
MvP

9

√
MvP

8

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

P + 1: √MP
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

Table 38. Example of K(1)
2 X(0), continuing from Table 28.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

√
MvP

1

P + 1: √MP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

By these, the attention score matrix C
(1)
2 := (K

(1)
2 X(0))⊤Q

(1)
2 X(0) and the attention matrix A

(1)
2 := softmax(C

(1)
2) ∈

RN×N can be obtained, and the example of A(1)
2 is provided in Table 39.

Table 39. Example of A(1)
2 (with explicit row/column indices and sufficiently large M), continuing from Tables 37 and 38.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 1 1 1 1 1 1 1/2 1 1 1 1/3 1/4 1/4 1/3 1/3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0
4 0 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0
6 0 0 0 0 0 0 1/2 0 0 0 1/3 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0
8 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Finally, we set V (1)
2 and U

(1)
2 the same to that of the previous head. That is, with dV,12 = 1,

V
(1)
2 = 2(edIS_MUL − edIS_EQUAL)

⊤ ∈ RdV,12×d, (88)

U
(1)
2 = edIS_OP2_TEN ∈ Rd×dV,12 , (89)

and the example of U (1)
2 V

(1)
2 X(0) and U

(1)
2 V

(1)
2 X(0)A

(1)
2 is provided in Tables 40 and 41. Consequently, the matrix

U
(1)
2 V

(1)
2 X(0)A

(1)
2 is a matrix that matches the size of the input embedding matrix and is filled with zeroes, except for

51

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

a unique 1 located at the tens place of the second operand in the input sequence, with the dimension IS_OP2_TEN (7-th
dimension).

Table 40. Example of U (1)
2 V

(1)
2 X(0), continuing from Table 28. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: IS_OP2_TEN 0 0 0 0 0 2 0 0 -2 0 0 0 0 0 0

Table 41. Example of U (1)
2 V

(1)
2 X(0)A

(1)
2 , continuing from Tables 39 and 40. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: IS_OP2_TEN 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

K.5.3. ATTENTION HEAD 3: POSITION MASKING

The goal of Attention head 3 is to generate a binary mask at the dimension MASK (34-th dimension), with ‘0’ placed before
the multiplication symbol (×) and ‘1’ placed starting from the multiplication symbol to the end.

To this end, we set dQK,13 = 1 and design query and key weights by

Q
(1)
3 =

(
edFULL_ONES

)⊤ ∈ RdQK,13×d, (90)

K
(1)
3 =

(
edIS_MUL

)⊤ ∈ RdQK,13×d. (91)

The matrices Q(1)
3 X(0) and K

(1)
3 X(0) take the dimension FULL_ONES and IS_MUL, respectively, from the input embedding

matrix. For concrete examples, please refer to Tables 42 and 43.

Table 42. Example of Q(1)
3 X(0), continuing from Table 28.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 43. Example of K(1)
3 X(0), continuing from Table 28.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

By these, the attention score matrix C
(1)
3 := (K

(1)
3 X(0))⊤Q

(1)
3 X(0) and the attention matrix A

(1)
3 := softmax(C

(1)
3) ∈

RN×N can be obtained and the example of A(1)
3 is provided in Table 44.

52

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 44. Example of A(1)
3 (with explicit row/column indices), continuing from Tables 42 and 43.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i = 1 0 1 1/2 1/3 1/4 1/5 0 0 0 0 0 0 0 0 0 0
2 0 0 1/2 1/3 1/4 1/5 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1/3 1/4 1/5 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1/4 1/5 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1/5 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Finally, we set V (1)
3 and U

(1)
3 by dV,13 = 1 and

V
(1)
3 = (edIS_MUL)

⊤ ∈ RdV,13×d, (92)

U
(1)
3 = edMASK ∈ Rd×dV,13 . (93)

The example of U
(1)
3 V

(1)
3 X(0) and U

(1)
3 V

(1)
3 X(0)A

(1)
3 is provided in Tables 45 and 46. Consequently, the matrix

U
(1)
3 V

(1)
3 X(0)A

(1)
3 is a matrix that matches the size of the input embedding matrix and is filled with 1 only at the dimension

MASK (34-th dimension) starting from the × token to the end of sequence, and 0 otherwise.

At this point, the objective of Attention head 3 may seem somewhat unclear. We note that the output of Attention head 3
will be utilized to fill the dimensions POS_2_MASK in the subsequent FFN layer, and this POS_2_MASK plays a crucial role
in designing the key matrices in the Attention heads 3 to 7 at the second Transformer block.

Table 45. Example of U (1)
3 V

(1)
3 X(0), continuing from Table 28. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34: MASK 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Table 46. Example of U (1)
3 V

(1)
3 X(0)A

(1)
3 , continuing from Tables 44 and 45. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34: MASK 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

53

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

K.5.4. RESIDUAL CONNECTION

So far we have computed the output of Att1 operation. Passing through the residual connection, the output of the attention
layer becomes the sum of the original input embedding matrix and the output of Att1 operation:

Y (1) = X(0) +
∑

h∈{1,2,3}

U
(1)
h V

(1)
h X(0)A

(1)
h . (94)

An example of the output of residual connection is presented in Table 47.

Table 47. Example output of residual connection, continuing from Tables 28, 36, 41 and 46. Uncolored rows represent the initial
embedding. Yellow rows indicate the rows filled by the attention heads in the first Transformer block. A pink row indicates the row that
will be filled by the subsequent FFN layer.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 7 5 9 5 0 7 9 0 5 0 0 0 0 6
2: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
6: IS_OP2_ONE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7: IS_OP2_TEN 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
34: MASK 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
35–(P+34): POS_2_MASK 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

(P+35)–(2P+34): POS_1 0P vP
3 vP

4 vP
5 vP

6 vP
7 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3 vP
2 vP

1

(2P+35)–(3P+34): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
8 vP

6 vP
7 vP

8 vP
7 vP

6 vP
5 vP

4 vP
3 vP

2

(3P+35)–(4P+34): POS_3 0P vP
5 vP

6 vP
7 vP

8 vP
9 vP

7 vP
8 vP

9 vP
8 vP

7 vP
6 vP

5 vP
4 vP

3

(4P+35)–(5P+34): POS_4 0P vP
6 vP

7 vP
8 vP

9 vP
10 vP

8 vP
9 vP

10 vP
9 vP

8 vP
7 vP

6 vP
5 vP

4

(5P+35)–(6P+34): POS_5 0P vP
7 vP

8 vP
9 vP

10 vP
11 vP

9 vP
10 vP

11 vP
10 vP

9 vP
8 vP

7 vP
6 vP

5

K.6. Transformer Block 1 — Token-wise Feed-forward Layer

The goal of the feed-forward layer involves filling the dimensions POS_2_MASK. Specifically, for each token σi, if the
dimension MASK is 1 (i.e., Y (1)

(MASK)i = 1), we want to fill the dimensions POS_2_MASK by copying the the corresponding
token’s POS_2; otherwise, we want to fill with 0P . Be careful that the feed-forward operation is restricted to a token-wise
mapping, meaning it only takes inputs from entries within the same column of the encoding matrix.

