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Abstract—The integration of paired medical MRI (Magnetic
Resonance Imaging) and PET (Positron Emission Tomography)
images holds considerable significance in clinical evaluations and
offers a richer source of clinical insights. However, acquiring
paired MRI-PET images poses challenges due to the various
practical constraints. To address this, MRI-PET translation
emerges as a valuable approach, enabling professionals to obtain
complementary information from one modality and enhance
decision-making using only single-modality images. Existing ap-
proaches predominantly rely on either using paired MRI-PET
images for training or treating the entire dataset as unpaired.
In this study, we introduce PaPaGAN, an innovative end-to-
end Partially Paired Generative Adversarial Network specifically
tailored for partially paired images. In a practical setting, where a
mix of paired and unpaired data is available, PaPaGAN leverages
the unpaired data to learn a mapping function capable of
generating a noisy intermediate image. To refine this intermediate
image and address the inconsistencies during the unpaired trans-
lation process, PaPaGAN employs a secondary image translation
module. This module is specifically trained using the paired
data, which provides a consistent mapping from source to
target domain images. By effectively harnessing both paired and
unpaired MRI-PET images, our method significantly enhances
translation capabilities, facilitating precise image translation and
elevating image quality for the target modality. Our quantitative
and qualitative medical image translation experiments on two
public datasets, ADNI and OASIS, demonstrate the superiority
of PaPaGAN over alternative image translation methods.

Index Terms—Medical Image Translation, PaPaGAN, Partially
Paired Translation.

I. INTRODUCTION

Recent advancements in medical image-to-image translation
have revolutionized clinical practices, streamlining workflows
and opening new avenues for diagnostic and treatment plan-
ning [15], [20], [23]. These methods are very effective in
generating realistic medical images across diverse modali-
ties, democratizing access to medical imaging, and poten-
tially revolutionizing patient care and research. An exemplary
application lies in the translation between Magnetic Reso-
nance Imaging (MRI) and Positron Emission Tomography
(PET). While MRI provides intricate details of soft tissues,
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aiding in the assessment of brain structure and pathology,
PET highlights metabolic activities crucial for diseases like
Alzheimer’s. The synergistic combination of both modalities
offers invaluable insights for accurate diagnosis and treatment
decisions. However, obtaining both MRI and PET scans for ev-
ery patient poses challenges due to cost constraints, equipment
availability, and concerns over radiation exposure. In such
cases, image-to-image translation models can be employed to
enhance decision-making by providing complementary infor-
mation of the missing modality.

Generative adversarial networks (GANs) [9] is a popular
image-generation technique and serve as the cornerstone for
several deep learning-based image-generation techniques [17],
[19], including image translation [1], [4], [12], [30]. These
image translation methods can broadly be classified into paired
and unpaired approaches. Paired medical image translation
relies on access to matched MRI-PET image pairs for model
training, whereas unpaired methods operate on MRI and PET
images without requiring pairwise correspondences.

Pix2pix [12] stands out as a leading technique for image-to-
image translation, particularly suited for paired data scenarios.
It employs an image generator and an image discriminator. The
discriminator’s objective is to differentiate between the origi-
nal target image and the images synthesized by the generator.
The generator tries to outsmart the discriminator and, in turn,
produces realistic images that closely mimic the target domain.
By harnessing the power of paired images, Pix2pix excels in
enhancing pixel-to-pixel level similarity, thereby preserving
fine-grained details during translation. Other techniques for
paired data follow the principle with some extensions. How-
ever, the availability of paired data is scarce, particularly in
the medical domain, where data collection can be arduous and
resource-intensive.

For image translation using unpaired data, which is of-
ten easier to collect, CycleGAN [30] is the most popular
technique. It employs two generator-discriminator pairs, one
focusing on the source domain while the other tackles the
target domain. One generator is tasked with converting im-
ages from the source domain to the target domain, while
the other performs the inverse transformation. Similarly, one
discriminator focuses on the source domain, and the other
tackles the target domain. The generators are trained to fool the



discriminator along with a cycle consistency loss that helps to
preserve the main content of the image. The cycle consistency
loss is an unreliable method for preserving the content as an
image can be translated to something entirely different and
then reconstructed as the original when translated back. Most
unpaired data training approaches are based on CycleGAN
with limited enhancements.

