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ABSTRACT

Policies developed through Reinforcement Learning (RL) and Imitation Learn-
ing (IL) have shown great potential in continuous control tasks, but real-world
applications often require adapting trained policies to unforeseen requirements.
While fine-tuning can address such needs, it typically requires additional data
and access to the original training metrics and parameters. In contrast, an online
planning algorithm, if capable of meeting the additional requirements, can elim-
inate the necessity for extensive training phases and customize the policy with-
out knowledge of the original training scheme or task. In this work, we propose
a generic online planning algorithm for customizing continuous-control policies
at the execution time, which we call Residual-MPPI. It can customize a given
prior policy on new performance metrics in few-shot and even zero-shot online
settings, given access to the prior action distribution alone. Through our exper-
iments, we demonstrate that the proposed Residual-MPPI algorithm can accom-
plish the few-shot/zero-shot online policy customization task effectively, includ-
ing customizing the champion-level racing agent, Gran Turismo Sophy (GT So-
phy) 1.0, in the challenging car racing scenario, Gran Turismo Sport (GTS) en-
vironment. Code for MuJoCo experiments is included in the supplementary and
will be open-sourced upon acceptance. Demo videos are available on our website:
https://sites.google.com/view/residual-mppi.

1 INTRODUCTION

Policy learning algorithms such as Reinforcement Learning (RL) and Imitation Learning (IL) have
been widely employed to synthesize parameterized control policies for a wide range of real-world
motion planning and decision-making problems (Tang et al., 2024), such as navigation (Mirowski
et al., 2016; Francis et al., 2020), manipulation (Andrychowicz et al., 2020; Zhang et al., 2018; Man-
dlekar et al., 2021; Rajeswaran et al., 2017) and locomotion (Peng & Van De Panne, 2017a;b; Gan-
gapurwala et al., 2022). In practice, real-world applications often impose additional requirements on
the trained policies beyond those established during training, which can include novel goals (Rhine-
hart et al., 2018), specific behavior preferences (Ziegler et al., 2019), and stringent safety criteria (Lu
et al., 2023). Retraining a new policy network whenever a new additional objective is encountered
is both expensive and inefficient, as it may demand extensive training efforts. To enable flexible de-
ployment, it is thereby crucial to develop sample-efficient algorithms for synthesizing new policies
that meet additional objectives while preserving the characteristics of the original policy (Lu et al.,
2023; Harmel et al., 2023).

Recently, Li et al. (2024) introduced a new problem setting termed policy customization, which
provides a principled approach to address the aforementioned challenge. In policy customization, the
objective is to develop a new policy given a prior policy, ensuring that the new policy: 1) retains the
properties of the prior policy, and 2) fulfills additional requirements specified by a given downstream
task. As an initial solution, the authors proposed the Residual Q-learning (RQL) framework. For
discrete action spaces, RQL can leverage maximum-entropy Monte Carlo Tree Search (Xiao et al.,
2019) to customize the policy online, meaning at the inference time without training. In contrast,
for continuous action spaces, RQL offers a solution based on Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) to train a customized policy leveraging the prior policy before the real execution. While
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Figure 1: Overview of the proposed algorithm. In each planning loop, we utilize the prior policy to
generate samples and then evaluate them through both the log likelihood of the prior policy and an
add-on reward to obtain the customized actions. More details are in Sec. 3. In the experiments, we
demonstrate that Residual-MPPI can accomplish the online policy customization task effectively,
even in a challenging GTS environment with the champion-level racing agent, GT Sophy 1.0.

SAC-based RQL is more sample-efficient than training a new policy from scratch, the additional
training steps that are required may still be expensive and time-consuming.

In this work, we propose online policy customization for continuous action spaces that eliminates the
need for additional policy training. We leverage Model Predictive Path Integral (MPPI) (Williams
et al., 2017), a sampling-based model predictive control (MPC) algorithm. Specifically, we propose
Residual-MPPI, which integrates RQL into the MPPI framework, resulting in an online planning
algorithm that customizes the prior policy at the execution time. The policy performance can be fur-
ther enhanced by iteratively collecting data online to update the dynamics model. Our experiments
in MuJoCo demonstrate that our method can effectively achieve zero-shot policy customization with
a provided offline trained dynamics model. Furthermore, to investigate the scalability of our algo-
rithm in complex environments, we evaluate Residual-MPPI in the challenging racing game, Gran
Turismo Sport (GTS), in which we successfully customize the driving strategy of the champion-level
racing agent, GT Sophy 1.0 (Wurman et al., 2022), to adhere to additional constraints.

2 PRELIMINARIES

In this section, we provide a concise introduction to two techniques that are used in our proposed
algorithm: RQL and MPPI, to establish the foundations for the main technical results.

2.1 POLICY CUSTOMIZATION AND RESIDUAL Q-LEARNING

We consider a discrete-time MDP problem defined by a tupleM = (X ,U , r, p), where X ⊆ Rn

is a continuous state space, U ⊆ Rm is a continuous action space, r : X × U → R is the reward
function, and p : X ×U ×X → [0,∞) is the state transition probability density function. The prior
policy π : X → U is trained as an optimal maximum-entropy policy to solve this MDP problem.

Meanwhile, the add-on task is specified by an add-on reward function rR : X × U → R. The full
task becomes a new MDP defined by a tuple M̂ = (X ,U , ωr+rR, p), where the reward is defined as
a weighted sum of the basic reward r and the add-on reward rR. The policy customization task is to
find a policy that solves this new MDP. Li et al. (2024) proposed the residual Q-learning framework
to solve the policy customization task. Given the prior policy π, RQL is able to find this customized
policy without knowledge of the prior reward r, which ensures broader applicability across different
prior policies obtained through various methods, including those solely imitating demonstrations.
In particular, as shown in their appendix (Li et al., 2024), when we have access to the prior policy
π, finding the maximum-entropy policy solving the full MDP problem M̂ = (X ,U , ωr + rR, p) is
equivalent to solving an augmented MDP problemMaug = (X ,U , ω′ log π(u|x) + rR, p), where
ω′ is a hyper-parameter that balances the optimality between original and add-on tasks.
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2.2 MODEL PREDICTIVE PATH INTEGRAL

Model Predictive Path Integral (MPPI) (Williams et al., 2017) is a sampling-based model predictive
control (MPC) algorithm, which approximates the optimal solution of an (infinite-horizon) MDP
through receding-horizon planning. MPPI evaluates the control inputs U = (u0,u1, · · · ,uT−1)
with an accumulated reward function Sx0

(U) defined by a reward function r and a terminal value
estimator ϕ:

Sx0(U) =

T−1∑
t=0

r(xt,ut) + ϕ(xT ), (1)

where the intermediate state xt is calculated by recursively applying the transition dynamics on x0.

By applying an addictive noise sequence E = (ϵ0, ϵ1, . . . , ϵT−1) to a nominal control input sequence
Û , MPPI obtains a disturbed control input sequence as U = Û + E for subsequent optimization,
where E follows a multivariate Gaussian distribution with its probability density function defined as
p(E) =

∏T−1
t=0 ((2π)m|Σ|)−

1
2 exp

(
− 1

2ϵ
T
t Σ

−1ϵt
)
, where m is the dimension of the action space.

As shown by Williams et al. (2017), the optimal action distribution that solves the MDP is

q∗(U) =
1

η
exp

(
1

λ
Sx0

(U)

)
p(E), (2)

where η is the normalizing constant and λ is a positive scalar variable. MPPI approximates this
distribution by assigning an importance sampling weight ω(Ek) to each noise sequence Ek to update
the nominal control input sequence:

ut = ût +

K∑
k=1

ω(Ek)ϵkt , (3)

where K is the number of samples, and ω(Ek) could be calculated as

ω(Ek) = 1

µ

(
Sx0(Û + Ek)− λ

2

T−1∑
t=0

ûT
t Σ

−1(ût + 2ϵkt )

)
, (4)

where µ is the normalizing constant.

3 METHOD

Our objective is to address the policy customization challenge under the online setting for continuous
control. We aim to leverage a pre-trained prior policy π with a dynamics model F , to approximate
the optimal solution to the augmented MDP problemMaug, in an online manner. To address this
problem, we propose a novel algorithm, Residual Model Predictive Path Integral (Residual-MPPI),
which is broadly applicable to any maximum-entropy prior policy with a dynamics model. The
proposed algorithm is summarized in Algorithm 1 and Figure 1. In this section, we first establish
the theoretical foundation of our approach by verifying the maximum-entropy property of MPPI.
We then refine the MPPI method with the derived formulation to approximate the solution of the
Maug. Lastly, we discuss the dynamics learning and fine-tuning method used in implementation.

3.1 RESIDUAL-MPPI

MPPI is a widely used sampling-based MPC algorithm that has demonstrated promising results in
various continuous control tasks. To achieve online policy customization, i.e., solving the augmented
MDPMaug efficiently during online execution, we utilize MPPI as the foundation of our algorithm.

