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Abstract

Despite extraordinary progress in artificial intelligence (AI), modern systems1

remain incomplete representations of human cognition. Vision, audition, and lan-2

guage have received disproportionate attention due to well-defined benchmarks,3

standardized datasets, and consensus-driven scientific foundations. In contrast,4

olfaction—a high-bandwidth, evolutionarily critical sense—has been largely over-5

looked. This omission presents a foundational gap in the construction of truly6

embodied and ethically aligned super-human intelligence. We argue that the ex-7

clusion of olfactory perception from AI architectures is not due to irrelevance but8

to structural challenges: unresolved scientific theories of smell, heterogeneous9

sensor technologies, lack of standardized olfactory datasets, absence of AI-oriented10

benchmarks, and difficulty in evaluating sub-perceptual signal processing. These11

obstacles have hindered the development of machine olfaction despite its tight12

coupling with memory, emotion, and contextual reasoning in biological systems.13

In this position paper, we assert that meaningful progress toward general and em-14

bodied intelligence requires serious investment in olfactory research by the AI15

community. We call for cross-disciplinary collaboration—spanning neuroscience,16

robotics, machine learning, and ethics—to formalize olfactory benchmarks, develop17

multimodal datasets, and define the sensory capabilities necessary for machines to18

understand, navigate, and act within human environments. Recognizing olfaction19

as a core modality is essential not only for scientific completeness, but for building20

AI systems that are ethically grounded in the full scope of the human experience.21

1 Introduction22

Over the past two decades, artificial intelligence (AI) and machine learning (ML) have undergone23

rapid development, steadily advancing toward the vision of super-human intelligence. This progress24

has been underpinned by the creation of objective, measurable benchmarks that enable rigorous25

model evaluation and reproducibility. AI systems now equate or surpass human performance in tasks26

ranging from medical diagnostics [123, 80] and image synthesis [121] to speech recognition [114]27

and fluent language communication [8]. In embodied intelligence, advances in tactile sensing allow28

robots to perceive stimuli with sensitivities that exceed human thresholds. Roboticists, in parallel,29

are building humanoid platforms capable of replicating everything from human gait [65, 115, 69] to30

dexterous hand manipulation [137, 45, 10], and even abstract reasoning capabilities [29, 43, 152].31

Yet, among the senses that define human embodiment, two remain largely absent in artificial systems:32

taste and smell. While the exclusion of gustation may be pragmatically justified—given its primary33

role in nutrient acquisition in humans—olfaction is far more integral to human cognition. As the34

third-highest bandwidth sensory modality after vision and audition, olfaction is uniquely linked to35

memory, emotional response, and decision-making. Its exclusion raises an important question: can we36
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Figure 1: The number of publications from ArXiV [38] and Semantic Scholar [86] over the period 1
January 2015 to 1 May 2025 in computer vision (CV), natural language processing (NLP), computer
audio (CA), and artificial olfaction (AO). (a) illustrates the total number of publications in each
category as retrieved from the ArXiv and Semantic Scholar databases. (b) shows the temporal trend
in published research for each category, with olfaction remaining stagnant over the last ten years.

claim to be in pursuit of building artificial general intelligence if we ignore one of the core modalities37

through which humans and other animals perceive, interpret and navigate in their environments?38

Despite its clear relevance, olfaction has been disproportionately neglected within the AI community39

[39, 85, 32]. The number of papers published in machine olfaction was less than 1% of the volume40

of computer vision and natural language processing over the last decade (see Figure 1 and Section A).41

This omission not only limits the completeness of embodied AI but also overlooks a rich domain of42

cognitive science that remains underexplored. We argue that this neglect stems from several com-43

pounding challenges—challenges that, while substantial, are tractable. Specifically, we identify five44

interconnected systemic gaps that can be addressed through a concerted effort by the AI community:45

1. Scientific Understanding of Olfaction: There is no unified scientific consensus on the46

underlying mechanisms of olfaction, with multiple competing hypotheses still under debate.47

2. Olfaction Data Standard: Olfactory data can be captured via heterogeneous sensor modal-48

ities, leading to a lack of standardized data representation and hardware specification.49