Construction for POS_2_MASK. Given a vector y = [yj]
d
j=1 ∈ Rd, define functions gl, hl : Rd → R for every j ∈ [P] as

gl(y) := yPOS_2,l − 2yMASK, hl(y) := −yPOS_2,l − 2yMASK, (95)

where yPOS_2,l ∈ R is the l-th dimension of yPOS_2 ∈ RP (l ∈ 1, 2, . . . , P).

Consider a simple one-hidden-layer ReLU networks fl : Rd → R defined as

fl(y) = ϕ(gl(y))− ϕ(hl(y)).

Using the fact that yPOS_2,l is either −1 or 1, we can check that fl(y) = yPOS_2,l if yMASK is 0, and fl(y) = 0 if yMASK is 1.

Now, we can construct the width-2P feed-forward network that outputs the desired value at the dimension POS_2_MASK by[
FF1

(
Y (1)

)]
(POS_2_MASK)i

=
[
f1

(
Y

(1)
•i

)
· · · fP

(
Y

(1)
•i

)]⊤
∈ RP×1, (96)

and 0 for any other dimensions. The example output for this layer is presented in Table 48.

Table 48. Example output of FFN layer at the first Transformer block, continuing from Table 47. Omitted entries are filled with 0.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

35–(P+34): POS_2_MASK 0P vP
4 vP

5 vP
6 vP

7 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

54

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

K.6.1. RESIDUAL CONNECTION

The last task of the feed-forward layer is to pass FF1
(
Y (1)

)
through the residual connection. As a result, we have

X(1) = Y (1) + FF1

(
Y (1)

)
. (97)

This is the end of the first Transformer block, and a concrete example of X(1) is illustrated in Table 49.

Table 49. Example embedding matrix after the first Transformer block. The yellow rows represent the results introduced during the first
block, while the gray rows will be filled in the second block.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 7 5 9 5 0 7 9 0 5 0 0 0 0 6
2: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
6: IS_OP2_ONE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7: IS_OP2_TEN 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8: OP2_ONE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: OP2_TEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: OP1_SHIFT0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: OP1_SHIFT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: OP1_SHIFT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: OP1_SHIFT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: OP1_SHIFT4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: RESULT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16: RESULT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17: RESULT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18: RESULT4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: PRE_PROD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21: PRE_EOS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22: PRE_EOS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23-32: PROD 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

33: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34: MASK 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
35–(P+34): POS_2_MASK 0P vP

4 vP
5 vP

6 vP
7 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

(P+35)–(2P+34): POS_1 0P vP
3 vP

4 vP
5 vP

6 vP
7 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3 vP
2 vP

1

(2P+35)–(3P+34): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
8 vP

6 vP
7 vP

8 vP
7 vP

6 vP
5 vP

4 vP
3 vP

2

(3P+35)–(4P+34): POS_3 0P vP
5 vP

6 vP
7 vP

8 vP
9 vP

7 vP
8 vP

9 vP
8 vP

7 vP
6 vP

5 vP
4 vP

3

(4P+35)–(5P+34): POS_4 0P vP
6 vP

7 vP
8 vP

9 vP
10 vP

8 vP
9 vP

10 vP
9 vP

8 vP
7 vP

6 vP
5 vP

4

(5P+35)–(6P+34): POS_5 0P vP
7 vP

8 vP
9 vP

10 vP
11 vP

9 vP
10 vP

11 vP
10 vP

9 vP
8 vP

7 vP
6 vP

5

K.7. Transformer Block 2 — Causal Attention Layer

Consider a scenario where the model is at the step of predicting the i-th least significant digit of the multiplication result.
There are two goals for the causal attention layer at the second Transformer block. The first goal is to generate the embedding
matrix as the left-most figure in Table 31, that is, fill OP2_ONE, OP2_TEN, and OP1_SHIFT0 to OP1_SHIFT4 with the
ones digit of the second operand, the tens digit of the second operand, and the i, (i− 1), (i− 2), (i− 3), (i− 4)-th least
significant digit of the first operand, respectively. Our construction assigns each head to each dimension. The second goal is
to fill PRE_EOS1 and PRE_EOS2 with appropriate values. These 2 dimensions will be utilized in the subsequent FFN layer
to predict whether we should predict the next token as EOS or not. Also, we note that filling these 2 dimensions can be
implemented within the same head for OP1_SHIFT0 and OP1_SHIFT2 respectively, thus requiring a total of seven heads.

55

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

K.7.1. ATTENTION HEAD 1: COPYING THE ONES DIGIT OF THE SECOND OPERAND

The objective of Attention head 1 is to fill the dimension OP2_ONE with the ones digit of the second operand. To do so, we
design the weights by defining dQK,21 = 1 and

Q
(2)
1 =

(
edFULL_ONES

)⊤ ∈ RdQK,21×d, (98)

K
(2)
1 =

(
edIS_OP2_ONE

)⊤ ∈ RdQK,21×d. (99)

We also define dV,21 = 1 and

V
(2)
1 = (edNUM)

⊤ ∈ RdV,21×d, (100)

U
(2)
1 = edOP2_ONE ∈ Rd×dV,21 . (101)

A concrete example of Q(2)
1 X(1), K(2)

1 X(1), A2
1, U (2)

1 V
(2)
1 X(1), and U

(2)
1 V

(2)
1 X(1)A

(2)
1 is provided in Tables 50 to 54.