Our method, PaPaGAN, is specifically designed to handle
partially paired data, where some data is paired while the
rest remains unpaired. This is a more realistic setting as it
is always easy to get unpaired data, which can be combined
with paired data to create a partially paired dataset. Traditional
paired image translation methods overlook unpaired data,
missing out on potential enhancements. Conversely, unpaired
approaches neglect the valuable information available in paired
data, potentially yielding suboptimal translations. PaPaGAN
bridges this gap by leveraging both paired and unpaired data
effectively.

Our approach employs two generator-discriminator pairs
trained with a mix of paired and unpaired data (treated as un-
paired data only) and cycle consistency loss to translate images
into the target domain. The output from these generators is
then fed into a secondary generator-discriminator pair trained
exclusively on paired data. Therefore, the input image passes
through two image generator modules to achieve the final
target image. The first generator creates an image in the target
domain but emphasizes encoding the source properties during
its reconstruction due to the cycle consistency loss. However,
this loss can be ineffective when significant differences exist
between domains. To address this, we introduce a second
image generator that takes the source image and the output
of the first generator to produce a more accurate version.

PaPaGAN is a bi-directional translation method that simul-
taneously trains networks for both translation directions. This
bi-directionality allows us to use the same discriminator for
translating paired data in both directions, effectively regular-
izing the networks. In this work, our contributions can be
summarized as follows:

• PaPaGAN is designed to work effectively with partially
paired datasets, which include both paired and unpaired
data. This setting is more realistic and practical in many
real-world applications where unpaired data is more read-
ily available than paired data.

• To address the limitations of cycle consistency loss,
especially when there are significant differences between
domains, PaPaGAN introduces a second generator to
produce an enhanced translation.

• Comprehensive evaluations on benchmark datasets such
as ADNI [26] and OASIS [13] demonstrate that PaPa-
GAN outperforms unpaired and paired baselines. Ex-
periments show that the partially paired data-based
frameworks provide advantages that neither setting
(paired/unpaired) can achieve alone. This highlights the
innovative aspect of PaPaGAN in integrating multiple
levels of supervision for superior performance.

II. RELATED WORK

While PET is a relatively new modality compared to non-
invasive MRI, its application in diagnosis is rising. However,
obtaining both MRI and PET scans for each patient is often
impractical due to the high costs, limited availability of PET
scanners, and concerns over radiation exposure. To mitigate
these issues, recent research has focused on generating PET
data from existing MRI or CT scans. For example, Li et al. [14]
utilized a 3D-CNN to learn the non-linear mapping between
paired MRI-PET scans from the ADNI dataset. Gao et al. [8]
introduced RIED-Net, which aims to produce higher-quality
PET images from MRI data (also from the ADNI dataset).
These techniques, however, often result in smoothed images
that lose detail because they use L1/L2 optimization methods.
Notably, the task of MRI-to-PET translation is related to, but
distinct from, MRI super-resolution (e.g., [6]), where the out-
put is higher-resolution MRI images, and domain adaptation
(e.g., [2], [3]), where classification is typically the objective.

Generative Adversarial Networks (GANs) have recently
shown significant success in image generation and restoration
tasks. Due to their ability to produce high-quality synthetic
images, GANs have been integrated into various multi-modal
or cross-modal medical imaging tasks. Pan et al. [18] pro-
posed a 3D conditional GAN (cGAN) framework to model
bi-directional mappings between MRI and PET scans for
Alzheimer’s Disease (AD) diagnosis. Yaakub et al. [28] de-
signed a 3D GAN with residual connections to learn the
mapping from MRI to PET for evaluating patients with focal
epilepsy. Sikka et al. [22] employed a method that enhances
both global structural integrity and local detail fidelity in
synthetic PET images using a multi-path architecture. Other
significant architectures utilizing paired data for training in-
clude Pix2Pix [12], CoCaGAN [11], and EA-GAN [29].