As shown in Sec. 2.1, RQL requires the planning algorithm, MPPI, to comply with the principle
of maximum entropy. Note that this has been shown in Bhardwaj et al. (2020), where this result
established the foundation for their Q-learning algorithm integrating MPPI and model-free soft Q-
learning. In Residual-MPPI, this result serves as a preliminary step to ensure that MPPI can be
employed as an online planner to solve the augmented MDP Maug in policy customization. To
better serve our purpose, we provide a self-contained and concise notation of this observation in
Proposition 1. Its step-by-step breakdown proof can be found in Appendix A.
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Algorithm 1 Residual-MPPI

Input: Current state x0; Output: Action Sequence Û = (û0, û1, · · · , ûT−1).
Require: System dynamics F ; Number of samples K; Planning horizon T ; Prior policy π; Distur-

bance covariance matrix Σ; Add-on reward rR; Temperature scalar λ; Discounted factor γ
1: for t = 0, . . . , T − 1 do ▷ Initialize the action sequence from the prior policy
2: ût ← argmaxπ(ut|xt)
3: xt+1 ← F (xt, ût)
4: end for
5: for k = 1, . . . ,K do ▷ Evaluate the sampled action sequence
6: Sample noise Ek = {ϵk0 , ϵk1 , · · · , ϵkT−1}
7: for t = 0, . . . , T − 1 do
8: xt+1 ← F (xt, ût + ϵkt )
9: S(Ek)+ = γt ×

(
rR(xt, ût + ϵkt ) + ω′ log π(ût + ϵkt |xt)

)
− λûT

t Σ
−1ϵkt

10: end for
11: end for
12: β = mink S(Ek) ▷ Update the action sequence
13: η ← ΣK

k=1 exp
(
1
λ

(
S
(
Ek
)
− β

))
14: for k = 1, . . . ,K do
15: ω(Ek)← 1

η exp
(
1
λ

(
S
(
Ek
)
− β

))
16: end for
17: for t = 0, . . . , T − 1 do
18: ût+ =

∑K
k=1 ω(Ek)ϵkt

19: end for
20: return U

Proposition 1. Given an MDP defined byM = (X ,U , r, p), with a deterministic state transition
p defined with respect to a dynamics model F and a discount factor γ = 1, the distribution of
the action sequence q∗(U) at state x0 in horizon T , where each action ut, t = 0, · · · , T − 1 is
sequentially sampled from the maximum-entropy policy (Haarnoja et al., 2017) with an entropy
weight α is

q∗(U) =
1

Zx0

exp

(
1

α

(
T−1∑
t=0

r(xt,ut) + V ∗(xT )

))
, (5)

where V ∗ is the soft value function (Haarnoja et al., 2017) and xt is defined recursively from x0

and U through the dynamics model F as xt+1 = F (xt,ut), t = 0, · · · , T − 1.

If we have λ = α and let V ∗ be the terminal value estimator, the distribution in equation 5 is
equivalent to the one in equation 2, that is the optimal distribution that MPPI tries to approximate,
but under the condition that the p(E) is a Gaussian distribution with infinite variance, i.e. a uni-
form distribution. It suggests that MPPI can well approximate the maximum-entropy optimal policy
with a discount factor γ close to 1 and a large noise variance. We can then derive Residual-MPPI
straightforwardly by defining the evaluation function Sx0

(U) in MPPI as

Saug
x0

(U) =

T−1∑
t=0

γt · (rR(xt,ut) + ω′ log π(ut|xt)) , (6)

to solve theMaug, therefore approximates the optimal customized policy online.

The performance and sample efficiency of MPPI depends on the approach to initialize the nominal
input sequence Û . In policy customization, the prior policy serves as a natural source for initializing
the nominal control inputs. As shown at line 1 in Algorithm 1, by recursively applying the prior
policy and the dynamics, we could initialize a nominal trajectory with a tunable exploration noise to
construct a Gaussian prior distribution for sampling. During implementation and experiments, we
found that including the nominal action sequence as a candidate evaluation sequence can effectively
increase sampling stability.

4
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3.2 DYNAMICS LEARNING AND FINE-TUNING

In scenarios where an effective dynamics model is unavailable in a prior, it is necessary to develop a
learned dynamics model. To this end, we established a dynamics training pipeline utilizing the prior
policy for data collection. In our implementation, we employed three main techniques to enhance
the model’s capacity for accurately predicting environmental states, as follows. The pseudocode of
the complete Residual-MPPI deployment pipeline can be found in Algorithm 2 in Appendix B.

Multi-step Error: The prediction errors of the imperfect dynamics model accumulate over time
steps. In the worst case, compounding multi-step errors can grow exponentially (Venkatraman
et al., 2015). To ensure the accuracy of the dynamics over the long term, we use a multi-step
error

∑T
t=0 γ

t(st− ŝt)
2 as the loss for training, where st and ŝt are the ground-truth and prediction.

Exploration Noise: The prior policy’s behavior sticks around the optimal behavior to the prior task,
which means the roll-out samples collected using the prior policy concentrated to a limited region
in the state space. It limits the generalization performance of the dynamics model under the policy
customization setting. Therefore, during the sampling process, we add Gaussian exploration noises
to the prior policy actions to enhance sample diversity.

Fine-tuning with Online Data: Since the residual-MPPI planner solves the customized task objec-
tive, its behavior is different from the prior. Thus, the planner may encounter states not contained
in the dynamics training dataset collected by prior policy, on which the learned dynamics could be
inaccurate. In this case, we can iteratively collect data with Residual-MPPI and update the dynam-
ics model using the in-distribution data. We refer to the variant with online dynamics fine-tuning as
few-shot Residual-MPPI and the variant without fine-tuning as zero-shot Residual-MPPI.

4 MUJOCO EXPERIMENTS

In this section, we evaluate the performance of the proposed algorithms in different environments
selected from MuJoCo (Todorov et al., 2012). In Sec. 4.1, we provide the configurations of our ex-
periments, including the settings of policy customization tasks in different environments, baselines,
and evaluation metrics. In Sec. 4.2, we present and analyze the experimental results. Please refer to
the appendices for detailed experiment configurations, implementations, and visualizations.

4.1 EXPERIMENT SETUP

Environments. In each environment, we design the add-on rewards to illustrate a customized spec-
ifications such as behavior preference or additional task objectives in the practical application sce-
narios. In HalfCheetah and Swimmer, we apply an add-on penalty on the angle of a certain joint,
which is a common issue in deployment if the corresponding motor is broken; In Hopper, we apply
an extra reward on height; In Ant, we apply an add-on reward for moving along the y-axis. The
configurations of environments and training parameters can be found in Appendix C.

Baselines. In our experiments, we compare the performance of the proposed residual-MPPI algo-
rithm against seven baselines, including the prior policy, four alternative MPPI variants, and two
RL-based baselines. Note that except for Greedy-MPPI, the remaining MPPI baselines have access
to the underlying reward or value function of the prior policy. These baselines show that Residual-
MPPI is still the ideal choice, even with privileged access to additional reward or value information.

- Prior Policy: We utilize SAC to train the prior policy on the basic task for policy customization.
At test time, we evaluate its performance on the overall task without customization, which serves
as a baseline to show the effectiveness of policy customization.

- Greedy-MPPI: Firstly, we introduce Greedy-MPPI, which samples the action sequences from
the prior policy but only optimizes the control actions for the add-on reward rR, i.e., removing
the log π reward term of the proposed Residual-MPPI. Through comparison with Greedy-MPPI,
we aim to show the necessity and effect of including log π as a reward in Residual-MPPI.

- Full-MPPI: Next, we apply the MPPI with no prior on the MDP of the full task (i.e., ωr+rR). We
aim to compare Residual-MPPI against it to validate that our proposed algorithm can effectively
leverage the prior policy to boost online planning.

5
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- Guided-MPPI: Furthermore, we introduce Guided-MPPI, which samples the control actions
from the prior policy and also has privileged access to the full reward information, i.e., ωr+rR. By
comparing it against Guided-MPPI, we aim to show the advantages and the necessity of Residual-
MPPI even with granted access to the prior reward.

- Valued-MPPI: While it is not compatible with our problem setting, we further consider the case
where the value function of the prior policy is accessible. We construct a variant of Guided-MPPI
with this value function as a terminal value estimator like Argenson & Dulac-Arnold (2020).

- Residual-SAC: We also include the Residual-SAC as a RL-based baseline to set an upper bound
performance of the policy customization task without knowing the prior reward. We used the
final checkpoint (4M steps) as well as checkpoints with an equivalent amount of data to dynamics
training (200K steps) to illustrate the superior sample efficiency of Residual-MPPI.