One might be concerned that in Table 54, the dimension OP2_ONE is not completely filled with ‘9’, but only the latter part.
However, we note that given our focus on next-token prediction, it suffices to accurately fill values starting from the = token,
and filling the preceding tokens with placeholder values does not cause any issues.

Table 50. Example of Q(2)
1 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 51. Example of K(2)
1 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 52. Example of A(2)
1 (with explicit row/column indices), continuing from Tables 50 and 51.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i = 1 0 1 1/2 1/3 1/4 1/5 1/6 1/7 0 0 0 0 0 0 0 0
2 0 0 1/2 1/3 1/4 1/5 1/6 1/7 0 0 0 0 0 0 0 0
3 0 0 0 1/3 1/4 1/5 1/6 1/7 0 0 0 0 0 0 0 0
4 0 0 0 0 1/4 1/5 1/6 1/7 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1/5 1/6 1/7 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1/6 1/7 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1/7 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 53. Example of U (2)
1 V

(2)
1 X(1), continuing from Table 49. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8: OP2_ONE 0 7 5 9 5 0 7 9 0 5 0 0 0 0 6

Table 54. Example of U (2)
1 V

(2)
1 X(1)A

(2)
1 , continuing from Tables 52 and 53. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8: OP2_ONE 0 7/2 4 21/4 26/5 13/3 33/7 9 9 9 9 9 9 9 9

K.7.2. ATTENTION HEAD 2: COPYING THE TENS DIGIT OF THE SECOND OPERAND

The objective of Attention head 2 is to fill the dimension OP2_TEN with the tens digit of the second operand. We take
a similar approach to Attention head 1, but the main difference is that we utilize the dimension IS_OP2_TEN instead of
IS_OP2_ONE for generating the key weight. We design the weights by defining dQK,22 = 1 and

Q
(2)
2 =

(
edFULL_ONES

)⊤ ∈ RdQK,22×d, (102)

K
(2)
2 =

(
edIS_OP2_TEN

)⊤ ∈ RdQK,22×d. (103)

We also define dV,22 = 1 and

V
(2)
2 = (edNUM)

⊤ ∈ RdV,22×d, (104)

U
(2)
2 = edOP2_TEN ∈ Rd×dV,22 . (105)

A concrete example of Q(2)
2 X(1), K(2)

2 X(1), A2
2, U (2)

2 V
(2)
2 X(1), and U

(2)
2 V

(2)
2 X(1)A

(2)
2 is provided in Tables 55 to 59.

Once again, the dimension OP2_TEN is not entirely filled with ‘7’ in Table 59. As mentioned in the previous head, this does
not cause any issues because the front part (before =) does not affect the final prediction unless additional attention blocks
are introduced after the second Transformer block.

Table 55. Example of Q(2)
2 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 56. Example of K(2)
2 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

57

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 57. Example of A(2)
2 (with explicit row/column indices), continuing from Tables 55 and 56.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i = 1 0 1 1/2 1/3 1/4 1/5 1/6 0 0 0 0 0 0 0 0 0
2 0 0 1/2 1/3 1/4 1/5 1/6 0 0 0 0 0 0 0 0 0
3 0 0 0 1/3 1/4 1/5 1/6 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1/4 1/5 1/6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1/5 1/6 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1/6 0 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 58. Example of U (2)
2 V

(2)
2 X(1), continuing from Table 49. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: OP2_TEN 0 7 5 9 5 0 7 9 0 5 0 0 0 0 6

Table 59. Example of U (2)
2 V

(2)
2 X(1)A

(2)
2 , continuing from Tables 57 and 58. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: OP2_TEN 0 7/2 4 21/4 26/5 13/3 7 7 7 7 7 7 7 7 7

K.7.3. ATTENTION HEAD 3: COPYING THE APPROPRIATE DIGIT FROM THE FIRST OPERAND I

The objectives of the first and the second Attention heads were to extract the ones and tens digits of the second operand and
display them in the dimensions OP2_ONE and OP2_TEN, respectively. For Attention head 3 to 7, we mainly focus on the
first operand. Specifically, in Attention head 3, the goal is to fill the dimension OP1_SHIFT0 at the i-th least significant digit
of the response (when predicting the (i+ 1)-th least significant digit of the response) with the (i+ 1)-th least significant
digit of the first operand. For our example, we want to fill OP1_SHIFT0 of the token = by 5. Here, i ranges from 0 to ℓa + 2,
where the 0-th least significant digit of the response denotes the equal token. In cases where i ≥ ℓa, we fill by 0.

Additionally, the third head has an extra objective: filling the dimension PRE_EOS1. This dimension is utilized for EOS
prediction in the subsequent FFN layer along with PRE_EOS2, which is filled by the fifth head of the same layer. We

58

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

observed that both objectives can be achieved by utilizing the same attention map. Thus, instead of implementing these
objectives in separate heads, we can achieve them by utilizing the matrices V (2)

3 and U
(2)
3 described below. Unlike previous

heads, V (2)
3 and U

(2)
3 each have two elements, with each element contributing to one of the objectives.

Our specific construction is as follows. With dQK,23 = P + 1,

Q
(2)
3 =

(
0P×34 0P×P

√
MIP 0P×P 0P×P 0P×P 0P×P√

MP
(
e34FULL_ONES

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,23×d, (106)

K
(2)
3 =

(
0P×34

√
MIP 0P×P 0P×P 0P×P 0P×P 0P×P√

MP
(
e34IS_BOS

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,23×d. (107)

and with dV,23 = 2,

V
(2)
3 =

(
2(edNUM)

⊤

(edIS_BOS)
⊤

)
∈ RdV,23×d, (108)

U
(2)
3 =

(
edOP1_SHIFT0 edPRE_EOS1

)
∈ Rd×dV,23 . (109)

We provide the examples in Tables 60 to 64. We note that within the dimension PRE_EOS1 of the matrix U
(2)
3 V

(2)
3 X(1)A

(2)
3 ,

if we restrict our view to the equal symbol = and the response sequence, 1 is only assigned to the first, second, and third
most significant digits of the response (regardless of the query length).