Despite their success, these frameworks depend heavily on
paired cross-modal data, which is costly and labor-intensive
to collect and annotate. Several unpaired image translation
frameworks [4], [5], [30] have been developed recently to
tackle the challenge of paired data scarcity. For instance, Zhu
et al. [30] introduced CycleGAN, which incorporates a cycle
consistency loss specifically designed for unpaired medical
image generation. StarGAN [4], [5] uses a discriminator
that distinguishes between fake and real images and per-
forms auxiliary domain classification. Another notable method
for unpaired image-to-image translation is the UNsupervised
Image-to-image Translation (UNIT) [16], which is based on a
Variational Autoencoder (VAE)-GAN framework.

In our work, we address a more common scenario where
data often exist in a partially paired form; some data is paired
while most remain unpaired. Instead of relying solely on cycle
consistency loss [30], we propose to improve or correct a
noisy approximation of the translated image using paired data
mapping. The proposed method helps to preserve structural
details from the source and incorporate target domain style
adaptation for enhanced image quality.



(a) Unpaired Data Training (b) Paired Data Training (c) Identity Training

Fig. 1: Model Diagram of our approach. (a) shows the cycle consistency and adversarial training with unpaired data. (b)
demonstrates usage training of image generators with paired data. (c) shows identity loss, which promotes paired generators
to use correct inputs from unpaired generators. Dotted lines denote Identity loss (L1-loss) between two images.

III. METHOD

A. Problem formulation

Consider a dataset P ∈ {xp, yp}Np comprising Np pairs
of source and target domain images, where xp represents a
source image and yp denotes its corresponding image from
the target domain. Additionally, let U ∈ {xu}Nx , {yu}Ny

represent an unpaired dataset containing Nx source images
and Ny target images. The objective of PaPaGAN is to learn
an optimal image translation mapping between the source and
target domains by utilizing both the paired data P and the
unpaired data U .

B. Unpaired Data Training

Partially Paired data compromises of both paired P and
unpaired U data. However, paired data can also be treated
as unpaired data. Hence, we first combine P paired and U
unpaired datasets to form a larger unpaired dataset U ′ of size
Np + Nu. By doing this, we effectively increase the size of
available unpaired data. More data helps networks approximate
their domains better and also regularize the networks.

The training with unpaired data compromises two pairs of
generator and discrimination, namely Gu1, Gu2, Du1, and
Du2, which are trained using generative adversarial network
framework [9]. The generators Gu1 take x as input and outputs
ȳ = Gu1(x) and similarly we get x̄ = Gu2(y). We train the
discriminators Du1 and Du2 to differentiate real vs generated
images using,

Lud = −Ex,y∼U ′ [(1−Du1(y))
2 +Du1(Gu1(x))

2+

(1−Du2(x))
2 +Du2(Gu2(y))

2] (1)

The generators are tasked to fool the discriminators, which in
turn helps them to generate realistic images as,

Lgan
ug = −Ex,y∼U ′ [(1−Du1(Gu1(x)))

2+

(1−Du2(Gu2(y)))
2] (2)

We also train the image generators with cycle-consistency loss
[30] to ensure network outputs do not refrain too much from
the original input,

Lcc
ud = −Ex,y∼U ′ [(x−Gu2(Gu1(x)))

2+

(y −Gu1(Gu2(y)))
2] (3)

The two training loss functions of image generators are
balanced using a hyper-parameter λu = 10. The final training
loss for the image generator is,

Lug = Lgan
ug + λuLcc

ug (4)

C. Paired Data Training

Unpaired data training uses cycle consistency loss to ensure
the content does not change much during the translation. How-
ever, in cases with higher domain differences, such as cross-
modal medical imaging, the effectiveness of cycle consistency
loss tends to deteriorate. In our case, MRI and PET modalities
contain significant domain differences. In such cases, cycle
consistency forces the network to encode source properties
for reconstruction rather than preserving visual content.

