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ABSTRACT

Existing federated learning paradigms usually extensively exchange distributed
models at a central solver to achieve a more powerful model. However, this would
incur severe communication burden between a server and multiple clients espe-
cially when data distributions are heterogeneous. As a result, current federated
learning methods often require a large number of communication rounds in training.
Unlike existing paradigms, we introduce an alternative perspective to significantly
decrease the communication cost in federate learning. In this work, we first intro-
duce a meta knowledge representation method that extracts meta knowledge from
distributed clients. The extracted meta knowledge encodes essential information
that can be used to improve the current model. As the training progresses, the
contributions of training samples to a federated model also vary. Thus, we intro-
duce a dynamic weight assignment mechanism that enables samples to contribute
adaptively to the current model update. Then, informative meta knowledge from
all active clients is sent to the server for model update. Training a model on the
combined meta knowledge without exposing original data among different clients
can significantly mitigate the heterogeneity issues. Moreover, to further ameliorate
data heterogeneity, we also exchange meta knowledge among clients as condi-
tional initialization for local meta knowledge extraction. Extensive experiments
demonstrate the effectiveness and efficiency of our proposed method. Remarkably,
our method outperforms the state-of-the-art by a large margin (from 74.07% to
92.95%) on MNIST with a restricted communication budget (i.e., 10 rounds).

1 INTRODUCTION
Most deep learning-based models are trained in a data-centralized manner. However, in some
cases, data might be distributed among different clients and cannot be shared. To address this issue,
Federated Learning (FL) (Yang et al., 2019b;a; Kairouz et al., 2021) has been proposed to learn a
powerful model without sharing private original data among clients. In general, most prior FL works
often require frequent model communications to exchange models between local clients and a global
server, resulting in heavy communications burden (Wu & Wang, 2021; Chencheng et al., 2022).
Therefore, it is highly desirable to obtain a powerful federated model with only a few communication
rounds.

In this work, we propose a new meta knowledge-driven federated learning approach to achieve an
effective yet communication-efficient model, thus significantly reducing communication costs. Unlike
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Figure 1: Illustration of our pipeline, in which only three active clients are shown. The local clients conduct
meta knowledge condensation from local private data, and the server utilizes the uploaded meta knowledge for
training a global model. The local meta knowledge condensation and central model training are conducted in an
iterative manner. For meta knowledge extraction on clients, we design two mechanisms, i.e., meta knowledge
sharing, and dynamic weight assignment. For server-side central model training, we introduce a learnable
constraint.

prior works, we formulate federated learning in a new perspective, where representative information
will be distilled from original data and sent to the server for model training. On the client side, we
extract representative information of original data and condense it into a tiny set of highly-compressed
synthetic data, namely meta knowledge. Furthermore, we develop two mechanisms, i.e., dynamic
weight assignment and meta knowledge sharing, in the condensation process to mitigate the data
heterogeneity issue widely existing in decentralized data. On the server side, we train our global
model with meta knowledge uploaded from clients rather than simply averaging client models.

Specifically, we firstly distill the task-specific knowledge from private data on local clients and
condense it as meta knowledge. The meta knowledge condensation process is modeled as a bi-level
optimization procedure under the federated learning setting: the inner-loop minimizes the training
loss on meta knowledge to update a model; and the outer-loop minimizes the training loss on original
data to update meta knowledge based on the updated model. In the optimization process, we assign
dynamic weights to each sample based on its training loss. By dynamically adjusting the weight
of each sample in training, we empower each sample to contribute adaptively to the current model.
Besides, to further mitigate heterogeneous data distributions among different clients, we design a
meta knowledge sharing mechanism.

Our model can be trained with meta knowledge of various clients, which better describes the overall
distribution. This is in contrast to previous methods that average local models on the server. To
further improve the stability of the central model training, we incorporate a learnable conditional
generator. The generator models the statistical distribution of the uploaded meta knowledge and
generates synthetic samples, which provide historical information to the model update. It is worth
noting that meta knowledge, which contains the essential information of the original data and the
corresponding class information, can be used as normal training data for model training. As a result,
our global model is trained with both the uploaded and generated meta knowledge on the server side,
effectively reducing the impact of data heterogeneity and reducing the number of communication
rounds.

We have conducted extensive experiments on several benchmark datasets, including MNIST (LeCun
et al., 2010), SVHN (Netzer et al., 2011), CIFAR10 (Krizhevsky & Hinton, 2009), and CIFAR100
(Krizhevsky & Hinton, 2009). The results demonstrate the efficacy and efficiency of our proposed
approach. In particular, our method demonstrates a significant improvement over the competing
works, particularly in scenarios with limited communication budgets (i.e., 10 communication rounds).
Overall, our key contributions are summarized as follows:

• We propose a new meta knowledge driven federated learning approach, in which we present
a novel approach for federated meta-knowledge extraction. Our method can effectively
encodes local data for global model training. Specifically, we formulate a dynamic weight
assignment mechanism to enhance the informative content of the extracted meta-knowledge,
and design a knowledge sharing strategy to facilitate the exchange of meta-knowledge
among clients without exchanging the original data.

• We introduce a server-side conditional generator that models the statistical distribution of
uploaded meta knowledge to stabilize the training process. Benefiting from the extracted
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meta knowledge and learned statistical distribution, our model requires fewer communication
rounds compared to competing methods while achieving superior performance.