Table 60. Example of Q(2)
3 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

3

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

√
MvP

1

P + 1: √MP
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

Table 61. Example of K(2)
3 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

P + 1: √
MP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 62. Example of A(2)
3 (with explicit row/column indices and sufficiently large M), continuing from Tables 60 and 61.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1

2 0 0 1/2 0 0 0 0 0 0 0 0 1/2 0 0 0
3 0 0 0 1/2 0 0 1/2 0 0 0 1/2 0 0 0 0
4 0 0 0 0 1/2 0 0 1/2 0 1/2 0 0 0 0 0
5 0 0 0 0 0 1/2 0 0 1/2 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 63. Example of U (2)
3 V

(2)
3 X(1), continuing from Table 49. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: OP1_SHIFT0 0 14 10 18 10 0 14 18 0 10 0 0 0 0 12
21: PRE_EOS1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 64. Example of U (2)
3 V

(2)
3 X(1)A

(2)
3 , continuing from Tables 62 and 63. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_BOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: OP1_SHIFT0 0 0 7 5 9 5 5 9 5 9 5 7 0 0 0
21: PRE_EOS1 1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1

K.7.4. ATTENTION HEAD 4: COPYING THE APPROPRIATE DIGIT FROM THE FIRST OPERAND II

The objective of Attention head 4 is to fill the dimension OP1_SHIFT1 at the i-th least significant digit of the response
(when predicting the (i+ 1)-th least significant digit of the response) with the i-th least significant digit of the first operand.
Similarly to the previous head, i ranges from 0 to ℓa + 2. In cases where the i-th least significant digit of the first operand is
not well-defined (i.e., i ∈ {0, ℓa + 1, ℓa + 2}), we assign 0.

The design of Attention head 4 is as follows. With dQK,24 = P + 1,

Q
(2)
4 =

(
0P×34 0P×P 0P×P

√
MIP 0P×P 0P×P 0P×P√

MP
(
e34FULL_ONES

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,24×d, (110)

K
(2)
4 =

(
0P×34

√
MIP 0P×P 0P×P 0P×P 0P×P 0P×P√

MP
(
e34IS_BOS

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,24×d, (111)

and with dV,24 = 1,

V
(2)
4 = 2(edNUM)

⊤ ∈ RdV,24×d, (112)

U
(2)
4 = edOP1_SHIFT1 ∈ Rd×dV,24 . (113)

We provide the examples in Tables 65 to 69.

Table 65. Example of Q(2)
4 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

8

√
MvP

6

√
MvP

7

√
MvP

8

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

√
MvP

2

P + 1: √MP
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

60

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 66. Example of K(2)
4 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

P + 1: √
MP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 67. Example of A(2)
4 (with explicit row/column indices and sufficiently large M), continuing from Tables 65 and 66.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 1 1/2 1/2 1/2 1/2 1 1/2 1/2 1 1/2 1/2 1/2 1/2 1 1

2 0 1/2 0 0 0 0 0 0 0 0 0 0 1/2 0 0
3 0 0 1/2 0 0 0 0 0 0 0 0 1/2 0 0 0
4 0 0 0 1/2 0 0 1/2 0 0 0 1/2 0 0 0 0
5 0 0 0 0 1/2 0 0 1/2 0 1/2 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 68. Example of U (2)
4 V

(2)
4 X(1), continuing from Table 49. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: OP1_SHIFT1 0 14 10 18 10 0 14 18 0 10 0 0 0 0 12

Table 69. Example of U (2)
4 V

(2)
4 X(1)A

(2)
4 , continuing from Tables 67 and 68. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: OP1_SHIFT1 0 7 5 9 5 0 9 5 0 5 9 5 7 0 0

K.7.5. ATTENTION HEAD 5: COPYING THE APPROPRIATE DIGIT FROM THE FIRST OPERAND III

The main objective of Attention head 5 is to fill the dimension OP1_SHIFT2 at the i-th least significant digit of the response
(when predicting the (i+ 1)-th least significant digit of the response) with the (i− 1)-th least significant digit of the first
operand. Similarly to the previous head, i ranges from 0 to ℓa + 2, and in cases where the i-th least significant digit of the
first operand is not well-defined (i.e., i ∈ {0, 1, ℓa + 2}), we assign 0.

61

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

As mentioned in Attention head 3, we assign an extra goal to Attention head 5, which is to fill the dimension PRE_EOS2.

The design of the fifth head is as follows. With dQK,25 = P + 1,

Q
(2)
5 =

(
0P×34 0P×P 0P×P 0P×P

√
MIP 0P×P 0P×P√

MP
(
e34FULL_ONES

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,25×d, (114)

K
(2)
5 =

(
0P×34

√
MIP 0P×P 0P×P 0P×P 0P×P 0P×P√

MP
(
e34IS_BOS

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,25×d, (115)

and with dV,25 = 2,

V
(2)
5 =

(
2(edNUM)

⊤

(edIS_BOS)
⊤

)
∈ RdV,25×d, (116)

U
(2)
5 =

(
edOP1_SHIFT2 edPRE_EOS2

)
∈ Rd×dV,25 . (117)

We provide the examples in Tables 70 to 74. Note that within the dimension PRE_EOS2 of the matrix U
(2)
5 V

(2)
5 X(1)A

(2)
5 , if

we restrict our view to the equal symbol = and the response sequence, 1 is only assigned to the most and the least significant
digit of the response, and the equal token. An important observation is that upon comparing PRE_EOS1 and PRE_EOS2, the
most significant digit of the response is the only token that has a value of 1 in both dimensions. This observation plays a
crucial role in predicting EOS for the next token, and we will elaborate further in the later section discussing the FFN layer.