- Fulltask-SAC: Finally, we report the SAC policy trained on the full task as a reference to set an
upper bound for the policy customization task’s performance.

Metric. We aim to validate a policy’s performance with total reward, i.e., ωr+rR. When the add-on
task contradicts the basic task, the optimal policy may trade off its performance on the basic task to
maximize the total reward. Therefore, we further measure the basic and add-on rewards separately
to monitor the trade-off achieved by the customized policy, i.e., how well the performance on the
basic task is maintained and how much the policy is optimized toward the add-on task.

4.2 RESULTS AND DISCUSSIONS

The experimental results, summarized in Table 1, demonstrate the effectiveness of Residual-MPPI
for online policy customization. The ablation results of the planning parameters in MuJoCo and
visualization can be found in Appendix F.2 and Appendix E.1. Also, we conduct experiments upon
the same MuJoCo environments with IL prior policies, whose results are summarized in Table 10
in Appendix F.1. Across the tested environments, the customized policies achieve significant im-
provements over the prior policies in meeting the objectives of the add-on tasks while maintaining
a similar level of performance in terms of the basic task objectives. In particular, we observe three
key advantages of Residual-MPPI over baseline approaches.

First, Residual-MPPI demonstrates significantly higher sample-efficiency over the RL-based base-
lines. While Fulltask-SAC and Residual-SAC achieve better performance than planning-based ap-
proaches through extensive online exploration (4M steps), our focus is on online policy customiza-
tion. Thus, we consider their performance as upper bounds in our online setting. With a substantially
smaller dataset for dynamics model training (2K steps), Residual-MPPI achieves total rewards com-
parable to Residual-SAC in the HalfCheetah, Hopper, and Ant environments. In contrast, Residual-
SAC performs significantly worse when trained on the same limited amount of data.

Second, Residual-MPPI can strike a better trade-off between the basic and add-on rewards than
Greedy-MPPI. Greedy-MPPI optimizes the objective of a biased MDPMadd = (X ,U , rR,p). It
relies solely on sampling from the prior policy to heuristically regularize the optimized action se-
quences to remain close to the prior policy. While this heuristic approach helps maintain perfor-
mance on the basic task objective, it is prone to suboptimality in tasks where the add-on reward is
sparse or orthogonal to the basic reward. For example, in the Ant environment, the agent is rewarded
for making progress along the x-axis in the basic task, while the add-on reward encourages progress
along the y-axis. Since these reward terms are orthogonal, exclusively optimizing for progress along
the y-axis compromises the progress along the x-axis, leading to a noticeable performance gap
for Greedy-MPPI. This limitation is further amplified in the more complex racing task, as we will
demonstrate in the next section.

Finally, Residual-MPPI outperforms MPPI variants that have privileged access to the prior policy’s
reward or value functions. Despite having full reward knowledge, Full-MPPI fails to complete the
task. Without sampling control actions from the prior policy, Full-MPPI suffers from poor sample
efficiency and achieves subpar performance. Guided-MPPI can achieve better performance, given
its access to action samples from the prior policy. However, it still underperforms Residual-MPPI
across all tasks, as it is constrained by its limited ability to reason the long-term effects of actions
within its finite planning horizons. Conversely, Residual-MPPI implicitly incorporates the original
task reward through the prior policy log-likelihood. The log π term also serves as a proxy of the prior

6
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Table 1: Experimental Results of Zero-shot Residual-MPPI in MuJoCo

Env. Policy Full Task Basic Task Add-on Task

Total Reward Basic Reward ¯|θ| Add-on Reward

Half
Cheetah

Prior Policy 1000.7± 88.8 2449.8± 52.3 0.14± 0.00 −1449.1± 45.3

Greedy-MPPI 1939.9± 134.7 2180.9± 87.3 0.02± 0.01 −241.0± 50.3
Full-MPPI −3595.1± 322.7 −1167.3± 144.0 0.24± 0.03 −2427.7± 320.3
Guided-MPPI 1849.6± 151.0 2154.6± 95.7 0.03± 0.01 −305.0± 58.7
Valued-MPPI 1760.7± 478.8 2201.8± 258.3 0.04± 0.02 −441.0± 222.5
Residual-MPPI 1936.2± 109.3 2178.6± 71.9 0.02± 0.00 −242.3± 40.5

Residual-SAC (200K) −265.0± 919.0 455.4± 678.6 0.07± 0.03 720.4± 251.8
Residual-SAC (4M) 2184.5± 29.7 2233.7± 29.3 0.00± 0.00 −49.2± 1.7
Fulltask-SAC 2149.9± 28.6 2214.5± 27.2 0.01± 0.00 −64.5± 2.4

Env Policy Total Reward Basic Reward ¯|θ| Add-on Reward

Swimmer

Prior Policy −245.2± 5.6 345.8± 3.2 0.59± 0.01 −591.0± 5.8

Greedy-MPPI −58.9± 5.4 275.8± 3.1 0.33± 0.01 −334.7± 7.4
Full-MPPI −1686.6± 106.7 14.1± 6.3 1.70± 0.11 −1700.7± 106.2
Guided-MPPI −149.0± 5.6 292.9± 3.8 0.44± 0.01 −441.9± 7.2
Valued-MPPI −205.8± 6.3 335.1± 1.6 0.54± 0.01 −540.9± 6.3
Residual-MPPI −60.0± 5.2 275.8± 3.4 0.34± 0.01 −335.9± 7.6

Residual-SAC (200K) −209.0± 67.6 2.1± 15.5 0.21± 0.07 −221.1± 72.7
Residual-SAC (4M) −10.5± 24.1 −1.5± 16.9 0.01± 0.02 −9.0± 16.6
Fulltask-SAC −4.2± 17.1 2.1± 17.6 0.01± 0.00 −6.3± 3.0

Env. Policy Total Reward Basic Reward z̄ Add-on Reward

Hopper

Prior Policy 7252.7± 49.2 3574.5± 9.7 1.37± 0.00 3678.2± 48.3

Greedy-MPPI 7367.0± 199.4 3553.0± 58.4 1.38± 0.01 3814.0± 156.8
Full-MPPI 20.5± 3.0 3.6± 0.7 1.24± 0.00 16.9± 2.4
Guided-MPPI 6121.3± 1590.1 3067.8± 679.0 1.35± 0.03 3053.4± 917.7
Valued-MPPI 7243.9± 75.7 3562.7± 14.5 1.37± 0.01 3681.2± 74.6
Residual-MPPI 7363.0± 254.9 3547.6± 78.0 1.38± 0.01 3815.4± 186.4

Residual-SAC (200K) 3543.1± 478.9 1019.8± 94.3 1.27± 0.01 2523.2± 405.5
Residual-SAC (4M) 7682.5± 178.2 2310.4± 106.8 1.54± 0.01 5372.0± 75.8
Fulltask-SAC 7825.3± 36.9 2934.5± 27.6 1.49± 0.00 4890.8± 39.6

Env Policy Total Reward Basic Reward v̄y Add-on Reward

Ant

Prior Policy 6333.7± 753.9 6177.1± 703.7 0.16± 0.22 156.6± 200.5

Greedy-MPPI 6104.2± 1532.0 5092.8± 1305.2 1.01± 0.27 1011.3± 277.7
Full-MPPI −2767.7± 154.0 −2764.4± 114.2 −0.00± 0.11 −3.3± 108.0
Guided-MPPI 5160.9± 1963.0 4999.8± 1887.9 0.16± 0.22 161.2± 217.7
Valued-MPPI 6437.0± 1021.9 6230.7± 959.0 0.21± 0.20 206.3± 196.3
Residual-MPPI 6846.7± 647.8 5984.8± 541.5 0.86± 0.19 861.8± 189.8

Residual-SAC (200K) −1175.5± 157.3 −1178.3± 156.4 0.00± 0.00 2.7± 3.9
Residual-SAC (4M) 6962.9± 342.9 5710.2± 252.0 1.25± 0.13 1252.7± 127.3
Fulltask-SAC 7408.6± 312.0 3100.3± 184.4 4.31± 0.21 4308.3± 209.2

The evaluation results are in the form of mean± std over the 500 running episodes. The total reward is calculated on full
task, whose reward is ωr + rR.

policy’s Q-function, informing the planner of the impact of the action sequences beyond the planning
horizon. While Valued-MPPI addresses long-term impacts by incorporating the prior Q-function, it
struggles to fully align with the complete task reward. Valued-MPPI considers the long-term impact
by incorporating the prior Q-function but fails to match the full task reward setting, resulting in
better performance on the basic task but suboptimum on the full task.