2 METHODOLOGY
2.1 PROBLEM DEFINITION

Federated Learning (FL) trains a model across a set of decentralized devices, i.e., a set of clients and
a server. Suppose there is data D distributed on C clients, each of which has a local private training

dataset Dc = {xc
i , y

c
i }, 1 ≤ i ≤ nc and a weight value pc. It is noted that D = ∪Dc and

C∑
c=1

pc = 1.

Without loss of generality, we discuss a multi-class classification problem under a federated learning
setting. The learning target is formulated as follows:

min
w
{L(w,D) ≜

C∑
c=1

pcLc(w,Dc)}, (1)

where Lc(·) is a local objective function that is optimized on the c-th client. The loss function Lc(·)
is formulated as follows:

Lc(w,Dc) ≜
1

nc

nc∑
i=1

ℓ(w, xc
i , y

c
i ), (2)

where ℓ(·) is a user-defined loss function (e.g., cross-entropy loss), and w denotes model parameters.
As most FL algorithms need to exchange locally trained models multiple times, communication
burden is often non-negligible. Though one-shot FL (Zhou et al., 2020a) has been proposed to reduce
communication cost, it suffers performance degradation.

2.2 FEDERATED LEARNING VIA META KNOWLEDGE

We propose a new FL approach to solve the aforementioned limitations. Specially, as shown in Figure
1, our method conducts federated meta knowledge extraction (FMKE) on local clients and server-side
central model training (CMT). To mitigate the data heterogeneity issue in FMKE, we design two
mechanisms, i.e., dynamic weight assignment, and meta knowledge sharing. To stabilize the central
model training, we introduce a learnable constraint modeled by a conditional generator. The technical
details are provided in the following subsections.

2.2.1 FEDERATED META KNOWLEDGE EXTRACTION ON CLIENTS

We design Federated Meta Knowledge Extraction (FMKE) to extract key information from decen-
tralized data. In the decentralized scenario, the original data D is distributed on a set of clients.
Each client has its private data Dc (D = ∪Dc, 1 ≤ c ≤ C, where C is the client number), and a
model downloaded from a server. For simplifying the following discussion, we denote the model
downloaded by client c as wc.

On each active local client c, FKME distills key information from corresponding local private data
Dc. The distilled information is condensed as meta knowledge D̂c, which will be used to replace
the original data Dc in global model training on the server 1. The cardinality of D̂ , i.e., the size of
extracted meta knowledge from all active clients, is much less than that of D . The condensed meta
knowledge D̂ is highly compressed and representative. To enable the models trained on the original
data and the meta knowledge to achieve the comparable performance, we formulate the objective
function of FMKE as2:

D̂c,∗ = argmin
D̂c

Lc(w∗,Dc) = argmin
D̂c

Lc(wc − η∇wcLc(wc, D̂c),Dc), (3)

where η denotes a learning rate for updating wc by stochastic gradient descent (SGD).

To solve the above objective function, we employ a bi-level optimization solution (Rajeswaran et al.,
2019; Wang et al., 2018). To be specific, the meta knowledge extraction is formulated as a nested
optimization process: in the inner-loop, based on an initialized meta knowledge, a model is updated
to minimize the training loss over the meta knowledge; in the outer-loop, given the updated model,

1The dimension of synthesized D̂c
i is the same as that of original data Dc

i .
2Assume one gradient descent step is conducted to achieve w∗ here.
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the meta knowledge is renewed by minimizing the training loss over the original data. The iterative
formulation of our bi-level optimization process on client c is written as:

D̂c,∗ = argmin
D̂c

Lc(w∗,Dc) s.t. w∗ = argmin
wc

Lc(wc, D̂c), (4)

where Lc(·,Dc) denotes a loss function over the original data Dc on client c, Lc(·, D̂c) denotes a
loss function over the meta knowledge D̂c on client c.

The inner-loop and outer-loop are implemented alternatingly and stochastic gradient descent is
employed to update the model and meta knowledge. At first, on an active client c, we update the
model parameter by the following formulation:

wc ← wc − η∇wcLc(wc, D̂c), (5)

where η denotes a learning rate for the inner-loop. An updated model w∗ is obtained in this inner-loop.

Secondly, given the updated model w∗, we evaluate it on original data Dc and calculate the loss
Lc(w∗,Dc). Then the condensed meta knowledge D̂c can be updated by:

D̂c ← D̂c − α∇D̂cLc(w∗,Dc), (6)

where α denotes a learning rate for the outer-loop, and the meta knowledge D̂c is initialized based on
a uniform distribution (i.e., D̂c

ini ∼ U [−1,+1]). An updated meta knowledge D̂c is obtained in this
outer-loop. The inner-loop and outer-loop are conducted in an alternatingly manner.

The presence of data heterogeneity in FL often results in biased meta knowledge extracted on each
client. To address this issue, we design two effective mechanisms within our FMKE approach, namely
Dynamic Weight Assignment and Meta Knowledge Sharing.

Dynamic Weight Assignment: Concretely, we dynamically assign weights for each training sample
in D. The prediction confidence of each sample evolves during training, and the dynamic weights is
determined based on the varying contributions of each sample to the meta knowledge extraction. To
be specific we calculate a dynamic weight value ϕc

i for each sample Dc
i , i.e., (xc

i , y
c
i ), based on its

prediction loss ℓ(wc, xc
i , y

c
i ). The formulation is defined as follows:

ϕc
i =

1

1 + exp (−τ ∗ ℓ(wc, xc
i , y

c
i ))

, (7)

where τ is a hyper-parameter to smooth the result, Dc = {Dc
i }, 1 ≤ i ≤ N c, and N c denotes original

data number on client c. We assign the dynamic weight to each sample to update meta knowledge:

D̂c ← D̂c − α∇D̂cLc(wc,Φc,Dc), (8)

where Lc(wc,Φc,Dc) ≜ 1
Nc

Nc∑
i=1

ϕc
i · ℓ(wc, xc

i , y
c
i )

3.

