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Abstract

Multi-parameter persistent homology is a branch of topological data analysis that
is notorious for being more difficult than the standard (one-parameter) version,
both in theory and for algorithmic problems. We report on three ongoing projects
that demonstrates that multi-parameter method are applicable to large data sets.
For instance, natural bi-filtrations generalizing Vietoris-Rips or alpha filtrations
for hundred of thousands of points can be decomposed within seconds in their
indecomposable parts.

1 Introduction

Persistent homology is a main branch of topological data analysis that analyzes data sets under the
lens of topological changes with respect to a real scale parameter. This paradigm has been established
around 20 years ago and since then witnesses increasing interest in applied fields, ranging from image
analysis over neuroscience to material science and cosmology.

The standard theory of persistent homology is restricted to a single real scale parameter. However,
in many applications it might be natural to consider several parameters – think of a color image
containing with RGB-values or a metric space equipped with a function. Multi-parameter persistent
homology is an extension to this type of data. The first result for that theory was a negative one [3],
showing that the infamous persistent barcode has no analogue for two and more parameters. Despite
this initial setback, researchers have identified several partial, yet informative invariants [3, 10, 13, 15].

These theoretical advances raise the question of practical efficiency. While some concepts are
provably hard to compute [2], several papers present polynomial time (approximation) algorithms and
report on implementations and a promising practical performance [1, 4, 8, 11, 14]. Based on this work,
we identify the following three steps in the pipeline of multi-parameter persistence computation:

Complexification We transform the input data into a combinatorial chain complex parameterized
over Rd. Typically, this chain complex arises as the boundary matrix of a simplicial complex
that is filtered with d parameters.

Compression The chain complex from the first step is typically large. Of interest is primarily its
persistence module which captures the homology of the chain complex. We search for a
smaller structure to represent this persistence module either precisely or approximately.

Comprehension Finally, we aim for an understanding of the underlying data sets from its homologi-
cal properties. Algorithmic tools for this step are, for instance, to compare two persistence
modules, or to decompose a module in its indecomposable parts.
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2 Recent developments

We report on several ongoing projects which fit into the pipeline of multi-parameter persistence and
significantly push the limits of input sizes that it can be applied for.

Multi-cover filtrations. A standard construction in TDA is to replace a point cloud with balls of a
radius r, and to study the topological evolution when r varies. A natural extension is to restrict to
the area of Euclidean space that is covered by at least k of the balls (k = 1 the yields the definition
above). This yields a bi-filtration with parameters r and k capturing more information about the
point cloud than the standard construction. Previous approaches either produced prohibitively large
complexes [17] or lead to zigzag structures that are more diffult to process in subsequent steps [9].

We found a simple construction based on higher-order Delaunay triangulations which yields a bi-
filtered simplicial complex and is of small size [5]. Hence, it can be interpreted as a multi-parameter
analogue of the alpha filtration. Moreover, we prove an equivalence result of our construction
with the rhomboid tiling from [9] which allows us to use their existing efficient implementation for
computations. With that we can, for instance, compute the multi-filtration of 200,000 points in the
plane for k ≤ 4 in around one minute.

Minimal presentations. A (graded) presentation matrix is a way to express the homological
information of a persistence module: The rows of the matrix represent the generators of homology
groups, the columns encode the relations between them. Ideally, one aims for a minimal presentation,
that is, one with as few generators and relations as possible. Lesnick and Wright [14] proposed an
algorithm to compute a minimal presentation for 2-parameter persistence modules. Their algorithm
is implemented in Rivet and outperforms the more general algorithms provided in computer algebra
systems like Magma and Singular.

We present improvements over the Lesnick-Wright algorithm which lead to further dramatic per-
formance gains, both in terms of runtime and memory consumption [12]. In simple terms, the
Lesnick-Wright algorithm iterates over a large 2-dimensional grid and spends most of the time to
look for those grid cells where computation is needed. We show how to avoid this grid iteration and
instead locate the places that require computation directly.

Our approach improved the previous algorithm on every tested instance and computes minimal
presentations for large inputs efficiently. For instance, for a function-Rips bifiltration consisting of
one million simplices, the minimal presentation is computed in around 25 seconds. The resulting
presentation matrix is only of dimension 11× 7 underlining the importance of this compression step.

Decomposition of persistence modules. While there is no barcode of a multi-parameter persis-
tence module into intervals [3], every such module admits a unique decomposition into indecompos-
able pieces by the the Krull-Remak-Schmidt theorem from commutative algebra. This decomposition
reveals valuable information about the module, for instance whether it decomposes into interval
or rectangle modules. Also, the decomposition allows for the computation of the multi-parameter
bottleneck distance [7]. The problem is polynomial-time solvable for more general modules with the
so-called Meataxe algorithm [16]. Recently, Dey and Xin proposed a more specialized algorithm
based on matrix reduction [8] with an improved complexity.

We provide a first implementation of the Dey-Xin-algorithm to decompose persistence modules given
as a presentation matrix [6]. We realized that its practical performance depends a lot on design
choices for the low-level primitives (such as the representation of the involved matrices). By carefully
such choices, our prototypical implementation decomposes matrices with ten-thousands of rows and
columns within seconds. We currently investigate the impact of further improvement ideas.

3 Next steps

We are currently experiencing a leap in algorthmic capabilities for multi-parameter persistence. While
the limits can probably be pushed further, we believe that the most important question is: how can
multi-parameter persistence used in real-world applications? Armed with efficient algorithmic tools,
we think that it is now the time to address this question.
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