5 CUSTOMIZING CHAMPION-LEVEL AUTONOMOUS RACING POLICY

With the effective results in standard benchmark environments, we are further interested in whether
the proposed algorithm can be applied to effectively customize an advanced policy for a more so-
phisticated continuous control task. Gran Turismo Sport (GTS), a realistic racing simulator that sim-
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Figure 2: In-game screen shots of Policy Behavior on Different Road Sections

ulates high-fidelity racing dynamics, complex environments at an independent, fixed frequency with
realistic latency as in real-world control systems, serves as an ideal test bed. GT Sophy 1.0 (Wur-
man et al., 2022), a DRL-based racing policy, has been shown to outperform the world’s best drivers
among the global GTS player community. To further investigate the scalability of our algorithm
and its robustness when dealing with complex environments and advanced policies, we carried out
further experiments on GT Sophy 1.0 in the GTS environment.

5.1 EXPERIMENT SETUP

Though GT Sophy 1.0 is a highly advanced system with superhuman racing skills, it tends to ex-
hibit too aggressive route selection as the well-trained policy has the ability to keep stable on the
simulated grass. However, in real-world racing, such behaviors would be considered dangerous and
fragile because of the time-varying physical properties of real grass surfaces and tires. Therefore, we
establish the task as customizing the policy to a safer route selection. Formally, the customization
goal is to help the GT Sophy 1.0 drive on course while maintaining its superior racing performance.
This kind of customization objective could potentially be used to foster robust sim-to-real transfer
of agile control policies for many related problem domains.

We adopt a simple MLP architecture to design a dynamics model and train it using the techniques
introduced in Sec. 3.2. The configurations of the environments and implementation details can be
found in Appendix D. As the pre-trained GT Sophy 1.0 policy is constructed with complex rewards
and regulations, we adopt the average lap time and number of off-course steps as the metrics. In
addition to zero-shot Residual-MPPI, we also evaluate a few-shot version of our algorithm, in which
we iteratively update the dynamics with the customized planner’s trajectories to further improve the
performance. We also consider Residual-SAC (Li et al., 2024) as another baseline to validate the
advantage of online Residual-MPPI against RL-based solutions in the challenging racing problem.
Notably, we are only given access to the policy network of GT Sophy 1.0, which prevents us from
evaluating Valued-MPPI, as it requires access to the critic function. Therefore, we only include
Greedy-MPPI and Guided-MPPI as MPPI variants for comparison in the GTS environment.

5.2 RESULTS AND DISCUSSIONS

The experimental results, summarized in Table 2, demonstrate that Residual-MPPI significantly en-
hances the safety of GT Sophy 1.0 by reducing its off-course steps, albeit with a marginal increase in
lap time. Further improvements are observed after employing data gathered during the customization
process to fine-tune the dynamics under a few-shot setting. This few-shot version of Residual-MPPI
outperforms the zero-shot version in terms of lap time and off-course steps.

The ablation results of the planning parameters and visualization in GTS can be found in Ap-
pendix F.3 and Appendix E.2, which clearly demonstrates the effectiveness of the proposed method
by greatly reducing the off-course steps. In the detailed route selection visualization, it can be ob-
served that Few-shot MPPI chose a safer and faster racing line compared to Zero-shot MPPI with
more accurate dynamics. Though the customized policies can not eliminate all the off-course steps,
it is worth noting that these violations are minor (i.e., slightly touching the course boundaries) com-
pared to GT Sophy 1.0, making the customized policies safe enough to maintain themselves on
course.
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Table 2: Experimental Results of Residual-MPPI in GTS
Policy GT Sophy 1.0 Zero-shot MPPI Few-shot MPPI Residual-SAC (80K laps)

Lap Time 117.77± 0.08 123.34± 0.22 122.93± 0.14 130.00± 0.13
Off-course Steps 93.13± 1.98 9.03± 3.33 4.43± 2.39 0.87± 0.78

Policy Full-MPPI Guided-MPPI Greedy-MPPI Residual-SAC (2K laps)

Lap Time *Failed *Failed *Failed *Failed
Off-course Steps *Failed *Failed *Failed *Failed

The evaluation results are in the form of mean ± std over 30 laps. *Failed baseline is not able to finish a
complete lap. Valued-MPPI is not available since we only have access to the policy network of GT Sophy 1.0.

(a) Greedy-MPPI (b) Guided-MPPI

Figure 3: Guided-MPPI and Greedy-MPPI Results in GTS. (a) In-game screenshots of Greedy-
MPPI; (b) In-game screenshots of Guided-MPPI. Red parts indicate off-course behaviors. Both
baselines cannot drive the vehicle effectively, completely going off track at the first corner.

Residual-SAC, compared with the Residual-MPPI, yields a very conservative customized policy.
As shown in Figure 2, it is obvious that the Residual-SAC policy behaves sub-optimally and overly
yields to the on-course constraints. It is worth noting that over 80,000 laps of roll-outs are collected
to achieve the current performance of Residual-SAC. In contrast, the data used to train GTS dynam-
ics for Residual-MPPI, along with the online data for dynamics model fine-tuning, amounted to only
approximately 2,000 and 100 laps, respectively. As discussed in safe RL and curriculum learning
methods (Mo et al., 2021; Anzalone et al., 2022), when training with constraints, it is easy for RL to
yield to an overly conservative behavior. At the checkpoint with 2k laps of training data, Residual-
SAC could not finish a lap yet, which highlights the outstanding data-efficiency of Residual-MPPI.

Guided-MPPI, however, cannot finish the track stably, as shown in figure 3. Similar to what we
have analyzed in the MuJoCo experiments, Guided-MPPI suffers from its limited ability to account
for the long-term impacts of actions given the finite planning horizon. This limitation leads to more
severe consequences in complex tasks that require long-term, high-level decision-making, such as
route selection during racing, which leads to failure in GTS.

Greedy-MPPI, as mentioned above, also leads to severe failure in the complex GTS task, further
emphasizing the importance of the log π term in Residual-MPPI’s objective function. In GTS, the
Greedy-MPPI only optimizes the trajectories by not allowing the policy to be off-course, where
a straightforward local optimal but undesirable solution would be just staying still. Such a trivial
policy would behave better on the add-on tasks (stay on course) but not on the full task (stay on
course while maintaining racing superiority). From the theoretical perspective, the significance
of the log π term goes far beyond a simple regularization term. It is the key factor in addressing
the policy customization problem, which is inherently a part of the joint optimization objective,
encoding and passing the information of the original reward in a theoretically sound manner.

6 RELATED WORKS

Model-based RL. Many works focused on combining learning-based agents with classical
planning methods to enhance performance, especially in various model-based RL approaches.
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MuZero (Schrittwieser et al., 2020) employs its learned Actor as the search policy during the MCTS
process and utilizes the critic as the terminal value at the search leaf nodes; TD-MPC2 (Hansen
et al., 2023) follows a similar approach and extends it to continuous task by utilizing MPPI as the
continuous planner. RL-driven MPPI (Qu et al., 2024) chooses the distributional SACs as the prior
policy and also adopts the MPPI as the planner. However, those methods mainly address the plan-
ning within the same task and have a full reward and value function, while policy customization
requires jointly optimizing an add-on reward and the underlying reward of the prior policy, which
is unknown in a priori. In general cases, the prior policy may not necessarily provide a critic, as is
the case with algorithms like soft policy gradient (Shi et al., 2019). Moreover, under the new reward
setting, the value function will change, making it infeasible to use the critic as the terminal value
estimator. Therefore, these methods are not able to solve policy customization tasks directly.

Policy Adaptation. There have been numerous works considering on the topic of policy adapta-
tion. Some works require an extra demonstration dataset to adapt the policy to the new task, like
Ceil (Liu et al., 2023) and Prompt-DT (Xu et al., 2022). However, such expert demonstrations are
unavailable in the online policy customization settings. Some works focus on adaptation via RL fine-
tuning: Jump-Start RL (JSRL) (Uchendu et al., 2023) uses a pre-trained prior policy as the guiding
policy to form a curriculum of starting states for the exploration policy; Advantage Weighted Actor-
Critic (AWAC) (Nair et al., 2020) combines sample-efficient dynamic programming with maximum
likelihood policy updates to leverage large amounts of offline data for quickly performing online
fine-tuning of RL policies. However, the main objective in RL fine-tuning is to maximize the policy
return on the new task. In contrast, policy customization (Li et al., 2024) aims to find a policy that
can maintain the performance of the prior policy on the basic task at the same time.

Planning with Prior Policy. Some works address a similar problem of customizing pre-trained
prior policies towards additional requirements. Efficient game-theoretic planning (Li et al., 2022)
uses a planner to construct human behavior within the pre-trained prediction model. Deep Imitative
Model (Rhinehart et al., 2018) aims to direct an imitative policy to arbitrary goals during online
usage. However, they require full reward modeling with hand-designed features, or the add-on task
is in the form of specific goals. Residual-MCTS proposed in RQL (Li et al., 2024) solves the policy
customization online via planning but is limited to tasks with discrete action spaces. MBOP (Argen-
son & Dulac-Arnold, 2020) solves the offline RL problem through planning by learning dynamics,
action prior, and values from an offline dataset. LOOP (Sikchi et al., 2022) focused on learning
off-policy with samples from an online planner. However, both approaches require knowledge of
the basic reward function and thus cannot be directly applied to our setting.