Meta Knowledge Sharing: The initialization of D̂c is a crucial factor in the extraction of informative
meta knowledge. In prior bi-level optimization works (Rajeswaran et al., 2019; Wang et al., 2018),
the initialization value was randomly sampled from a constant distribution (i.e., D̂c

ini ∼ U [−1,+1]),
referred to as unconditional initialization. However, due to the heterogeneity issue in FL, this method
may result in the extracted meta knowledge becoming biased towards the corresponding local data.
To address this limitation, we propose a conditional initialization method incorporating a meta
knowledge sharing mechanism.

Conditional initialization (Wang et al., 2020; Denevi et al., 2020) is obtained from data characteristics
rather than random generation. To achieve conditional initialization, we design a simple yet effective
strategy in extracting meta knowledge D̂c for client c at the current round t. Specifically, during the
initialization process of client c, we randomly select another client c′ and use its meta knowledge
D̂c′

t−1 extracted in the previous round t− 1 as the initial value in Eq. 8. This changes the initialization
for D̂c from an unconditional manner to a conditional manner: D̂c

ini ← D̂c′

t−1, c
′ ∼ randint[1, C].

In this manner, the meta knowledge condensation for client c is determined by both the local data
on client c and the knowledge extracted on another client c′, effectively mitigating the heterogeneity
issue.

3For the ease of discussion, Lc(.) is slightly abused here.
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2.2.2 SERVER-SIDE CENTRAL MODEL TRAINING

After conducting FMKE, we upload the condensed meta knowledge D̂ from clients to a server. On
the server, the uploaded meta knowledge is used as normal training data to train a global model WG:

L(WG, D̂) =
1

|D̂|

∑
x̂i,ŷi∈D̂

ℓ(WG, x̂i, ŷi), (9)

where ℓ(.) is a cross-entropy loss function as in Eq. 2, and D̂ = ∪D̂c, 1 ≤ c ≤ C.

To further ameliorate data biases among diverse clients, we introduce additional synthetic training
samples into the central model training. Those introduced training samples are from the same
distribution of upload meta knowledge D̂. Specifically, at first, we model the statistical distribution of
uploaded meta knowledge D̂ via a conditional generator, and then we sample additional data points
based on the learned distribution. Thus, sampled data would share the same distribution as D̂. After
the introduction of sampled synthetic data, we not only stabilize our training procedure but also
achieve better performance.

To facilitate the discussion, we divide the model WG into a feature extractor F with parameter WF
G

and a classifier C with parameter WC
G, in which WG = (WF

G,WC
G). Accordingly, we denote a latent

representation as z = F(WF
G, x) and a final prediction as y

′
= C(WC

G, z). The conditional generator
G maps a label y into a latent representation z ∼ G(y,wG), and G is optimized by the objective:

G∗ = argmax
G:y→z

Ey∼p(y)Ez∼G(y,wG)) log p(y|z,WC
G), (10)

where wG denotes the parameter of G.

The trained generator G models the distribution of uploaded meta knowledge D̂. By sampling data
from the distribution, we obtain a set of "pseudo" meta knowledge D̂pseu with corresponding labels.
The generated "pseudo" meta knowledge D̂pseu as well as uploaded D̂ are utilized to train the global
model by minimizing the following function:

Loverall(WG, {D̂, D̂pseu}) = L(WG, D̂) + βL(WG, D̂pseu), (11)

where β is a parameter and determined by the cardinality fraction |D̂pseu|
|D̂| .

After central model training, we broadcast the obtained global WG and meta knowledge D̂ to clients.
On each active client, the broadcasted model WG as well as meta knowledge D̂ are used for a new
round of FMKE. FMKE and CMT collaborate with each other in an iterative symbiosis paradigm,
benefiting each other increasingly as the learning continues. The training process of our FedMK is
illustrated in Alg. 1. After the completion of the training process, the trained global model is only
used for inference.
Computational Complexity: FedMK includes two parts: federated meta knowledge extraction on
clients and global model training on the server. On clients, our method adopts a bi-level optimization
to extract the meta-knowledge. The bi-level optimization has a running-time complexity of O(N ×n)
(Fallah et al., 2020a), in which n denotes the meta knowledge size, N denotes the number of samples
on the client. It should be noted that the selected nodes can conduct FMKE in parallel. On the server,
the global model training in our method has a running-time complexity of O(n). In total, the overall
running-time complexity of our method is O(N × n).

3 EXPERIMENTS
3.1 DATASETS
We evaluate our algorithm and compare to the key related works on four benchmarks: MNIST (LeCun
et al., 2010), SVHN (Netzer et al., 2011), CIFAR10 (Krizhevsky & Hinton, 2009), and CIFAR100
(Krizhevsky & Hinton, 2009). MNIST is a database of handwritten digits (0-9). In MNIST, there
are 50, 000 images in the training set and 10, 000 images in the test set, and their size is 1× 28× 28
pixels (c× w × h). There are 10 classes in MNIST dataset. SVHN is a real-world image dataset, in
which there are 600, 000 color images collected from house numbers in Google Street View images.
In SVHN, each image is of size 3× 32× 32. The class number of SVHN is as the same as MNIST.
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Algorithm 1: FedMK
Input: Original data D; global parameters WG; generator parameter wG ; the communication budget.
Output: Optimal W∗