3. Objective Annotation: Sensor measurements often detect signals below the threshold of50

human observability, thus complicating objective evaluation and ground-truth labeling.51

4. Olfaction Datasets: AI lacks peer-reviewed, large-scale olfactory datasets, particularly52

those that are multimodal or suitable for training modern machine learning systems.53

5. Olfaction Benchmarks: The lack of established AI-specific benchmarks inhibits commu-54

nal advancement of olfactory perception, generation, reasoning, and sensor hardware.55

Our Position: We contend that the slow progress and inequity in machine olfaction—especially56

within artificial intelligence—can be attributed to these five systemic gaps. Addressing even a subset57

of these issues, whether through foundational research, infrastructure investment, or cross-disciplinary58

collaboration, could catalyze rapid advancements in the field and advance the state of the art of59

artificial olfaction equitable to vision, audition, and language to enable another facet of embodied AI.60

We therefore call for a focused research agenda, increased funding, and dedicated talent toward61

machine olfaction—recognizing it as a critical enabler for truly embodied artificial intelligence.62

2 The Case for Olfaction63

2.1 Scientific Understanding of Olfaction64

Olfaction is a unique sense in that multiple modalities can be used to detect an odourant. Some sensors65

"see" odourants by measuring the change in optical wavelength bands as a molecule passes. Other66

detectors measure small chemical reactions that occur through electron, oxygen, or other molecule67

transfer across a diffusion medium, such as an electrolyte. Still other sensors "hear" odourants by68

measuring the vibrational modes of the compound at a quantum level. The first two exemplify what is69

commonly referred to as the Shape Theory of Olfaction (STO) where a molecule’s physical properties70
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are hypothesized as the most significant contributors to its aroma [147] [16] [129]; the latter alludes71

to what is now commonly referred to as the "Vibrational Theory of Olfaction" (VTO).72

First postulated by Dyson in 1928 [55] and again supported in 1938 [98], the vibrational theory of73

olfaction was originally dismissed as experimental data via Raman spectroscopy was gathered as74

evidence against the idea. Luca Turin re-popularized the idea in 2001 [139] claiming that Dyson’s75

proposal was not incorrect, but perhaps slightly uncalibrated. Turin suggested that the detection76

mechanism in mammalian olfactory receptors is due to inelastic electron tunneling. Brooks, et al.77

discuss the feasibility of a derivative of VTO called phonon-assisted tunneling in [22]. Block, et al.78

have strongly refuted the plausibility of VTO in [17], leaving an unsettled debate on the matter.79

Both VTO and STO provide convincing evidence on why each theory is plausible, and both sides80

have growing experimental data to support. "Neither theory can fully explain why the scent of81

some molecules are concentration dependent. This is a problem well known to perfumers, and yet82

unexplained" [20]. Stevens reports in his 1951 work that "it is very probable that no one physical83

property alone is involved in the physical nature of the adequate stimulus" [133]. This leaves the84

science of olfactory sensing still open with no single sensor technology acting as a unified theory.85

How, then, does one create a data standard for a modality that does not yet have a consensus on86

its scientific functionality? From our position, this dichotomy in understanding is not a barrier to87

entry for defining olfactory datasets, but an opportunity for the AI community. The JPEG and PNG88

standards did not require a deep understanding of how images are interpreted by the human visual89

cortex (although we admit that understanding the biology of vision has influenced the larger progress90

of computer vision). Aircraft do not replicate nature’s form of flight, yet there are standards that each91

airplane must pass to prove airworthiness for operation. In this manner, we believe that it is important92

to keep the plausible theories of olfaction in tight consideration whilst developing a corresponding93

standard, but the scientific progress and standardization process can move forward in parallel.94

2.2 Olfaction Data Standard95

In contrast to other sensory modalities, olfaction lacks a universally accepted data standard. In vision,96

for instance, most visible colours can be approximated using combinations of red, green, and blue97

(RGB) channels, reflecting the trichromatic nature of human colour perception. As a result, digital98

images are typically discretised using this encoding scheme. Visual information is typically stored99

in well-defined formats such as PNG or JPEG (for images) and MP4 or AVI (for videos), which100

facilitate uniform processing and widespread data sharing. Similarly, audio files are binned according101

to different frequencies. Audio data benefits from standardized representations like WAV files, while102

speech can be transcribed into words (or tokens) that serve as a natural language standard. These103

common formats in each modality have been instrumental in driving rapid progress in AI systems.104