To combat this problem, we refine the generated target
image using another set of generators Gp1 and Gp2. The
generators Gp1 and Gp2 are specialized for task of correcting
mistakes of Gu1 and Gu2 respectively. They take the output
from the unpaired generators Gu1 and Gu2 along with their
inputs x and y and learn to generate the correct outputs using
paired data ¯̄y = Gp1(x;Gu1(x)) and ¯̄x = Gp2(Gu2(y); y)
respectively.



Unlike traditional GANs, we train the generators Gp1 and
Gp2 using a single discriminator Dp for both domains instead
of two discriminators. The discriminator Dp is a conditional
discriminator that takes both source and target images as input.

To provide multiple inputs in the generators and discrim-
inator, we fuse the source and the target domain images
along the channel dimension, doubling the number of channels
in their inputs. This strategy enables Gp1, Gp2 and Dp to
learn the structural similarities inherent in paired source and
target domain images. By doing so, the discriminator is better
equipped to ensure that the generator preserves the essential
content and structural details during the translation, resulting
in more accurate and realistic outputs. It also enables us to use
the same discriminator for both domains, effectively increasing
its training data. We train the Dp to differentiate real vs fake
pairs of both the domains as,

Lpd = −E(x,y)∼P [(1−Dp(x; y))
2+

1

2
(Dp(x;Gp1(x;Gu1(x))))

2 +
1

2
(Dp(Gp2(Gu2(y); y); y))

2]

(5)

The 1
2 weightage is given to each fake generated image pair

to avoid any bias towards the fake class due to the imbalance.
The generators are tasked to fool the discriminator,

Lgan
pg = −E(x,y)∼P [(1−Dp(x;Gp1(x;Gu1(x))))

2+

(1−Dp(Gp2(Gu2(y)); y); y)
2] (6)

Integrating the GAN losses with conventional metrics such as
L1 and L2 distances has proven beneficial for convergence
[12], [30]. This accelerates convergence rates and further
encourages generated outputs to closely resemble the ground
truth. Thus, we incorporate the L1 distance into the training
objective of the generators as,

Ldist
pg = E(x,y)∼P ||y −Gp1(x;Gu1(x))||1+

||x−Gp2(Gu2(y); y)||1 (7)

Similar to unpaired data training, we balance the generator
losses using λp = 10 hyperparameter.

D. Identity Training

The primary goal is to ensure that the final output images are
as accurate as possible. To achieve this, the paired generators
refine and correct the output of the unpaired generators. How-
ever, if the output of unpaired generators is optimal, we want
the paired generators to recognize and retain optimal outputs
from the unpaired generators. Hence, we add an identity loss
for the paired generators as,

Lidentity
pg = E(x,y)∼P ||y −Gp1(x; y)||1+

||x−Gp2(x; y)||1 (8)

The only difference between 7 and 8 is that we use the
ground truth target image as part of the input to the paired
generators. By incorporating the ground truth target image
into the input during training, the paired generators learn to
recognize correct outputs. This training method ensures that

paired generators can effectively utilize the correct inputs
without altering them unnecessarily. It also augments their
training data and enhances the overall performance.

E. Training procedure

We follow the standard procedure of training discriminators
and generators iteratively. First, we train the unpaired discrim-
inators Du1 and Du1 on unpaired data and the paired discrimi-
nator Dp on paired data, respectively. Following discriminator
training, we train the combined generators framework Gu1,
Gu2, Gp1, and Gp2 of paired and unpaired data with the
combined loss functions,

Lg = Lgan
ug + λuLdist

ug + Lgan
pg + λpLdist

pg + λiLidentity
pg (9)

λu, λp, and λi are loss-weighing hyperparameters and are set
to 10, 10, and 1, respectively. We generate the final output
target image as ¯̄y = Gp1(x;Gu1(x)) and ¯̄y = Gp2(Gu2(y); y)
for domains using the trained generators and inputs x and y
respectively. Our approach is modeled in Figure 1.