G

1 while within the communication budget do
2 the server selects active clients C uniformly at random, and broadcasts WG to selected clients C.
3 ▷Federated Meta Knowledge Extraction on selected clients C:
4 for all user c ∈ C in parallel do
5 wc ←WG;
6 for t = 0, ..., #Round do
7 if t == 0: D̂c

ini ∼ U [−1,+1];
8 elif t == 1: conduct the conditional initialization, i.e., D̂c

ini ← D̂c′
t−1, c

′ ∼ randint[1, C];
9 calculate dynamic weights by Eq. 7;

10 generate D̂c
t by Eq. 4;

11 end
12 send the D̂c

t to the server.
13 end
14 ▷Global Model Training on the server:
15 update generator parameter wG by Eq. 10;
16 generate D̂pseu by the updated generator G;
17 update global parameter WG by Eq. 11.
18 end
19 return WG as W∗

G;

Table 1: The classification accuracy with limited communication rounds (i.e., 10).

Setting FedAvg FedProx FedDistill FedEnsem FedGen FedMK
MNIST

α=0.50 74.61±2.79% 73.56±3.84% 75.04±2.32% 75.39±1.44% 74.07±1.20% 92.95±3.81%
α=0.75 73.49±3.62% 73.13±2.68% 76.21±1.59% 74.28±1.65% 74.57±3.98% 92.86±0.28%
α=1.0 74.10±1.84% 73.35±0.10% 76.19±1.19% 74.45±2.25% 73.97±1.69% 93.63±0.40%

SVHN
α=0.50 29.55±2.02% 28.52±2.44% 26.92±2.02% 29.12±2.99% 28.94±2.62% 74.11±1.00%
α=0.75 31.71±0.90% 25.78±2.76% 25.77±3.27% 29.53±1.91% 30.40±2.86% 74.90±0.44%
α=1.0 30.87±1.41% 29.59±1.26% 25.84±1.21% 32.67±2.07% 33.62±3.28% 74.84±0.32%

CIFAR10
α=0.50 26.63±0.95% 26.21±0.98% 24.38±2.12% 27.56±0.70% 25.42±2.56% 47.33±1.08%
α=0.75 25.42±1.17% 24.85±1.41% 24.18±1.25% 26.42±0.59% 26.25±0.33% 49.04±1.15%
α=1.0 26.80±0.89% 26.66±0.37% 25.83±0.79% 26.74±0.87% 25.36±1.32% 50.32±0.69%

CIFAR100
α=0.50 11.66±1.22% 12.09±0.72% 10.76±0.77% 13.20±0.44% 10.34±0.65% 26.74±0.60%
α=0.75 12.11±0.45% 11.65±0.36% 11.55±0.79% 13.15±0.20% 10.21±1.02% 27.43±0.54%
α=1.0 12.31±0.60% 11.34±0.48% 11.50±0.66% 13.31±0.54% 11.19±0.75% 28.20±0.10%

CIFAR10 dataset consists of 60, 000 color images, each of which has a size of 3× 32× 32. There
are 50, 000 images in the training set and 10, 000 images in the testing set. There are 10 classes in
CIFAR10. CIFAR100 dataset consists of 60, 000 color images, each of which has a size of 3×32×32.
There are 50, 000 images in the training set and 10, 000 images in the testing set. For each image in
CIFAR100, there are two kinds of labels, i.e., fine label and coarse label. We choose coarse labels
and therefore we have 20 classes in the experiment on CIFAR100.
3.2 IMPLEMENTATION DETAILS
We set the user number to 20, and the active-user number to 10. We use 50% of the training set and
distribute it on all clients. All testing data is utilized for evaluation. We use LeNet (LeCun et al.,
1989) as the backbone for all methods: FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020),
FedDistill (Seo et al., 2020), FedEnsemble (Zhu et al., 2021), FedGen (Zhu et al., 2021), and FedMK.
Dirichlet distribution Dir(α) is used to model data distributions. Specifically, we test three different
α values: 0.5, 0.75, and 1.0, respectively. We set the communication round number to 10. Learning
with a small communication round number (e.g., 10) denotes learning under a limited communication
budget. For the methods conducting local model training on clients, i.e., FedAvg, FedProx, FedDistill,
FedEnsemble, and FedGen, we set the local updating number to 20, and the batch size number to 32.
In our method, we set meta knowledge size for each datasets based on their different characteristics
(e.g., the class number, sample size, etc): 20 per class for MNIST; 100 per class for SVHN; 100 per
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Figure 2: Convergence rate comparisons on MNIST, SVHN, CIFAR10, and CIFAR100. α = 1.0. The x-axis
represents communication round numbers.

Figure 3: Impact of meta knowledge size on final performance. #round=10. The x-axis represents meta
knowledge sizes.

Table 2: Impact of each designed mechanism.

w/o Iter w/o Sharing w/o pseudo knowledge w/o dynamic weights Ours

CIFAR10 28.15% 45.79% 46.71% 47.16% 47.33%
CIFAR100 18.82% 25.56% 26.10% 26.43% 26.74%

class for CIFAR10; 40 per class for CIFAR100. We run three trials and report the mean accuracy
performance (MAP).