Table 70. Example of Q(2)
5 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

5

√
MvP

6

√
MvP

7

√
MvP

8

√
MvP

9

√
MvP

7

√
MvP

8

√
MvP

9

√
MvP

8

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

√
MvP

3

P + 1: √MP
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

Table 71. Example of K(2)
5 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

P + 1: √
MP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 72. Example of A(2)
5 (with explicit row/column indices and sufficiently large M), continuing from Tables 70 and 71.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 1 1 1 1 1 1 1/2 1 1 1 1/2 1/2 1/2 1/2 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0
3 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0
4 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0
5 0 0 0 0 0 0 1/2 0 0 0 1/2 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

62

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 73. Example of U (2)
5 V

(2)
5 X(1), continuing from Table 49. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: OP1_SHIFT2 0 14 10 18 10 0 14 18 0 10 0 0 0 0 12
22: PRE_EOS2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 74. Example of U (2)
5 V

(2)
5 X(1)A

(2)
5 , continuing from Tables 72 and 73. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: OP1_SHIFT2 0 0 0 0 0 0 5 0 0 0 5 9 5 7 0
22: PRE_EOS2 1 1 1 1 1 1 1/2 1 1 1 1/2 1/2 1/2 1/2 1

K.7.6. ATTENTION HEAD 6: COPYING THE APPROPRIATE DIGIT FROM THE FIRST OPERAND IV

The objective of Attention head 6 is to fill the dimension OP1_SHIFT3 at the i-th least significant digit of the response (when
predicting the (i+ 1)-th least significant digit of the response) with the (i− 2)-th least significant digit of the first operand.
Similarly to the previous head, i ranges from 0 to ℓa + 2. In cases where the i-th least significant digit of the first operand is
not well-defined (i.e., i ∈ {0, 1, 2}), we assign 0.

The design of Attention head 6 is as follows. With dQK,26 = P + 1,

Q
(2)
6 =

(
0P×34 0P×P 0P×P 0P×P 0P×P

√
MIP 0P×P√

MP
(
e34FULL_ONES

)⊤
0P×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,26×d, (118)

K
(2)
6 =

(
0P×34

√
MIP 0P×P 0P×P 0P×P 0P×P 0P×P√

MP
(
e34IS_BOS

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,26×d. (119)

With dV,26 = 1,

V
(2)
6 = 2(edNUM)

⊤ ∈ RdV,26×d, (120)

U
(2)
6 = edOP1_SHIFT3 ∈ Rd×dV,26 . (121)

We provide the examples in Tables 75 to 79.

Table 75. Example of Q(2)
6 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

6

√
MvP

7

√
MvP

8

√
MvP

9

√
MvP

10

√
MvP

8

√
MvP

9

√
MvP

10

√
MvP

9

√
MvP

8

√
MvP

7

√
MvP

6

√
MvP

5

√
MvP

4

P + 1: √MP
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

63

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 76. Example of K(2)
6 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

P + 1: √
MP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 77. Example of A(2)
6 (with explicit row/column indices and sufficiently large M), continuing from Tables 75 and 76.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 1 1 1 1 1 1 1 1 1 1 1 1/2 1/2 1/2 1/2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0
4 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 78. Example of U (2)
6 V

(2)
6 X(1), continuing from Table 49. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: OP1_SHIFT3 0 14 10 18 10 0 14 18 0 10 0 0 0 0 12

Table 79. Example of U (2)
6 V

(2)
6 X(1)A

(2)
6 , continuing from Tables 77 and 78. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: OP1_SHIFT3 0 0 0 0 0 0 0 0 0 0 0 5 9 5 7

K.7.7. ATTENTION HEAD 7: COPYING THE APPROPRIATE DIGIT FROM THE FIRST OPERAND V

The objective of Attention head 7 is to fill the dimension OP1_SHIFT4 at the i-th least significant digit of the response (when
predicting the (i+ 1)-th least significant digit of the response) with the (i− 3)-th least significant digit of the first operand.
Similarly to the previous head, i ranges from 0 to ℓa + 2. In cases where the i-th least significant digit of the first operand is
not well-defined (i.e., i ∈ {0, 1, 2, 3}), we assign 0.

64

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

The design of Attention head 7 is as follows. With dQK,27 = P + 1,

Q
(2)
7 =

(
0P×34 0P×P 0P×P 0P×P 0P×P 0P×P

√
MIP√

MP
(
e34FULL_ONES

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,27×d, (122)

K
(2)
7 =

(
0P×34

√
MIP 0P×P 0P×P 0P×P 0P×P 0P×P√

MP
(
e34IS_BOS

)⊤
01×P 01×P 01×P 01×P 01×P 01×P

)
∈ RdQK,27×d. (123)

With dV,27 = 1,

V
(2)
7 = 2(edNUM)

⊤ ∈ RdV,27×d, (124)

U
(2)
7 = edOP1_SHIFT4 ∈ Rd×dV,27 . (125)

We provide the examples in Tables 80 to 84.

Table 80. Example of Q(2)
7 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

7

√
MvP

8

√
MvP

9

√
MvP

10

√
MvP

11

√
MvP

9

√
MvP

10

√
MvP

11

√
MvP

10

√
MvP

9

√
MvP

8

√
MvP

7

√
MvP

6

√
MvP

5

P + 1: √MP
√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

√
MP

Table 81. Example of K(2)
7 X(1), continuing from Table 49.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1–P : 0P

√
MvP

4

√
MvP

5

√
MvP

6

√
MvP

7 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

P + 1: √
MP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 82. Example of A(2)
7 (with explicit row/column indices and sufficiently large M), continuing from Tables 80 and 81.

row \ col j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 1 1 1 1 1 1 1 1 1 1 1 1 1/2 1/2 1/2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0
5 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 83. Example of U (2)
7 V

(2)
7 X(1), continuing from Table 49. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: OP1_SHIFT4 0 14 10 18 10 0 14 18 0 10 0 0 0 0 12

65

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 84. Example of U (2)
7 V

(2)
7 X(1)A

(2)
7 , continuing from Tables 82 and 83. (Irrelevant dimensions are omitted for readability)

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: FULL_ONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: IS_MUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_EQUAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: OP1_SHIFT4 0 0 0 0 0 0 0 0 0 0 0 0 5 9 5

K.7.8. RESIDUAL CONNECTION

So far we have computed the output of Att2 operation. Passing through the residual connection, the output of the attention
layer becomes the sum of X(1) (the input to the second Transformer block) and the output of Att2 operation:

Y (2) = X(1) +
∑
h∈[7]

U
(2)
h V

(2)
h X(1)A

(2)
h . (126)

A concrete example of the output of residual connection is presented in Table 85.