7 LIMITATIONS AND FUTURE WORK

In this work, we propose Residual-MPPI, which integrates RQL into the MPPI framework, resulting
in an online planning algorithm that customizes the prior policy at the execution time. By conducting
experiments in MuJoCo and GTS, we show the effectiveness of our methods against the baselines.
Here, we discuss some limitations of the current method, inspiring several future research directions.

Terminal Value Estimation. Similar to most online planning methods, our algorithm also needs
a sufficiently long horizon to reduce the error brought by the absence of a terminal value estima-
tor. Though utilizing prior policy partially addresses the problem discussed in Sec. 4.2, it can not
eliminate the error entirely. Techniques like JSRL (Uchendu et al., 2023) and RL-driven MPPI (Qu
et al., 2024) could be incorporated in the proposed framework in the few-shot setting by using the
collected data to learn a Residual Q-function online as a terminal value estimator.

Sim2Real Transferability. Sim2real, especially in racing, will still face several additional chal-
lenges, the most significant of which comes from the suboptimality in prior policy and inaccuracy
in the learned dynamics caused by the domain gap. Prior policies without careful modeling or
sufficient training could mislead the evaluation step of the proposed algorithm and result in poor
planning outcomes. Also, the proposed algorithm relies on an accurate dynamics model to correctly
roll out the states. In the future, we can introduce more advanced methods in policies and dynamics
training, such as diffusion policies (Janner et al., 2022; Chi et al., 2023; Hansen-Estruch et al., 2023)
and world models (Micheli et al., 2022; Gao et al., 2024), to improve the prior policies and dynam-
ics. We look forward to further extending residual-MPPI to achieve sim-to-sim and sim-to-real for
challenging agile, continuous control tasks by addressing these limitations.
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A DERIVATION

In this section, we provide a detailed proof of Proposition 1. We start with introducing a lemma to
expand the action distribution q∗(U).

Lemma 1. Given an MDP with a deterministic state transition p, the distribution of the action
sequence q(U) at state x0 in horizon T , where each action ut, t = 0, · · · , T − 1 is sequentially
sampled from a policy π(ut|xt) is

q(U) =

T−1∏
t=0

π(ut|xt). (7)

Proof. Let π(u0,u1, · · · ,uT−1|x0) denote the expanded notation of q(U) by substituting ut and
maximum-entropy policy π. Firstly, we apply the conditional probability formula to expand the
equation:

π(u0,u1, · · · ,uT−1|x0) = π(u0|x0)

∫
X
π(u1, · · · ,uT−1|x0,u0,x

′
1)p(x

′
1|x0,u0)dx

′
1. (8)

Considering the Markov property of the problem,

π(uk, · · · ,uk+N |x0,x
′
1, · · · ,x′

k−1,u0,uk−1,x
′
k) = π(uk, · · · ,uk+N |x′

k), (9)

Eq. equation 8 could be further expanded recursively till the end:

π(u0,u1, · · · ,uT−1|x0) = π(u0|x0)

∫
X
π(u1, · · · ,uT−1|x0,u0,x

′
1)p(x

′
1|x0,u0)dx

′
1.

= π(u0|x0)

∫
X
π(u1, · · · ,uT−1|x′

1)p(x
′
1|x0,u0)dx

′
1

= π(u0|x0)

∫
X
π(u1|x′

1)p(x
′
1|x0,u0)∫

X
π(u2, · · · ,uT−1|x′

1)p(x
′
2|x1,u1)dx

′
1dx

′
2

= · · ·

= π(u0|x0)

∫
X
p(x′

1|x0,u0)π(u1|x′
1)∫

· · ·
∫
X

T−1∏
t=2

π(ut|x′
t)p(x

′
t|x′

t−1,ut−1)dx
′
1 · · · dx′

T−1.

(10)

Since the state transition p is a deterministic function

p
(
x′
t+1|xt,ut) = δ(x′

t+1, F (xt,ut)
)
, (11)
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the integral signs could be eliminated by defining xt+1 = F (xt,ut):

π(u0,u1, · · · ,uT−1|x0) = π(u0|x0)

∫
X
p(x′

1|x0,u0)π(u1|x′
1)∫

· · ·
∫
X

T−1∏
t=2

π(ut|x′
t)p(x

′
t|x′

t−1,ut−1)dx
′
1 · · · dx′

T−1

= π(u0|x0)

∫
X
δ
(
x′
t+1, F (xt,ut)

)
π(u1|x′

1)∫
· · ·
∫
X

T−1∏
t=2

π(ut|x′
t)p(x

′
t|x′

t−1,ut−1)dx
′
1 · · · dx′

T−1

= π(u0|x0)π(u1|x1)

∫
X
p(x′

2|x1,u1)π(u2|x′
2)∫

· · ·
∫
X

T−1∏
t=3

π(ut|x′
t)p(x

′
t|x′

t−1,ut−1)dx
′
2 · · · dx′

T−1

= · · ·

=

T−1∏
t=0

π(ut|xt).

(12)

QED

With Lemma 1, now we provide a detailed proof of Theorem 1.

Theorem 1. Given an MDP defined by M = (X ,U , r, p), with a deterministic state transition
p defined with respect to a dynamics model F and a discount factor γ = 1, the distribution of
the action sequence q∗(U) at state x0 in horizon T , where each action ut, t = 0, · · · , T − 1 is
sequentially sampled from the maximum-entropy policy (Haarnoja et al., 2017) with an entropy
weight α is

q∗(U) =
1

Zx0

exp

(
1

α

(
T−1∑
t=0

r(xt,ut) + V ∗(xT )

))
, (13)

where V ∗ is the soft value function (Haarnoja et al., 2017) and xt is defined recursively from x0

and U through the dynamics model F as xt+1 = F (xt,ut), t = 0, · · · , T − 1.

Proof. The maximum-entropy policy with an entropy weight α solves the problemM following the
one-step Boltzmann distribution:

π∗(ut|xt) =
1

Zxt

exp

(
1

α
Q∗(xt,ut)

)
, (14)

where Zxt
is the normalization factor defined as

∫
U exp

(
1
αQ

∗(xt,ut)
)
dut and Q∗(xt,ut) is the

soft Q-function as defined in (Haarnoja et al., 2017):

Q∗(xt,ut) = r(xt,ut) + α log

∫
U
exp

(
1

α
Q∗ (xt+1,ut+1)

)
du. (15)

With Lemma 1, the optimal action distribution could be rewritten as:

q∗(U) =

T−1∏
t=0

π∗(ut|xt) (16)

where each xt is defined recursively from x0 and U through the dynamics model F as xt+1 =
F (xt,ut), t = 0, · · · , T − 1. By substituting Eq. equation 14 and Eq. equation 15, Eq. equation 16
could be further expanded:
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q∗(U) (17a)

=
1∏T−1

t=0 Zxt

exp

(
1

α

T−1∑
t=0

Q∗(xt,ut)

)
(17b)

=
1∏T−1

t=0 Zxt

exp

(
1

α

T−1∑
t=0

(
r(xt,ut) + α log

∫
U
exp

(
1

α
Q∗ (xt+1,ut+1)

)
du

))
(17c)

=
1∏T−1

t=0 Zxt

exp

(
1

α

T−1∑
t=0

r(xt,ut) + log

(
T−1∏
t=1

Zxt

)
+ logZxT

)
(17d)

=

∏T−1
t=1 Zxt∏T−1
t=0 Zxt

exp

(
1

α

(
T−1∑
t=0

r(xt,ut) + α logZxT

))
(17e)

=
1

Zx0

exp

(
1

α

(
T−1∑
t=0

r(xt,ut) + V ∗(xT )

))
, (17f)

where Eq. equation 17b results from substituting Eq. equation 14 and Eq. equation 17c results from
substituting Eq. equation 15.