Why does olfactory data not have such analogue?105

Sensor Modality. Canines can detect and navigate to odours down to concentrations in the parts-106

per-trillion (ppt) regime [36]. For humans, the odour detection threshold in air ranges between107

sub-parts-per-billion (ppb) to hundreds of parts-per-million (ppm) [90]. Such low detection thresholds108

are achieved by pooling and averaging millions of receptor neurons across the nasal epithelium [1],109

each of them with a high sensitivity to a particular molecule or group of molecules.110

While computer vision and audition models operate with data rates and compression schemes com-111

parable to human input channels, there is still no consensus in machine olfaction on the optimal112

sensor modality. Deploying and interfacing biological olfactory receptors may be tempting, how-113

ever,maintaining their viability over extended periods remains technically challenging, inevitably114

leading to stability issues [130]. As a result, a range of alternative sensing elements are employed, in-115

cluding electrochemical sensors, conducting polymer composite gas sensors, metal-oxide (MOx) gas116

sensors, optical gas sensors, acoustic sensors, and carbon nanotube-based sensors. These sensor types117

differ in their performance characteristics—such as sensitivity, selectivity, and response time—as well118

as in their operational constraints, including power consumption, physical footprint, and long-term119

stability (e.g. susceptibility to drift). Sensor selection is therefore typically application-specific.120

Bandwidth. Recent work by Zheng and Meister [157] quantifies a long-suspected limitation of121

human cognition: humans’ total sensory input is ingested at ⇡1 GB/second. However, despite the122

brain’s massive internal bandwidth, our expressive output saturates at approximately 10 bits per123

second. This is consistent with prior estimates of speech production rates and reflects an inherent124
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dichotomy between high-bandwidth perception and low-bandwidth action/communication channels.125

For AI researchers and sensory neuroscientists, this bottleneck reframes the importance of input126

channels in artificial systems. As AI becomes embodied and more exploratory, there is a growing need127

to diversify and optimize sensory bandwidth and compute beyond vision, language, and audition.128

For humans, vision is the highest bandwidth modality. It is estimated that the afferent visual129

interpretation is at a rate of 20 MB/sec [157]. On a smaller scale, the human auditory system130

processes 150-200 KB/s (although only 12 KB/s may be perceived). What, however, constitutes the131

data ingestion rate of human olfaction? We can compute this from some first-order calculations.132

For human olfaction, we approximate data rate based on the following assumptions:133

• Sniffing rate of ⇡1 Hz134

• 400 olfactory receptor neuron (ORN) types, converging onto two glomeruli each [107]135

• 25 mitral cells for each glomerulus [71]136

• 0 - 13 spikes in each mitral cell per sniff cycle [51] (minimally represented by 4 bit)137

Rolling these calculations out yields >5 kB/sec for the human olfactory code, making olfaction our138

third-highest throughput sense. Canines, on the other hand, see the world through their nose: With139

approximately 2.5× receptor diversity, and an up to 8× higher sniffing rate [122], they likely perceive140

olfactory data at >100 kB/s. This 20× performance over humans is clear evidence to support why141

superhuman olfaction is achievable in multimodal and embodied AI.142

In machine olfaction, slow sensor dynamics have historically limited real-time use. Only recently143

have advances in hardware and software culminated towards closing this gap, where for instance an144

electronic nose with millisecond-scale response times [46] was demonstrated to outperform mice145

in temporal discrimination tasks. Such developments bring artificial olfactory bandwidth closer to146

biological levels, enabling new real-time applications that previously constrained development.147

Encoding. Both vision and audition process stimuli that vary continuously in physical properties148

(frequency of light and air waves, respectively), with corresponding continuous receptor mappings149

and perceptual representations. In contrast, olfaction forms a discrete space: As each odourant150

molecule has a unique molecular structure, there is no inherent analogous to the frequency. The vast151

diversity of odourant molecules simply does not align along a single, continuous dimension.152