3.3 COMPARATIVE STUDIES
Compared with Prior Works: We evaluate FedMK and compare it with relevant prior works under
limited communication budgets (10 rounds) on four datasets, including MNIST (LeCun et al., 2010),
SVHN (Netzer et al., 2011), CIFAR10 (Krizhevsky & Hinton, 2009), and CIFAR100 (Krizhevsky
& Hinton, 2009). The results are reported in Table 1. As shown in the results, under limited
communication budgets, all prior works fail to achieve good performance, while FedMK outperforms
them by a significant margin. For instance, on MNIST, FedMK achieves a MAP of 93.63% (α = 1),
outperforming the competing methods. On SVHN, FedMK reaches a MAP of 75.85% (α = 1) in 10
rounds, while the competing methods have not converged yet. The superior performance of FedMK
can be attributed to two aspects. Firstly, unlike competing methods that conduct local model training
with local private data, FedMK trains a global model based on meta-knowledge from all active clients,
which reduces the bias in the model. Secondly, the dynamic weight assignment and meta knowledge
sharing mechanisms designed in FedMK make the meta knowledge extraction more stable, leading to
better performance than competing methods 4.

Convergence rate comparisons: We compare the convergence rates of all methods and show the
performance curves with respect to communication rounds in Figure 2. As expected, our method
achieves a high convergence speed compared to all competing methods. On all datasets, our method
achieves satisfactory performance in much fewer communication rounds. The results shown in both
Table 1 and Figure 2 demonstrate the effectiveness and efficiency of our proposed method.

Impact of the meta knowledge size: We study the effect of varying meta knowledge sizes on the
performance of our method on four benchmark datasets. The results are presented in Figure 3. The
results show that the final performance is influenced by the meta knowledge size. For instance, the
MAP score on CIFAR10 improves as the meta knowledge size increases. Furthermore, we find that
the optimal meta knowledge sizes can differ between datasets. For example, the highest MAP score
on MNIST is achieved when the meta knowledge size is set to 20, while the optimal meta knowledge
sizes on the other three datasets are different. Further discussions on the relationship between meta
knowledge size, communication rounds, and performance can be found in the Appendix.

4A more detailed comparison with FedGen can be found in the Appendix.
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Figure 4: The performance curve w.r.t. the active client number. α = 0.5, #node = 20, #round = 10. The x-axis
represents the active client numbers.

CIFAR10

⍺ ⍺ ⍺

Figure 5: Performance comparisons w.r.t. different round numbers. Left column: 20 rounds; middle column: 30
rounds; right column: 40 rounds. The x-axis represents different α values.

Impact of active client numbers: We examine the effect of varying the number of active clients on
our proposed method and competing works. We conduct experiments with active client numbers set
to 5, 7, and 10, respectively. The performance results are displayed in Figure 4. The results illustrate
that our proposed method consistently outperforms all comparison methods regardless of the number
of active clients.

Impact of communication rounds: We conduct an experiment on the CIFAR10 dataset to analyze
the impact of communication rounds. We compare the performance of different methods when
the number of communication rounds is set to 20, 30, and 40. The results of the comparison are
presented in Figure 5. The results demonstrate that our proposed method consistently outperforms
the competing methods by a remarkable margin.

Impact of designed mechanisms: We conduct a study on CIFAR10 and CIFAR100 to explore the
impact of each designed mechanism. We report the performance in Table 2, where "w/o Iter" means
that we conduct local meta knowledge condensation and global model update only once 5, "w/o
Sharing" means that we do not adopt meta knowledge sharing between clients, "w/o pseudo meta
knowledge" means that there is no learnable constraint on the server, "w/o dynamic weights" means
that we update D̂ by treating all samples in D equally.

As shown in Table 2, there is a drastic performance degradation when there is no iterative collab-
oration between meta knowledge extraction and central model training ("w/o Iter"). Making the
meta knowledge condensation and central model training running in an iterative manner improves
the performance significantly, e.g., on CIFAR10, MAP score increases from 28.15% to 45.79%.
Moreover, the two designed mechanisms, i.e., the meta knowledge sharing between clients, dynamic
weights assignment, significantly boost the MAP score.

Evaluation on the pathological non-iid setting: We conduct an experiment on MNIST under the
pathological non-iid setting (Huang et al., 2021). In the experiment, we set the node number to 20,
the active node number to 10, the number of classes on each client to 5, α to 1.0. We compare all
methods under a limited budget communication (i.e., 10 rounds). As seen in Table 3, our method
achieves better performance compared to the competing methods.

The privacy concerns of meta knowledge: Dong et al. (2022) conducted a theoretical analysis of
the relationship between synthetic data and data privacy. Based on Proposition 4.10 in (Dong et al.,
2022), when using distilled data (meta knowledge), the leakage of membership privacy that directly
relates to personal privacy is O( card(D̂)

card(D) ). As indicated by Proposition 4.10, when the cardinality

5"w/o Iter" can be regarded as one-shot FL like Zhou et al. (2020a)
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Table 3: Result comparisons on MNIST under the pathological non-iid setting.

FedAvg FedProx FedEnsem FedDistill FedGen Ours

MAP (%) 75.11% 72.99% 76.43% 71.19% 86.44% 88.85%

of the synthetic data is much fewer than that of the original data, only limited (i.e., O( card(D̂)
card(D) ))

information can be obtained by the adversary with membership inference attack.

In the Appendix, we provide more experimental analysis and comparisons with prior works.

4 RELATED WORK
Federated Learning. As a privacy-preserving solution, federated learning (Li et al., 2019) provides a
new training manner to learn models over a collection of distributed devices. In federated learning, the
data is located on distributed nodes and not shared. Learning a model without exchanging local data
between nodes minimizes the risk of data leakage but increases the difficulty of training. To address
this issue, FedAvg (McMahan et al., 2017) was proposed to obtain a global model by aggregating
local models trained on active clients. To further enhance local training, personalized FL methods
(Fallah et al., 2020b; Dinh et al., 2020; Dai et al., 2022) and knowledge distillation-based FL methods
(Seo et al., 2020; Zhu et al., 2021; Zhang et al., 2022) have been proposed. For a comprehensive
understanding of FL, readers are referred to (Kairouz et al., 2021; Tan et al., 2022; Gao et al., 2022).