IV. EXPERIMENTS

A. Settings

1) Dataset: To assess the effectiveness of PaPaGAN, we
conducted experiments on two prominent public MRI-PET
datasets: ADNI (Alzheimer’s Disease Neuroimaging Initiative)
and OASIS-3 (Open Access Series of Imaging Studies-3). For
a comprehensive evaluation, we performed image translation
experiments in both directions: from MRI→PET and vice
versa. ADNI is a multisite study aimed at enhancing clinical
trials for Alzheimer’s Disease (AD) prevention and treatment.
From ADNI, we collected 2,717 paired 3D MRI-PET samples
after excluding any corrupted or missing data. Additionally, we
gathered an additional 2,174 MRI samples lacking paired PET
counterparts. OASIS-3, collected by Washington University,
is a third-generation database obtained with a waiver of
informed consent. After filtering out corrupted or missing data,
we obtained 770 3D paired MRI-PET and 2,071 extra MRI
samples, respectively. The PET data for both of these datasets
have been acquired with different radiotracers, heterogeneous
patient demographics, and various disease-specificities. In this
work, we only consider the criteria of a single radiotracer when
filtering PET images. For ADNI and OASIS-3, FBP and AV45
PET images were selected during filtering, respectively.

To facilitate our experiments, we divided each dataset
randomly into five equal splits, each containing MRI-PET
3D paired samples. One split was allocated for testing, two
splits for paired training data, and the remaining two splits for
unpaired data. To ensure fairness, PET images from the last
two splits (unpaired data) were paired only with MRI images
from the extra unpaired MRI dataset, preventing any overlap
between paired and unpaired images. This setup mirrors real-
world application scenarios. This resulted in 1,088 paired and
1,088 unpaired samples in the ADNI training set, while the
test set contained 543 paired samples. The OASIS training
set comprised 308 paired and 308 unpaired samples, with 154
paired samples in the test set.



TABLE I: Evaluation results on the ADNI and OASIS datasets.

Method
ADNI OASIS

MRI→PET PET→MRI MRI→PET PET→MRI

RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑

Pix2pix [12] 0.079 0.914 27.589 0.331 0.342 15.665 0.091 0.915 26.747 0.191 0.630 20.446
PAN [25] 0.081 0.909 27.769 0.277 0.552 17.400 0.108 0.893 25.136 0.185 0.618 20.755

CycleGAN [30] 0.137 0.812 21.471 0.286 0.545 17.145 0.088 0.922 26.347 0.213 0.586 19.541
PaPaGAN 0.076 0.922 29.133 0.265 0.579 17.927 0.065 0.938 29.502 0.181 0.648 20.933

TABLE II: Significance test: p-values of paired t-test for methods mentioned in the first column rows (Pix2Pix, PAN, CycleGAN)
w.r.t. PaPaGAN for ADNI and OASIS datasets.

Dataset ADNI OASIS

MRI → PET PET → MRI MRI → PET PET → MRI

Method SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

Pix2Pix 0.0432 7.21e-20 2.13e-209 2.57e-112 0.0005 1.08e-13 0.0251 7.24e-05
PAN 0.0060 1.55e-14 6.23e-05 1.57e-07 1.95e-11 4.23e-26 0.0028 0.0220

CycleGAN 4.49e-61 1.38e-150 4.21e-06 0.68e-07 1.55e-32 3.64e-14 1.61e-254 2.11e-318

2) Data Preprocessing: The T1-weighted MR data are
rigidly aligned with an MNI template and then analyzed using
FreeSurfer [7] (version 7) for intensity inhomogeneity correc-
tion and standardization followed by volumetric segmentation
and cortical parcellation. PET imaging analysis was performed
using the standard protocols that included scanner harmo-
nization, motion correction, and PET-to-MR registration. We
further processed the PET images through a unified pipeline
[24] to extract regional values, culminating in the generation
of intensity-normalized SUVR images. For these images, the
cerebellum served as the reference region, providing a stable
baseline for comparing and analyzing metabolic activity across
the brain region. All images are processed to 256×256×256.