Furthermore, each ORN can bind to multiple odourant molecules, and each odourant can bind to153

multiple ORNs, resulting in a combinatorial coding scheme [99]. At high odour concentrations—154

typically in the ppm range or above—odour representation at the receptor and glomerular levels155

relies on the broad tuning properties of olfactory receptors, leading to overlapping activation patterns156

across many receptor types [99, 96, 105]. However, such high concentrations are uncommon in157

natural environments, where odourant levels rarely exceed the ppb range [141]. Under these more158

ecologically relevant conditions, olfactory sensory neurons in mammals exhibit far sparser activation,159

with some receptors responding selectively to just a single odourant at low concentrations [26, 37, 48].160

Olfactory signals are not just encoded sparsely in receptor activation, but also in time [48]. In natural161

environments, airborne odours are carried in turbulent plumes, which are highly intermittent in both162

space and time [27]. Rather than forming a continuous stream, odour molecules arrive at a sensor or163

nose in brief, irregular bursts, separated by periods in which no odour is detected. These gaps can164

vary greatly in duration, depending on factors such as wind direction, turbulence, and distance from165

the source. As a result, animals often encounter odours in a fragmented and unpredictable manner,166

sometimes experiencing milliseconds-long bursts, followed by seconds or more of clean air [27, 154].167

The brain’s capacity to extract meaningful information from these fleeting encounters suggests that168

olfactory systems must be tuned for episodic, rather than continuous, sampling of the chemical world.169

Towards an olfactory data standard. The physics of olfaction suggest that we must think about it170

differently than its counterparts. Much like proprioception or vestibular inputs in biology, olfaction171

informs action and decision-making without requiring high-bandwidth symbolic output [157]. These172

properties lend olfaction well to neuromorphic computing, a young counterpart to the Von Neumann173

architecture [120]. Neuromorphic computing is designed to be more energy efficient, highly parallel,174

and facilitate event-based processing versus Von Neumann clock-based processing [116, 117, 88].175

Progress toward defining an olfactory data standard is not contingent on the selection of the processor,176

but the properties of olfaction are inherently optimized by the neuromorphic architecture. AI177

will naturally require more power, data, and compute as it scales and embodies more capabilities178
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Figure 2: Analogy of olfaction to computer vision. (a) The number of receptors in olfaction can
be likened to pixel count in an image, or its resolution. (b) The intensity of an olfaction sensor is
synonymous with the dynamic range in a camera. In other words, the number of molecules that dock
to the olfaction detector is analogous to the number of photons captured by the camera detector.

[2, 82]. Consequently, it would be prudent to keep in mind alternative architectures in the pursuit of179

standardizing the sense of smell. Addressing the opportunities we delineate here could be the catalyst180

for research into new computational architectures driven by olfaction. As a result, we believe that181

AI researchers and practitioners defining a data standard for olfaction is the first call to action.182

2.3 Objectivity183

Human olfaction is inherently subjective. For instance, a stroll through a village in France may184

evoke delight from the aroma of freshly baked baguettes or crêpes—described by humans as "fresh,"185

"sweet," or "roasted." These descriptors are inherently linguistic, culturally influenced, and shaped by186

personal experience. In contrast, olfactory sensors interpret scent via molecular signatures: discrete187

patterns of volatile organic compounds (VOCs) that can be digitized and processed by machines.188

While sensors may detect compounds like 2-acetyl-1-pyrroline, the molecule responsible for the smell189

of baked bread, humans do not perceive this molecular identity; we perceive semantic impressions.190

This divergence between molecular and semantic perception introduces a profound challenge: how191

do we construct objective olfactory benchmarks when the human experience of smell is so context-192

dependent? The mapping from olfactory receptor activation to semantic descriptors is not deter-193

ministic. It is modulated by individual genetic variation [148], environmental context [97], health194

status [21, 91], age [53], and even neurocognitive conditions [52]. Concepts like the Principal Odour195