Compact Data Representation. Generally, prior works compressing a large scale data into a small
set can be categorized into two main branches: data selection and data compression. Data selection
methods (Rebuffi et al., 2017; Castro et al., 2018; Aljundi et al., 2019; Sener & Savarese, 2018)
select the most representative samples from the original data based on predefined criteria. How to
select an appropriate criterion based on the given data and task is not a trivial issue. To overcome
the aforementioned limitations, synthesizing new samples rather than selecting existing samples
becomes a more preferable solution. The methods (Wang et al., 2018; Zhao et al., 2021; Nguyen
et al., 2021a; Zhao & Bilen, 2021; Nguyen et al., 2021b; Vicol et al., 2022; Cazenavette et al., 2022;
Zhou et al., 2022; Loo et al., 2022; Wang et al., 2022; Lee et al., 2022; Jiang et al., 2022; Du et al.,
2022; Zhao & Bilen, 2023; Loo et al., 2023) design different solutions for generating synthetic data
based on given datasets. In those methods, the generated data can replace the original data in the
model construction process. However, those prior synthetic data generation works require data to be
localized in a centralized manner.

Federated Learning via Synthetic Data. A few attempts (Goetz & Tewari, 2020; Zhou et al.,
2020b; Yoon et al., 2021; Xiong et al., 2022; Hu et al., 2022; Kim & Choi, 2022; Behera et al.,
2022; Song et al., 2022) have employed synthetic data generated from local data for FL. Zhou et al.
(2020b) and Song et al. (2022) introduced one-shot FL methods by utilizing distilled data. Goetz &
Tewari (2020) proposed a method for FL that utilizes data-poisoning to generate synthetic training
data. Behera et al. (2022) utilized synthetic data generated by a Generative Adversarial Network
for FL training. Concurrently, Xiong et al. (2022) used gradient matching to synthesize data from
the original data and used the synthetic data to train a global model. Hu et al. (2022) and Kim &
Choi (2022) also adopted the distilled data for training a global model in FL. Compared to these
concurrent works (Xiong et al., 2022; Hu et al., 2022; Kim & Choi, 2022), our method introduces
a meta-knowledge sharing mechanism and a dynamic weight assignment strategy, significantly
increasing the informative content of the meta knowledge. In this way, we can further speed up the
convergence of the global model. In FedMix (Yoon et al., 2021), Yoon et al. proposed to share the
averaged local data among clients for knowledge sharing. However, FedMix (Yoon et al., 2021) still
follows the training paradigm of FedAvg (i.e., training local models on clients and aggregating a
global model on the server), incurring a higher communication cost.

5 CONCLUSION
In this paper, we present a new federated learning paradigm driven by meta knowledge, dubbed
FedMK, to obtain an effective and fast-converging model. With the help of the proposed paradigm,
FedMK can train a powerful model even under a limited communication budget (e.g., 10 communica-
tion rounds), decreasing the communication cost significantly. Moreover, our designed mechanisms,
i.e., meta knowledge sharing, dynamic weight assignment, and a learned constraint, collectively
facilitate the central model training, benefiting FedMK outperforming all competing methods.
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Table 4: Results with 10 rounds.

Setting FedAvg FedProx FedDistill FedEnsem FedGen FedMK
MNIST

α=0.10 61.95% 61.41% 58.46% 67.89% 64.83% 77.37%
α=0.25 69.52% 68.43% 71.78% 72.23% 73.41% 90.07%

SVHN
α=0.10 20.10% 18.39% 25.44% 24.60% 24.38% 57.24%
α=0.25 23.56% 25.01% 22.70% 23.21% 28.79% 65.66%

CIFAR10
α=0.10 23.71% 21.88% 24.93% 24.80% 20.16% 38.45%
α=0.25 21.85% 22.17% 20.84% 23.98% 22.94% 40.75%

CIFAR100
α=0.10 10.19% 9.41% 12.41% 10.64% 10.79% 18.62%
α=0.25 11.73% 10.43% 8.73% 12.42% 8.22% 22.14%

Appendix Meta Knowledge Condensation for Federated Learning

A ADDITIONAL EXPERIMENTAL RESULTS

Compared with Prior Works when setting α to 0.1 and 0.25: We set the α value in Dirichlet
distribution D(α) (Zhu et al., 2021) to 0.1 and 0.25, and run all methods under limited communication
budgets (10 rounds) on four datasets. We report the results in Table 4. As shown in Table 4, when
communication budgets are limited (10 rounds) and the α value is set to 0.25 and 0.10, our method
can still learn a model outperforming competing works by a remarkable margin.

Impact of the weight assignment mechanism: We investigate the impact of weight assignment
mechanisms in our proposed method. Here, we compare our Dynamic Weight Assignment mechanism
with a Class Balance Weight strategy that has been used in prior works (Tian et al., 2022; Shao et al.,
2021). This strategy assigns weights to each sample during training based on the occurrence rate of
the corresponding class. We perform an experiment on the MNIST dataset and present the results
in Table 6. The results demonstrate that our proposed Dynamic Weight Assignment mechanism
outperforms the Class Balance Weight strategy.