In Eq. equation 17f, V ∗(xT ) = α logZxT
is the soft value function defined in (Haarnoja et al.,

2017) at the terminal step. Each xt is defined recursively from x0 and U through the dynamics
model F as xt+1 = F (xt,ut), t = 0, · · · , T − 1. QED

B COMPLETE RESIDUAL-MPPI DEPLOYMENT PIPELINE

The complete Residual-MPPI deployment pipeline is shown in Algorithm 2

Algorithm 2 Residual-MPPI Deployment Pipeline
Require: Prior policy π

1: Initialize a dataset D ← ∅, dynamics Fθ

2: for t = 0, 1, . . . do ▷ Dynamics Training
3: ut = argmaxπ(u|xt) + E ▷ Exploration Noise
4: xt+1 ← Environment(xt,ut)
5: D ← D ∪ (xt,ut,xt+1) ▷ Multi-step Error

6: θ ← argminθ ED

[∑T
t=0 γ

t(xt+1 − Fθ(x̂t,ut))
2
]

7: end for
8: for t = 0, 1, . . . do ▷ Zero-shot Residual-MPPI
9: ut = Residual-MPPI(xt)

10: xt+1 ← Environment(xt,ut)
11: end for
12: for t = 0, 1, . . . do ▷ Few-shot Residual-MPPI
13: ut = Residual-MPPI(xt)
14: xt+1 ← Environment(xt,ut)
15: D ← D ∪ (xt,ut,xt+1) ▷ Fine-tune with Online Data

16: θ ← argminθ ED

[∑T
t=0 γ

t(xt+1 − Fθ(x̂t,ut))
2
]

17: end for

C IMPLEMENTATION DETAILS IN MUJOCO

All the experiments were conducted on Ubuntu 22.04 with Intel Core i9-9920X CPU @ 3.50GHz
× 24, NVIDIA GeForce RTX 2080 Ti, and 125 GB RAM.
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C.1 MUJOCO ENVIRONMENT CONFIGURATION

In this section, we introduce the detailed configurations of the selected environments, including the
basic tasks, add-on tasks, and the corresponding rewards. The action and observation space of all
the environments follow the default settings in gym[mujoco]-v3.

Half Cheetah. In the HalfCheetah environment, the basic goal is to apply torque on the joints
to make the cheetah run forward (right) as fast as possible. The state and action space has 17 and 6
dimensions, and the action represents the torques applied between links.

The basic reward consists of two parts:

Forward Reward : rforward(xt,ut) =
∆x

∆t

Control Cost : rcontrol(xt,ut) = −0.1× ||ut||22
(18)

During policy customization, we demand an additional task that requires the cheetah to limit the
angle of its hind leg. This customization goal is formulated as an add-on reward function defined as:

rR(xt,ut) = −10× |θhind leg| (19)

Hopper. In the Hopper environment, the basic goal is to make the hopper move in the forward
direction by applying torques on the three hinges connecting the four body parts. The state and
action space has 11 and 3 dimensions, and the action represents the torques applied between links.

The basic reward consists of three parts:
Alive Reward : ralive = 1

Forward Reward : rforward(xt,ut) =
∆x

∆t

Control Cost : rcontrol(xt,ut) = −0.001× ||ut||22

(20)

The episode will terminate if the z-coordinate of the hopper is lower than 0.7, or the angle of the top
is no longer contained in the closed interval [−0.2, 0.2], or an element of the rest state is no longer
contained in the closed interval [−100, 100].
During policy customization, we demand an additional task that requires the hopper to jump higher
along the z-axis. This customization goal is formulated as an add-on reward function defined as:

rR(xt,ut) = 10× (z − 1) (21)

Swimmer. In the Swimmer environment, the basic goal is to move as fast as possible towards the
right by applying torque on the rotors. The state and action space has 8 and 2 dimensions, and the
action represents the torques applied between links.

The basic reward consists of two parts:

Forward Reward : rforward(xt,ut) =
∆x

∆t

Control Cost : rcontrol(xt,ut) = −0.0001× ||ut||22
(22)

During policy customization, we demand an additional task that requires the agent to limit the angle
of its first rotor. This customization goal is formulated as an add-on reward function defined as:

rR(xt,ut) = −1× |θfirst rotor| (23)

Ant. In the Ant environment, the basic goal is to coordinate the four legs to move in the forward
(right) direction by applying torques on the eight hinges connecting the two links of each leg and
the torso (nine parts and eight hinges). The state and action space has 27 and 8 dimensions, and the
action represents the torques applied at the hinge joints.

The basic reward consists of three parts:
Alive Reward : ralive = 1

Forward Reward : rforward(xt,ut) =
∆x

∆t

Control Cost : rcontrol(xt,ut) = −0.5× ||ut||22

(24)
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Table 3: RL Prior Policy Training Hyperparameters
Hyperparameter Value

Hidden Layers (256, 256)
Activation ReLu

γ 0.99
Target Update Interval 50

Learning Rate 3e− 4
Gradient Step 1

Training Frequency 1
Batch Size 256
Optimizer Adam

Total Samples 6400000
Capacity 1000000
Sampling Uniform

Table 4: MuJoCo Offline Dynamics Training Hyperparameters
Hyperparameter Value

Hidden Layers (256, 256, 256, 256)
Activation Mish

learning rate 1e− 5
Training Frequency 10

Optimizer Adam
Batch Size 256

Horizon 8
γ 0.9

Total Samples 200000
Capacity 50000
Sampling Uniform

The episode will terminate if the z-coordinate of the torso is not in the closed interval [0.2, 1]. During
experiments, we set the upper bound to inf for both prior policy training and planning experiments
as it benefits both performances.

During policy customization, we demand an additional task that requires the ant to move along the
y-axis. This customization goal is formulated as an add-on reward function defined as:

rR(xt,ut) =
∆y

∆t
(25)

C.2 RL PRIOR POLICY TRAINING

The prior policies were constructed using Soft Actor-Critic (SAC) with the StableBaseline3 (Raffin
et al., 2021) implementation. The training was conducted in parallel across 32 environments. The
hyperparameters used for RL prior policies training are shown in Table 3. Since this parameter set-
ting performed poorly in the Swimmer task, we used the official benchmark checkpoint of Swimmer
from StableBaseline3. Note that the prior policies do not necessarily need to be synthesized using
RL. We report the experiment results with GAIL prior policies in Appendix F.1.

C.3 OFFLINE DYNAMICS TRAINING

The hyperparameters used for offline dynamics training are shown in Table 4. The exploration noise
we utilized comes from the guassian distribution of the prior policy.

C.4 PLANNING HYPERPARAMETERS

The hyperparameters used for online planning are shown in Table 5. At each step, the planners
computes the result based on the current observation. Only the first action of the computed action
sequence is sent to the system.
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Table 5: Planning Hyperparameter in MuJoCo Tasks
Hyperparameter Half Cheetah Ant Swimmer Hopper

Horizon 2 5 5 8
Samples 10000 5000 5000 10000

Noise std. 0.017 0.005 0.02 0.005
ω′ 1e− 7 1e− 2 1e− 4 2e− 7
γ 0.9 0.9 0.9 0.9
λ 5e− 5 5e− 3 1e− 4 1e− 5

D IMPLEMENTATION DETAILS IN GTS

All the GTS experiments were conducted on PlayStation 5 (PS5) and Ubuntu 20.04 with 12th Gen
Intel Core i9-12900F× 24, NVIDIA GeForce RTX 3090, and 126 GB RAM. GTS ran independently
on PS5 with a fixed frequency of 60Hz. The communication protocol returned the observation and
received the control input with a frequency of 10Hz.

D.1 GTS ENVIRONMENT CONFIGURATION

The action and observation spaces follow the configuration of GT Sophy 1.0 (Wurman et al., 2022).
The reward used for GT Sophy 1.0 training was a handcrafted linear combination of reward com-
ponents computed on the transition between the previous and current states, which included course
progress, off-course penalty, wall penalty, tire-slip penalty, passing bonus, any-collision penalty,
rear-end penalty, and unsporting-collision penalty (Wurman et al., 2022). During policy customiza-
tion, we demand an additional task that requires the GT Sophy 1.0 to drive on course. This cus-
tomization goal is formulated as an add-on reward function defined as:

rR(xt,ut) = −1000000×ReLu(d2center − d2map), (26)
where dcenter is the distance from the vehicle to the course center and dmap is the width of the course
given the car’s position.

D.2 DYNAMICS DESIGN

We employed three main techniques to help us get an accurate dynamics model.

Historical Observations To address the partially observable Markov decision processes (POMDP)
nature of the problem, we included historical observations in the input to help the model capture the
implicit information.

Splitting State Space We divided the state space into two parts: the dynamic states and map infor-
mation. We adopted a neural network with an MLP architecture to predict the dynamic states. In
each step, we utilized the trained model to predict the dynamic states and leveraged the known map
to calculate the map information based on the dynamic states.

Physical Prior Some physical states in the dynamic states, such as wheel load and slip angle, are in-
trinsically difficult to predict due to the limited observation. To reduce the variance brought by these
difficult states, two neural networks were utilized to predict them and other states independently.

Table 6 shows the hyperparameters used for training these two MLPs to predict dynamic states.

D.3 PLANNING HYPERPARAMETERS

To stabilize the planning process, we further utilized another hyperparameter topratio to select
limited action sequence candidates with top-tier accumulated reward. The hyperparameters used for
online planning are shown in Table 7. At each step, the planners computed the result based on the
current observation. Only the first action of the computed action sequence was sent to the system.