Map from Lee, et al. [89] highlight this, noting non-unanimous descriptors for the same aroma, and196

research on baked bread [93] shows varied descriptors due to differing emitted compounds. Figure 4197

shows the limits of human perceptibility and sensor detectability for molecular associated with the198

aroma of baked bread. This subjectivity directly impacts our ability to create a unified, multimodal199

concept space (refer Figure 3). Without a common objective and grounding, olfactory data cannot be200

meaningfully integrated with other modalities to develop enhanced multi-modal AI systems.201

Such biases, however, are not unique to olfaction. In vision, color perception varies across indi-202

viduals—some are red-green color blind, while others perceive ultraviolet spectra. Yet, despite203

these variances, the scientific community has converged on objective representations. The color204

"orange" is mapped to specific wavelengths of visible light, and though linguistic interpretations may205

vary, consensus exists about the underlying physical measurements. Computers represent orange206
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Figure 3: Illustrates how standardized olfactory data and models can integrate with other modalities
(e.g., vision) for learning enhanced Large Multi-modal Concept Models. Top: We highlight two key
properties: semantic consistency, where, for example, the visual presence of dry coffee beans, coffee
bloom, and brewed coffee is consistently paired with their respective olfactory signatures. It also
shows spatio-temporal consistency; while both visual and olfactory data changes are conceptually
synchronous (e.g., the sight and smell of brewing coffee occur together), they are captured at different
frequencies or temporal resolutions. Bottom: We contrast current, siloed approaches what we
have with the goal of future systems what we need. The envisioned future state, enabled by the
standardization efforts advocated in this paper, shows olfactory embeddings contributing to a more
comprehensive and unified concept space leading to richer understanding of the real-world.

as quantifiable spectral data—e.g., 590–620 nm—independent of individual perception. The more207

abstract visual patterns they identify are ultimately represented as vectors in model latent space208

[64]. A similar paradigm is essential for olfaction if we are to develop the large-scale, standardized209

datasets (see Section 2.4) required for modern machine learning. Projects like GoodScents [35] and210

Leffingwell [9] attempt to map molecules and human odour descriptors but these are limited. To move211

towards the robust datasets envisioned, we must prioritize the collection of raw, digitized sensor data212

capturing objective molecular signatures rather than relying on often inconsistent human labels.213

The ability of systems to operate beyond human perceptual limits is key in olfaction, much like214

in computer vision. For instance, while an odourant at 2 ppb may be undetectable by humans, it215

is often fully observable by olfactory sensors or canines. This is comparable to how an object at216

low visual resolution (e.g., 10×10 pixels, see Figure 2) becomes clearer with increased resolution.217

Consequently, just as vision models can learn abstract features from low-resolution inputs, olfactory218

models could identify molecular patterns at these sub-perceptual concentrations. To harness and219

measure this potential, establishing objective measures and verifiable ground truth is a prerequisite220

for robust benchmarking of olfactory progress (see Section 2.5).221

2.4 Olfaction Datasets222

The quest for truly Embodied AI cannot succeed while olfaction, a primary sensory modality, remains223

in the digital shadows. Can we, as a community, afford to delay the creation of an olfactory equivalent224

to ImageNet [44]? The current lack of consensus on digital odour representation and the consequent225

dearth of large-scale, standardized datasets are not mere inconveniences; they are fundamental226

roadblocks. This void actively stifles progress in developing machine learning models capable of227
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sophisticated odour perception and prediction—capabilities that are paramount for robots and AI228

systems designed to operate in, understand, and interact with the complexities of the real world.229

Pioneering efforts like the Principal Odour Map (POM) [89] and Eigengraphs [135] leverage on230

existing databases such as GoodScent [35], LeffingWell [9] and DoOR [104]. While these offer231

glimpses into "digitizing" odours, they also underscore critical challenges, namely the profound232

subjectivity of human aroma classification (see Section 2.3) and the limited scope of current datasets233