Table 85. Example output of residual connection, continuing from Tables 49, 54, 59, 64, 69, 74, 79 and 84. Uncolored rows represent the
initial embedding. Gray rows indicate the rows filled by the first Transformer block. Yellow rows indicate the rows filled by the attention
layers at the second Transformer block. Pink rows indicate the rows that will be filled by the subsequent FFN layer.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 7 5 9 5 0 7 9 0 5 0 0 0 0 6
2: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
6: IS_OP2_ONE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7: IS_OP2_TEN 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8: OP2_ONE 0 7/2 4 21/4 26/5 13/3 33/7 9 9 9 9 9 9 9 9
9: OP2_TEN 0 7/2 4 21/4 26/5 13/3 7 7 7 7 7 7 7 7 7
10: OP1_SHIFT0 0 0 7 5 9 5 5 9 5 9 5 7 0 0 0
11: OP1_SHIFT1 0 7 5 9 5 0 9 5 0 5 9 5 7 0 0
12: OP1_SHIFT2 0 0 0 0 0 0 5 0 0 0 5 9 5 7 0
13: OP1_SHIFT3 0 0 0 0 0 0 0 0 0 0 0 5 9 5 7
14: OP1_SHIFT4 0 0 0 0 0 0 0 0 0 0 0 0 5 9 5
15: RESULT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16: RESULT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17: RESULT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18: RESULT4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19: PRE_PROD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20: PRE_CARRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21: PRE_EOS1 1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1
22: PRE_EOS2 1 1 1 1 1 1 1/2 1 1 1 1/2 1/2 1/2 1/2 1
23-32: PROD 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010

33: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34: MASK 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
35–(P+34): POS_2_MASK 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

(P+35)–(2P+34): POS_1 0P vP
3 vP

4 vP
5 vP

6 vP
7 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3 vP
2 vP

1

(2P+35)–(3P+34): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
8 vP

6 vP
7 vP

8 vP
7 vP

6 vP
5 vP

4 vP
3 vP

2

(3P+35)–(4P+34): POS_3 0P vP
5 vP

6 vP
7 vP

8 vP
9 vP

7 vP
8 vP

9 vP
8 vP

7 vP
6 vP

5 vP
4 vP

3

(4P+35)–(5P+34): POS_4 0P vP
6 vP

7 vP
8 vP

9 vP
10 vP

8 vP
9 vP

10 vP
9 vP

8 vP
7 vP

6 vP
5 vP

4

(5P+35)–(6P+34): POS_5 0P vP
7 vP

8 vP
9 vP

10 vP
11 vP

9 vP
10 vP

11 vP
10 vP

9 vP
8 vP

7 vP
6 vP

5

66

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

K.8. Transformer Block 2 — Token-wise Feed-forward Layer

As mentioned in the theorem statement below, we allow FF2 to be a multi-layer MLP. Our ultimate goal is to fill the
dimensions PROD and IS_EOS with appropriate values. The dimensions RESULT1 to RESULT4, PRE_PROD, and PRE_CARRY
serve as temporary memories for storing intermediate values, which will help us achieve our ultimate goal. Our construction
involves sequentially stacking the MLP networks step-by-step to generate each of these temporary values.

While our current construction for FF2 involves multiple hidden layers, we believe that our construction can be improved to
employ a single hidden layer. If employing multiple hidden layers in the FFN is not feasible, this issue can be addressed by
introducing additional Transformer blocks. Specifically, we can bypass the attention layer in these extra blocks by residual
connection and only utilize their FFNs.

Step 1. Filling RESULT_1 to RESULT_4 Here, we first assume the existence of a single-hidden-layer MLP network,
denoted as f : R2 → R, such that given any integers a, b ∈ {0, 1, . . . , 9}, f(a, b) equals to their multiplication, i.e., ab.
Such a network can be implemented with 100 hidden nodes (Zhang et al., 2021).

Recalling Appendix K.4, we construct the first MLP network by utilizing eight instances of the function f in parallel as
follows:

1. RESULT1 = f(OP1_SHIFT0, OP2_ONE) + f(OP1_SHIFT1, OP2_TEN) ∈ {0, 1, . . . , 162},

2. RESULT2 = f(OP1_SHIFT1, OP2_ONE) + f(OP1_SHIFT2, OP2_TEN) ∈ {0, 1, . . . , 162},

3. RESULT3 = f(OP1_SHIFT2, OP2_ONE) + f(OP1_SHIFT3, OP2_TEN) ∈ {0, 1, . . . , 162},

4. RESULT4 = f(OP1_SHIFT3, OP2_ONE) + f(OP1_SHIFT4, OP2_TEN) ∈ {0, 1, . . . , 162}.

Step 2. Filling PRE_PROD and PRE_CARRY

Here, we assume the existence of the following three single-hidden-layer MLP networks, denoted as g1, g2, g3 : R → R ,
such that given any at most 3-digit integer a ∈ {0, 1, . . . , 162}, g1(a), g2(a) and g3(a) output the ones, tens, and hundreds
digit of a, respectively. Similarly to the previous step, each network can be implemented with 163 hidden nodes (Zhang
et al., 2021).

Recalling Appendix K.4, we construct the second MLP network on top of the first MLP network, by utilizing 2 instances of
each of the function g1, g2, and g3 in parallel as follows:

• PRE_PROD = g1(RESULT1) + g2(RESULT2) + g3(RESULT3) ∈ {0, 1, . . . , 27},

• PRE_CARRY = g1(RESULT2) + g2(RESULT3) + g3(RESULT4) ∈ {0, 1, . . . , 27}.

Step 3. Filling PROD Here, we assume the existence of a single-hidden-layer MLP network, denoted as h : R2 → R, such
that given any integers a ∈ {0, 1, . . . , 27}, b ∈ {0, 1, . . . , 9} satisfying a− b ∈ {−2,−1, 0, 8, 9, 10, 18, 19, 20}, h satisfies

h(a, b) =


0, if a− b ∈ {−2, −1, 0},
1, if a− b ∈ {8, 9, 10},
2, if a− b ∈ {18, 19, 20}.

We also assume the existence of a single-hidden-layer MLP network, denoted as h′ : R → R, such that given any integer
a ∈ {0, 1, . . . , 19}, h′(a) equals to a (mod 10).

We finally assume the existence of a single-hidden-layer MLP network qi : R → R for each i ∈ {0, 1, . . . , 9}, such that
given any integers a ∈ {0, 1, . . . , 9}, qi satisfies

qi(a) = 1(i = a).