D.4 RESIDUAL-SAC TRAINING

In addition to the Residual-SAC algorithm, we adopted the idea of residual policy learning (Silver
et al., 2018) to learn a policy that corrects the action of GT Sophy 1.0 by outputting an additive
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Table 6: GTS Offline Dynamics Training Hyperparameters
Hyperparameter Value

History Length 8
Hidden Layers (2048, 2048, 2048)

Activation Mish
Learning Rate 1e− 5
Training Steps 200000

Training Frequency 5
Batch Size 256

Horizon 5
γ 1

Optimizer Adam
Capacity 2000000
Sampling Uniform

Table 7: Planning Hyperparameter in GTS
Hyperparameter Horizon Samples Noise std. Top Ratio ω′ γ λ

Value 15 500 0.035 0.048 3 0.8 0.5

action, in which the initial policy was set as GT Sophy 1.0. As proposed in the same paper, the
weights of the last layer in the actor network were initiated to be zero. The randomly initialized
critic was trained alone with a fixed actor first. And then, both networks were trained together. The
pipeline was developed upon the official implementation of RQL (Li et al., 2024). The training
hyperparameters are shown in Table 8.

Table 8: Residual-SAC Training Hyperparameters
Hyperparameter Value

Hidden Layers (2048, 2048, 2048)
Activation ReLu

Learning Rate 1e− 4
Target Update Interval 50

Gradient Step 1
Training Frequency 1

Batch Size 256
Optimizer Adam

γ 0.9
Total Samples 10000000

Capacity 1000000
Sampling Uniform

E VISUALIZATION

E.1 MUJOCO EXPERIMENTS

We visualize some representative running examples from the MuJoCo environment in Figure 4. As
shown in the plot, the customized policies achieved significant improvements over the prior policies
in meeting the objectives of the add-on tasks.

E.2 GTS EXPERIMENTS

We provide four typical complete trajectories of all policies in Figure 5. Also, we visualize the
sim-to-sim experiment results in Figure 6. The visualization clearly demonstrates the effectiveness
of the proposed method by greatly reducing the off-course steps of a champion-level driving policy.

We visualize the racing line selected by each policy at four typical corners to illustrate the differences
among policies. As shown in Figure 7, GT Sophy 1.0 exhibited aggressive racing lines that tend to be
off course. Both Zero-shot MPPI and Few-shot MPPI were able to customize the behavior to drive
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(d) Ant

(b) Swimmer

(c) Hopper

(a) Half Cheetah

Figure 4: (a) The angle of the Half Cheetah’s hind leg vs. the environmental steps. (b) The angle of
the Swimmer’s first rotor vs. the environmental steps. (c) The trajectory of the Hopper robot on the
x and z axis.(d) The trajectory of the Ant robot on the x and y axis.

(a) GT Sophy 1.0

(c) Zero-shot MPPI

(b) Residual-SAC

(d) Few-shot MPPI

Figure 5: Typical complete trajectories of all policies, where the red parts indicate off-course be-
haviours. (a) The trajectory of GT Sophy 1.0. It finishes the lap in 117.762s with 93 steps off course.
(b) The trajectory of Residual-SAC. It finishes the lap in 131.078s with 2 steps off course. (c) The
trajectory of Zero-shot MPPI. It finishes the lap in 123.551s with 10 steps off course. (d) The trajec-
tory of Few-shot MPPI. It finishes the lap in 122.919s with 4 steps off course.

more on the course, while the Few-shot MPPI chose a better racing line. In contrast, the Residual-
SAC yields to an overly conservative behavior and keeps driving in the middle of the course.

Meanwhile, we visualize the difference between the actions selected by GT Sophy 1.0 and Residual-
MPPI at each time step in Figure 8. When driving at the corner, our method exerted notable influ-
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(a) GT Sophy 1.0 (H.)

(c) Zero-shot MPPI (S.)

(b) GT Sophy 1.0 (S.)

(d) Few-shot MPPI (S.)

Figure 6: Typical complete trajectories of all policies in Sim2Sim experiments, where the red parts
indicate off-course behaviours. (a) The trajectory of GT Sophy 1.0 with Race-Hard. It finishes the
lap in 117.762s with 93 steps off course. (b) The trajectory of Residual-SAC with Race-Soft. It
finishes the lap in 116.674s with 133 steps off course. (c) The trajectory of Zero-shot MPPI with
Race-Soft. It finishes the lap in 123.550s with 9 steps off course. (d) The trajectory of Few-shot
MPPI with Race-Soft. It finishes the lap in 122.379s with 2 steps off course.

ences on the prior policy, as shown in Figure 8 (a). When driving at the straight, our method exerted
minimal influences on the prior policy since most forward-predicted trajectories remain on course,
as shown in Figure 8 (b).

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 RESIDUAL-MPPI WITH IL PRIOR

Residual-MPPI is applicable to any prior policies trained based on the maximum-entropy principle,
not limited to RL methods. In this section, we conduct additional experiments upon the same Mu-
JoCo environments with IL prior policies. The IL prior policies are obtained through Generative
Adversarial Imitation Learning (GAIL) with expert data generated by the RL prior in the previous
experiments. The hyperparameters used for training the IL prior policies are shown in Table 9, while
the hyperparameters used for the learners are the same as the corresponding RL experts.

Table 9: Hyperparameters of GAIL Imitated Polices
Hyperparameter Half Cheetah Ant Swimmer Hopper

expert min episodes 1000 100 1000 2000
demo batch size 512 25000 1024 1024

gen replay buffer capacity 8192 50000 2048 2048
n disc updates per round 4 4 4 4

The results are summarized in Table 10. Similar to the experiment results with the RL priors, the
customized policies achieved significant improvements over the prior policies in meeting the objec-
tives of the add-on tasks, which demonstrates the applicability of Residual-MPPI with IL priors.

F.2 ABLATION IN MUJOCO

We conducted ablation studies for Guided-MPPI and Residual-MPPI in MuJoCo with 100 episodes
for each selected setting, whose evaluation logs are available in the supplementary materials.

Horizon. Regarding the question of why Guided-MPPI baseline underperforms the proposed ap-
proach, as we explained in the main text, while Guided-MPPI improves the estimation of optimal ac-
tions through more efficient sampling, it remains hindered by its ability to account for the long-term
impacts of actions within finite planning horizons. In contrast, Residual-MPPI implicitly inherits
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(a)

(b)

(c)

(d)

Figure 7: Route Selection Visualization at Different Cases. Different colors denote the different
policies. In all cases, Residual-MPPI are able to customize the behavior to drive more on course. In
(a), (b) and (d), due to inaccurate dynamics, Zero-shot MPPI exhibits off-course behavior. In (c),
although Few-shot MPPI and Zero-shot MPPI both drive on course, Few-shot MPPI tends to select
a better route closer to the boundary with more accurate dynamics.
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(b) Straight(a) Corner 

Figure 8: Additive Action of Residual-MPPI at Different Case. The additive throttle and steering
are all linear normalized to −1 to 1.

the information of the basic reward through the prior policy log-likelihood. And the prior policy
log-likelihood is informed by the value functions optimized over an infinite horizon or demonstra-
tions. Therefore, in our hypothesis, a longer horizon will benefit more on Guided-MPPI compared
to Residual-MPPI. As shown in Figure 9, the performance of each algorithm matches our hypoth-
esis. It is worth noting that Guided-MPPI still underperforms Residual-MPPI in all cases except in
HalfCheetah. Meanwhile, in some environments, an overlong horizon decreases the performance.
These results reflect the limitation of the planning-based methods with inaccurate dynamics.

Samples. The number of samples would have a lower impact as it primarily controls the sufficiency
of optimization. When the number exceeds the threshold required for the optimization, further per-
formance improvement can hardly be observed. From the results shown in Figure 10, we can see that
the chosen number of samples is already sufficient for each optimization. However, the performance
of Guided-MPPI in Hopper and Ant reduces with more samples, which is due to the error from the
terminal value estimation. In this situation, Residual-MPPI demonstrates strong stability.

Temperature. The temperature controls the algorithm’s tendency to average various actions or only
focus on the top-tier actions. As shown in the Figure 11: a higher temperature can potentially lead
to instability, as observed in the Hopper and Swimmer tasks; however, it can also allow more actions
to be adequately considered, improving performance, as observed in the Ant task.

Noise Std. The Noise Std. parameter controls the magnitude of action noise, affecting the algo-
rithm’s exploration performance. As shown in Figure 12: a small noise would hinder the policy
from exploring better actions, as observed in the Swimmer task; however, it can also increase stabil-
ity, leading to higher overall performance, as observed in the Hopper task.

Omega. Theoretically, ω′ represents the trade-off between the basic task and the add-on task. As
shown in Figure 13: in complex tasks that the add-on reward is orthogonal to the basic reward (e.g.,
Ant), a larger ω′ leads to behaviors close to the prior policy and higher basic reward; and a smaller
ω′ leads to behaviors close to the Greedy-MPPI and higher add-on reward but lower total reward.