[126]. From a machine learning perspective, two datasets are particularly noteworthy and frequently234

used. One is the psychophysical dataset by Keller et al. [84], which links 480 diverse molecules235

to human perceptual ratings across intensity, pleasantness, and semantic descriptors. It highlights236

reliable structure–percept correlations and underscores the strong influence of familiarity on verbal237

reports, making it a key resource for modelling olfactory perception. The other is a large-scale gas238

sensor dataset from Vergara et al. [140], capturing responses from 72 MOx sensors exposed to 10239

gases under turbulent flow in a custom wind tunnel. Designed to mimic open-air sampling conditions,240

it includes 18,000 time series measurements and supports algorithm development for robust odour241

detection in complex, variable environments. However, later work revealed that certain limitations of242

the experimental protocol during data collection may have compromised the dataset’s reliability [47]243

and thus lead to overly optimistic algorithm evaluation results [49]. Thus the current fragmentation244

in olfactory data representations presents a significant barrier to data aggregation.245

The assertion that we have reached "peak data" [136] overlooks the vast, uncharted territory of246

olfactory information. This is not merely about adding another modality; it is about unlocking a247

fundamentally new dimension of data for multimodal AI, pushing it beyond the confines of current248

internet-trained models. We contend that developing a robust olfactory data standard, in parallel249

with the construction of large-scale datasets (much like audio research progressed with varied250

representations before full convergence [30]), is essential for the next leap in multi-modal AI (see251

Figure 3), leading to omni-perceptual embodied and potent systems.252

For Embodied AI to advance beyond its current sensory limitations, we must prioritize the develop-253

ment of olfactory datasets that capture the richness of real-world olfactory experiences in a structured,254

machine-learnable format. This necessitates a paradigm shift towards datasets that encompass: (a)255

Multimodal Datasets for Static Scene Understanding: Olfaction does not operate in a vacuum.256

To build AI systems that achieve a holistic understanding of their surroundings, even in relatively257

static contexts [44, 92, 41], we require datasets that integrate olfactory information with static 2D/3D258

scenes. (b) Spatio-Temporal Olfactory Archives for Dynamic Scene Understanding: For em-259

bodied agents to effectively operate and navigate within dynamic environments, and to understand260

complex, unfolding activities, a different class of olfactory datasets is essential. These datasets must261

map the olfactory world in four dimensions similar in-spirit to multi-modal 4D datasets [66, 110, 57],262

comprising time-series olfactory data captured by mobile sensor arrays. Critically, this data needs263

to be meticulously correlated with the agent’s trajectories, the geometry of the environment, and264

ground-truth locations of odour sources. Such spatio-temporal olfactory archives are indispensable265

for training AI in crucial tasks like hazardous leak detection, olfactory search-and-rescue operations,266

and for enabling a deeper understanding of activities that leave olfactory traces over time and space.267

To overcome the inherent variability of olfactory perception and ensure the utility of these datasets,268

our position is that: (1) The community should converge on robust methodologies by prioritizing269

the collection of raw, digitized sensor data under rigorously controlled environmental conditions270

to capture objective molecular signatures. Experimental controls must ensure that odourant con-271

centrations remain within detectable thresholds for most humans. It has been shown [150] that the272

majority of biologically relevant odourants occur below the parts-per-billion (ppb) concentration273

range, necessitating highly sensitive and reproducible instrumentation. (2) We must develop and adopt274

standardized protocols for sensor calibration, data acquisition, and comprehensive annotation akin to275

recent efforts from robotics community [34]. (3) When incorporating subjective human descriptors,276

it’s crucial to implement systematic approaches that utilize multiple annotators and consensus-scoring277

to mitigate individual bias and address concentration-dependent perceptual variations [87, 125, 83].278

2.5 Benchmarks: Charting the Course for Olfactory-Empowered Embodied AI279

Without robust and standardized benchmarks, the development of olfactory capabilities within280

Embodied AI will remain disjointed and progress unmeasurable. It is imperative that we, as a281

research community, define a suite of benchmark tasks that not only test olfactory perception in282

isolation but, more critically, evaluate its contribution to holistic understanding of dynamic scenes.283
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These benchmarks, drawing inspiration from successes in Computer Vision (e.g. ImageNet [44],284