67

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Similarly to the previous step, each network can be implemented with 280, 20, and 10 hidden nodes. Recalling Appendix K.4,
we construct the third MLP network, on top of the second MLP network, by

PROD =


q0(h

′(PRE_PROD + h(PRE_CARRY, NUM)))
q1(h

′(PRE_PROD + h(PRE_CARRY, NUM)))
...

q9(h
′(PRE_PROD + h(PRE_CARRY, NUM)))

 ∈ R10 (127)

One can easily check that h′(PRE_PROD + h(PRE_CARRY, NUM)) yields an element of 0, 1, . . . , 9, and thus PROD is an
one-hot column vector. Specifically, if h′(PRE_PROD + h(PRE_CARRY, NUM)) = i, then PROD becomes e10i+1.

Step 4. Filling IS_EOS We construct a single-hidden-layer MLP network r : R2 → R by

r(a, b) = 2ϕ(a+ b− 1.5).

We then can fill the dimension IS_EOS by

• IS_EOS = r(PRE_EOS1, PRE_EOS2).

Since PRE_EOS1 and PRE_EOS2 can have either 1/2 or 1, IS_EOS equals 1 only when both PRE_EOS1 and PRE_EOS2 are 1.
Additionally, we note that PRE_EOS1 and PRE_EOS2 are the direct outputs from the attention layer. Therefore, the network
r can be deployed in parallel with the first MLP network and does not require an additional FFN layer.

The example output resulting from passing through all these steps is presented in Table 86.

Table 86. Example output of FFN layer in the second Transformer block, continuing from Table 85. Here, we mark − for the entries
before the equal token, as these entries do not affect the next-token prediction in our construction and are thus not important.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

15: RESULT1 - - - - - - - - 45 116 108 98 49 0 0
16: RESULT2 - - - - - - - - 0 45 116 108 98 49 0
17: RESULT3 - - - - - - - - 0 0 45 116 108 98 49
18: RESULT4 - - - - - - - - 0 0 0 45 116 108 98
19: PRE_PROD - - - - - - - - 5 10 9 9 19 4 0
20: PRE_CARRY - - - - - - - - 0 5 10 9 9 19 4
23-32: PROD - - - - - - - - e106 e101 e101 e101 e101 e107 e101
33: IS_EOS - - - - - - - - 0 0 0 0 0 0 1

K.8.1. RESIDUAL CONNECTION

The last task of the feed-forward layer is to pass FF2
(
Y (2)

)
through the residual connection. As a result, we have

X(2) = Y (2) + FF2

(
Y (2)

)
. (128)

This is the end of the second Transformer block, and an example of X(2) is illustrated in Table 87.

68

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 87. Example embedding matrix after the second Transformer block. The yellow rows represent the results introduced during the
second block, while the gray rows indicate the results from the first block. Similarly to Table 85, we mark − for the entries before the
equal token, as these entries do not affect the next-token prediction in our construction and are thus not important.

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

1: NUM 0 7 5 9 5 0 7 9 0 5 0 0 0 0 6
2: FULL_ONES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3: IS_BOS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: IS_MUL 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5: IS_EQUAL 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
6: IS_OP2_ONE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7: IS_OP2_TEN 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8: OP2_ONE - - - - - - - - 9 9 9 9 9 9 9
9: OP2_TEN - - - - - - - - 7 7 7 7 7 7 7
10: OP1_SHIFT0 - - - - - - - - 5 9 5 7 0 0 0
11: OP1_SHIFT1 - - - - - - - - 0 5 9 5 7 0 0
12: OP1_SHIFT2 - - - - - - - - 0 0 5 9 5 7 0
13: OP1_SHIFT3 - - - - - - - - 0 0 0 5 9 5 7
14: OP1_SHIFT4 - - - - - - - - 0 0 0 0 5 9 5
15: RESULT1 - - - - - - - - 45 116 108 98 49 0 0
16: RESULT2 - - - - - - - - 0 45 116 108 98 49 0
17: RESULT3 - - - - - - - - 0 0 45 116 108 98 49
18: RESULT4 - - - - - - - - 0 0 0 45 116 108 98
19: PRE_PROD - - - - - - - - 5 10 9 9 19 4 0
20: PRE_CARRY - - - - - - - - 0 5 10 9 9 19 4
21: PRE_EOS1 - - - - - - - - 1/2 1/2 1/2 1/2 1 1 1
22: PRE_EOS2 - - - - - - - - 1 1 1/2 1/2 1/2 1/2 1
23-32: PROD - - - - - - - - e10

6 e10
1 e10

1 e10
1 e10

1 e10
7 e10

1

33: IS_EOS - - - - - - - - 0 0 0 0 0 0 1
34: MASK 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
35–(P+34): POS_2_MASK 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P

(P+35)–(2P+34): POS_1 0P vP
3 vP

4 vP
5 vP

6 vP
7 vP

5 vP
6 vP

7 vP
6 vP

5 vP
4 vP

3 vP
2 vP

1

(2P+35)–(3P+34): POS_2 0P vP
4 vP

5 vP
6 vP

7 vP
8 vP

6 vP
7 vP

8 vP
7 vP

6 vP
5 vP

4 vP
3 vP

2

(3P+35)–(4P+34): POS_3 0P vP
5 vP

6 vP
7 vP

8 vP
9 vP

7 vP
8 vP

9 vP
8 vP

7 vP
6 vP

5 vP
4 vP

3

(4P+35)–(5P+34): POS_4 0P vP
6 vP

7 vP
8 vP

9 vP
10 vP

8 vP
9 vP

10 vP
9 vP

8 vP
7 vP

6 vP
5 vP

4

(5P+35)–(6P+34): POS_5 0P vP
7 vP

8 vP
9 vP

10 vP
11 vP

9 vP
10 vP

11 vP
10 vP

9 vP
8 vP

7 vP
6 vP

5

K.9. Decoding Function

As mentioned in Appendix H, the decoding function performs a linear readout (with a weight matrix Wout ∈ R|V|×d) and a
(token-wise) arg-max operation. That is,

Dec
(
X(1)

)
:= (Vki

)i=1,...,N ∈ VN , (129)

where Vk is the k-th element of V and

ki := argmax
k∈[|V|]

{
ok : WoutX

(1)
•i =

[
o1 · · · o|V|

]⊤}
. (130)

The objective of the decoding function is to perform a proper next-token prediction for N × 2 multiplication, especially
utilizing the dimensions PROD and IS_EOS of X(2).