3) Implementation Details: All methods utilized a 3D
cubic input dimension of size 256 × 256 × 256. To ensure
regularization, a zero padding of 12 size was applied to
each dimension, accompanied by RandomCrop. For paired
data, the same cropping scheme was employed to maintain
structural similarities between pairs. The training comprised
25,000 iterations with the Adam optimizer using β values of
(0.5, 0.999) and a batch size of 4. The learning rate was set
to 2e-4 and underwent linear decay to zero after half the total
iterations, with a warm-up period of 500 iterations initially.
The same configuration was employed across all experiments
(including baselines). The code accompanying this work will
be released on the author’s website.

We opt for a 3D-UNet [21] architecture with 3D convo-
lution and 3D Instance Normalization operations and skip
connections [10] to serve as our generator due to its efficient
memory utilization. However, it’s worth noting that any image
translation framework could be utilized. The encoder of the
UNet used a leaky relu activation, whereas the decoder used
relu activation. The number of features increases from 12 to
192 in the encoder, and the decoder decreases it in reverse for
unpaired generators. The paired generators are smaller and

contain features ranging from 8 to 64 only with a shallower
depth. All discriminators adopt a 3D Patch discriminator
design [12], enabling them to classify whether an image patch
is real or synthetic. This choice of patch discriminators offers
advantages such as parameter efficiency and improved regular-
ization. It uses feature maps ranging from 16 to 128 based on
the depth of the network. Each block uses a convolution layer
followed by Instance Normalization and leaky relu activation
except the first and the last block. The first block skips the
normalization layer similar to [12], [30], and the last block
consists of a single convolution that maps the features maps
to a single dimension. The paired discriminator concatenates
paired data along the channel dimension, whereas the unpaired
discriminator uses the original input. The unpaired generator,
paired generator, and each discriminator contain about 5.9
million, 1.8 million, and 1.75 million training parameters,
respectively.

B. Results and Analysis

1) Quantitative Results: We employ Root Mean Squared
Error (RMSE), Structural Similarity Index Measure (SSIM),
and Peak Signal-to-Noise Ratio (PSNR) to assess the per-
formance of various image translation models. We compared
our approach against the following image translation methods:
Pix2Pix, PAN, and CycleGAN, which belong to different
settings of supervision. Pix2Pix and PAN are paired data-based
image translation methods requiring full supervision. Cycle-
GAN, on the other hand, is a popular unsupervised image-
translation method that doesn’t require any paired data. Xu et
al. [27] is a semi-paired data-based framework similar to ours.
However, we exclude this from the baseline comparison due
to a lack of code availability and dataset differences. Tables I
presents the quantitative outcomes of all methods across two
directional image translation tasks: MRI→PET translation and
PET→MRI translation. PaPaGAN consistently outperforms
Pix2Pix, PAN, and CycleGAN across all metrics on all the
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Fig. 2: Qualitative examples on MRI→PET translation from OASIS dataset. We show random crops of a few middle 2D central
slices from 3D images. The first row shows the input MRI image to the model. The last row shows the ground truth, and
the 2nd to 6th rows show the results of the different models. We see that PaPaGAN (Unpaired) missed some key aspects, but
PaPaGAN (Final) fixed them and provided more accurate details than all the baselines.

tasks, underscoring its robustness. While Pix2Pix and PAN
are confined to paired translation, relying solely on paired
MRI-PET images, PaPaGAN capitalizes on both paired and
unpaired MRI and PET images to enrich its image generator.
CycleGAN, on the other hand, exhibits inferior results due to
its reliance on unpaired data and the necessity to preserve
unnecessary information for original image reconstruction.
This leads to a degradation in its image translation quality.