Impact of node numbers: We conduct experiments on the SVHN dataset to analyze the effect of
the number of nodes. Specifically, we set the node number to 200 for comparisons. Typically, as the
number of nodes increases, the amount of data on each client becomes sparse, making learning more
challenging and leading to a decrease in performance. However, our experiment shows that even
when the node number is increased to 200, our method (70.51%) still outperforms FedGen (66.31%)
by a substantial margin.

Impact of the smooth parameter τ in Eq. 7: We conduct a study on four datasets to explore the
impact of smooth parameter τ in Eq. 7. We set the τ value to 1.0, 5.0, and 10.0, respectively. As
shown in Table 5, we achieve the highest performance in most cases when we set τ to 5.0. Therefore,
we set τ in Eq. 7 to 5.0 for all our experiments.

Communication cost comparisons: We analyze the communication cost of our method on MNIST.
In each round of FedMK, we need to upload and download the meta knowledge, and download a
trained model. In the experiment, the meta image size is 20 per class, each of which is 4 Bytes ×
28 × 28 (sizeof(float32)×w × h). Thus, in each round, the uploading cost of FedMK is 627.2K
(meta knowledge), i.e., 4 Bytes × 28 × 28 × 20 ×10, and the downloading cost is 1677.2K (meta
knowledge and a model), i.e., 627.2K + 105K ×10. In total, the communication cost for FedMK
is 16M, i.e., (627.2K+1, 677.2K) ×10 (# rounds). As shown in Figure 2, to achieve comparable
performance on MNIST, FedAvg has to run around 200 rounds. In this case, the communication cost
for FedAvg is 420M, i.e., 105K × 10× 2× 200 (model size × #active node × 2 × #communication).
This indicates that to obtain models with good performance, FedAvg and its variants require much
higher communication costs.
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Table 5: Impact of the smooth parameter τ .

τ=1.0 τ=5.0 τ=10.0
MNIST

α=0.50 91.70% 92.95% 91.79%
α=0.75 91.90% 92.86% 92.23%
α=1.0 91.53% 93.63% 91.91%

SVHN
α=0.50 72.24% 74.11% 71.60%
α=0.75 71.47% 74.90% 74.03%
α=1.0 71.74% 74.84% 72.19%

CIFAR10
α=0.50 47.72% 47.33% 46.62%
α=0.75 48.17% 49.04% 49.27%
α=1.0 47.82% 50.32% 48.54%

CIFAR100
α=0.50 26.06% 26.74% 26.45%
α=0.75 26.93% 27.43% 26.98%
α=1.0 25.43% 28.20% 26.15%

Table 6: Comparisons on MNIST under different weight assignment mechanisms.

Method α = 0.5 α = 0.75 α = 1.0

Balance Class Weight 92.17% 91.84% 91.69%
Our method 92.95% 92.86% 93.63%

Table 7: EMDs with respect to meta-knowledge sizes.

Meta-Knowledge size(S) 10 20 30 40 50 60 70 80

Difference w.r.t. S=10 0 10 20 30 40 50 60 70

EMD(metaS,meta10) 0.000 0.023 0.054 0.046 0.053 0.045 0.045 0.043

B DISCUSSIONS

Why does utilizing meta-knowledge decrease the required communication rounds? Our method
utilizes extracted meta knowledge as normal training data to train a global model on the server.
The meta knowledge is extracted from original data via a bi-level optimization, which encodes the
"gradient of gradient" with respect to the model. The optimization methods based on the second order
gradient generally have a higher convergence speed than the methods using the first order gradient
(Battiti, 1992; Xie et al., 2022). Therefore, utilizing meta-knowledge endows our algorithm with a
fast convergence speed and decreases the communication round number.

Why increasing the meta knowledge size can not necessarily improve final performance? In
the meta knowledge extraction process, the calculated meta-knowledge in each batch represents
the average of the model update direction. The average gradient is stable when the batch number
increases in a certain range (from ×1 to ×10). As a result, increasing the meta-knowledge sizes
does not necessarily increase the performance. Intuitively, the meta knowledge is highly dense and
compressed, encoding the knowledge from original data (Zhou et al., 2022). In principle, using the
meta knowledge approximates employing the original data. As the amount of information in the
original data is constant, the training performance will not necessarily increase as the meta knowledge
size increases.

We conduct an experiment on MNIST to show the information change between meta knowledge with
respect to different sizes. Concretely, we set the meta-knowledge size (S) as 10, 20, 30, 40, 50, 60,
70, and 80, respectively. As earth mover’s distance (EMD) has been utilized to compute a structural
distance between two data sets to determine their similarity (Zhang et al., 2020), we use it to evaluate
differences according to meta-knowledge with different sizes. The results are listed in Table 7. It
can be seen that the EMDs with respect to meta-knowledge sizes are stable, indicating the amount of
information in the meta-knowledge does not change significantly with respect to the meta knowledge
size.
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meta-knowledge

restored data by deep leakage based on meta-knowledge

original image

Figure 6: The visualization of original images (the top row), extracted meta-knowledge (the middle row), and
restored data by deep leakage based on extracted meta-knowledge (the bottom row).

The privacy concerns of meta knowledge. We think that the use of generated meta knowledge
can protect original data privacy. This can be argued from three perspectives. Firstly, as shown in
the function for the upper-level problem, i.e., D̂c ← D̂c − α∇D̂cLc(w∗,Dc), it never returns the
original local data Dc. What we receive in the outer loop (the upper-level problem) is the updated (or
initialized when there is no update) meta knowledge D̂c.