F.3 ABLATION IN GTS

We also conducted the corresponding ablation studies for Few-shot MPPI in GTS with 10 laps
for each selected setting. Due to the strict experimental requirement of a 10Hz control frequency,
we found the maximum number of samples that satisfies this requirement for each chosen horizon
and conducted experiments. The results shown in Figure 14, Figure 15, and Figure 16 match our
hypothesis.

In GTS, we also conduct an ablation on ω′ parameter. Theorectically, ω′ represents the trade-off
between the basic task and the add-on task, where larger ω′ should lead to a behavior closer to the
prior policy with smaller lap time and larger off-course steps. On the other hand, oversmall ω′ would
construct a biased MDP, leading to suboptimal performace both on laptime and off-course steps. The
corresponding ablation results in GTS are shown in Figure 17, which also follow our analysis.
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Table 10: Experimental Results of Zero-shot Residual-MPPI with IL Prior in MuJoCo

Env. Policy Full Task Basic Task Add-on Task

Total Reward Basic Reward ¯|θ| Add-on Reward

Half
Cheetah

Prior Policy −971.3± 689.1 2288.9± 725.5 0.33± 0.01 −3260.3± 93.5

Greedy-MPPI −408.5± 247.4 2397.9± 285.3 0.28± 0.01 −2806.4± 141.3
Full-MPPI −3569.7± 353.9 −1164.4± 152.0 0.24± 0.03 −2415.2± 341.3
Guided-MPPI −620.3± 217.6 2236.3± 219.2 0.29± 0.01 −2856.6± 93.6
Valued-MPPI −643.7± 224.3 2231.7± 202.9 0.29± 0.01 −2875.5± 79.9
Residual-MPPI −415.2± 265.5 2383.7± 303.6 0.28± 0.01 −2798.9± 145.1

Residual-SAC (200K) −356.0± 77.0 703.6± 71.5 0.11± 0.00 −1059.7± 30.1
Residual-SAC (4M) 2111.5± 79.1 2382.3± 78.0 0.03± 0.00 −270.8± 7.3

Env Policy Total Reward Basic Reward ¯|θ| Add-on Reward

Swimmer

Prior Policy −344.5± 3.3 328.2± 1.5 0.67± 0.00 −672.7± 1.9

Greedy-MPPI −35.1± 7.1 232.7± 3.8 0.27± 0.01 −267.8± 7.3
Full-MPPI −1685.3± 108.1 13.5± 7.5 1.70± 0.11 −1698.8± 107.4
Guided-MPPI −122.6± 6.9 222.1± 4.8 0.34± 0.01 −344.7± 7.6
Valued-MPPI −157.4± 6.5 243.8± 5.0 0.40± 0.01 −401.3± 8.1
Residual-MPPI −35.1± 6.7 232.8± 4.2 0.27± 0.01 −267.9± 7.2

Residual-SAC (200K) −168.1± 113.8 −0.4± 18.1 0.17± 0.11 −167.7± 114.7
Residual-SAC (4M) −9.3± 15.4 −0.1± 14.3 0.01± 0.01 −9.2± 7.3

Env. Policy Total Reward Basic Reward z̄ Add-on Reward

Hopper

Prior Policy 6790.9± 40.2 3439.8± 12.7 1.34± 0.00 3351.1± 29.4

Greedy-MPPI 6881.8± 180.6 3423.9± 73.5 1.35± 0.00 3457.9± 109.5
Full-MPPI 20.7± 3.2 3.6± 0.7 1.24± 0.00 17.1± 2.6
Guided-MPPI 6793.8± 301.1 3422.2± 122.1 1.34± 0.01 3370.8± 183.1
Valued-MPPI 6832.2± 179.6 3434.7± 73.3 1.34± 0.00 3397.4± 108.3
Residual-MPPI 6902.8± 41.0 3430.8± 12.8 1.35± 0.00 3472.0± 30.7

Residual-SAC (200K) 5993.2± 1327.7 3019.0± 627.6 1.35± 0.02 2974.1± 709.0
Residual-SAC (4M) 7077.2± 514.9 3445.9± 229.2 1.37± 0.00 3631.3± 287.0

Env Policy Total Reward Basic Reward v̄y Add-on Reward

Ant

Prior Policy 4169.1± 1468.3 4782.9± 1639.1 −0.61± 0.22 −613.7± 216.4

Greedy-MPPI 4518.3± 1755.3 4018.8± 1597.1 0.50± 0.18 499.4± 181.6
Full-MPPI −2780.7± 153.7 −2774.4± 110.1 −0.01± 0.11 −6.2± 108.5
Guided-MPPI 3041.5± 2111.2 3098.6± 2142.3 −0.06± 0.14 −57.1± 139.4
Valued-MPPI 4321.5± 1848.7 4727.7± 1995.1 −0.41± 0.22 −406.2± 222.6
Residual-MPPI 4877.6± 1648.4 4565.9± 1560.6 0.31± 0.14 311.6± 137.2

Residual-SAC (200K) −180.3± 20.4 −181.5± 20.4 0.00± 0.00 1.1± 1.1
Residual-SAC (4M) 6016.9± 1001.8 3836.1± 705.3 2.18± 0.30 2180.8± 303.7

The evaluation results are in the form of mean± std over the 500 running episodes. The total reward is calculated on full task,
whose reward is ωr + rR.

F.4 ABLATION OF DYNIMIC MODEL

To demonstrate the effectiveness of the proposed dynamics training design, we conducted the cor-
responding ablation study. The results in Table 11 show that planning based on dynamics trained
with a multi-step (5-step) error is more effective in both the laptime and off-course steps metrics.
Moreover, using online data to fine-tune the dynamics model also yields significant performance
improvements in the one-step error approach. Regarding the exploration noise, the effect of this
technique in GTS is not particularly significant.

F.5 SIM-TO-SIM EXPERIMENTS

To motivate future sim-to-real deployments, we designed a preliminary sim-to-sim experiment by
replacing the test vehicle’s tires from Race-Hard (H.) to Race-Soft (S.) to validate the proposed al-
gorithm’s robustness under suboptimal dynamics and prior policy. Since Residual-MPPI is a model-
based receding-horizon control algorithm. The dynamic replanning mechanism and dynamics model
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Figure 9: Ablation Study of Horizon in MuJoCo

Figure 10: Ablation Study of Samples in MuJoCo

adaptation could potentially enable robust and adaptive domain transfer under tire dynamics discrep-
ancy. The experimental setup and parameter selection are consistent with those in Sec. 5.2.

In sim-to-sim experiments, the domain gap brought by the tire leads to massively increased off-
course steps in prior policy, which may lead to severe accidents in sim-to-real applications. In
contrast, Residual-MPPI could still drive the car safely on course with minor speed loss, despite the
suboptimality in prior policy and learned dynamics. Furthermore, as it shown in the Few-shot MPPI
(S.) results, Residual-MPPI could serve as a safe starting point for data collection, policy finetuning,
and possible future sim-to-real applications.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 11: Ablation Study of Tempreture in MuJoCo

Figure 12: Ablation Study of Noise Std. in MuJoCo

Figure 13: Ablation Study of ω′ in MuJoCo
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Figure 14: Ablation Study of Horizon and Samples in GTS

Figure 15: Ablation Study of Temperature in GTS

Figure 16: Ablation Study of Noise in GTS
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Figure 17: Ablation Study of ω′ in GTS

Table 11: Dynamics Design Ablation Results in GTS

Policy Modules Add-on Task

Exploration Noise Multi-Step Error Finetune Lap Time Off-course Steps

one-step Zero-shot MPPI ✓ ✕ ✕ 124.18± 0.35 13.2± 5.33
one-step Few-shot MPPI ✓ ✕ ✓ 123.27± 0.13 7.10± 3.75
No-exp Zero-shot MPPI ✕ ✓ ✕ 123.51± 0.25 10.02± 3.70
No-exp Few-shot MPPI ✕ ✓ ✓ 123.02± 0.15 4.71± 2.89

Zero-shot MPPI ✓ ✓ ✕ 123.34± 0.22 9.03± 3.33
Few-shot MPPI ✓ ✓ ✓ 122.93± 0.14 4.43± 2.39

The evaluation results are in the form of mean± std over 10 laps.

Table 12: Sim-to-Sim Experimental Results of Residual-MPPI in GTS
Policy GT Sophy 1.0 (H.) GT Sophy 1.0 (S.) Zero-shot MPPI (S.) Few-shot MPPI (S.)

Lap Time 117.77± 0.08 116.81± 0.12 123.49± 0.21 122.56± 0.26
Off-course Steps 93.13± 1.98 131.50± 2.75 8.27± 3.62 3.93± 2.86

The evaluation results are in the form of mean± std over 10 laps.
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