COCO [92]) and NLP (e.g. GLUE [142], SQuAD [119]), must provide clearly defined tasks, curated285

multi-modal datasets (as discussed in Section 2.4), and rigorous evaluation metrics. We propose a286

focus on the following benchmarks, where olfactory data is not just an add-on, but a transformative287

component in understanding and reasoning:288

Foundational Olfactory Perception. This paradigm is centered on the basic ability of machine289

learning systems to sense olfactory stimuli. It encompasses recognition tasks such as odour compo-290

nent identification which focus on determining the presence and concentrations of specific volatile291

organic compounds. In principle, this is analogous to established tasks like image classification [44]292

or audio event detection [124, 111]. Progress within this paradigm is exemplified by key works such293

as the Principal Odour Map [89] and eigengraphs [135].294

Olfaction in Static Scenes. This paradigm addresses tasks where AI systems leverage olfaction295

in conjunction with other modalities (primarily vision) to understand and interact with relatively296

stable scenes. It focuses on: (a) Detection tasks (akin to visual grounding tasks [56, 92]) such as297

olfactory-visual localization in static scenes where we focus on pinpointing the specific object or298

area within a static 2D/3D scene that is the source of a detected odour, using both visual cues and299

olfactory sensor data. For example, identifying which container in a pantry is emitting a specific smell300

or which fruit in a bowl is ripe. (b) Reasoning tasks (akin to traditional video question answering301

[151, 73]) such as olfactory-visual question answering where we focus on answering questions about302

a static scenes that require joint reasoning over visual and olfactory information. For example, "What303

ingredients are likely present in this (unseen) dish based on its smell and the visible cooking setup?"304

Olfaction in Dynamic Scenes. This paradigm focuses on tasks involving mobile agents, chang-305

ing olfactory landscapes, and the temporal evolution of scents, requiring robust integration of306

olfactory data with spatio-temporal visual and potentially auditory information. It focuses on:307

(a) Localization & Tracking tasks (akin to multi-object tracking [42]) where we focus on detecting,308

localizing, and tracking the source(s) of odours as they move. This could involve tracking a scent309

plume to its origin or identifying a moving entity by its olfactory signature. (b) Navigation tasks310

(akin to visual navigation [78]) where we enable an agent to navigate complex, potentially visually311

ambiguous environments by primarily relying on or being significantly aided by olfactory cues. This312

includes tasks like navigating to a specific odour source, using a sequence of olfactory landmarks, or313

avoiding areas with hazardous smells [24, 25, 54, 61]. Current robots often struggle to effectively314

use chemical cues [25]. New benchmarks are needed to test an AI’s proficiency in pinpointing odour315

sources, such as a gas leak in a building [24, 54], tracking dynamic scent plumes [131], or navi-316

gating using sparse olfactory landmarks [40] (c) Reasoning tasks (akin to video question answering317

[67, 153], multimodal event understanding [57, 110]) where focus on answering complex questions or318

generating summaries about dynamic events and activities by integrating information from olfactory,319

visual (video), and auditory streams. For example, "Based on the sight of smoke, the sound of a320

crackling fire, and the smell of burning wood, what is likely happening and where?"321

The creation of these benchmarks is not an academic exercise; it is a critical enabler for pushing322

Embodied AI towards genuine environmental understanding and interaction. Addressing the current323

void, exemplified by the absence of olfactory components in general AI assessments like the ARC-324

AGI benchmark [31], is essential. Only by rigorously testing against such benchmarks can we ensure325

that machine olfaction evolves from a niche curiosity into a core competency of embodied systems.326

3 Ethical Considerations in Superhuman Olfaction327

History has shown that AI systems which achieve superhuman performance in narrow modalities can328

yield unintended and sometimes adverse consequences. In computer vision, superhuman accuracy in329

facial recognition has led to widespread concerns about surveillance, privacy, and algorithmic bias,330

particularly when deployed without consent or adequate regulation [23, 118]. In NLP, large language331

models have demonstrated uncanny fluency but have also amplified disinformation, toxicity, and332

epistemic bias at scale [15, 146]. In audition, AI-generated voices now impersonate individuals with333

near-perfect fidelity—blurring the boundary between legitimate media and deepfakes [102].334