Secondly, based on Deep Leakage (Zhu & Han, 2020), we conduct an experiment on MNIST to
explore the possibility of restoring data from extracted meta knowledge. The results are shown in
Figure 6. The original images are shown in the top row, and the extracted meta knowledge is shown
in the middle row. We feed the extracted meta knowledge and a trained model to Deep Leakage (Zhu
& Han, 2020), which is one of the state-of-the-art methods for restoring data from leaked knowledge.
The data restored by Deep Leakage is shown in the bottom row. It can be seen that it is hard to
construct correspondence between entries in restored data and original data.

Thirdly, Dong et al. (Dong et al., 2022) conducted a theoretical analysis of the relationship between
synthetic data and data privacy. Based on Proposition 4.10 in (Dong et al., 2022), when using distilled
data (meta knowledge), the leakage of membership privacy that directly relates to personal privacy is
O( card(D̂)

card(D) ). As indicated by Proposition 4.10, when the cardinality of the synthetic data is much

fewer than that of the original data, only limited (i.e., O( card(D̂)
card(D) )) information can be obtained by

the adversary with membership inference attack.

C THE COMPARISON WITH PRIOR WORKS

The difference between FedMix (Yoon et al., 2021) and FedMK: Our method differs from FedMix
(Yoon et al., 2021) significantly in three aspects.

Firstly, our method adopts a different training paradigm. FedMix (Yoon et al., 2021) follows the
training paradigm of FedAvg, i.e., training local models on clients and aggregating a global model
on the server. Our method conducts the meta knowledge extraction on clients, and trains a global
model on the server based on the uploaded meta knowledge. Our method significantly decreases the
communication cost as it only needs to upload the meta knowledge.

Secondly, our method has a faster convergence speed. This is because our method utilizes the second-
order gradient information. In FedMix (Yoon et al., 2021), only the first-order gradient information
is utilized. In our method, the meta knowledge encodes the "gradient of gradient" with respect to
the model. The optimization methods based on the second-order gradient generally have a higher
convergence speed than the methods using the first-order gradient (Xie et al., 2022). We conduct an
experiment on MNIST (α = 1.0) to compare with FedMix (Yoon et al., 2021). When communication
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budgets are limited (i.e., 10 rounds), FedMix only achieves 74.68% MAP, whereas our method can
achieve 93.63% MAP.

Thirdly, to ameliorate the heterogeneity issue in FL, we specifically design two mechanisms in
federated meta knowledge extraction on local clients, i.e., dynamic weight assignment and meta
knowledge sharing. There are no such mechanisms in FedMix (Yoon et al., 2021). We demonstrate
that the two mechanisms can improve the final accuracy significantly (e.g., 1.5% improvement on
CIFAR10).

In summary, compared to FedMix (Yoon et al., 2021), our method adopts a different FL training
paradigm, utilizes the second-order gradient information in model learning, and designs two specific
mechanisms for ameliorating the heterogeneity issue.

The difference between FedSynth (Hu et al., 2022), FedDM (Xiong et al., 2022), FedDDC (Kim &
Choi, 2022) and FedMK: Although our work and FedSynth (Hu et al., 2022), FedDM (Xiong et al.,
2022), FedDDC (Kim & Choi, 2022) all use condensed data in FL, there are significant differences
between them. Please allow us to illustrate the differences from three aspects.

Firstly, on local clients, our method designs a different federated meta knowledge extraction solution.
Prior works such as (Xiong et al., 2022; Kim & Choi, 2022) directly utilize a gradient matching
strategy for data condensation. We adopt a bi-level optimization solution in our method. To further
ameliorate the heterogeneity issue in FL, we specifically design two mechanisms in our meta
knowledge extraction process, i.e., dynamic weight assignment and meta knowledge sharing. There
are no such mechanisms in prior works. In our experiment, we demonstrate the effectiveness of the
two mechanisms (e.g., 1.5% improvement on CIFAR10).

Secondly, on the server, prior works only use the uploaded condensed data to finetune the aggregated
global model. In our method, to further ameliorate data biases among diverse clients, we introduce
additional synthetic training samples generated by a conditional generator in the global model
training.

Last but not the least, our method adopts a different FL learning paradigm compared to FedDC (Kim
& Choi, 2022). Kim et al. (Kim & Choi, 2022) conduct local model training on clients, global model
aggregation and fine-tuning on the server. Our method conducts meta knowledge extraction on clients,
global model training on the server. As our method does not need to upload the local trained model
in each communication round, our method significantly decreases the communication cost.

In summary, there are significant differences between prior works and our proposed method in various
aspects.

The difference between FedGen (Zhu et al., 2021) and FedMK: There are significant differences
between FedGen (Zhu et al., 2021) and our FedMK, which are listed as follows:

Firstly, FedGen utilizes original data on local clients to train local models, while our method conducts
meta knowledge extraction to synthesize meta knowledge, which is used for global model training on
a server. In FedGen, the trained local models might diverge due to the data distribution variations
among clients.

Secondly, FedGen constructs a global model by aggregating uploaded local models; while our method
learns a global model based on meta knowledge uploaded from clients. In our method, the global
model learning utilizes knowledge from all active clients, therefore mitigating the bias issue compared
to FedGen.

Thirdly, the conditional generator in FedGen is trained on the server and transmitted to clients.
On clients, it is used as a constraint in the local model training. On the contrary, the conditional
generator in our method is trained and utilized on the server, participating in the global model training.
Compared to FedGen, our method has a less communication cost without performance deterioration.

In conclusion, compared to FedGen, our method performs more effectively and efficiently.
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