We now construct the weight matrix Wout. For a token σi, if the value of dimension IS_EOS of X(2) is 0, then the linear
readout output the dimensions PROD as it is to return one of a number token (0-9). On the other hand, if the value of
dimension IS_EOS is 1, then the linear readout outputs a large number (like 9 for example) for the token ‘$’ to return EOS
($). This can be implemented by the weight matrix Wout described in Table 88. Also, an example of applying the linear
transform is showcased in Tables 89 and 90.

69

Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Table 88. The transposed weight matrix W⊤
out of the linear readout in decoding function. P ′ represents 6P + 1.

V 0 1 2 3 4 5 6 7 8 9 × = $

1-22: NUM-PRE_EOS_2 022 022 022 022 022 022 022 022 022 022 022 022 022

23: PROD1 1 0 0 0 0 0 0 0 0 0 0 0 0
24: PROD2 0 1 0 0 0 0 0 0 0 0 0 0 0
25: PROD3 0 0 1 0 0 0 0 0 0 0 0 0 0
26: PROD4 0 0 0 1 0 0 0 0 0 0 0 0 0
27: PROD5 0 0 0 0 1 0 0 0 0 0 0 0 0
28: PROD6 0 0 0 0 0 1 0 0 0 0 0 0 0
29: PROD7 0 0 0 0 0 0 1 0 0 0 0 0 0
30: PROD8 0 0 0 0 0 0 0 1 0 0 0 0 0
31: PROD9 0 0 0 0 0 0 0 0 1 0 0 0 0
32: PROD10 0 0 0 0 0 0 0 0 0 1 0 0 0
33: IS_EOS 0 0 0 0 0 0 0 0 0 0 0 0 100
34-end 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′ 0P ′

Table 89. Example output of linear readout (WoutX
(2)), continuing from Tables 87 and 88. The yellow cells represent the maximum

value of each column, from the ‘=’ token’s column to the rightmost column (which are used for next-token prediction).

I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

0 - - - - - - - - 0 1 1 1 1 0 0
1 - - - - - - - - 0 0 0 0 0 0 0
2 - - - - - - - - 0 0 0 0 0 0 0
3 - - - - - - - - 0 0 0 0 0 0 0
4 - - - - - - - - 0 0 0 0 0 0 0
5 - - - - - - - - 1 0 0 0 0 0 0
6 - - - - - - - - 0 0 0 0 0 1 0
7 - - - - - - - - 0 0 0 0 0 0 0
8 - - - - - - - - 0 0 0 0 0 0 0
9 - - - - - - - - 0 0 0 0 0 0 0
× - - - - - - - - 0 0 0 0 0 0 0
= - - - - - - - - 0 0 0 0 0 0 0
$ - - - - - - - - 0 0 0 0 0 0 9

Table 90. Example output sequence O = Dec
(
X(2)

)
, continuing from Table 89. The yellow cells in the bottom row exactly predict the

next tokens.
I $ 7 5 9 5 × 7 9 = 5 0 0 0 0 6

O - - - - - - - - 5 0 0 0 0 6 $

70

	Introduction
	Summary of Contributions

	Preliminaries
	Position Coupling: A Method for Length Generalization
	Position Coupling for Integer Addition Task

	Experiments on Addition Task
	Results

	Theory: 1-layer Transformer with Coupled Positions can Perform Long Additions
	Conclusion
	Omitted Backgrounds
	Next-token Prediction with Decoder-only Transformers
	Data Formats
	Positional Embeddings/Encodings (PE)
	Other Related Works

	Comparison with Index Hinting
	Probing the Attention Patterns in Trained Transformers with Position Coupling
	Omitted Theoretical Result: 1-layer Transformers Require Positional Information
	Applying Position Coupling Beyond Addition Task
	Position Coupling for Nx2 Multiplication Tasks
	Two-dimensional Position Coupling for Minesweeper Generator Task

	More Applications & Experiments of Position Couping
	Decimal Integer Addition Task: Maximum Exact-Match Accuracies
	Decimal Integer Addition Task: Scale-up to Length of 500
	Addition Task with Multiple Summands
	Position Coupling for Copy/Reverse Tasks
	Minesweeper Generator Task: Sharing the Position Embedding Modules or Not

	Experiment Details and Hyperparameters
	Decoder-only Transformer Architecture
	Formal Construction of Addition Transformer with Position Coupling
	Notation
	Input Sequence
	Encoding Function
	Token Embedding
	Coupled Position IDs and Position Embedding

	Transformer Block — Causal Attention Layer
	Attention Head 1: Digit-wise Addition without Carries
	Attention Head 2: Carry & EOS Detection
	Residual Connection

	Transformer Block — Token-wise Feed-forward Layer
	Subnetwork 1: Construction for sum (dimension 7–16).
	Subnetwork 2: Construction for is_eos (dimension 17).
	Residual Connection

	Decoding Function

	Proof: Impossibility of Addition with No Positional Encoding
	(Formal) Construction of Nx2 Multiplication Transformer with Position Coupling
	Notation
	Input Sequence
	Encoding Function
	Token Embedding
	Coupled Position IDs and Position Embedding

	Construction Idea
	Transformer Block 1 — Causal Attention Layer
	Attention Head 1: Detecting the Ones Digit of the Second Operand
	Attention Head 2: Detecting the Tens Digit of the Second Operand
	Attention Head 3: Position Masking
	Residual Connection

	Transformer Block 1 — Token-wise Feed-forward Layer
	Residual Connection

	Transformer Block 2 — Causal Attention Layer
	Attention Head 1: Copying the Ones Digit of the Second Operand
	Attention Head 2: Copying the Tens Digit of the Second Operand
	Attention Head 3: Copying the Appropriate Digit from the First Operand I
	Attention Head 4: Copying the Appropriate Digit from the First Operand II
	Attention Head 5: Copying the Appropriate Digit from the First Operand III
	Attention Head 6: Copying the Appropriate Digit from the First Operand IV
	Attention Head 7: Copying the Appropriate Digit from the First Operand V
	Residual Connection

	Transformer Block 2 — Token-wise Feed-forward Layer
	Residual Connection

	Decoding Function