As we now move toward endowing machines with olfactory intelligence—particularly one that335

exceeds human capabilities—we must anticipate similar dual-use risks. Superhuman olfaction could336

be used to enhance environmental monitoring, disease diagnostics, or search-and-rescue robotics. But337

it could equally be leveraged for mass surveillance of human biological states (e.g., stress, fertility,338
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intoxication), infringing on bodily privacy in ways for which no legal or ethical precedent currently339

exists [70]. Just as one’s voice and biometrics are considered personal identifiable information (PII),340

so is it also probable that one’s olfactory characteristics through their breath [81, 12, 11] and general341

aroma data may also be classified as PII in the near future.342

The ethical stakes escalate when these narrow superhuman modalities are integrated into unified343

multimodal architectures. Emerging olfaction-vision-language models (OVLMs) [60, 127] combine344

chemical sensing with high-fidelity perception and reasoning systems. Under the wrong intentions,345

these models could infer behavioral, physiological, and even psychological states of individuals with346

unprecedented granularity. Biased olfactory agents could guide humans to harmful chemicals, or let347

spoiled or poisoned ingredients pass quality control within a cosmetics manufacturing line. Merging348

olfactory intelligence with large multimodal foundation models grants one more super-human sense349

to machines that already out-perform humans on many tasks [30]. Embodying olfaction in robotic350

form gives AI a means of exploring the world with an additional medium with which to further351

understand multimodal patterns. Yet it must be understood that the additional inference capabilities352

could be exploited for commercial manipulation, targeted policing, or covert tracking of marginalized353

populations. The convergence of modalities does not dilute ethical risks; it compounds them.354

AI ethics frameworks to date have been disproportionately focused on vision, language, and fairness355

metrics rooted in social identity categories defined by vision, audition, and language (e.g., gender,356

race, dialect). These frameworks are not yet equipped to handle new sensory axes such as scent,357

which interact with human dignity, consent, and neurophysiological privacy in complex ways. There358

is currently no consensus on what it means to "explain" a decision made by an olfactory model or to359

audit bias in an odour classifier trained on population-specific olfaction data.360

4 Discussion, Limitations & Future Work361

The lack of large datasets in olfaction precludes the use of many modern "big data" machine learning362

techniques. Adaptive [156], continuous [63], and few-shot learning [144] techniques will most363

certainly need to be employed in the near term to progress olfactory intelligence. Co-training364

[18, 95, 94, 62] and federated learning [100] methods can help produce more confident datasets over365

smaller disjoint datasets. Evidential methods based on the Dempster-Shafer Theory [128, 4] can help366

seed much larger datasets from empirical evidence gathered from smaller confident samples. The367

temporal and information sparsity of olfaction data [48] (especially during navigation) may indeed368

lead to adaptive architectures that allow the model to be modified as it trains through methods such as369

columnar constructive networks [77] and prototypical networks [132].370

Solving these key challenges within olfaction enables more applications such as scent-based navi-371

gation, more accurate medical diagnostics, organic improvements to agriculture, and better quality372

control of consumer products (see Section B of the Supplementary Material for more detail on poten-373

tial applications). The generation of new aromas and even commercial products [145] centered around374

novel odours become possible by combining generative AI techniques with olfaction [59, 106].375

As the state of olfaction progresses, we expect to see many changes around hardware, software, and376

overall thought leadership. Sensors will continue to increase in detection speed [46, 74, 103] and377

resolution [134] and decrease in size. Many of these optimizations will come through improvements378

of materials science and sensor manufacturing of which several opportunities exist [13, 39]. Electronic379

noses will become more integrated into society as the potential applications become realized and380

olfactory sensors approach the ubiquity of cameras and microphones. The proliferation of such381

sensors will allow us to materialize the dense data available in the air around us. Momentum in382

artificial olfaction will motivate progress in neuroscience to allow us to better understand aspects of383

the brain still unsolved [5, 14, 101, 113, 129, 155].384

Our work above highlights significant opportunities to make a monumental step in AI. Progressing385

artificial olfaction will bring the state of AI closer to truly embodied intelligence by allowing robots386

to navigate and perceive the world with an additional high-context dimension. The fields of AI and387

robotics are lacking one key sense that is significantly hindering their advancement. We hope our388

work here raises awareness about the plethora of opportunities that exist in the field of olfaction389

and motivates funding, development, and research in the field on par with those received by other390

modalities. Convergence on the five key problems presented here will bring us one step closer to391

enabling the sense of smell for machines.392
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