Furthermore, our analysis reveals a notable discrepancy in
translation performance between PET→MRI and MRI→PET
directions. This discrepancy primarily stems from MRI im-
ages containing richer detail and high-frequency information,
which aids the model in learning more precise MRI→PET
translations. Conversely, the scarcity of detailed information
in PET images poses challenges for generating high-quality
MRI images in the reverse PET→MRI translation task. We
believe that more training data should alleviate this issue.

To evaluate the statistical significance of our results, we
conducted a paired t-test of all baseline methods with respect

to our framework, PaPaGAN. We set the following standards
for evaluation:

• Null Hypothesis (p > 0.05): No significant difference
between PSNR/SSIM of two methods

• Alternate Hypothesis (p ≤ 0.05): The difference between
PSNR/SSIM is significant (not by chance).

Table II demonstrates that for all the methods, PaPaGAN has
significantly different quantitative metrics for both PSNR and
SSIM in all cases. For all baselines compared in Table II, our
framework has significantly low p-values, indicating that the
quality of the translated images using our framework is higher.

2) Output Visualization: Figure 2 and 3 visualizes the
results of our approach (PaPaGAN-Final) and baselines on
the OASIS dataset for MRI→PET and PET→MRI using
Sagittal view respectively. Evidently, the images generated by
PaPaGAN exhibit superior visual quality and are closest to the
ground truth. This indicates PaPaGAN’s effective utilization
of unpaired target domain images to achieve the desired
appearance of target images. We also show the translated
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Fig. 3: Qualitative examples on PET→MRI translation from ADNI dataset.

(a) RMSE↓ (b) SSIM↑ (c) PSNR↑

Fig. 4: Impact of the different number of Paired images from ADNI dataset (MRI → PET). We increased the number of unpaired
images when decreasing paired images to keep the total number of images the same. We can observe that the unpaired images
used in PaPaGAN help reduce RMSE and increase SSIM and PSNR.

output images of the unpaired generator in Figure 2 (PaPaGAN
- Unpaired in the 5throw). We can observe that the unpaired
output is missing all the essential intensities, which are then
corrected by the paired generator in the final output. The
comparison in these figures highlights the significant advan-
tages of PaPaGAN’s approach. By integrating unpaired and
paired data through a two-stage generation process, PaPaGAN

can produce images that adhere closely to the desired target
domain characteristics and retain essential details that might
be lost when relying solely on unpaired data.

3) Impact of the number of Paired Images: We showcase
the significance of paired and unpaired data in PaPaGAN
by conducting experiments on the quantity of paired and
unpaired images. Instead of employing two splits containing



paired images (1, 088 paired images), we substitute paired data
with unpaired data, i.e., we replace paired data with unpaired
data. This keeps the total (paired+unpaired) the same but
reduces paired data and increases unpaired data. Since Pix2Pix
is trained exclusively on paired data, its training data is
reduced, whereas PaPaGAN utilizes all the data. The findings
of this experiment are illustrated in Figure 4. It shows that
as the number of paired images decreases, the performance
of pix2pix suffers significantly, whereas PaPaGAN exhibits
a comparatively less decline in performance, highlighting the
substantial impact of unpaired data.

V. CONCLUSION

In this study, we introduce PaPaGAN, an innovative end-
to-end medical image translation model leveraging GAN to
utilize partially paired images. Our setting closely mimics real-
world application scenarios, where a combination of paired
and unpaired data is commonly encountered. PaPaGAN effec-
tively utilizes both types of data to bolster the performance
of the image translator by preserving the image content and
providing high-quality outputs. Through comprehensive ex-
periments across two-direction cross-modal image translation
tasks and datasets, PaPaGAN demonstrates it outperformed the
baselines in both quantitative and qualitative evaluations.

REFERENCES

[1] Armanious, K., Jiang, C., Fischer, M., Küstner, T., Hepp, T., Nikolaou,
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